Merge tag 'v2.12.0-rc0'
[qemu/ar7.git] / target / arm / cpu.h
blob087f047e1b1d064adcd4e8b6dfbe0a89f6dd71a6
1 /*
2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef ARM_CPU_H
21 #define ARM_CPU_H
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
29 #else
30 # define TARGET_LONG_BITS 32
31 #endif
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO (0)
36 #define CPUArchState struct CPUARMState
38 #include "qemu-common.h"
39 #include "cpu-qom.h"
40 #include "exec/cpu-defs.h"
42 #define EXCP_UDEF 1 /* undefined instruction */
43 #define EXCP_SWI 2 /* software interrupt */
44 #define EXCP_PREFETCH_ABORT 3
45 #define EXCP_DATA_ABORT 4
46 #define EXCP_IRQ 5
47 #define EXCP_FIQ 6
48 #define EXCP_BKPT 7
49 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
50 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
51 #define EXCP_HVC 11 /* HyperVisor Call */
52 #define EXCP_HYP_TRAP 12
53 #define EXCP_SMC 13 /* Secure Monitor Call */
54 #define EXCP_VIRQ 14
55 #define EXCP_VFIQ 15
56 #define EXCP_SEMIHOST 16 /* semihosting call */
57 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
59 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
61 #define ARMV7M_EXCP_RESET 1
62 #define ARMV7M_EXCP_NMI 2
63 #define ARMV7M_EXCP_HARD 3
64 #define ARMV7M_EXCP_MEM 4
65 #define ARMV7M_EXCP_BUS 5
66 #define ARMV7M_EXCP_USAGE 6
67 #define ARMV7M_EXCP_SECURE 7
68 #define ARMV7M_EXCP_SVC 11
69 #define ARMV7M_EXCP_DEBUG 12
70 #define ARMV7M_EXCP_PENDSV 14
71 #define ARMV7M_EXCP_SYSTICK 15
73 /* For M profile, some registers are banked secure vs non-secure;
74 * these are represented as a 2-element array where the first element
75 * is the non-secure copy and the second is the secure copy.
76 * When the CPU does not have implement the security extension then
77 * only the first element is used.
78 * This means that the copy for the current security state can be
79 * accessed via env->registerfield[env->v7m.secure] (whether the security
80 * extension is implemented or not).
82 enum {
83 M_REG_NS = 0,
84 M_REG_S = 1,
85 M_REG_NUM_BANKS = 2,
88 /* ARM-specific interrupt pending bits. */
89 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
90 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
91 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
93 /* The usual mapping for an AArch64 system register to its AArch32
94 * counterpart is for the 32 bit world to have access to the lower
95 * half only (with writes leaving the upper half untouched). It's
96 * therefore useful to be able to pass TCG the offset of the least
97 * significant half of a uint64_t struct member.
99 #ifdef HOST_WORDS_BIGENDIAN
100 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
101 #define offsetofhigh32(S, M) offsetof(S, M)
102 #else
103 #define offsetoflow32(S, M) offsetof(S, M)
104 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
105 #endif
107 /* Meanings of the ARMCPU object's four inbound GPIO lines */
108 #define ARM_CPU_IRQ 0
109 #define ARM_CPU_FIQ 1
110 #define ARM_CPU_VIRQ 2
111 #define ARM_CPU_VFIQ 3
113 #define NB_MMU_MODES 8
114 /* ARM-specific extra insn start words:
115 * 1: Conditional execution bits
116 * 2: Partial exception syndrome for data aborts
118 #define TARGET_INSN_START_EXTRA_WORDS 2
120 /* The 2nd extra word holding syndrome info for data aborts does not use
121 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
122 * help the sleb128 encoder do a better job.
123 * When restoring the CPU state, we shift it back up.
125 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
126 #define ARM_INSN_START_WORD2_SHIFT 14
128 /* We currently assume float and double are IEEE single and double
129 precision respectively.
130 Doing runtime conversions is tricky because VFP registers may contain
131 integer values (eg. as the result of a FTOSI instruction).
132 s<2n> maps to the least significant half of d<n>
133 s<2n+1> maps to the most significant half of d<n>
136 /* CPU state for each instance of a generic timer (in cp15 c14) */
137 typedef struct ARMGenericTimer {
138 uint64_t cval; /* Timer CompareValue register */
139 uint64_t ctl; /* Timer Control register */
140 } ARMGenericTimer;
142 #define GTIMER_PHYS 0
143 #define GTIMER_VIRT 1
144 #define GTIMER_HYP 2
145 #define GTIMER_SEC 3
146 #define NUM_GTIMERS 4
148 typedef struct {
149 uint64_t raw_tcr;
150 uint32_t mask;
151 uint32_t base_mask;
152 } TCR;
154 /* Define a maximum sized vector register.
155 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
156 * For 64-bit, this is a 2048-bit SVE register.
158 * Note that the mapping between S, D, and Q views of the register bank
159 * differs between AArch64 and AArch32.
160 * In AArch32:
161 * Qn = regs[n].d[1]:regs[n].d[0]
162 * Dn = regs[n / 2].d[n & 1]
163 * Sn = regs[n / 4].d[n % 4 / 2],
164 * bits 31..0 for even n, and bits 63..32 for odd n
165 * (and regs[16] to regs[31] are inaccessible)
166 * In AArch64:
167 * Zn = regs[n].d[*]
168 * Qn = regs[n].d[1]:regs[n].d[0]
169 * Dn = regs[n].d[0]
170 * Sn = regs[n].d[0] bits 31..0
171 * Hn = regs[n].d[0] bits 15..0
173 * This corresponds to the architecturally defined mapping between
174 * the two execution states, and means we do not need to explicitly
175 * map these registers when changing states.
177 * Align the data for use with TCG host vector operations.
180 #ifdef TARGET_AARCH64
181 # define ARM_MAX_VQ 16
182 #else
183 # define ARM_MAX_VQ 1
184 #endif
186 typedef struct ARMVectorReg {
187 uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
188 } ARMVectorReg;
190 /* In AArch32 mode, predicate registers do not exist at all. */
191 #ifdef TARGET_AARCH64
192 typedef struct ARMPredicateReg {
193 uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
194 } ARMPredicateReg;
195 #endif
198 typedef struct CPUARMState {
199 /* Regs for current mode. */
200 uint32_t regs[16];
202 /* 32/64 switch only happens when taking and returning from
203 * exceptions so the overlap semantics are taken care of then
204 * instead of having a complicated union.
206 /* Regs for A64 mode. */
207 uint64_t xregs[32];
208 uint64_t pc;
209 /* PSTATE isn't an architectural register for ARMv8. However, it is
210 * convenient for us to assemble the underlying state into a 32 bit format
211 * identical to the architectural format used for the SPSR. (This is also
212 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
213 * 'pstate' register are.) Of the PSTATE bits:
214 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
215 * semantics as for AArch32, as described in the comments on each field)
216 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
217 * DAIF (exception masks) are kept in env->daif
218 * all other bits are stored in their correct places in env->pstate
220 uint32_t pstate;
221 uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
223 /* Frequently accessed CPSR bits are stored separately for efficiency.
224 This contains all the other bits. Use cpsr_{read,write} to access
225 the whole CPSR. */
226 uint32_t uncached_cpsr;
227 uint32_t spsr;
229 /* Banked registers. */
230 uint64_t banked_spsr[8];
231 uint32_t banked_r13[8];
232 uint32_t banked_r14[8];
234 /* These hold r8-r12. */
235 uint32_t usr_regs[5];
236 uint32_t fiq_regs[5];
238 /* cpsr flag cache for faster execution */
239 uint32_t CF; /* 0 or 1 */
240 uint32_t VF; /* V is the bit 31. All other bits are undefined */
241 uint32_t NF; /* N is bit 31. All other bits are undefined. */
242 uint32_t ZF; /* Z set if zero. */
243 uint32_t QF; /* 0 or 1 */
244 uint32_t GE; /* cpsr[19:16] */
245 uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
246 uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
247 uint64_t daif; /* exception masks, in the bits they are in PSTATE */
249 uint64_t elr_el[4]; /* AArch64 exception link regs */
250 uint64_t sp_el[4]; /* AArch64 banked stack pointers */
252 /* System control coprocessor (cp15) */
253 struct {
254 uint32_t c0_cpuid;
255 union { /* Cache size selection */
256 struct {
257 uint64_t _unused_csselr0;
258 uint64_t csselr_ns;
259 uint64_t _unused_csselr1;
260 uint64_t csselr_s;
262 uint64_t csselr_el[4];
264 union { /* System control register. */
265 struct {
266 uint64_t _unused_sctlr;
267 uint64_t sctlr_ns;
268 uint64_t hsctlr;
269 uint64_t sctlr_s;
271 uint64_t sctlr_el[4];
273 uint64_t cpacr_el1; /* Architectural feature access control register */
274 uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
275 uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
276 uint64_t sder; /* Secure debug enable register. */
277 uint32_t nsacr; /* Non-secure access control register. */
278 union { /* MMU translation table base 0. */
279 struct {
280 uint64_t _unused_ttbr0_0;
281 uint64_t ttbr0_ns;
282 uint64_t _unused_ttbr0_1;
283 uint64_t ttbr0_s;
285 uint64_t ttbr0_el[4];
287 union { /* MMU translation table base 1. */
288 struct {
289 uint64_t _unused_ttbr1_0;
290 uint64_t ttbr1_ns;
291 uint64_t _unused_ttbr1_1;
292 uint64_t ttbr1_s;
294 uint64_t ttbr1_el[4];
296 uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
297 /* MMU translation table base control. */
298 TCR tcr_el[4];
299 TCR vtcr_el2; /* Virtualization Translation Control. */
300 uint32_t c2_data; /* MPU data cacheable bits. */
301 uint32_t c2_insn; /* MPU instruction cacheable bits. */
302 union { /* MMU domain access control register
303 * MPU write buffer control.
