target/arm: Use tcg_gen_atomic_cmpxchg_i128 for CASP
[qemu/ar7.git] / target / arm / translate-a64.c
blobda9f8774763dc55782b6b7a510e926d72a629478
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
30 #include "semihosting/semihost.h"
31 #include "exec/gen-icount.h"
32 #include "exec/helper-proto.h"
33 #include "exec/helper-gen.h"
34 #include "exec/log.h"
35 #include "cpregs.h"
36 #include "translate-a64.h"
37 #include "qemu/atomic128.h"
39 static TCGv_i64 cpu_X[32];
40 static TCGv_i64 cpu_pc;
42 /* Load/store exclusive handling */
43 static TCGv_i64 cpu_exclusive_high;
45 static const char *regnames[] = {
46 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
47 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
48 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
49 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
52 enum a64_shift_type {
53 A64_SHIFT_TYPE_LSL = 0,
54 A64_SHIFT_TYPE_LSR = 1,
55 A64_SHIFT_TYPE_ASR = 2,
56 A64_SHIFT_TYPE_ROR = 3
59 /* Table based decoder typedefs - used when the relevant bits for decode
60 * are too awkwardly scattered across the instruction (eg SIMD).
62 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
64 typedef struct AArch64DecodeTable {
65 uint32_t pattern;
66 uint32_t mask;
67 AArch64DecodeFn *disas_fn;
68 } AArch64DecodeTable;
70 /* initialize TCG globals. */
71 void a64_translate_init(void)
73 int i;
75 cpu_pc = tcg_global_mem_new_i64(cpu_env,
76 offsetof(CPUARMState, pc),
77 "pc");
78 for (i = 0; i < 32; i++) {
79 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
80 offsetof(CPUARMState, xregs[i]),
81 regnames[i]);
84 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
85 offsetof(CPUARMState, exclusive_high), "exclusive_high");
89 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
91 static int get_a64_user_mem_index(DisasContext *s)
94 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
95 * which is the usual mmu_idx for this cpu state.
97 ARMMMUIdx useridx = s->mmu_idx;
99 if (s->unpriv) {
101 * We have pre-computed the condition for AccType_UNPRIV.
102 * Therefore we should never get here with a mmu_idx for
103 * which we do not know the corresponding user mmu_idx.
105 switch (useridx) {
106 case ARMMMUIdx_E10_1:
107 case ARMMMUIdx_E10_1_PAN:
108 useridx = ARMMMUIdx_E10_0;
109 break;
110 case ARMMMUIdx_E20_2:
111 case ARMMMUIdx_E20_2_PAN:
112 useridx = ARMMMUIdx_E20_0;
113 break;
114 default:
115 g_assert_not_reached();
118 return arm_to_core_mmu_idx(useridx);
121 static void set_btype_raw(int val)
123 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env,
124 offsetof(CPUARMState, btype));
127 static void set_btype(DisasContext *s, int val)
129 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
130 tcg_debug_assert(val >= 1 && val <= 3);
131 set_btype_raw(val);
132 s->btype = -1;
135 static void reset_btype(DisasContext *s)
137 if (s->btype != 0) {
138 set_btype_raw(0);
139 s->btype = 0;
143 static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
145 assert(s->pc_save != -1);
146 if (TARGET_TB_PCREL) {
147 tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
148 } else {
149 tcg_gen_movi_i64(dest, s->pc_curr + diff);
153 void gen_a64_update_pc(DisasContext *s, target_long diff)
155 gen_pc_plus_diff(s, cpu_pc, diff);
156 s->pc_save = s->pc_curr + diff;
160 * Handle Top Byte Ignore (TBI) bits.
162 * If address tagging is enabled via the TCR TBI bits:
163 * + for EL2 and EL3 there is only one TBI bit, and if it is set
164 * then the address is zero-extended, clearing bits [63:56]
165 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
166 * and TBI1 controls addressses with bit 55 == 1.
167 * If the appropriate TBI bit is set for the address then
168 * the address is sign-extended from bit 55 into bits [63:56]
170 * Here We have concatenated TBI{1,0} into tbi.
172 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
173 TCGv_i64 src, int tbi)
175 if (tbi == 0) {
176 /* Load unmodified address */
177 tcg_gen_mov_i64(dst, src);
178 } else if (!regime_has_2_ranges(s->mmu_idx)) {
179 /* Force tag byte to all zero */
180 tcg_gen_extract_i64(dst, src, 0, 56);
181 } else {
182 /* Sign-extend from bit 55. */
183 tcg_gen_sextract_i64(dst, src, 0, 56);
185 switch (tbi) {
186 case 1:
187 /* tbi0 but !tbi1: only use the extension if positive */
188 tcg_gen_and_i64(dst, dst, src);
189 break;
190 case 2:
191 /* !tbi0 but tbi1: only use the extension if negative */
192 tcg_gen_or_i64(dst, dst, src);
193 break;
194 case 3:
195 /* tbi0 and tbi1: always use the extension */
196 break;
197 default:
198 g_assert_not_reached();
203 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
206 * If address tagging is enabled for instructions via the TCR TBI bits,
207 * then loading an address into the PC will clear out any tag.
