2 * AArch64 specific helpers
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "exec/gdbstub.h"
23 #include "qemu/host-utils.h"
24 #include "sysemu/sysemu.h"
25 #include "qemu/bitops.h"
27 /* C2.4.7 Multiply and divide */
28 /* special cases for 0 and LLONG_MIN are mandated by the standard */
29 uint64_t HELPER(udiv64
)(uint64_t num
, uint64_t den
)
37 int64_t HELPER(sdiv64
)(int64_t num
, int64_t den
)
42 if (num
== LLONG_MIN
&& den
== -1) {
48 uint64_t HELPER(clz64
)(uint64_t x
)
53 uint64_t HELPER(cls64
)(uint64_t x
)
58 uint32_t HELPER(cls32
)(uint32_t x
)
63 uint64_t HELPER(rbit64
)(uint64_t x
)
65 /* assign the correct byte position */
68 /* assign the correct nibble position */
69 x
= ((x
& 0xf0f0f0f0f0f0f0f0ULL
) >> 4)
70 | ((x
& 0x0f0f0f0f0f0f0f0fULL
) << 4);
72 /* assign the correct bit position */
73 x
= ((x
& 0x8888888888888888ULL
) >> 3)
74 | ((x
& 0x4444444444444444ULL
) >> 1)
75 | ((x
& 0x2222222222222222ULL
) << 1)
76 | ((x
& 0x1111111111111111ULL
) << 3);
81 /* Convert a softfloat float_relation_ (as returned by
82 * the float*_compare functions) to the correct ARM
85 static inline uint32_t float_rel_to_flags(int res
)
89 case float_relation_equal
:
90 flags
= PSTATE_Z
| PSTATE_C
;
92 case float_relation_less
:
95 case float_relation_greater
:
98 case float_relation_unordered
:
100 flags
= PSTATE_C
| PSTATE_V
;
106 uint64_t HELPER(vfp_cmps_a64
)(float32 x
, float32 y
, void *fp_status
)
108 return float_rel_to_flags(float32_compare_quiet(x
, y
, fp_status
));
111 uint64_t HELPER(vfp_cmpes_a64
)(float32 x
, float32 y
, void *fp_status
)
113 return float_rel_to_flags(float32_compare(x
, y
, fp_status
));
116 uint64_t HELPER(vfp_cmpd_a64
)(float64 x
, float64 y
, void *fp_status
)
118 return float_rel_to_flags(float64_compare_quiet(x
, y
, fp_status
));
121 uint64_t HELPER(vfp_cmped_a64
)(float64 x
, float64 y
, void *fp_status
)
123 return float_rel_to_flags(float64_compare(x
, y
, fp_status
));
126 float32
HELPER(vfp_mulxs
)(float32 a
, float32 b
, void *fpstp
)
128 float_status
*fpst
= fpstp
;
130 if ((float32_is_zero(a
) && float32_is_infinity(b
)) ||
131 (float32_is_infinity(a
) && float32_is_zero(b
))) {
132 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
133 return make_float32((1U << 30) |
134 ((float32_val(a
) ^ float32_val(b
)) & (1U << 31)));
136 return float32_mul(a
, b
, fpst
);
139 float64
HELPER(vfp_mulxd
)(float64 a
, float64 b
, void *fpstp
)
141 float_status
*fpst
= fpstp
;
143 if ((float64_is_zero(a
) && float64_is_infinity(b
)) ||
144 (float64_is_infinity(a
) && float64_is_zero(b
))) {
145 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
146 return make_float64((1ULL << 62) |
147 ((float64_val(a
) ^ float64_val(b
)) & (1ULL << 63)));
149 return float64_mul(a
, b
, fpst
);
152 uint64_t HELPER(simd_tbl
)(CPUARMState
*env
, uint64_t result
, uint64_t indices
,
153 uint32_t rn
, uint32_t numregs
)
155 /* Helper function for SIMD TBL and TBX. We have to do the table
156 * lookup part for the 64 bits worth of indices we're passed in.