305 struct {
306 uint64_t dacr_ns;
307 uint64_t dacr_s;
309 struct {
310 uint64_t dacr32_el2;
313 uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
314 uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
315 uint64_t hcr_el2; /* Hypervisor configuration register */
316 uint64_t scr_el3; /* Secure configuration register. */
317 union { /* Fault status registers. */
318 struct {
319 uint64_t ifsr_ns;
320 uint64_t ifsr_s;
322 struct {
323 uint64_t ifsr32_el2;
326 union {
327 struct {
328 uint64_t _unused_dfsr;
329 uint64_t dfsr_ns;
330 uint64_t hsr;
331 uint64_t dfsr_s;
333 uint64_t esr_el[4];
335 uint32_t c6_region[8]; /* MPU base/size registers. */
336 union { /* Fault address registers. */
337 struct {
338 uint64_t _unused_far0;
339 #ifdef HOST_WORDS_BIGENDIAN
340 uint32_t ifar_ns;
341 uint32_t dfar_ns;
342 uint32_t ifar_s;
343 uint32_t dfar_s;
344 #else
345 uint32_t dfar_ns;
346 uint32_t ifar_ns;
347 uint32_t dfar_s;
348 uint32_t ifar_s;
349 #endif
350 uint64_t _unused_far3;
352 uint64_t far_el[4];
354 uint64_t hpfar_el2;
355 uint64_t hstr_el2;
356 union { /* Translation result. */
357 struct {
358 uint64_t _unused_par_0;
359 uint64_t par_ns;
360 uint64_t _unused_par_1;
361 uint64_t par_s;
363 uint64_t par_el[4];
366 uint32_t c9_insn; /* Cache lockdown registers. */
367 uint32_t c9_data;
368 uint64_t c9_pmcr; /* performance monitor control register */
369 uint64_t c9_pmcnten; /* perf monitor counter enables */
370 uint32_t c9_pmovsr; /* perf monitor overflow status */
371 uint32_t c9_pmuserenr; /* perf monitor user enable */
372 uint64_t c9_pmselr; /* perf monitor counter selection register */
373 uint64_t c9_pminten; /* perf monitor interrupt enables */
374 union { /* Memory attribute redirection */
375 struct {
376 #ifdef HOST_WORDS_BIGENDIAN
377 uint64_t _unused_mair_0;
378 uint32_t mair1_ns;
379 uint32_t mair0_ns;
380 uint64_t _unused_mair_1;
381 uint32_t mair1_s;
382 uint32_t mair0_s;
383 #else
384 uint64_t _unused_mair_0;
385 uint32_t mair0_ns;
386 uint32_t mair1_ns;
387 uint64_t _unused_mair_1;
388 uint32_t mair0_s;
389 uint32_t mair1_s;
390 #endif
392 uint64_t mair_el[4];
394 union { /* vector base address register */
395 struct {
396 uint64_t _unused_vbar;
397 uint64_t vbar_ns;
398 uint64_t hvbar;
399 uint64_t vbar_s;
401 uint64_t vbar_el[4];
403 uint32_t mvbar; /* (monitor) vector base address register */
404 struct { /* FCSE PID. */
405 uint32_t fcseidr_ns;
406 uint32_t fcseidr_s;
408 union { /* Context ID. */
409 struct {
410 uint64_t _unused_contextidr_0;
411 uint64_t contextidr_ns;
412 uint64_t _unused_contextidr_1;
413 uint64_t contextidr_s;
415 uint64_t contextidr_el[4];
417 union { /* User RW Thread register. */
418 struct {
419 uint64_t tpidrurw_ns;
420 uint64_t tpidrprw_ns;
421 uint64_t htpidr;
422 uint64_t _tpidr_el3;
424 uint64_t tpidr_el[4];
426 /* The secure banks of these registers don't map anywhere */
427 uint64_t tpidrurw_s;
428 uint64_t tpidrprw_s;
429 uint64_t tpidruro_s;
431 union { /* User RO Thread register. */
432 uint64_t tpidruro_ns;
433 uint64_t tpidrro_el[1];
435 uint64_t c14_cntfrq; /* Counter Frequency register */
436 uint64_t c14_cntkctl; /* Timer Control register */
437 uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
438 uint64_t cntvoff_el2; /* Counter Virtual Offset register */
439 ARMGenericTimer c14_timer[NUM_GTIMERS];
440 uint32_t c15_cpar; /* XScale Coprocessor Access Register */
441 uint32_t c15_ticonfig; /* TI925T configuration byte. */
442 uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
443 uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
444 uint32_t c15_threadid; /* TI debugger thread-ID. */
445 uint32_t c15_config_base_address; /* SCU base address. */
446 uint32_t c15_diagnostic; /* diagnostic register */
447 uint32_t c15_power_diagnostic;
448 uint32_t c15_power_control; /* power control */
449 uint64_t dbgbvr[16]; /* breakpoint value registers */
450 uint64_t dbgbcr[16]; /* breakpoint control registers */
451 uint64_t dbgwvr[16]; /* watchpoint value registers */
452 uint64_t dbgwcr[16]; /* watchpoint control registers */
453 uint64_t mdscr_el1;
454 uint64_t oslsr_el1; /* OS Lock Status */
455 uint64_t mdcr_el2;
456 uint64_t mdcr_el3;
457 /* If the counter is enabled, this stores the last time the counter
458 * was reset. Otherwise it stores the counter value
460 uint64_t c15_ccnt;
461 uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
462 uint64_t vpidr_el2; /* Virtualization Processor ID Register */
463 uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
464 } cp15;
466 struct {
467 /* M profile has up to 4 stack pointers:
468 * a Main Stack Pointer and a Process Stack Pointer for each
469 * of the Secure and Non-Secure states. (If the CPU doesn't support
470 * the security extension then it has only two SPs.)
471 * In QEMU we always store the currently active SP in regs[13],
472 * and the non-active SP for the current security state in
473 * v7m.other_sp. The stack pointers for the inactive security state
474 * are stored in other_ss_msp and other_ss_psp.
475 * switch_v7m_security_state() is responsible for rearranging them
476 * when we change security state.
478 uint32_t other_sp;
479 uint32_t other_ss_msp;
480 uint32_t other_ss_psp;
481 uint32_t vecbase[M_REG_NUM_BANKS];
482 uint32_t basepri[M_REG_NUM_BANKS];
483 uint32_t control[M_REG_NUM_BANKS];
484 uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
485 uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
486 uint32_t hfsr; /* HardFault Status */
487 uint32_t dfsr; /* Debug Fault Status Register */
488 uint32_t sfsr; /* Secure Fault Status Register */
489 uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
490 uint32_t bfar; /* BusFault Address */
491 uint32_t sfar; /* Secure Fault Address Register */
492 unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
493 int exception;
494 uint32_t primask[M_REG_NUM_BANKS];
495 uint32_t faultmask[M_REG_NUM_BANKS];
496 uint32_t aircr; /* only holds r/w state if security extn implemented */
497 uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
498 uint32_t csselr[M_REG_NUM_BANKS];
499 uint32_t scr[M_REG_NUM_BANKS];
500 uint32_t msplim[M_REG_NUM_BANKS];
501 uint32_t psplim[M_REG_NUM_BANKS];
502 } v7m;
504 /* Information associated with an exception about to be taken:
505 * code which raises an exception must set cs->exception_index and
506 * the relevant parts of this structure; the cpu_do_interrupt function
507 * will then set the guest-visible registers as part of the exception
508 * entry process.
510 struct {
511 uint32_t syndrome; /* AArch64 format syndrome register */
512 uint32_t fsr; /* AArch32 format fault status register info */
513 uint64_t vaddress; /* virtual addr associated with exception, if any */
514 uint32_t target_el; /* EL the exception should be targeted for */
515 /* If we implement EL2 we will also need to store information
516 * about the intermediate physical address for stage 2 faults.
518 } exception;
520 /* Thumb-2 EE state. */
521 uint32_t teecr;
522 uint32_t teehbr;
524 /* VFP coprocessor state. */
525 struct {
526 ARMVectorReg zregs[32];
528 #ifdef TARGET_AARCH64
529 /* Store FFR as pregs[16] to make it easier to treat as any other. */
530 ARMPredicateReg pregs[17];
531 #endif
533 uint32_t xregs[16];
534 /* We store these fpcsr fields separately for convenience. */
535 int vec_len;
536 int vec_stride;
538 /* scratch space when Tn are not sufficient. */
539 uint32_t scratch[8];
541 /* There are a number of distinct float control structures:
543 * fp_status: is the "normal" fp status.
544 * fp_status_fp16: used for half-precision calculations
545 * standard_fp_status : the ARM "Standard FPSCR Value"
547 * Half-precision operations are governed by a separate
548 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
549 * status structure to control this.
551 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
552 * round-to-nearest and is used by any operations (generally
553 * Neon) which the architecture defines as controlled by the
554 * standard FPSCR value rather than the FPSCR.
556 * To avoid having to transfer exception bits around, we simply
557 * say that the FPSCR cumulative exception flags are the logical
558 * OR of the flags in the three fp statuses. This relies on the
559 * only thing which needs to read the exception flags being
560 * an explicit FPSCR read.
562 float_status fp_status;
563 float_status fp_status_f16;
564 float_status standard_fp_status;
566 /* ZCR_EL[1-3] */
567 uint64_t zcr_el[4];
568 } vfp;
569 uint64_t exclusive_addr;
570 uint64_t exclusive_val;
571 uint64_t exclusive_high;
573 /* iwMMXt coprocessor state. */
574 struct {
575 uint64_t regs[16];
576 uint64_t val;
578 uint32_t cregs[16];
579 } iwmmxt;
581 #if defined(CONFIG_USER_ONLY)
582 /* For usermode syscall translation. */
583 int eabi;
584 #endif
586 struct CPUBreakpoint *cpu_breakpoint[16];
587 struct CPUWatchpoint *cpu_watchpoint[16];
589 /* Fields up to this point are cleared by a CPU reset */
590 struct {} end_reset_fields;
592 CPU_COMMON
594 /* Fields after CPU_COMMON are preserved across CPU reset. */
596 /* Internal CPU feature flags. */
597 uint64_t features;
599 /* PMSAv7 MPU */
600 struct {
601 uint32_t *drbar;
602 uint32_t *drsr;
603 uint32_t *dracr;
604 uint32_t rnr[M_REG_NUM_BANKS];
605 } pmsav7;
607 /* PMSAv8 MPU */
608 struct {
609 /* The PMSAv8 implementation also shares some PMSAv7 config
610 * and state:
611 * pmsav7.rnr (region number register)
612 * pmsav7_dregion (number of configured regions)
614 uint32_t *rbar[M_REG_NUM_BANKS];
615 uint32_t *rlar[M_REG_NUM_BANKS];
616 uint32_t mair0[M_REG_NUM_BANKS];
617 uint32_t mair1[M_REG_NUM_BANKS];
618 } pmsav8;
620 /* v8M SAU */
621 struct {
622 uint32_t *rbar;
623 uint32_t *rlar;
624 uint32_t rnr;
625 uint32_t ctrl;
626 } sau;
628 void *nvic;
629 const struct arm_boot_info *boot_info;
630 /* Store GICv3CPUState to access from this struct */
631 void *gicv3state;
632 } CPUARMState;
635 * ARMELChangeHook:
636 * type of a function which can be registered via arm_register_el_change_hook()
637 * to get callbacks when the CPU changes its exception level or mode.
639 typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
642 /* These values map onto the return values for
643 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
644 typedef enum ARMPSCIState {
645 PSCI_ON = 0,
646 PSCI_OFF = 1,
647 PSCI_ON_PENDING = 2
648 } ARMPSCIState;
651 * ARMCPU:
652 * @env: #CPUARMState
654 * An ARM CPU core.
656 struct ARMCPU {
657 /*< private >*/
658 CPUState parent_obj;
659 /*< public >*/
661 CPUARMState env;
663 /* Coprocessor information */
664 GHashTable *cp_regs;
665 /* For marshalling (mostly coprocessor) register state between the
666 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
667 * we use these arrays.
669 /* List of register indexes managed via these arrays; (full KVM style
670 * 64 bit indexes, not CPRegInfo 32 bit indexes)
672 uint64_t *cpreg_indexes;
673 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
674 uint64_t *cpreg_values;
675 /* Length of the indexes, values, reset_values arrays */
676 int32_t cpreg_array_len;
677 /* These are used only for migration: incoming data arrives in
678 * these fields and is sanity checked in post_load before copying
679 * to the working data structures above.