209 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
210 s->pc_save = -1;
214 * Handle MTE and/or TBI.
216 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
217 * for the tag to be present in the FAR_ELx register. But for user-only
218 * mode we do not have a TLB with which to implement this, so we must
219 * remove the top byte now.
221 * Always return a fresh temporary that we can increment independently
222 * of the write-back address.
225 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
227 TCGv_i64 clean = new_tmp_a64(s);
228 #ifdef CONFIG_USER_ONLY
229 gen_top_byte_ignore(s, clean, addr, s->tbid);
230 #else
231 tcg_gen_mov_i64(clean, addr);
232 #endif
233 return clean;
236 /* Insert a zero tag into src, with the result at dst. */
237 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
239 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
242 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
243 MMUAccessType acc, int log2_size)
245 gen_helper_probe_access(cpu_env, ptr,
246 tcg_constant_i32(acc),
247 tcg_constant_i32(get_mem_index(s)),
248 tcg_constant_i32(1 << log2_size));
252 * For MTE, check a single logical or atomic access. This probes a single
253 * address, the exact one specified. The size and alignment of the access
254 * is not relevant to MTE, per se, but watchpoints do require the size,
255 * and we want to recognize those before making any other changes to state.
257 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
258 bool is_write, bool tag_checked,
259 int log2_size, bool is_unpriv,
260 int core_idx)
262 if (tag_checked && s->mte_active[is_unpriv]) {
263 TCGv_i64 ret;
264 int desc = 0;
266 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
267 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
268 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
269 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
270 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1);
272 ret = new_tmp_a64(s);
273 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
275 return ret;
277 return clean_data_tbi(s, addr);
280 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
281 bool tag_checked, int log2_size)
283 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size,
284 false, get_mem_index(s));
288 * For MTE, check multiple logical sequential accesses.
290 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
291 bool tag_checked, int size)
293 if (tag_checked && s->mte_active[0]) {
294 TCGv_i64 ret;
295 int desc = 0;
297 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
298 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
299 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
300 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
301 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1);
303 ret = new_tmp_a64(s);
304 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
306 return ret;
308 return clean_data_tbi(s, addr);
311 typedef struct DisasCompare64 {
312 TCGCond cond;
313 TCGv_i64 value;
314 } DisasCompare64;
316 static void a64_test_cc(DisasCompare64 *c64, int cc)
318 DisasCompare c32;
320 arm_test_cc(&c32, cc);
322 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
323 * properly. The NE/EQ comparisons are also fine with this choice. */
324 c64->cond = c32.cond;
325 c64->value = tcg_temp_new_i64();
326 tcg_gen_ext_i32_i64(c64->value, c32.value);
328 arm_free_cc(&c32);
331 static void a64_free_cc(DisasCompare64 *c64)
333 tcg_temp_free_i64(c64->value);
336 static void gen_rebuild_hflags(DisasContext *s)
338 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el));
341 static void gen_exception_internal(int excp)
343 assert(excp_is_internal(excp));
344 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp));
347 static void gen_exception_internal_insn(DisasContext *s, int excp)
349 gen_a64_update_pc(s, 0);
350 gen_exception_internal(excp);
351 s->base.is_jmp = DISAS_NORETURN;
354 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
356 gen_a64_update_pc(s, 0);
357 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome));
358 s->base.is_jmp = DISAS_NORETURN;
361 static void gen_step_complete_exception(DisasContext *s)
363 /* We just completed step of an insn. Move from Active-not-pending
364 * to Active-pending, and then also take the swstep exception.
365 * This corresponds to making the (IMPDEF) choice to prioritize
366 * swstep exceptions over asynchronous exceptions taken to an exception
367 * level where debug is disabled. This choice has the advantage that
368 * we do not need to maintain internal state corresponding to the
369 * ISV/EX syndrome bits between completion of the step and generation
370 * of the exception, and our syndrome information is always correct.
372 gen_ss_advance(s);
373 gen_swstep_exception(s, 1, s->is_ldex);
374 s->base.is_jmp = DISAS_NORETURN;
377 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
379 if (s->ss_active) {
380 return false;
382 return translator_use_goto_tb(&s->base, dest);
385 static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
387 if (use_goto_tb(s, s->pc_curr + diff)) {
389 * For pcrel, the pc must always be up-to-date on entry to
390 * the linked TB, so that it can use simple additions for all
391 * further adjustments. For !pcrel, the linked TB is compiled
392 * to know its full virtual address, so we can delay the
393 * update to pc to the unlinked path. A long chain of links
394 * can thus avoid many updates to the PC.