157 * result is the initial results vector (either zeroes for TBL
158 * or some guest values for TBX), rn the register number where
159 * the table starts, and numregs the number of registers in the table.
160 * We return the results of the lookups.
164 for (shift
= 0; shift
< 64; shift
+= 8) {
165 int index
= extract64(indices
, shift
, 8);
166 if (index
< 16 * numregs
) {
167 /* Convert index (a byte offset into the virtual table
168 * which is a series of 128-bit vectors concatenated)
169 * into the correct vfp.regs[] element plus a bit offset
170 * into that element, bearing in mind that the table
171 * can wrap around from V31 to V0.
173 int elt
= (rn
* 2 + (index
>> 3)) % 64;
174 int bitidx
= (index
& 7) * 8;
175 uint64_t val
= extract64(env
->vfp
.regs
[elt
], bitidx
, 8);
177 result
= deposit64(result
, shift
, 8, val
);
183 /* 64bit/double versions of the neon float compare functions */
184 uint64_t HELPER(neon_ceq_f64
)(float64 a
, float64 b
, void *fpstp
)
186 float_status
*fpst
= fpstp
;
187 return -float64_eq_quiet(a
, b
, fpst
);
190 uint64_t HELPER(neon_cge_f64
)(float64 a
, float64 b
, void *fpstp
)
192 float_status
*fpst
= fpstp
;
193 return -float64_le(b
, a
, fpst
);
196 uint64_t HELPER(neon_cgt_f64
)(float64 a
, float64 b
, void *fpstp
)
198 float_status
*fpst
= fpstp
;
199 return -float64_lt(b
, a
, fpst
);
202 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
203 * versions, these do a fully fused multiply-add or
204 * multiply-add-and-halve.
206 #define float32_two make_float32(0x40000000)
207 #define float32_three make_float32(0x40400000)
208 #define float32_one_point_five make_float32(0x3fc00000)
210 #define float64_two make_float64(0x4000000000000000ULL)
211 #define float64_three make_float64(0x4008000000000000ULL)
212 #define float64_one_point_five make_float64(0x3FF8000000000000ULL)
214 float32
HELPER(recpsf_f32
)(float32 a
, float32 b
, void *fpstp
)
216 float_status
*fpst
= fpstp
;
219 if ((float32_is_infinity(a
) && float32_is_zero(b
)) ||
220 (float32_is_infinity(b
) && float32_is_zero(a
))) {
223 return float32_muladd(a
, b
, float32_two
, 0, fpst
);
226 float64
HELPER(recpsf_f64
)(float64 a
, float64 b
, void *fpstp
)
228 float_status
*fpst
= fpstp
;
231 if ((float64_is_infinity(a
) && float64_is_zero(b
)) ||
232 (float64_is_infinity(b
) && float64_is_zero(a
))) {
235 return float64_muladd(a
, b
, float64_two
, 0, fpst
);
238 float32
HELPER(rsqrtsf_f32
)(float32 a
, float32 b
, void *fpstp
)
240 float_status
*fpst
= fpstp
;
243 if ((float32_is_infinity(a
) && float32_is_zero(b
)) ||
244 (float32_is_infinity(b
) && float32_is_zero(a
))) {
245 return float32_one_point_five
;
247 return float32_muladd(a
, b
, float32_three
, float_muladd_halve_result
, fpst
);
250 float64
HELPER(rsqrtsf_f64
)(float64 a
, float64 b
, void *fpstp
)
252 float_status
*fpst
= fpstp
;
255 if ((float64_is_infinity(a
) && float64_is_zero(b
)) ||
256 (float64_is_infinity(b
) && float64_is_zero(a
))) {
257 return float64_one_point_five
;
259 return float64_muladd(a
, b
, float64_three
, float_muladd_halve_result
, fpst
);