681 uint64_t *cpreg_vmstate_indexes;
682 uint64_t *cpreg_vmstate_values;
683 int32_t cpreg_vmstate_array_len;
685 /* Timers used by the generic (architected) timer */
686 QEMUTimer *gt_timer[NUM_GTIMERS];
687 /* GPIO outputs for generic timer */
688 qemu_irq gt_timer_outputs[NUM_GTIMERS];
689 /* GPIO output for GICv3 maintenance interrupt signal */
690 qemu_irq gicv3_maintenance_interrupt;
691 /* GPIO output for the PMU interrupt */
692 qemu_irq pmu_interrupt;
694 /* MemoryRegion to use for secure physical accesses */
695 MemoryRegion *secure_memory;
697 /* For v8M, pointer to the IDAU interface provided by board/SoC */
698 Object *idau;
700 /* 'compatible' string for this CPU for Linux device trees */
701 const char *dtb_compatible;
703 /* PSCI version for this CPU
704 * Bits[31:16] = Major Version
705 * Bits[15:0] = Minor Version
707 uint32_t psci_version;
709 /* Should CPU start in PSCI powered-off state? */
710 bool start_powered_off;
712 /* Current power state, access guarded by BQL */
713 ARMPSCIState power_state;
715 /* CPU has virtualization extension */
716 bool has_el2;
717 /* CPU has security extension */
718 bool has_el3;
719 /* CPU has PMU (Performance Monitor Unit) */
720 bool has_pmu;
722 /* CPU has memory protection unit */
723 bool has_mpu;
724 /* PMSAv7 MPU number of supported regions */
725 uint32_t pmsav7_dregion;
726 /* v8M SAU number of supported regions */
727 uint32_t sau_sregion;
729 /* PSCI conduit used to invoke PSCI methods
730 * 0 - disabled, 1 - smc, 2 - hvc
732 uint32_t psci_conduit;
734 /* For v8M, initial value of the Secure VTOR */
735 uint32_t init_svtor;
737 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
738 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
740 uint32_t kvm_target;
742 /* KVM init features for this CPU */
743 uint32_t kvm_init_features[7];
745 /* Uniprocessor system with MP extensions */
746 bool mp_is_up;
748 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
749 * and the probe failed (so we need to report the error in realize)
751 bool host_cpu_probe_failed;
753 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
754 * register.
756 int32_t core_count;
758 /* The instance init functions for implementation-specific subclasses
759 * set these fields to specify the implementation-dependent values of
760 * various constant registers and reset values of non-constant
761 * registers.
762 * Some of these might become QOM properties eventually.
763 * Field names match the official register names as defined in the
764 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
765 * is used for reset values of non-constant registers; no reset_
766 * prefix means a constant register.
768 uint32_t midr;
769 uint32_t revidr;
770 uint32_t reset_fpsid;
771 uint32_t mvfr0;
772 uint32_t mvfr1;
773 uint32_t mvfr2;
774 uint32_t ctr;
775 uint32_t reset_sctlr;
776 uint32_t id_pfr0;
777 uint32_t id_pfr1;
778 uint32_t id_dfr0;
779 uint32_t pmceid0;
780 uint32_t pmceid1;
781 uint32_t id_afr0;
782 uint32_t id_mmfr0;
783 uint32_t id_mmfr1;
784 uint32_t id_mmfr2;
785 uint32_t id_mmfr3;
786 uint32_t id_mmfr4;
787 uint32_t id_isar0;
788 uint32_t id_isar1;
789 uint32_t id_isar2;
790 uint32_t id_isar3;
791 uint32_t id_isar4;
792 uint32_t id_isar5;
793 uint64_t id_aa64pfr0;
794 uint64_t id_aa64pfr1;
795 uint64_t id_aa64dfr0;
796 uint64_t id_aa64dfr1;
797 uint64_t id_aa64afr0;
798 uint64_t id_aa64afr1;
799 uint64_t id_aa64isar0;
800 uint64_t id_aa64isar1;
801 uint64_t id_aa64mmfr0;
802 uint64_t id_aa64mmfr1;
803 uint32_t dbgdidr;
804 uint32_t clidr;
805 uint64_t mp_affinity; /* MP ID without feature bits */
806 /* The elements of this array are the CCSIDR values for each cache,
807 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
809 uint32_t ccsidr[16];
810 uint64_t reset_cbar;
811 uint32_t reset_auxcr;
812 bool reset_hivecs;
813 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
814 uint32_t dcz_blocksize;
815 uint64_t rvbar;
817 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
818 int gic_num_lrs; /* number of list registers */
819 int gic_vpribits; /* number of virtual priority bits */
820 int gic_vprebits; /* number of virtual preemption bits */
822 /* Whether the cfgend input is high (i.e. this CPU should reset into
823 * big-endian mode). This setting isn't used directly: instead it modifies
824 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
825 * architecture version.
827 bool cfgend;
829 ARMELChangeHook *el_change_hook;
830 void *el_change_hook_opaque;
832 int32_t node_id; /* NUMA node this CPU belongs to */
834 /* Used to synchronize KVM and QEMU in-kernel device levels */
835 uint8_t device_irq_level;
838 static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
840 return container_of(env, ARMCPU, env);
843 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
845 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
847 #define ENV_OFFSET offsetof(ARMCPU, env)
849 #ifndef CONFIG_USER_ONLY
850 extern const struct VMStateDescription vmstate_arm_cpu;
851 #endif
853 void arm_cpu_do_interrupt(CPUState *cpu);
854 void arm_v7m_cpu_do_interrupt(CPUState *cpu);
855 bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
857 void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
858 int flags);
860 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
861 MemTxAttrs *attrs);
863 int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
864 int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
866 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
867 int cpuid, void *opaque);
868 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
869 int cpuid, void *opaque);
871 #ifdef TARGET_AARCH64
872 int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
873 int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
874 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
875 #endif
877 target_ulong do_arm_semihosting(CPUARMState *env);
878 void aarch64_sync_32_to_64(CPUARMState *env);
879 void aarch64_sync_64_to_32(CPUARMState *env);
881 static inline bool is_a64(CPUARMState *env)
883 return env->aarch64;
886 /* you can call this signal handler from your SIGBUS and SIGSEGV
887 signal handlers to inform the virtual CPU of exceptions. non zero
888 is returned if the signal was handled by the virtual CPU. */
889 int cpu_arm_signal_handler(int host_signum, void *pinfo,
890 void *puc);
893 * pmccntr_sync
894 * @env: CPUARMState
896 * Synchronises the counter in the PMCCNTR. This must always be called twice,
897 * once before any action that might affect the timer and again afterwards.
898 * The function is used to swap the state of the register if required.
899 * This only happens when not in user mode (!CONFIG_USER_ONLY)
901 void pmccntr_sync(CPUARMState *env);
903 /* SCTLR bit meanings. Several bits have been reused in newer
904 * versions of the architecture; in that case we define constants
905 * for both old and new bit meanings. Code which tests against those
906 * bits should probably check or otherwise arrange that the CPU
907 * is the architectural version it expects.
909 #define SCTLR_M (1U << 0)
910 #define SCTLR_A (1U << 1)
911 #define SCTLR_C (1U << 2)
912 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
913 #define SCTLR_SA (1U << 3)
914 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
915 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
916 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
917 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
918 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
919 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
920 #define SCTLR_ITD (1U << 7) /* v8 onward */
921 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
922 #define SCTLR_SED (1U << 8) /* v8 onward */
923 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
924 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
925 #define SCTLR_F (1U << 10) /* up to v6 */
926 #define SCTLR_SW (1U << 10) /* v7 onward */
927 #define SCTLR_Z (1U << 11)
928 #define SCTLR_I (1U << 12)
929 #define SCTLR_V (1U << 13)
930 #define SCTLR_RR (1U << 14) /* up to v7 */
931 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
932 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
933 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
934 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
935 #define SCTLR_nTWI (1U << 16) /* v8 onward */
936 #define SCTLR_HA (1U << 17)
937 #define SCTLR_BR (1U << 17) /* PMSA only */
938 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
939 #define SCTLR_nTWE (1U << 18) /* v8 onward */
940 #define SCTLR_WXN (1U << 19)
941 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
942 #define SCTLR_UWXN (1U << 20) /* v7 onward */
943 #define SCTLR_FI (1U << 21)
944 #define SCTLR_U (1U << 22)
945 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
946 #define SCTLR_VE (1U << 24) /* up to v7 */
947 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
948 #define SCTLR_EE (1U << 25)
949 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
950 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
951 #define SCTLR_NMFI (1U << 27)
952 #define SCTLR_TRE (1U << 28)
953 #define SCTLR_AFE (1U << 29)
954 #define SCTLR_TE (1U << 30)
956 #define CPTR_TCPAC (1U << 31)
957 #define CPTR_TTA (1U << 20)
958 #define CPTR_TFP (1U << 10)
959 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */
960 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */
962 #define MDCR_EPMAD (1U << 21)
963 #define MDCR_EDAD (1U << 20)
964 #define MDCR_SPME (1U << 17)
965 #define MDCR_SDD (1U << 16)
966 #define MDCR_SPD (3U << 14)
967 #define MDCR_TDRA (1U << 11)
968 #define MDCR_TDOSA (1U << 10)
969 #define MDCR_TDA (1U << 9)
970 #define MDCR_TDE (1U << 8)
971 #define MDCR_HPME (1U << 7)
972 #define MDCR_TPM (1U << 6)
973 #define MDCR_TPMCR (1U << 5)
975 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
976 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
978 #define CPSR_M (0x1fU)
979 #define CPSR_T (1U << 5)
980 #define CPSR_F (1U << 6)
981 #define CPSR_I (1U << 7)
982 #define CPSR_A (1U << 8)
983 #define CPSR_E (1U << 9)
984 #define CPSR_IT_2_7 (0xfc00U)
985 #define CPSR_GE (0xfU << 16)
986 #define CPSR_IL (1U << 20)
987 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
988 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
989 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
990 * where it is live state but not accessible to the AArch32 code.
992 #define CPSR_RESERVED (0x7U << 21)
993 #define CPSR_J (1U << 24)
994 #define CPSR_IT_0_1 (3U << 25)
995 #define CPSR_Q (1U << 27)
996 #define CPSR_V (1U << 28)
997 #define CPSR_C (1U << 29)
998 #define CPSR_Z (1U << 30)
999 #define CPSR_N (1U << 31)
1000 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1001 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1003 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1004 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1005 | CPSR_NZCV)
1006 /* Bits writable in user mode. */
1007 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1008 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1009 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1010 /* Mask of bits which may be set by exception return copying them from SPSR */
1011 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1013 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1014 #define XPSR_EXCP 0x1ffU
1015 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1016 #define XPSR_IT_2_7 CPSR_IT_2_7
1017 #define XPSR_GE CPSR_GE
1018 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1019 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1020 #define XPSR_IT_0_1 CPSR_IT_0_1
1021 #define XPSR_Q CPSR_Q
1022 #define XPSR_V CPSR_V
1023 #define XPSR_C CPSR_C
1024 #define XPSR_Z CPSR_Z
1025 #define XPSR_N CPSR_N
1026 #define XPSR_NZCV CPSR_NZCV
1027 #define XPSR_IT CPSR_IT
1029 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1030 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1031 #define TTBCR_PD0 (1U << 4)
1032 #define TTBCR_PD1 (1U << 5)
1033 #define TTBCR_EPD0 (1U << 7)
1034 #define TTBCR_IRGN0 (3U << 8)
1035 #define TTBCR_ORGN0 (3U << 10)
1036 #define TTBCR_SH0 (3U << 12)
1037 #define TTBCR_T1SZ (3U << 16)
1038 #define TTBCR_A1 (1U << 22)
1039 #define TTBCR_EPD1 (1U << 23)
1040 #define TTBCR_IRGN1 (3U << 24)
1041 #define TTBCR_ORGN1 (3U << 26)
1042 #define TTBCR_SH1 (1U << 28)
1043 #define TTBCR_EAE (1U << 31)
1045 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1046 * Only these are valid when in AArch64 mode; in
1047 * AArch32 mode SPSRs are basically CPSR-format.
1049 #define PSTATE_SP (1U)
1050 #define PSTATE_M (0xFU)
1051 #define PSTATE_nRW (1U << 4)
1052 #define PSTATE_F (1U << 6)
1053 #define PSTATE_I (1U << 7)
1054 #define PSTATE_A (1U << 8)
1055 #define PSTATE_D (1U << 9)
1056 #define PSTATE_IL (1U << 20)
1057 #define PSTATE_SS (1U << 21)
1058 #define PSTATE_V (1U << 28)
1059 #define PSTATE_C (1U << 29)
1060 #define PSTATE_Z (1U << 30)
1061 #define PSTATE_N (1U << 31)
1062 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1063 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1064 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
1065 /* Mode values for AArch64 */
1066 #define PSTATE_MODE_EL3h 13
1067 #define PSTATE_MODE_EL3t 12
1068 #define PSTATE_MODE_EL2h 9
1069 #define PSTATE_MODE_EL2t 8
1070 #define PSTATE_MODE_EL1h 5
1071 #define PSTATE_MODE_EL1t 4
1072 #define PSTATE_MODE_EL0t 0
1074 /* Write a new value to v7m.exception, thus transitioning into or out
1075 * of Handler mode; this may result in a change of active stack pointer.