396 if (TARGET_TB_PCREL) {
397 gen_a64_update_pc(s, diff);
398 tcg_gen_goto_tb(n);
399 } else {
400 tcg_gen_goto_tb(n);
401 gen_a64_update_pc(s, diff);
403 tcg_gen_exit_tb(s->base.tb, n);
404 s->base.is_jmp = DISAS_NORETURN;
405 } else {
406 gen_a64_update_pc(s, diff);
407 if (s->ss_active) {
408 gen_step_complete_exception(s);
409 } else {
410 tcg_gen_lookup_and_goto_ptr();
411 s->base.is_jmp = DISAS_NORETURN;
416 static void init_tmp_a64_array(DisasContext *s)
418 #ifdef CONFIG_DEBUG_TCG
419 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
420 #endif
421 s->tmp_a64_count = 0;
424 static void free_tmp_a64(DisasContext *s)
426 int i;
427 for (i = 0; i < s->tmp_a64_count; i++) {
428 tcg_temp_free_i64(s->tmp_a64[i]);
430 init_tmp_a64_array(s);
433 TCGv_i64 new_tmp_a64(DisasContext *s)
435 assert(s->tmp_a64_count < TMP_A64_MAX);
436 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
439 TCGv_i64 new_tmp_a64_local(DisasContext *s)
441 assert(s->tmp_a64_count < TMP_A64_MAX);
442 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_local_new_i64();
445 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
447 TCGv_i64 t = new_tmp_a64(s);
448 tcg_gen_movi_i64(t, 0);
449 return t;
453 * Register access functions
455 * These functions are used for directly accessing a register in where
456 * changes to the final register value are likely to be made. If you
457 * need to use a register for temporary calculation (e.g. index type
458 * operations) use the read_* form.
460 * B1.2.1 Register mappings
462 * In instruction register encoding 31 can refer to ZR (zero register) or
463 * the SP (stack pointer) depending on context. In QEMU's case we map SP
464 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
465 * This is the point of the _sp forms.
467 TCGv_i64 cpu_reg(DisasContext *s, int reg)
469 if (reg == 31) {
470 return new_tmp_a64_zero(s);
471 } else {
472 return cpu_X[reg];
476 /* register access for when 31 == SP */
477 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
479 return cpu_X[reg];
482 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
483 * representing the register contents. This TCGv is an auto-freed
484 * temporary so it need not be explicitly freed, and may be modified.
486 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
488 TCGv_i64 v = new_tmp_a64(s);
489 if (reg != 31) {
490 if (sf) {
491 tcg_gen_mov_i64(v, cpu_X[reg]);
492 } else {
493 tcg_gen_ext32u_i64(v, cpu_X[reg]);
495 } else {
496 tcg_gen_movi_i64(v, 0);
498 return v;
501 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
503 TCGv_i64 v = new_tmp_a64(s);
504 if (sf) {
505 tcg_gen_mov_i64(v, cpu_X[reg]);
506 } else {
507 tcg_gen_ext32u_i64(v, cpu_X[reg]);
509 return v;
512 /* Return the offset into CPUARMState of a slice (from
513 * the least significant end) of FP register Qn (ie
514 * Dn, Sn, Hn or Bn).
515 * (Note that this is not the same mapping as for A32; see cpu.h)
517 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
519 return vec_reg_offset(s, regno, 0, size);
522 /* Offset of the high half of the 128 bit vector Qn */
523 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
525 return vec_reg_offset(s, regno, 1, MO_64);
528 /* Convenience accessors for reading and writing single and double
529 * FP registers. Writing clears the upper parts of the associated
530 * 128 bit vector register, as required by the architecture.
531 * Note that unlike the GP register accessors, the values returned
532 * by the read functions must be manually freed.
534 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
536 TCGv_i64 v = tcg_temp_new_i64();
538 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
539 return v;
542 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
544 TCGv_i32 v = tcg_temp_new_i32();
546 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
547 return v;
550 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
552 TCGv_i32 v = tcg_temp_new_i32();
554 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
555 return v;
558 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
559 * If SVE is not enabled, then there are only 128 bits in the vector.
561 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
563 unsigned ofs = fp_reg_offset(s, rd, MO_64);
564 unsigned vsz = vec_full_reg_size(s);
566 /* Nop move, with side effect of clearing the tail. */
567 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
570 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
572 unsigned ofs = fp_reg_offset(s, reg, MO_64);
574 tcg_gen_st_i64(v, cpu_env, ofs);
575 clear_vec_high(s, false, reg);
578 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
580 TCGv_i64 tmp = tcg_temp_new_i64();
582 tcg_gen_extu_i32_i64(tmp, v);
583 write_fp_dreg(s, reg, tmp);
584 tcg_temp_free_i64(tmp);
587 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
588 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
589 GVecGen2Fn *gvec_fn, int vece)
591 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
592 is_q ? 16 : 8, vec_full_reg_size(s));
595 /* Expand a 2-operand + immediate AdvSIMD vector operation using
596 * an expander function.
598 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
599 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
601 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
602 imm, is_q ? 16 : 8, vec_full_reg_size(s));
605 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
606 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
607 GVecGen3Fn *gvec_fn, int vece)
609 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
610 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
613 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
614 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
615 int rx, GVecGen4Fn *gvec_fn, int vece)
617 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
618 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
619 is_q ? 16 : 8, vec_full_reg_size(s));
622 /* Expand a 2-operand operation using an out-of-line helper. */
623 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
624 int rn, int data, gen_helper_gvec_2 *fn)
626 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
627 vec_full_reg_offset(s, rn),
628 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
631 /* Expand a 3-operand operation using an out-of-line helper. */
632 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
633 int rn, int rm, int data, gen_helper_gvec_3 *fn)
635 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
636 vec_full_reg_offset(s, rn),
637 vec_full_reg_offset(s, rm),
638 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
641 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
642 * an out-of-line helper.
644 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
645 int rm, bool is_fp16, int data,
646 gen_helper_gvec_3_ptr *fn)
648 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
649 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
650 vec_full_reg_offset(s, rn),
651 vec_full_reg_offset(s, rm), fpst,
652 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
653 tcg_temp_free_ptr(fpst);
656 /* Expand a 3-operand + qc + operation using an out-of-line helper. */
657 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
658 int rm, gen_helper_gvec_3_ptr *fn)
660 TCGv_ptr qc_ptr = tcg_temp_new_ptr();
662 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
663 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
664 vec_full_reg_offset(s, rn),
665 vec_full_reg_offset(s, rm), qc_ptr,
666 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
667 tcg_temp_free_ptr(qc_ptr);
670 /* Expand a 4-operand operation using an out-of-line helper. */
671 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
672 int rm, int ra, int data, gen_helper_gvec_4 *fn)
674 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
675 vec_full_reg_offset(s, rn),
676 vec_full_reg_offset(s, rm),
677 vec_full_reg_offset(s, ra),
678 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
682 * Expand a 4-operand + fpstatus pointer + simd data value operation using
683 * an out-of-line helper.
685 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
686 int rm, int ra, bool is_fp16, int data,
687 gen_helper_gvec_4_ptr *fn)
689 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
690 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
691 vec_full_reg_offset(s, rn),
692 vec_full_reg_offset(s, rm),
693 vec_full_reg_offset(s, ra), fpst,
694 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
695 tcg_temp_free_ptr(fpst);
698 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
699 * than the 32 bit equivalent.
701 static inline void gen_set_NZ64(TCGv_i64 result)
703 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
704 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
707 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
708 static inline void gen_logic_CC(int sf, TCGv_i64 result)
710 if (sf) {
711 gen_set_NZ64(result);
712 } else {
713 tcg_gen_extrl_i64_i32(cpu_ZF, result);
714 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
716 tcg_gen_movi_i32(cpu_CF, 0);
717 tcg_gen_movi_i32(cpu_VF, 0);
720 /* dest = T0 + T1; compute C, N, V and Z flags */
721 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
723 if (sf) {
724 TCGv_i64 result, flag, tmp;
725 result = tcg_temp_new_i64();
726 flag = tcg_temp_new_i64();
727 tmp = tcg_temp_new_i64();
729 tcg_gen_movi_i64(tmp, 0);
730 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
732 tcg_gen_extrl_i64_i32(cpu_CF, flag);
734 gen_set_NZ64(result);