1077 void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1079 /* Map EL and handler into a PSTATE_MODE. */
1080 static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1082 return (el << 2) | handler;
1085 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1086 * interprocessing, so we don't attempt to sync with the cpsr state used by
1087 * the 32 bit decoder.
1089 static inline uint32_t pstate_read(CPUARMState *env)
1091 int ZF;
1093 ZF = (env->ZF == 0);
1094 return (env->NF & 0x80000000) | (ZF << 30)
1095 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1096 | env->pstate | env->daif;
1099 static inline void pstate_write(CPUARMState *env, uint32_t val)
1101 env->ZF = (~val) & PSTATE_Z;
1102 env->NF = val;
1103 env->CF = (val >> 29) & 1;
1104 env->VF = (val << 3) & 0x80000000;
1105 env->daif = val & PSTATE_DAIF;
1106 env->pstate = val & ~CACHED_PSTATE_BITS;
1109 /* Return the current CPSR value. */
1110 uint32_t cpsr_read(CPUARMState *env);
1112 typedef enum CPSRWriteType {
1113 CPSRWriteByInstr = 0, /* from guest MSR or CPS */
1114 CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1115 CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
1116 CPSRWriteByGDBStub = 3, /* from the GDB stub */
1117 } CPSRWriteType;
1119 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1120 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1121 CPSRWriteType write_type);
1123 /* Return the current xPSR value. */
1124 static inline uint32_t xpsr_read(CPUARMState *env)
1126 int ZF;
1127 ZF = (env->ZF == 0);
1128 return (env->NF & 0x80000000) | (ZF << 30)
1129 | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1130 | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1131 | ((env->condexec_bits & 0xfc) << 8)
1132 | env->v7m.exception;
1135 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1136 static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1138 if (mask & XPSR_NZCV) {
1139 env->ZF = (~val) & XPSR_Z;
1140 env->NF = val;
1141 env->CF = (val >> 29) & 1;
1142 env->VF = (val << 3) & 0x80000000;
1144 if (mask & XPSR_Q) {
1145 env->QF = ((val & XPSR_Q) != 0);
1147 if (mask & XPSR_T) {
1148 env->thumb = ((val & XPSR_T) != 0);
1150 if (mask & XPSR_IT_0_1) {
1151 env->condexec_bits &= ~3;
1152 env->condexec_bits |= (val >> 25) & 3;
1154 if (mask & XPSR_IT_2_7) {
1155 env->condexec_bits &= 3;
1156 env->condexec_bits |= (val >> 8) & 0xfc;
1158 if (mask & XPSR_EXCP) {
1159 /* Note that this only happens on exception exit */
1160 write_v7m_exception(env, val & XPSR_EXCP);
1164 #define HCR_VM (1ULL << 0)
1165 #define HCR_SWIO (1ULL << 1)
1166 #define HCR_PTW (1ULL << 2)
1167 #define HCR_FMO (1ULL << 3)
1168 #define HCR_IMO (1ULL << 4)
1169 #define HCR_AMO (1ULL << 5)
1170 #define HCR_VF (1ULL << 6)
1171 #define HCR_VI (1ULL << 7)
1172 #define HCR_VSE (1ULL << 8)
1173 #define HCR_FB (1ULL << 9)
1174 #define HCR_BSU_MASK (3ULL << 10)
1175 #define HCR_DC (1ULL << 12)
1176 #define HCR_TWI (1ULL << 13)
1177 #define HCR_TWE (1ULL << 14)
1178 #define HCR_TID0 (1ULL << 15)
1179 #define HCR_TID1 (1ULL << 16)
1180 #define HCR_TID2 (1ULL << 17)
1181 #define HCR_TID3 (1ULL << 18)
1182 #define HCR_TSC (1ULL << 19)
1183 #define HCR_TIDCP (1ULL << 20)
1184 #define HCR_TACR (1ULL << 21)
1185 #define HCR_TSW (1ULL << 22)
1186 #define HCR_TPC (1ULL << 23)
1187 #define HCR_TPU (1ULL << 24)
1188 #define HCR_TTLB (1ULL << 25)
1189 #define HCR_TVM (1ULL << 26)
1190 #define HCR_TGE (1ULL << 27)
1191 #define HCR_TDZ (1ULL << 28)
1192 #define HCR_HCD (1ULL << 29)
1193 #define HCR_TRVM (1ULL << 30)
1194 #define HCR_RW (1ULL << 31)
1195 #define HCR_CD (1ULL << 32)
1196 #define HCR_ID (1ULL << 33)
1197 #define HCR_MASK ((1ULL << 34) - 1)
1199 #define SCR_NS (1U << 0)
1200 #define SCR_IRQ (1U << 1)
1201 #define SCR_FIQ (1U << 2)
1202 #define SCR_EA (1U << 3)
1203 #define SCR_FW (1U << 4)
1204 #define SCR_AW (1U << 5)
1205 #define SCR_NET (1U << 6)
1206 #define SCR_SMD (1U << 7)
1207 #define SCR_HCE (1U << 8)
1208 #define SCR_SIF (1U << 9)
1209 #define SCR_RW (1U << 10)
1210 #define SCR_ST (1U << 11)
1211 #define SCR_TWI (1U << 12)
1212 #define SCR_TWE (1U << 13)
1213 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1214 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1216 /* Return the current FPSCR value. */
1217 uint32_t vfp_get_fpscr(CPUARMState *env);
1218 void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1220 /* FPCR, Floating Point Control Register
1221 * FPSR, Floating Poiht Status Register
1223 * For A64 the FPSCR is split into two logically distinct registers,
1224 * FPCR and FPSR. However since they still use non-overlapping bits
1225 * we store the underlying state in fpscr and just mask on read/write.
1227 #define FPSR_MASK 0xf800009f
1228 #define FPCR_MASK 0x07f79f00
1230 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1231 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1232 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1234 static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1236 return vfp_get_fpscr(env) & FPSR_MASK;
1239 static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1241 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1242 vfp_set_fpscr(env, new_fpscr);
1245 static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1247 return vfp_get_fpscr(env) & FPCR_MASK;
1250 static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1252 uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1253 vfp_set_fpscr(env, new_fpscr);
1256 enum arm_cpu_mode {
1257 ARM_CPU_MODE_USR = 0x10,
1258 ARM_CPU_MODE_FIQ = 0x11,
1259 ARM_CPU_MODE_IRQ = 0x12,
1260 ARM_CPU_MODE_SVC = 0x13,
1261 ARM_CPU_MODE_MON = 0x16,
1262 ARM_CPU_MODE_ABT = 0x17,
1263 ARM_CPU_MODE_HYP = 0x1a,
1264 ARM_CPU_MODE_UND = 0x1b,
1265 ARM_CPU_MODE_SYS = 0x1f
1268 /* VFP system registers. */
1269 #define ARM_VFP_FPSID 0
1270 #define ARM_VFP_FPSCR 1
1271 #define ARM_VFP_MVFR2 5
1272 #define ARM_VFP_MVFR1 6
1273 #define ARM_VFP_MVFR0 7
1274 #define ARM_VFP_FPEXC 8
1275 #define ARM_VFP_FPINST 9
1276 #define ARM_VFP_FPINST2 10
1278 /* iwMMXt coprocessor control registers. */
1279 #define ARM_IWMMXT_wCID 0
1280 #define ARM_IWMMXT_wCon 1
1281 #define ARM_IWMMXT_wCSSF 2
1282 #define ARM_IWMMXT_wCASF 3
1283 #define ARM_IWMMXT_wCGR0 8
1284 #define ARM_IWMMXT_wCGR1 9
1285 #define ARM_IWMMXT_wCGR2 10
1286 #define ARM_IWMMXT_wCGR3 11
1288 /* V7M CCR bits */
1289 FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1290 FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1291 FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1292 FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1293 FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1294 FIELD(V7M_CCR, STKALIGN, 9, 1)
1295 FIELD(V7M_CCR, DC, 16, 1)
1296 FIELD(V7M_CCR, IC, 17, 1)
1298 /* V7M SCR bits */
1299 FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1300 FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1301 FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1302 FIELD(V7M_SCR, SEVONPEND, 4, 1)
1304 /* V7M AIRCR bits */
1305 FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1306 FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1307 FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1308 FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1309 FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1310 FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1311 FIELD(V7M_AIRCR, PRIS, 14, 1)
1312 FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1313 FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1315 /* V7M CFSR bits for MMFSR */
1316 FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1317 FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1318 FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1319 FIELD(V7M_CFSR, MSTKERR, 4, 1)
1320 FIELD(V7M_CFSR, MLSPERR, 5, 1)
1321 FIELD(V7M_CFSR, MMARVALID, 7, 1)
1323 /* V7M CFSR bits for BFSR */
1324 FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1325 FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1326 FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1327 FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1328 FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1329 FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1330 FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1332 /* V7M CFSR bits for UFSR */
1333 FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1334 FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1335 FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1336 FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1337 FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1338 FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1340 /* V7M CFSR bit masks covering all of the subregister bits */
1341 FIELD(V7M_CFSR, MMFSR, 0, 8)
1342 FIELD(V7M_CFSR, BFSR, 8, 8)
1343 FIELD(V7M_CFSR, UFSR, 16, 16)
1345 /* V7M HFSR bits */
1346 FIELD(V7M_HFSR, VECTTBL, 1, 1)
1347 FIELD(V7M_HFSR, FORCED, 30, 1)
1348 FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1350 /* V7M DFSR bits */
1351 FIELD(V7M_DFSR, HALTED, 0, 1)
1352 FIELD(V7M_DFSR, BKPT, 1, 1)
1353 FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1354 FIELD(V7M_DFSR, VCATCH, 3, 1)
1355 FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1357 /* V7M SFSR bits */
1358 FIELD(V7M_SFSR, INVEP, 0, 1)
1359 FIELD(V7M_SFSR, INVIS, 1, 1)
1360 FIELD(V7M_SFSR, INVER, 2, 1)
1361 FIELD(V7M_SFSR, AUVIOL, 3, 1)
1362 FIELD(V7M_SFSR, INVTRAN, 4, 1)
1363 FIELD(V7M_SFSR, LSPERR, 5, 1)
1364 FIELD(V7M_SFSR, SFARVALID, 6, 1)
1365 FIELD(V7M_SFSR, LSERR, 7, 1)
1367 /* v7M MPU_CTRL bits */
1368 FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1369 FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1370 FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1372 /* v7M CLIDR bits */
1373 FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1374 FIELD(V7M_CLIDR, LOUIS, 21, 3)
1375 FIELD(V7M_CLIDR, LOC, 24, 3)
1376 FIELD(V7M_CLIDR, LOUU, 27, 3)
1377 FIELD(V7M_CLIDR, ICB, 30, 2)
1379 FIELD(V7M_CSSELR, IND, 0, 1)
1380 FIELD(V7M_CSSELR, LEVEL, 1, 3)
1381 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1382 * define a mask for this and check that it doesn't permit running off
1383 * the end of the array.
1385 FIELD(V7M_CSSELR, INDEX, 0, 4)
1387 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1389 /* If adding a feature bit which corresponds to a Linux ELF
1390 * HWCAP bit, remember to update the feature-bit-to-hwcap
1391 * mapping in linux-user/elfload.c:get_elf_hwcap().