736 tcg_gen_xor_i64(flag, result, t0);
737 tcg_gen_xor_i64(tmp, t0, t1);
738 tcg_gen_andc_i64(flag, flag, tmp);
739 tcg_temp_free_i64(tmp);
740 tcg_gen_extrh_i64_i32(cpu_VF, flag);
742 tcg_gen_mov_i64(dest, result);
743 tcg_temp_free_i64(result);
744 tcg_temp_free_i64(flag);
745 } else {
746 /* 32 bit arithmetic */
747 TCGv_i32 t0_32 = tcg_temp_new_i32();
748 TCGv_i32 t1_32 = tcg_temp_new_i32();
749 TCGv_i32 tmp = tcg_temp_new_i32();
751 tcg_gen_movi_i32(tmp, 0);
752 tcg_gen_extrl_i64_i32(t0_32, t0);
753 tcg_gen_extrl_i64_i32(t1_32, t1);
754 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
755 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
756 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
757 tcg_gen_xor_i32(tmp, t0_32, t1_32);
758 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
759 tcg_gen_extu_i32_i64(dest, cpu_NF);
761 tcg_temp_free_i32(tmp);
762 tcg_temp_free_i32(t0_32);
763 tcg_temp_free_i32(t1_32);
767 /* dest = T0 - T1; compute C, N, V and Z flags */
768 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
770 if (sf) {
771 /* 64 bit arithmetic */
772 TCGv_i64 result, flag, tmp;
774 result = tcg_temp_new_i64();
775 flag = tcg_temp_new_i64();
776 tcg_gen_sub_i64(result, t0, t1);
778 gen_set_NZ64(result);
780 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
781 tcg_gen_extrl_i64_i32(cpu_CF, flag);
783 tcg_gen_xor_i64(flag, result, t0);
784 tmp = tcg_temp_new_i64();
785 tcg_gen_xor_i64(tmp, t0, t1);
786 tcg_gen_and_i64(flag, flag, tmp);
787 tcg_temp_free_i64(tmp);
788 tcg_gen_extrh_i64_i32(cpu_VF, flag);
789 tcg_gen_mov_i64(dest, result);
790 tcg_temp_free_i64(flag);
791 tcg_temp_free_i64(result);
792 } else {
793 /* 32 bit arithmetic */
794 TCGv_i32 t0_32 = tcg_temp_new_i32();
795 TCGv_i32 t1_32 = tcg_temp_new_i32();
796 TCGv_i32 tmp;
798 tcg_gen_extrl_i64_i32(t0_32, t0);
799 tcg_gen_extrl_i64_i32(t1_32, t1);
800 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
801 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
802 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
803 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
804 tmp = tcg_temp_new_i32();
805 tcg_gen_xor_i32(tmp, t0_32, t1_32);
806 tcg_temp_free_i32(t0_32);
807 tcg_temp_free_i32(t1_32);
808 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
809 tcg_temp_free_i32(tmp);
810 tcg_gen_extu_i32_i64(dest, cpu_NF);
814 /* dest = T0 + T1 + CF; do not compute flags. */
815 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
817 TCGv_i64 flag = tcg_temp_new_i64();
818 tcg_gen_extu_i32_i64(flag, cpu_CF);
819 tcg_gen_add_i64(dest, t0, t1);
820 tcg_gen_add_i64(dest, dest, flag);
821 tcg_temp_free_i64(flag);
823 if (!sf) {
824 tcg_gen_ext32u_i64(dest, dest);
828 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
829 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
831 if (sf) {
832 TCGv_i64 result = tcg_temp_new_i64();
833 TCGv_i64 cf_64 = tcg_temp_new_i64();
834 TCGv_i64 vf_64 = tcg_temp_new_i64();
835 TCGv_i64 tmp = tcg_temp_new_i64();
836 TCGv_i64 zero = tcg_constant_i64(0);
838 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
839 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
840 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
841 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
842 gen_set_NZ64(result);
844 tcg_gen_xor_i64(vf_64, result, t0);
845 tcg_gen_xor_i64(tmp, t0, t1);
846 tcg_gen_andc_i64(vf_64, vf_64, tmp);
847 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
849 tcg_gen_mov_i64(dest, result);
851 tcg_temp_free_i64(tmp);
852 tcg_temp_free_i64(vf_64);
853 tcg_temp_free_i64(cf_64);
854 tcg_temp_free_i64(result);
855 } else {
856 TCGv_i32 t0_32 = tcg_temp_new_i32();
857 TCGv_i32 t1_32 = tcg_temp_new_i32();
858 TCGv_i32 tmp = tcg_temp_new_i32();
859 TCGv_i32 zero = tcg_constant_i32(0);
861 tcg_gen_extrl_i64_i32(t0_32, t0);
862 tcg_gen_extrl_i64_i32(t1_32, t1);
863 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
864 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
866 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
867 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
868 tcg_gen_xor_i32(tmp, t0_32, t1_32);
869 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
870 tcg_gen_extu_i32_i64(dest, cpu_NF);
872 tcg_temp_free_i32(tmp);
873 tcg_temp_free_i32(t1_32);
874 tcg_temp_free_i32(t0_32);
879 * Load/Store generators
883 * Store from GPR register to memory.
885 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
886 TCGv_i64 tcg_addr, MemOp memop, int memidx,
887 bool iss_valid,
888 unsigned int iss_srt,
889 bool iss_sf, bool iss_ar)
891 memop = finalize_memop(s, memop);
892 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
894 if (iss_valid) {
895 uint32_t syn;
897 syn = syn_data_abort_with_iss(0,
898 (memop & MO_SIZE),
899 false,
900 iss_srt,
901 iss_sf,
902 iss_ar,
903 0, 0, 0, 0, 0, false);
904 disas_set_insn_syndrome(s, syn);
908 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
909 TCGv_i64 tcg_addr, MemOp memop,
910 bool iss_valid,
911 unsigned int iss_srt,
912 bool iss_sf, bool iss_ar)
914 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
915 iss_valid, iss_srt, iss_sf, iss_ar);
919 * Load from memory to GPR register
921 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
922 MemOp memop, bool extend, int memidx,
923 bool iss_valid, unsigned int iss_srt,
924 bool iss_sf, bool iss_ar)
926 memop = finalize_memop(s, memop);
927 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
929 if (extend && (memop & MO_SIGN)) {
930 g_assert((memop & MO_SIZE) <= MO_32);
931 tcg_gen_ext32u_i64(dest, dest);
934 if (iss_valid) {
935 uint32_t syn;
937 syn = syn_data_abort_with_iss(0,
938 (memop & MO_SIZE),
939 (memop & MO_SIGN) != 0,
940 iss_srt,
941 iss_sf,
942 iss_ar,
943 0, 0, 0, 0, 0, false);
944 disas_set_insn_syndrome(s, syn);
948 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
949 MemOp memop, bool extend,
950 bool iss_valid, unsigned int iss_srt,
951 bool iss_sf, bool iss_ar)
953 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
954 iss_valid, iss_srt, iss_sf, iss_ar);
958 * Store from FP register to memory
960 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
962 /* This writes the bottom N bits of a 128 bit wide vector to memory */
963 TCGv_i64 tmplo = tcg_temp_new_i64();
964 MemOp mop;
966 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64));
968 if (size < 4) {
969 mop = finalize_memop(s, size);
970 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
971 } else {
972 bool be = s->be_data == MO_BE;
973 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
974 TCGv_i64 tmphi = tcg_temp_new_i64();
976 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx));
978 mop = s->be_data | MO_UQ;
979 tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
980 mop | (s->align_mem ? MO_ALIGN_16 : 0));
981 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
982 tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr,
983 get_mem_index(s), mop);
985 tcg_temp_free_i64(tcg_hiaddr);
986 tcg_temp_free_i64(tmphi);
989 tcg_temp_free_i64(tmplo);
993 * Load from memory to FP register
995 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
997 /* This always zero-extends and writes to a full 128 bit wide vector */
998 TCGv_i64 tmplo = tcg_temp_new_i64();
999 TCGv_i64 tmphi = NULL;
1000 MemOp mop;
1002 if (size < 4) {
1003 mop = finalize_memop(s, size);
1004 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1005 } else {
1006 bool be = s->be_data == MO_BE;
1007 TCGv_i64 tcg_hiaddr;
1009 tmphi = tcg_temp_new_i64();
1010 tcg_hiaddr = tcg_temp_new_i64();
1012 mop = s->be_data | MO_UQ;
1013 tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
1014 mop | (s->align_mem ? MO_ALIGN_16 : 0));
1015 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1016 tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr,
1017 get_mem_index(s), mop);
1018 tcg_temp_free_i64(tcg_hiaddr);
1021 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1022 tcg_temp_free_i64(tmplo);
1024 if (tmphi) {
1025 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1026 tcg_temp_free_i64(tmphi);
1028 clear_vec_high(s, tmphi != NULL, destidx);
1032 * Vector load/store helpers.
1034 * The principal difference between this and a FP load is that we don't
1035 * zero extend as we are filling a partial chunk of the vector register.
1036 * These functions don't support 128 bit loads/stores, which would be
1037 * normal load/store operations.
1039 * The _i32 versions are useful when operating on 32 bit quantities
1040 * (eg for floating point single or using Neon helper functions).
1043 /* Get value of an element within a vector register */
1044 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1045 int element, MemOp memop)
1047 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1048 switch ((unsigned)memop) {
1049 case MO_8:
1050 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1051 break;
1052 case MO_16:
1053 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1054 break;
1055 case MO_32:
1056 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1057 break;
1058 case MO_8|MO_SIGN:
1059 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1060 break;
1061 case MO_16|MO_SIGN:
1062 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1063 break;
1064 case MO_32|MO_SIGN:
1065 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1066 break;
1067 case MO_64:
1068 case MO_64|MO_SIGN:
1069 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1070 break;
1071 default:
1072 g_assert_not_reached();
1076 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1077 int element, MemOp memop)
1079 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1080 switch (memop) {
1081 case MO_8:
1082 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1083 break;
1084 case MO_16:
1085 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1086 break;
1087 case MO_8|MO_SIGN:
1088 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1089 break;
1090 case MO_16|MO_SIGN:
1091 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1092 break;
1093 case MO_32:
1094 case MO_32|MO_SIGN:
1095 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1096 break;
1097 default:
1098 g_assert_not_reached();
1102 /* Set value of an element within a vector register */
1103 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1104 int element, MemOp memop)
1106 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1107 switch (memop) {
1108 case MO_8:
1109 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1110 break;
1111 case MO_16:
1112 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1113 break;
1114 case MO_32:
1115 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1116 break;
1117 case MO_64:
1118 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1119 break;
1120 default:
1121 g_assert_not_reached();
1125 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1126 int destidx, int element, MemOp memop)
1128 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1129 switch (memop) {
1130 case MO_8:
1131 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1132 break;
1133 case MO_16:
1134 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1135 break;
1136 case MO_32:
1137 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1138 break;
1139 default:
1140 g_assert_not_reached();
1144 /* Store from vector register to memory */
1145 static void do_vec_st(DisasContext *s, int srcidx, int element,
1146 TCGv_i64 tcg_addr, MemOp mop)
1148 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1150 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1151 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1153 tcg_temp_free_i64(tcg_tmp);
1156 /* Load from memory to vector register */
1157 static void do_vec_ld(DisasContext *s, int destidx, int element,
1158 TCGv_i64 tcg_addr, MemOp mop)
1160 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1162 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1163 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1165 tcg_temp_free_i64(tcg_tmp);
1168 /* Check that FP/Neon access is enabled. If it is, return
1169 * true. If not, emit code to generate an appropriate exception,
1170 * and return false; the caller should not emit any code for
1171 * the instruction. Note that this check must happen after all
1172 * unallocated-encoding checks (otherwise the syndrome information
1173 * for the resulting exception will be incorrect).