1393 enum arm_features {
1394 ARM_FEATURE_VFP, /* Vector Floating-point. */
1395 ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
1396 ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
1397 ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
1398 ARM_FEATURE_V6,
1399 ARM_FEATURE_V6K,
1400 ARM_FEATURE_V7,
1401 //~ See http://lists.nongnu.org/archive/html/qemu-devel/2009-05/msg01570.html
1402 //~ ARM_FEATURE_THUMB, /* TODO: still unused. */
1403 //~ ARM_FEATURE_THUMB1 = ARM_FEATURE_THUMB, /* TODO: still unused. */
1404 ARM_FEATURE_THUMB2,
1405 ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
1406 ARM_FEATURE_VFP3,
1407 ARM_FEATURE_VFP_FP16,
1408 ARM_FEATURE_NEON,
1409 ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
1410 ARM_FEATURE_M, /* Microcontroller profile. */
1411 ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
1412 // TODO: long multiply instructions (M variant), standard for v4 and v5.
1413 // TODO: enhanced dsp instructions (E variant).
1414 // TODO: ARMv5TExP.
1415 ARM_FEATURE_THUMB2EE,
1416 ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
1417 ARM_FEATURE_V4T,
1418 ARM_FEATURE_V5,
1419 ARM_FEATURE_STRONGARM,
1420 ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1421 ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
1422 ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1423 ARM_FEATURE_GENERIC_TIMER,
1424 ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1425 ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1426 ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1427 ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1428 ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1429 ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1430 ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1431 ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1432 ARM_FEATURE_V8,
1433 ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1434 ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
1435 ARM_FEATURE_CBAR, /* has cp15 CBAR */
1436 ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1437 ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1438 ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1439 ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1440 ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
1441 ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
1442 ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
1443 ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1444 ARM_FEATURE_PMU, /* has PMU support */
1445 ARM_FEATURE_VBAR, /* has cp15 VBAR */
1446 ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1447 ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
1448 ARM_FEATURE_SVE, /* has Scalable Vector Extension */
1449 ARM_FEATURE_V8_SHA512, /* implements SHA512 part of v8 Crypto Extensions */
1450 ARM_FEATURE_V8_SHA3, /* implements SHA3 part of v8 Crypto Extensions */
1451 ARM_FEATURE_V8_SM3, /* implements SM3 part of v8 Crypto Extensions */
1452 ARM_FEATURE_V8_SM4, /* implements SM4 part of v8 Crypto Extensions */
1453 ARM_FEATURE_V8_RDM, /* implements v8.1 simd round multiply */
1454 ARM_FEATURE_V8_FP16, /* implements v8.2 half-precision float */
1455 ARM_FEATURE_V8_FCMA, /* has complex number part of v8.3 extensions. */
1458 static inline int arm_feature(CPUARMState *env, int feature)
1460 return (env->features & (1ULL << feature)) != 0;
1463 #if !defined(CONFIG_USER_ONLY)
1464 /* Return true if exception levels below EL3 are in secure state,
1465 * or would be following an exception return to that level.
1466 * Unlike arm_is_secure() (which is always a question about the
1467 * _current_ state of the CPU) this doesn't care about the current
1468 * EL or mode.
1470 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1472 if (arm_feature(env, ARM_FEATURE_EL3)) {
1473 return !(env->cp15.scr_el3 & SCR_NS);
1474 } else {
1475 /* If EL3 is not supported then the secure state is implementation
1476 * defined, in which case QEMU defaults to non-secure.
1478 return false;
1482 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1483 static inline bool arm_is_el3_or_mon(CPUARMState *env)
1485 if (arm_feature(env, ARM_FEATURE_EL3)) {
1486 if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1487 /* CPU currently in AArch64 state and EL3 */
1488 return true;
1489 } else if (!is_a64(env) &&
1490 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1491 /* CPU currently in AArch32 state and monitor mode */
1492 return true;
1495 return false;
1498 /* Return true if the processor is in secure state */
1499 static inline bool arm_is_secure(CPUARMState *env)
1501 if (arm_is_el3_or_mon(env)) {
1502 return true;
1504 return arm_is_secure_below_el3(env);
1507 #else
1508 static inline bool arm_is_secure_below_el3(CPUARMState *env)
1510 return false;
1513 static inline bool arm_is_secure(CPUARMState *env)
1515 return false;
1517 #endif
1519 /* Return true if the specified exception level is running in AArch64 state. */
1520 static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1522 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1523 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1525 assert(el >= 1 && el <= 3);
1526 bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1528 /* The highest exception level is always at the maximum supported
1529 * register width, and then lower levels have a register width controlled
1530 * by bits in the SCR or HCR registers.
1532 if (el == 3) {
1533 return aa64;
1536 if (arm_feature(env, ARM_FEATURE_EL3)) {
1537 aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1540 if (el == 2) {
1541 return aa64;
1544 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1545 aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1548 return aa64;
1551 /* Function for determing whether guest cp register reads and writes should
1552 * access the secure or non-secure bank of a cp register. When EL3 is
1553 * operating in AArch32 state, the NS-bit determines whether the secure
1554 * instance of a cp register should be used. When EL3 is AArch64 (or if
1555 * it doesn't exist at all) then there is no register banking, and all
1556 * accesses are to the non-secure version.
1558 static inline bool access_secure_reg(CPUARMState *env)
1560 bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1561 !arm_el_is_aa64(env, 3) &&
1562 !(env->cp15.scr_el3 & SCR_NS));
1564 return ret;
1567 /* Macros for accessing a specified CP register bank */
1568 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1569 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1571 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1572 do { \
1573 if (_secure) { \
1574 (_env)->cp15._regname##_s = (_val); \
1575 } else { \
1576 (_env)->cp15._regname##_ns = (_val); \
1578 } while (0)
1580 /* Macros for automatically accessing a specific CP register bank depending on
1581 * the current secure state of the system. These macros are not intended for
1582 * supporting instruction translation reads/writes as these are dependent
1583 * solely on the SCR.NS bit and not the mode.
1585 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1586 A32_BANKED_REG_GET((_env), _regname, \
1587 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1589 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1590 A32_BANKED_REG_SET((_env), _regname, \
1591 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1592 (_val))
1594 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1595 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1596 uint32_t cur_el, bool secure);
1598 /* Interface between CPU and Interrupt controller. */
1599 #ifndef CONFIG_USER_ONLY
1600 bool armv7m_nvic_can_take_pending_exception(void *opaque);
1601 #else
1602 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1604 return true;
1606 #endif
1608 * armv7m_nvic_set_pending: mark the specified exception as pending
1609 * @opaque: the NVIC
1610 * @irq: the exception number to mark pending
1611 * @secure: false for non-banked exceptions or for the nonsecure
1612 * version of a banked exception, true for the secure version of a banked
1613 * exception.
1615 * Marks the specified exception as pending. Note that we will assert()
1616 * if @secure is true and @irq does not specify one of the fixed set
1617 * of architecturally banked exceptions.
1619 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1621 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1622 * @opaque: the NVIC
1623 * @irq: the exception number to mark pending
1624 * @secure: false for non-banked exceptions or for the nonsecure
1625 * version of a banked exception, true for the secure version of a banked
1626 * exception.
1628 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1629 * exceptions (exceptions generated in the course of trying to take
1630 * a different exception).
1632 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1634 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1635 * exception, and whether it targets Secure state
1636 * @opaque: the NVIC
1637 * @pirq: set to pending exception number
1638 * @ptargets_secure: set to whether pending exception targets Secure
1640 * This function writes the number of the highest priority pending
1641 * exception (the one which would be made active by
1642 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1643 * to true if the current highest priority pending exception should
1644 * be taken to Secure state, false for NS.
1646 void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1647 bool *ptargets_secure);
1649 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1650 * @opaque: the NVIC
1652 * Move the current highest priority pending exception from the pending
1653 * state to the active state, and update v7m.exception to indicate that
1654 * it is the exception currently being handled.
1656 void armv7m_nvic_acknowledge_irq(void *opaque);
1658 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1659 * @opaque: the NVIC
1660 * @irq: the exception number to complete
1661 * @secure: true if this exception was secure
1663 * Returns: -1 if the irq was not active
1664 * 1 if completing this irq brought us back to base (no active irqs)
1665 * 0 if there is still an irq active after this one was completed
1666 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1668 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
1670 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1671 * @opaque: the NVIC
1673 * Returns: the raw execution priority as defined by the v8M architecture.
1674 * This is the execution priority minus the effects of AIRCR.PRIS,
1675 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1676 * (v8M ARM ARM I_PKLD.)
1678 int armv7m_nvic_raw_execution_priority(void *opaque);
1680 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1681 * priority is negative for the specified security state.
1682 * @opaque: the NVIC
1683 * @secure: the security state to test
1684 * This corresponds to the pseudocode IsReqExecPriNeg().
1686 #ifndef CONFIG_USER_ONLY
1687 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
1688 #else
1689 static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
1691 return false;
1693 #endif
1695 /* Interface for defining coprocessor registers.
1696 * Registers are defined in tables of arm_cp_reginfo structs
1697 * which are passed to define_arm_cp_regs().
1700 /* When looking up a coprocessor register we look for it
1701 * via an integer which encodes all of:
1702 * coprocessor number
1703 * Crn, Crm, opc1, opc2 fields
1704 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1705 * or via MRRC/MCRR?)
1706 * non-secure/secure bank (AArch32 only)
1707 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1708 * (In this case crn and opc2 should be zero.)
1709 * For AArch64, there is no 32/64 bit size distinction;
1710 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1711 * and 4 bit CRn and CRm. The encoding patterns are chosen
1712 * to be easy to convert to and from the KVM encodings, and also
1713 * so that the hashtable can contain both AArch32 and AArch64
1714 * registers (to allow for interprocessing where we might run
1715 * 32 bit code on a 64 bit core).
1717 /* This bit is private to our hashtable cpreg; in KVM register
1718 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1719 * in the upper bits of the 64 bit ID.
1721 #define CP_REG_AA64_SHIFT 28
1722 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1724 /* To enable banking of coprocessor registers depending on ns-bit we
1725 * add a bit to distinguish between secure and non-secure cpregs in the
1726 * hashtable.
1728 #define CP_REG_NS_SHIFT 29
1729 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1731 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1732 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1733 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1735 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1736 (CP_REG_AA64_MASK | \
1737 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1738 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1739 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1740 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1741 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1742 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1744 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1745 * version used as a key for the coprocessor register hashtable
1747 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
1749 uint32_t cpregid = kvmid;
1750 if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
1751 cpregid |= CP_REG_AA64_MASK;
1752 } else {
1753 if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
1754 cpregid |= (1 << 15);
1757 /* KVM is always non-secure so add the NS flag on AArch32 register
1758 * entries.
1760 cpregid |= 1 << CP_REG_NS_SHIFT;
1762 return cpregid;
1765 /* Convert a truncated 32 bit hashtable key into the full
1766 * 64 bit KVM register ID.
1768 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
1770 uint64_t kvmid;
1772 if (cpregid & CP_REG_AA64_MASK) {
1773 kvmid = cpregid & ~CP_REG_AA64_MASK;
1774 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
1775 } else {
1776 kvmid = cpregid & ~(1 << 15);
1777 if (cpregid & (1 << 15)) {
1778 kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
1779 } else {
1780 kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
1783 return kvmid;
1786 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1787 * special-behaviour cp reg and bits [11..8] indicate what behaviour
1788 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1789 * TCG can assume the value to be constant (ie load at translate time)
1790 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1791 * indicates that the TB should not be ended after a write to this register
1792 * (the default is that the TB ends after cp writes). OVERRIDE permits
1793 * a register definition to override a previous definition for the
1794 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1795 * old must have the OVERRIDE bit set.
1796 * ALIAS indicates that this register is an alias view of some underlying
1797 * state which is also visible via another register, and that the other
1798 * register is handling migration and reset; registers marked ALIAS will not be
1799 * migrated but may have their state set by syncing of register state from KVM.
1800 * NO_RAW indicates that this register has no underlying state and does not
1801 * support raw access for state saving/loading; it will not be used for either
1802 * migration or KVM state synchronization. (Typically this is for "registers"
1803 * which are actually used as instructions for cache maintenance and so on.)
1804 * IO indicates that this register does I/O and therefore its accesses
1805 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1806 * registers which implement clocks or timers require this.
1808 #define ARM_CP_SPECIAL 0x0001
1809 #define ARM_CP_CONST 0x0002
1810 #define ARM_CP_64BIT 0x0004
1811 #define ARM_CP_SUPPRESS_TB_END 0x0008
1812 #define ARM_CP_OVERRIDE 0x0010
1813 #define ARM_CP_ALIAS 0x0020
1814 #define ARM_CP_IO 0x0040
1815 #define ARM_CP_NO_RAW 0x0080
1816 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
1817 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
1818 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
1819 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
1820 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
1821 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1822 #define ARM_CP_FPU 0x1000
1823 #define ARM_CP_SVE 0x2000
1824 /* Used only as a terminator for ARMCPRegInfo lists */
1825 #define ARM_CP_SENTINEL 0xffff
1826 /* Mask of only the flag bits in a type field */
1827 #define ARM_CP_FLAG_MASK 0x30ff
1829 /* Valid values for ARMCPRegInfo state field, indicating which of
1830 * the AArch32 and AArch64 execution states this register is visible in.
1831 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1832 * If the reginfo is declared to be visible in both states then a second
1833 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1834 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1835 * Note that we rely on the values of these enums as we iterate through
1836 * the various states in some places.
1838 enum {
1839 ARM_CP_STATE_AA32 = 0,
1840 ARM_CP_STATE_AA64 = 1,
1841 ARM_CP_STATE_BOTH = 2,
1844 /* ARM CP register secure state flags. These flags identify security state
1845 * attributes for a given CP register entry.
1846 * The existence of both or neither secure and non-secure flags indicates that
1847 * the register has both a secure and non-secure hash entry. A single one of
1848 * these flags causes the register to only be hashed for the specified
1849 * security state.
1850 * Although definitions may have any combination of the S/NS bits, each
1851 * registered entry will only have one to identify whether the entry is secure
1852 * or non-secure.
1854 enum {
1855 ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
1856 ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
1859 /* Return true if cptype is a valid type field. This is used to try to
1860 * catch errors where the sentinel has been accidentally left off the end
1861 * of a list of registers.
1863 static inline bool cptype_valid(int cptype)
1865 return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
1866 || ((cptype & ARM_CP_SPECIAL) &&
1867 ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
1870 /* Access rights:
1871 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1872 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1873 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1874 * (ie any of the privileged modes in Secure state, or Monitor mode).
1875 * If a register is accessible in one privilege level it's always accessible
1876 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1877 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1878 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1879 * terminology a little and call this PL3.
1880 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1881 * with the ELx exception levels.
1883 * If access permissions for a register are more complex than can be
1884 * described with these bits, then use a laxer set of restrictions, and
1885 * do the more restrictive/complex check inside a helper function.
1887 #define PL3_R 0x80
1888 #define PL3_W 0x40
1889 #define PL2_R (0x20 | PL3_R)
1890 #define PL2_W (0x10 | PL3_W)
1891 #define PL1_R (0x08 | PL2_R)
1892 #define PL1_W (0x04 | PL2_W)
1893 #define PL0_R (0x02 | PL1_R)
1894 #define PL0_W (0x01 | PL1_W)
1896 #define PL3_RW (PL3_R | PL3_W)
1897 #define PL2_RW (PL2_R | PL2_W)
1898 #define PL1_RW (PL1_R | PL1_W)
1899 #define PL0_RW (PL0_R | PL0_W)
1901 /* Return the highest implemented Exception Level */
1902 static inline int arm_highest_el(CPUARMState *env)
1904 if (arm_feature(env, ARM_FEATURE_EL3)) {
1905 return 3;
1907 if (arm_feature(env, ARM_FEATURE_EL2)) {
1908 return 2;
1910 return 1;
1913 /* Return true if a v7M CPU is in Handler mode */
1914 static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
1916 return env->v7m.exception != 0;
1919 /* Return the current Exception Level (as per ARMv8; note that this differs
1920 * from the ARMv7 Privilege Level).
1922 static inline int arm_current_el(CPUARMState *env)
1924 if (arm_feature(env, ARM_FEATURE_M)) {
1925 return arm_v7m_is_handler_mode(env) ||
1926 !(env->v7m.control[env->v7m.secure] & 1);
1929 if (is_a64(env)) {
1930 return extract32(env->pstate, 2, 2);
1933 switch (env->uncached_cpsr & 0x1f) {
1934 case ARM_CPU_MODE_USR:
1935 return 0;
1936 case ARM_CPU_MODE_HYP:
1937 return 2;
1938 case ARM_CPU_MODE_MON:
1939 return 3;
1940 default:
1941 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
1942 /* If EL3 is 32-bit then all secure privileged modes run in
1943 * EL3
1945 return 3;
1948 return 1;
1952 typedef struct ARMCPRegInfo ARMCPRegInfo;
1954 typedef enum CPAccessResult {
1955 /* Access is permitted */
1956 CP_ACCESS_OK = 0,
1957 /* Access fails due to a configurable trap or enable which would
1958 * result in a categorized exception syndrome giving information about
1959 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
1960 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
1961 * PL1 if in EL0, otherwise to the current EL).
1963 CP_ACCESS_TRAP = 1,
1964 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
1965 * Note that this is not a catch-all case -- the set of cases which may
1966 * result in this failure is specifically defined by the architecture.
1968 CP_ACCESS_TRAP_UNCATEGORIZED = 2,
1969 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
1970 CP_ACCESS_TRAP_EL2 = 3,
1971 CP_ACCESS_TRAP_EL3 = 4,
1972 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
1973 CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
1974 CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
1975 /* Access fails and results in an exception syndrome for an FP access,
1976 * trapped directly to EL2 or EL3
1978 CP_ACCESS_TRAP_FP_EL2 = 7,
1979 CP_ACCESS_TRAP_FP_EL3 = 8,
1980 } CPAccessResult;
1982 /* Access functions for coprocessor registers. These cannot fail and
1983 * may not raise exceptions.
1985 typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1986 typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
1987 uint64_t value);
1988 /* Access permission check functions for coprocessor registers. */
1989 typedef CPAccessResult CPAccessFn(CPUARMState *env,
1990 const ARMCPRegInfo *opaque,
1991 bool isread);
1992 /* Hook function for register reset */
1993 typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
1995 #define CP_ANY 0xff
1997 /* Definition of an ARM coprocessor register */
1998 struct ARMCPRegInfo {
1999 /* Name of register (useful mainly for debugging, need not be unique) */
2000 const char *name;
2001 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2002 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2003 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2004 * will be decoded to this register. The register read and write
2005 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2006 * used by the program, so it is possible to register a wildcard and
2007 * then behave differently on read/write if necessary.
2008 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2009 * must both be zero.
2010 * For AArch64-visible registers, opc0 is also used.
2011 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2012 * way to distinguish (for KVM's benefit) guest-visible system registers
2013 * from demuxed ones provided to preserve the "no side effects on
2014 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2015 * visible (to match KVM's encoding); cp==0 will be converted to
2016 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2018 uint8_t cp;
2019 uint8_t crn;
2020 uint8_t crm;
2021 uint8_t opc0;
2022 uint8_t opc1;
2023 uint8_t opc2;
2024 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2025 int state;
2026 /* Register type: ARM_CP_* bits/values */
2027 int type;
2028 /* Access rights: PL*_[RW] */
2029 int access;
2030 /* Security state: ARM_CP_SECSTATE_* bits/values */
2031 int secure;
2032 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2033 * this register was defined: can be used to hand data through to the
2034 * register read/write functions, since they are passed the ARMCPRegInfo*.
2036 void *opaque;
2037 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2038 * fieldoffset is non-zero, the reset value of the register.
2040 uint64_t resetvalue;
2041 /* Offset of the field in CPUARMState for this register.
2043 * This is not needed if either:
2044 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2045 * 2. both readfn and writefn are specified
2047 ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2049 /* Offsets of the secure and non-secure fields in CPUARMState for the
2050 * register if it is banked. These fields are only used during the static
2051 * registration of a register. During hashing the bank associated
2052 * with a given security state is copied to fieldoffset which is used from
2053 * there on out.
2055 * It is expected that register definitions use either fieldoffset or
2056 * bank_fieldoffsets in the definition but not both. It is also expected
2057 * that both bank offsets are set when defining a banked register. This
2058 * use indicates that a register is banked.
2060 ptrdiff_t bank_fieldoffsets[2];
2062 /* Function for making any access checks for this register in addition to
2063 * those specified by the 'access' permissions bits. If NULL, no extra
2064 * checks required. The access check is performed at runtime, not at
2065 * translate time.
2067 CPAccessFn *accessfn;
2068 /* Function for handling reads of this register. If NULL, then reads
2069 * will be done by loading from the offset into CPUARMState specified
2070 * by fieldoffset.
2072 CPReadFn *readfn;
2073 /* Function for handling writes of this register. If NULL, then writes
2074 * will be done by writing to the offset into CPUARMState specified
2075 * by fieldoffset.
2077 CPWriteFn *writefn;
2078 /* Function for doing a "raw" read; used when we need to copy
2079 * coprocessor state to the kernel for KVM or out for
2080 * migration. This only needs to be provided if there is also a
2081 * readfn and it has side effects (for instance clear-on-read bits).
2083 CPReadFn *raw_readfn;
2084 /* Function for doing a "raw" write; used when we need to copy KVM
2085 * kernel coprocessor state into userspace, or for inbound
2086 * migration. This only needs to be provided if there is also a
2087 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2088 * or similar behaviour.
2090 CPWriteFn *raw_writefn;
2091 /* Function for resetting the register. If NULL, then reset will be done
2092 * by writing resetvalue to the field specified in fieldoffset. If
2093 * fieldoffset is 0 then no reset will be done.
2095 CPResetFn *resetfn;
2098 /* Macros which are lvalues for the field in CPUARMState for the
2099 * ARMCPRegInfo *ri.
2101 #define CPREG_FIELD32(env, ri) \
2102 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2103 #define CPREG_FIELD64(env, ri) \
2104 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2106 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2108 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2109 const ARMCPRegInfo *regs, void *opaque);
2110 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2111 const ARMCPRegInfo *regs, void *opaque);
2112 static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2114 define_arm_cp_regs_with_opaque(cpu, regs, NULL);
2116 static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2118 define_one_arm_cp_reg_with_opaque(cpu, regs, NULL);
2120 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2122 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2123 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2124 uint64_t value);
2125 /* CPReadFn that can be used for read-as-zero behaviour */
2126 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2128 /* CPResetFn that does nothing, for use if no reset is required even
2129 * if fieldoffset is non zero.
2131 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2133 /* Return true if this reginfo struct's field in the cpu state struct
2134 * is 64 bits wide.
2136 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2138 return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2141 static inline bool cp_access_ok(int current_el,
2142 const ARMCPRegInfo *ri, int isread)
2144 return (ri->access >> ((current_el * 2) + isread)) & 1;
2147 /* Raw read of a coprocessor register (as needed for migration, etc) */
2148 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2151 * write_list_to_cpustate
2152 * @cpu: ARMCPU
2154 * For each register listed in the ARMCPU cpreg_indexes list, write
2155 * its value from the cpreg_values list into the ARMCPUState structure.
2156 * This updates TCG's working data structures from KVM data or
2157 * from incoming migration state.