1175 static bool fp_access_check_only(DisasContext *s)
1177 if (s->fp_excp_el) {
1178 assert(!s->fp_access_checked);
1179 s->fp_access_checked = true;
1181 gen_exception_insn_el(s, 0, EXCP_UDEF,
1182 syn_fp_access_trap(1, 0xe, false, 0),
1183 s->fp_excp_el);
1184 return false;
1186 s->fp_access_checked = true;
1187 return true;
1190 static bool fp_access_check(DisasContext *s)
1192 if (!fp_access_check_only(s)) {
1193 return false;
1195 if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1196 gen_exception_insn(s, 0, EXCP_UDEF,
1197 syn_smetrap(SME_ET_Streaming, false));
1198 return false;
1200 return true;
1204 * Check that SVE access is enabled. If it is, return true.
1205 * If not, emit code to generate an appropriate exception and return false.
1206 * This function corresponds to CheckSVEEnabled().
1208 bool sve_access_check(DisasContext *s)
1210 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1211 assert(dc_isar_feature(aa64_sme, s));
1212 if (!sme_sm_enabled_check(s)) {
1213 goto fail_exit;
1215 } else if (s->sve_excp_el) {
1216 gen_exception_insn_el(s, 0, EXCP_UDEF,
1217 syn_sve_access_trap(), s->sve_excp_el);
1218 goto fail_exit;
1220 s->sve_access_checked = true;
1221 return fp_access_check(s);
1223 fail_exit:
1224 /* Assert that we only raise one exception per instruction. */
1225 assert(!s->sve_access_checked);
1226 s->sve_access_checked = true;
1227 return false;
1231 * Check that SME access is enabled, raise an exception if not.
1232 * Note that this function corresponds to CheckSMEAccess and is
1233 * only used directly for cpregs.
1235 static bool sme_access_check(DisasContext *s)
1237 if (s->sme_excp_el) {
1238 gen_exception_insn_el(s, 0, EXCP_UDEF,
1239 syn_smetrap(SME_ET_AccessTrap, false),
1240 s->sme_excp_el);
1241 return false;
1243 return true;
1246 /* This function corresponds to CheckSMEEnabled. */
1247 bool sme_enabled_check(DisasContext *s)
1250 * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1251 * to be zero when fp_excp_el has priority. This is because we need
1252 * sme_excp_el by itself for cpregs access checks.
1254 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1255 s->fp_access_checked = true;
1256 return sme_access_check(s);
1258 return fp_access_check_only(s);
1261 /* Common subroutine for CheckSMEAnd*Enabled. */
1262 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1264 if (!sme_enabled_check(s)) {
1265 return false;
1267 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1268 gen_exception_insn(s, 0, EXCP_UDEF,
1269 syn_smetrap(SME_ET_NotStreaming, false));
1270 return false;
1272 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1273 gen_exception_insn(s, 0, EXCP_UDEF,
1274 syn_smetrap(SME_ET_InactiveZA, false));
1275 return false;
1277 return true;
1281 * This utility function is for doing register extension with an
1282 * optional shift. You will likely want to pass a temporary for the
1283 * destination register. See DecodeRegExtend() in the ARM ARM.
1285 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1286 int option, unsigned int shift)
1288 int extsize = extract32(option, 0, 2);
1289 bool is_signed = extract32(option, 2, 1);
1291 if (is_signed) {
1292 switch (extsize) {
1293 case 0:
1294 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1295 break;
1296 case 1:
1297 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1298 break;
1299 case 2:
1300 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1301 break;
1302 case 3:
1303 tcg_gen_mov_i64(tcg_out, tcg_in);
1304 break;
1306 } else {
1307 switch (extsize) {
1308 case 0:
1309 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1310 break;
1311 case 1:
1312 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1313 break;
1314 case 2:
1315 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1316 break;
1317 case 3:
1318 tcg_gen_mov_i64(tcg_out, tcg_in);
1319 break;
1323 if (shift) {
1324 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1328 static inline void gen_check_sp_alignment(DisasContext *s)
1330 /* The AArch64 architecture mandates that (if enabled via PSTATE
1331 * or SCTLR bits) there is a check that SP is 16-aligned on every
1332 * SP-relative load or store (with an exception generated if it is not).
1333 * In line with general QEMU practice regarding misaligned accesses,
1334 * we omit these checks for the sake of guest program performance.