2159 * Returns: true if all register values were updated correctly,
2160 * false if some register was unknown or could not be written.
2161 * Note that we do not stop early on failure -- we will attempt
2162 * writing all registers in the list.
2164 bool write_list_to_cpustate(ARMCPU *cpu);
2167 * write_cpustate_to_list:
2168 * @cpu: ARMCPU
2170 * For each register listed in the ARMCPU cpreg_indexes list, write
2171 * its value from the ARMCPUState structure into the cpreg_values list.
2172 * This is used to copy info from TCG's working data structures into
2173 * KVM or for outbound migration.
2175 * Returns: true if all register values were read correctly,
2176 * false if some register was unknown or could not be read.
2177 * Note that we do not stop early on failure -- we will attempt
2178 * reading all registers in the list.
2180 bool write_cpustate_to_list(ARMCPU *cpu);
2182 #define ARM_CPUID_TI915T 0x54029152
2183 #define ARM_CPUID_TI925T 0x54029252
2185 #if defined(CONFIG_USER_ONLY)
2186 #define TARGET_PAGE_BITS 12
2187 #else
2188 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2189 * have to support 1K tiny pages.
2191 #define TARGET_PAGE_BITS_VARY
2192 #define TARGET_PAGE_BITS_MIN 10
2193 #endif
2195 #if defined(TARGET_AARCH64)
2196 # define TARGET_PHYS_ADDR_SPACE_BITS 48
2197 # define TARGET_VIRT_ADDR_SPACE_BITS 64
2198 #else
2199 # define TARGET_PHYS_ADDR_SPACE_BITS 40
2200 # define TARGET_VIRT_ADDR_SPACE_BITS 32
2201 #endif
2203 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2204 unsigned int target_el)
2206 CPUARMState *env = cs->env_ptr;
2207 unsigned int cur_el = arm_current_el(env);
2208 bool secure = arm_is_secure(env);
2209 bool pstate_unmasked;
2210 int8_t unmasked = 0;
2212 /* Don't take exceptions if they target a lower EL.
2213 * This check should catch any exceptions that would not be taken but left
2214 * pending.
2216 if (cur_el > target_el) {
2217 return false;
2220 switch (excp_idx) {
2221 case EXCP_FIQ:
2222 pstate_unmasked = !(env->daif & PSTATE_F);
2223 break;
2225 case EXCP_IRQ:
2226 pstate_unmasked = !(env->daif & PSTATE_I);
2227 break;
2229 case EXCP_VFIQ:
2230 if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
2231 /* VFIQs are only taken when hypervized and non-secure. */
2232 return false;
2234 return !(env->daif & PSTATE_F);
2235 case EXCP_VIRQ:
2236 if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
2237 /* VIRQs are only taken when hypervized and non-secure. */
2238 return false;
2240 return !(env->daif & PSTATE_I);
2241 default:
2242 g_assert_not_reached();
2245 /* Use the target EL, current execution state and SCR/HCR settings to
2246 * determine whether the corresponding CPSR bit is used to mask the
2247 * interrupt.
2249 if ((target_el > cur_el) && (target_el != 1)) {
2250 /* Exceptions targeting a higher EL may not be maskable */
2251 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2252 /* 64-bit masking rules are simple: exceptions to EL3
2253 * can't be masked, and exceptions to EL2 can only be
2254 * masked from Secure state. The HCR and SCR settings
2255 * don't affect the masking logic, only the interrupt routing.
2257 if (target_el == 3 || !secure) {
2258 unmasked = 1;
2260 } else {
2261 /* The old 32-bit-only environment has a more complicated
2262 * masking setup. HCR and SCR bits not only affect interrupt
2263 * routing but also change the behaviour of masking.
2265 bool hcr, scr;
2267 switch (excp_idx) {
2268 case EXCP_FIQ:
2269 /* If FIQs are routed to EL3 or EL2 then there are cases where
2270 * we override the CPSR.F in determining if the exception is
2271 * masked or not. If neither of these are set then we fall back
2272 * to the CPSR.F setting otherwise we further assess the state
2273 * below.
2275 hcr = (env->cp15.hcr_el2 & HCR_FMO);
2276 scr = (env->cp15.scr_el3 & SCR_FIQ);
2278 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2279 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2280 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2281 * when non-secure but only when FIQs are only routed to EL3.
2283 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2284 break;
2285 case EXCP_IRQ:
2286 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2287 * we may override the CPSR.I masking when in non-secure state.
2288 * The SCR.IRQ setting has already been taken into consideration
2289 * when setting the target EL, so it does not have a further
2290 * affect here.
2292 hcr = (env->cp15.hcr_el2 & HCR_IMO);
2293 scr = false;
2294 break;
2295 default:
2296 g_assert_not_reached();
2299 if ((scr || hcr) && !secure) {
2300 unmasked = 1;
2305 /* The PSTATE bits only mask the interrupt if we have not overriden the
2306 * ability above.
2308 return unmasked || pstate_unmasked;
2311 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2312 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2313 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2315 #define cpu_signal_handler cpu_arm_signal_handler
2316 #define cpu_list arm_cpu_list
2318 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2320 * If EL3 is 64-bit:
2321 * + NonSecure EL1 & 0 stage 1
2322 * + NonSecure EL1 & 0 stage 2
2323 * + NonSecure EL2
2324 * + Secure EL1 & EL0
2325 * + Secure EL3
2326 * If EL3 is 32-bit:
2327 * + NonSecure PL1 & 0 stage 1
2328 * + NonSecure PL1 & 0 stage 2
2329 * + NonSecure PL2
2330 * + Secure PL0 & PL1
2331 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2333 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2334 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2335 * may differ in access permissions even if the VA->PA map is the same
2336 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2337 * translation, which means that we have one mmu_idx that deals with two
2338 * concatenated translation regimes [this sort of combined s1+2 TLB is
2339 * architecturally permitted]
2340 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2341 * handling via the TLB. The only way to do a stage 1 translation without
2342 * the immediate stage 2 translation is via the ATS or AT system insns,
2343 * which can be slow-pathed and always do a page table walk.
2344 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2345 * translation regimes, because they map reasonably well to each other
2346 * and they can't both be active at the same time.
2347 * This gives us the following list of mmu_idx values:
2349 * NS EL0 (aka NS PL0) stage 1+2
2350 * NS EL1 (aka NS PL1) stage 1+2
2351 * NS EL2 (aka NS PL2)
2352 * S EL3 (aka S PL1)
2353 * S EL0 (aka S PL0)
2354 * S EL1 (not used if EL3 is 32 bit)
2355 * NS EL0+1 stage 2
2357 * (The last of these is an mmu_idx because we want to be able to use the TLB
2358 * for the accesses done as part of a stage 1 page table walk, rather than
2359 * having to walk the stage 2 page table over and over.)
2361 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2362 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2363 * NS EL2 if we ever model a Cortex-R52).
2365 * M profile CPUs are rather different as they do not have a true MMU.
2366 * They have the following different MMU indexes:
2367 * User
2368 * Privileged
2369 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2370 * Privileged, execution priority negative (ditto)
2371 * If the CPU supports the v8M Security Extension then there are also:
2372 * Secure User
2373 * Secure Privileged
2374 * Secure User, execution priority negative
2375 * Secure Privileged, execution priority negative
2377 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2378 * are not quite the same -- different CPU types (most notably M profile
2379 * vs A/R profile) would like to use MMU indexes with different semantics,
2380 * but since we don't ever need to use all of those in a single CPU we
2381 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2382 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2383 * the same for any particular CPU.
2384 * Variables of type ARMMUIdx are always full values, and the core
2385 * index values are in variables of type 'int'.
2387 * Our enumeration includes at the end some entries which are not "true"
2388 * mmu_idx values in that they don't have corresponding TLBs and are only
2389 * valid for doing slow path page table walks.
2391 * The constant names here are patterned after the general style of the names
2392 * of the AT/ATS operations.
2393 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2394 * For M profile we arrange them to have a bit for priv, a bit for negpri
2395 * and a bit for secure.
2397 #define ARM_MMU_IDX_A 0x10 /* A profile */
2398 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2399 #define ARM_MMU_IDX_M 0x40 /* M profile */
2401 /* meanings of the bits for M profile mmu idx values */
2402 #define ARM_MMU_IDX_M_PRIV 0x1
2403 #define ARM_MMU_IDX_M_NEGPRI 0x2
2404 #define ARM_MMU_IDX_M_S 0x4
2406 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2407 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2409 typedef enum ARMMMUIdx {
2410 ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2411 ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2412 ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2413 ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2414 ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2415 ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2416 ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2417 ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2418 ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2419 ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2420 ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2421 ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2422 ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2423 ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2424 ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2425 /* Indexes below here don't have TLBs and are used only for AT system
2426 * instructions or for the first stage of an S12 page table walk.
2428 ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2429 ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2430 } ARMMMUIdx;
2432 /* Bit macros for the core-mmu-index values for each index,
2433 * for use when calling tlb_flush_by_mmuidx() and friends.
2435 typedef enum ARMMMUIdxBit {
2436 ARMMMUIdxBit_S12NSE0 = 1 << 0,
2437 ARMMMUIdxBit_S12NSE1 = 1 << 1,
2438 ARMMMUIdxBit_S1E2 = 1 << 2,
2439 ARMMMUIdxBit_S1E3 = 1 << 3,
2440 ARMMMUIdxBit_S1SE0 = 1 << 4,
2441 ARMMMUIdxBit_S1SE1 = 1 << 5,
2442 ARMMMUIdxBit_S2NS = 1 << 6,
2443 ARMMMUIdxBit_MUser = 1 << 0,
2444 ARMMMUIdxBit_MPriv = 1 << 1,
2445 ARMMMUIdxBit_MUserNegPri = 1 << 2,
2446 ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2447 ARMMMUIdxBit_MSUser = 1 << 4,
2448 ARMMMUIdxBit_MSPriv = 1 << 5,
2449 ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2450 ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2451 } ARMMMUIdxBit;
2453 #define MMU_USER_IDX 0
2455 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2457 return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2460 static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2462 if (arm_feature(env, ARM_FEATURE_M)) {
2463 return mmu_idx | ARM_MMU_IDX_M;
2464 } else {
2465 return mmu_idx | ARM_MMU_IDX_A;
2469 /* Return the exception level we're running at if this is our mmu_idx */
2470 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2472 switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2473 case ARM_MMU_IDX_A:
2474 return mmu_idx & 3;
2475 case ARM_MMU_IDX_M:
2476 return mmu_idx & ARM_MMU_IDX_M_PRIV;
2477 default:
2478 g_assert_not_reached();
2482 /* Return the MMU index for a v7M CPU in the specified security and
2483 * privilege state
2485 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2486 bool secstate,
2487 bool priv)
2489 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
2491 if (priv) {
2492 mmu_idx |= ARM_MMU_IDX_M_PRIV;
2495 if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
2496 mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
2499 if (secstate) {
2500 mmu_idx |= ARM_MMU_IDX_M_S;
2503 return mmu_idx;
2506 /* Return the MMU index for a v7M CPU in the specified security state */
2507 static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
2508 bool secstate)
2510 bool priv = arm_current_el(env) != 0;
2512 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
2515 /* Determine the current mmu_idx to use for normal loads/stores */
2516 static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
2518 int el = arm_current_el(env);
2520 if (arm_feature(env, ARM_FEATURE_M)) {
2521 ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
2523 return arm_to_core_mmu_idx(mmu_idx);
2526 if (el < 2 && arm_is_secure_below_el3(env)) {
2527 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
2529 return el;
2532 /* Indexes used when registering address spaces with cpu_address_space_init */
2533 typedef enum ARMASIdx {
2534 ARMASIdx_NS = 0,
2535 ARMASIdx_S = 1,
2536 } ARMASIdx;
2538 /* Return the Exception Level targeted by debug exceptions. */
2539 static inline int arm_debug_target_el(CPUARMState *env)
2541 bool secure = arm_is_secure(env);
2542 bool route_to_el2 = false;
2544 if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2545 route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2546 env->cp15.mdcr_el2 & (1 << 8);
2549 if (route_to_el2) {
2550 return 2;
2551 } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2552 !arm_el_is_aa64(env, 3) && secure) {
2553 return 3;
2554 } else {
2555 return 1;
2559 static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2561 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2562 * CSSELR is RAZ/WI.
2564 return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2567 static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2569 if (arm_is_secure(env)) {
2570 /* MDCR_EL3.SDD disables debug events from Secure state */
2571 if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
2572 || arm_current_el(env) == 3) {
2573 return false;
2577 if (arm_current_el(env) == arm_debug_target_el(env)) {
2578 if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
2579 || (env->daif & PSTATE_D)) {
2580 return false;
2583 return true;
2586 static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2588 int el = arm_current_el(env);
2590 if (el == 0 && arm_el_is_aa64(env, 1)) {
2591 return aa64_generate_debug_exceptions(env);
2594 if (arm_is_secure(env)) {
2595 int spd;
2597 if (el == 0 && (env->cp15.sder & 1)) {
2598 /* SDER.SUIDEN means debug exceptions from Secure EL0
2599 * are always enabled. Otherwise they are controlled by
2600 * SDCR.SPD like those from other Secure ELs.
2602 return true;
2605 spd = extract32(env->cp15.mdcr_el3, 14, 2);
2606 switch (spd) {
2607 case 1:
2608 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2609 case 0:
2610 /* For 0b00 we return true if external secure invasive debug
2611 * is enabled. On real hardware this is controlled by external
2612 * signals to the core. QEMU always permits debug, and behaves
2613 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2615 return true;
2616 case 2:
2617 return false;
2618 case 3:
2619 return true;
2623 return el != 2;
2626 /* Return true if debugging exceptions are currently enabled.
2627 * This corresponds to what in ARM ARM pseudocode would be
2628 * if UsingAArch32() then
2629 * return AArch32.GenerateDebugExceptions()
2630 * else
2631 * return AArch64.GenerateDebugExceptions()
2632 * We choose to push the if() down into this function for clarity,
2633 * since the pseudocode has it at all callsites except for the one in
2634 * CheckSoftwareStep(), where it is elided because both branches would
2635 * always return the same value.
2637 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2638 * don't yet implement those exception levels or their associated trap bits.
2640 static inline bool arm_generate_debug_exceptions(CPUARMState *env)
2642 if (env->aarch64) {
2643 return aa64_generate_debug_exceptions(env);
2644 } else {
2645 return aa32_generate_debug_exceptions(env);
2649 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2650 * implicitly means this always returns false in pre-v8 CPUs.)
2652 static inline bool arm_singlestep_active(CPUARMState *env)
2654 return extract32(env->cp15.mdscr_el1, 0, 1)
2655 && arm_el_is_aa64(env, arm_debug_target_el(env))
2656 && arm_generate_debug_exceptions(env);
2659 static inline bool arm_sctlr_b(CPUARMState *env)
2661 return
2662 /* We need not implement SCTLR.ITD in user-mode emulation, so
2663 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2664 * This lets people run BE32 binaries with "-cpu any".
2666 #ifndef CONFIG_USER_ONLY
2667 !arm_feature(env, ARM_FEATURE_V7) &&
2668 #endif
2669 (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
2672 /* Return true if the processor is in big-endian mode. */
2673 static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
2675 int cur_el;
2677 /* In 32bit endianness is determined by looking at CPSR's E bit */
2678 if (!is_a64(env)) {
2679 return
2680 #ifdef CONFIG_USER_ONLY
2681 /* In system mode, BE32 is modelled in line with the
2682 * architecture (as word-invariant big-endianness), where loads
2683 * and stores are done little endian but from addresses which
2684 * are adjusted by XORing with the appropriate constant. So the
2685 * endianness to use for the raw data access is not affected by
2686 * SCTLR.B.
2687 * In user mode, however, we model BE32 as byte-invariant
2688 * big-endianness (because user-only code cannot tell the
2689 * difference), and so we need to use a data access endianness
2690 * that depends on SCTLR.B.
2692 arm_sctlr_b(env) ||
2693 #endif
2694 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
2697 cur_el = arm_current_el(env);
2699 if (cur_el == 0) {
2700 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
2703 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
2706 #include "exec/cpu-all.h"
2708 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2709 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2710 * We put flags which are shared between 32 and 64 bit mode at the top
2711 * of the word, and flags which apply to only one mode at the bottom.
2713 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2714 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2715 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2716 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2717 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2718 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2719 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2720 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2721 /* Target EL if we take a floating-point-disabled exception */
2722 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2723 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2725 /* Bit usage when in AArch32 state: */
2726 #define ARM_TBFLAG_THUMB_SHIFT 0
2727 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2728 #define ARM_TBFLAG_VECLEN_SHIFT 1
2729 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2730 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2731 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2732 #define ARM_TBFLAG_VFPEN_SHIFT 7
2733 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2734 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
2735 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2736 #define ARM_TBFLAG_SCTLR_B_SHIFT 16
2737 #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2738 /* We store the bottom two bits of the CPAR as TB flags and handle
2739 * checks on the other bits at runtime
2741 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2742 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2743 /* Indicates whether cp register reads and writes by guest code should access
2744 * the secure or nonsecure bank of banked registers; note that this is not
2745 * the same thing as the current security state of the processor!
2747 #define ARM_TBFLAG_NS_SHIFT 19
2748 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
2749 #define ARM_TBFLAG_BE_DATA_SHIFT 20
2750 #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2751 /* For M profile only, Handler (ie not Thread) mode */
2752 #define ARM_TBFLAG_HANDLER_SHIFT 21
2753 #define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
2755 /* Bit usage when in AArch64 state */
2756 #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2757 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2758 #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2759 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2760 #define ARM_TBFLAG_SVEEXC_EL_SHIFT 2
2761 #define ARM_TBFLAG_SVEEXC_EL_MASK (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
2762 #define ARM_TBFLAG_ZCR_LEN_SHIFT 4
2763 #define ARM_TBFLAG_ZCR_LEN_MASK (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
2765 /* some convenience accessor macros */
2766 #define ARM_TBFLAG_AARCH64_STATE(F) \
2767 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2768 #define ARM_TBFLAG_MMUIDX(F) \
2769 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2770 #define ARM_TBFLAG_SS_ACTIVE(F) \
2771 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2772 #define ARM_TBFLAG_PSTATE_SS(F) \
2773 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2774 #define ARM_TBFLAG_FPEXC_EL(F) \
2775 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2776 #define ARM_TBFLAG_THUMB(F) \
2777 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2778 #define ARM_TBFLAG_VECLEN(F) \
2779 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2780 #define ARM_TBFLAG_VECSTRIDE(F) \
2781 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2782 #define ARM_TBFLAG_VFPEN(F) \
2783 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2784 #define ARM_TBFLAG_CONDEXEC(F) \
2785 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2786 #define ARM_TBFLAG_SCTLR_B(F) \
2787 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2788 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2789 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2790 #define ARM_TBFLAG_NS(F) \
2791 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2792 #define ARM_TBFLAG_BE_DATA(F) \
2793 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2794 #define ARM_TBFLAG_HANDLER(F) \
2795 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2796 #define ARM_TBFLAG_TBI0(F) \
2797 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2798 #define ARM_TBFLAG_TBI1(F) \
2799 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2800 #define ARM_TBFLAG_SVEEXC_EL(F) \
2801 (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
2802 #define ARM_TBFLAG_ZCR_LEN(F) \
2803 (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
2805 static inline bool bswap_code(bool sctlr_b)
2807 #ifdef CONFIG_USER_ONLY
2808 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2809 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2810 * would also end up as a mixed-endian mode with BE code, LE data.
2812 return
2813 #ifdef TARGET_WORDS_BIGENDIAN
2815 #endif
2816 sctlr_b;
2817 #else
2818 /* All code access in ARM is little endian, and there are no loaders
2819 * doing swaps that need to be reversed
2821 return 0;
2822 #endif
2825 #ifdef CONFIG_USER_ONLY
2826 /* get_user and put_user respectively return and expect data according
2827 * to TARGET_WORDS_BIGENDIAN, but ldrex/strex emulation needs to take
2828 * into account CPSR.E.
2830 * TARGET_WORDS_BIGENDIAN CPSR.E need swap?
2831 * LE/LE no 0 no
2832 * LE/BE no 1 yes
2833 * BE8/LE yes 0 yes
2834 * BE8/BE yes 1 no
2835 * BE32/BE yes 1 0 no
2836 * (BE32/LE) yes 1 1 yes
2838 * Officially, BE32 with CPSR.E=1 has "unpredictable" results. We
2839 * implement it as big-endian code, little-endian data.
2841 static inline bool arm_cpu_bswap_data(CPUARMState *env)
2843 return
2844 #ifdef TARGET_WORDS_BIGENDIAN
2846 #endif
2847 arm_sctlr_b(env) ^
2848 arm_cpu_data_is_big_endian(env);
2850 #endif
2852 #ifndef CONFIG_USER_ONLY
2854 * arm_regime_tbi0:
2855 * @env: CPUARMState
2856 * @mmu_idx: MMU index indicating required translation regime
2858 * Extracts the TBI0 value from the appropriate TCR for the current EL
2860 * Returns: the TBI0 value.
2862 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
2865 * arm_regime_tbi1:
2866 * @env: CPUARMState
2867 * @mmu_idx: MMU index indicating required translation regime
2869 * Extracts the TBI1 value from the appropriate TCR for the current EL
2871 * Returns: the TBI1 value.
2873 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
2874 #else
2875 /* We can't handle tagged addresses properly in user-only mode */
2876 static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
2878 return 0;
2881 static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
2883 return 0;
2885 #endif
2887 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
2888 target_ulong *cs_base, uint32_t *flags);
2890 enum {
2891 QEMU_PSCI_CONDUIT_DISABLED = 0,
2892 QEMU_PSCI_CONDUIT_SMC = 1,
2893 QEMU_PSCI_CONDUIT_HVC = 2,
2896 #ifndef CONFIG_USER_ONLY
2897 /* Return the address space index to use for a memory access */
2898 static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
2900 return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
2903 /* Return the AddressSpace to use for a memory access
2904 * (which depends on whether the access is S or NS, and whether
2905 * the board gave us a separate AddressSpace for S accesses).
2907 static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
2909 return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
2911 #endif
2914 * arm_register_el_change_hook:
2915 * Register a hook function which will be called back whenever this
2916 * CPU changes exception level or mode. The hook function will be
2917 * passed a pointer to the ARMCPU and the opaque data pointer passed
2918 * to this function when the hook was registered.
2920 * Note that we currently only support registering a single hook function,
2921 * and will assert if this function is called twice.
2922 * This facility is intended for the use of the GICv3 emulation.
2924 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
2925 void *opaque);
2928 * arm_get_el_change_hook_opaque:
2929 * Return the opaque data that will be used by the el_change_hook
2930 * for this CPU.
2932 static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
2934 return cpu->el_change_hook_opaque;
2938 * aa32_vfp_dreg:
2939 * Return a pointer to the Dn register within env in 32-bit mode.
2941 static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
2943 return &env->vfp.zregs[regno >> 1].d[regno & 1];
2947 * aa32_vfp_qreg:
2948 * Return a pointer to the Qn register within env in 32-bit mode.
2950 static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
2952 return &env->vfp.zregs[regno].d[0];
2956 * aa64_vfp_qreg:
2957 * Return a pointer to the Qn register within env in 64-bit mode.
2959 static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
2961 return &env->vfp.zregs[regno].d[0];
2964 #endif