1335 * This function is provided as a hook so we can more easily add these
1336 * checks in future (possibly as a "favour catching guest program bugs
1337 * over speed" user selectable option).
1342 * This provides a simple table based table lookup decoder. It is
1343 * intended to be used when the relevant bits for decode are too
1344 * awkwardly placed and switch/if based logic would be confusing and
1345 * deeply nested. Since it's a linear search through the table, tables
1346 * should be kept small.
1348 * It returns the first handler where insn & mask == pattern, or
1349 * NULL if there is no match.
1350 * The table is terminated by an empty mask (i.e. 0)
1352 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1353 uint32_t insn)
1355 const AArch64DecodeTable *tptr = table;
1357 while (tptr->mask) {
1358 if ((insn & tptr->mask) == tptr->pattern) {
1359 return tptr->disas_fn;
1361 tptr++;
1363 return NULL;
1367 * The instruction disassembly implemented here matches
1368 * the instruction encoding classifications in chapter C4
1369 * of the ARM Architecture Reference Manual (DDI0487B_a);
1370 * classification names and decode diagrams here should generally
1371 * match up with those in the manual.
1374 /* Unconditional branch (immediate)
1375 * 31 30 26 25 0
1376 * +----+-----------+-------------------------------------+
1377 * | op | 0 0 1 0 1 | imm26 |
1378 * +----+-----------+-------------------------------------+
1380 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1382 int64_t diff = sextract32(insn, 0, 26) * 4;
1384 if (insn & (1U << 31)) {
1385 /* BL Branch with link */
1386 gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
1389 /* B Branch / BL Branch with link */
1390 reset_btype(s);
1391 gen_goto_tb(s, 0, diff);
1394 /* Compare and branch (immediate)
1395 * 31 30 25 24 23 5 4 0
1396 * +----+-------------+----+---------------------+--------+
1397 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1398 * +----+-------------+----+---------------------+--------+
1400 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1402 unsigned int sf, op, rt;
1403 int64_t diff;
1404 DisasLabel match;
1405 TCGv_i64 tcg_cmp;
1407 sf = extract32(insn, 31, 1);
1408 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1409 rt = extract32(insn, 0, 5);
1410 diff = sextract32(insn, 5, 19) * 4;
1412 tcg_cmp = read_cpu_reg(s, rt, sf);
1413 reset_btype(s);
1415 match = gen_disas_label(s);
1416 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1417 tcg_cmp, 0, match.label);
1418 gen_goto_tb(s, 0, 4);
1419 set_disas_label(s, match);
1420 gen_goto_tb(s, 1, diff);
1423 /* Test and branch (immediate)
1424 * 31 30 25 24 23 19 18 5 4 0
1425 * +----+-------------+----+-------+-------------+------+
1426 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1427 * +----+-------------+----+-------+-------------+------+
1429 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1431 unsigned int bit_pos, op, rt;
1432 int64_t diff;
1433 DisasLabel match;
1434 TCGv_i64 tcg_cmp;
1436 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1437 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1438 diff = sextract32(insn, 5, 14) * 4;
1439 rt = extract32(insn, 0, 5);
1441 tcg_cmp = tcg_temp_new_i64();
1442 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1444 reset_btype(s);
1446 match = gen_disas_label(s);
1447 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1448 tcg_cmp, 0, match.label);
1449 tcg_temp_free_i64(tcg_cmp);
1450 gen_goto_tb(s, 0, 4);
1451 set_disas_label(s, match);
1452 gen_goto_tb(s, 1, diff);
1455 /* Conditional branch (immediate)
1456 * 31 25 24 23 5 4 3 0
1457 * +---------------+----+---------------------+----+------+
1458 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1459 * +---------------+----+---------------------+----+------+
1461 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1463 unsigned int cond;
1464 int64_t diff;
1466 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1467 unallocated_encoding(s);
1468 return;
1470 diff = sextract32(insn, 5, 19) * 4;
1471 cond = extract32(insn, 0, 4);
1473 reset_btype(s);
1474 if (cond < 0x0e) {
1475 /* genuinely conditional branches */
1476 DisasLabel match = gen_disas_label(s);
1477 arm_gen_test_cc(cond, match.label);
1478 gen_goto_tb(s, 0, 4);
1479 set_disas_label(s, match);
1480 gen_goto_tb(s, 1, diff);
1481 } else {
1482 /* 0xe and 0xf are both "always" conditions */
1483 gen_goto_tb(s, 0, diff);
1487 /* HINT instruction group, including various allocated HINTs */
1488 static void handle_hint(DisasContext *s, uint32_t insn,
1489 unsigned int op1, unsigned int op2, unsigned int crm)
1491 unsigned int selector = crm << 3 | op2;
1493 if (op1 != 3) {
1494 unallocated_encoding(s);
1495 return;
1498 switch (selector) {
1499 case 0b00000: /* NOP */
1500 break;
1501 case 0b00011: /* WFI */
1502 s->base.is_jmp = DISAS_WFI;
1503 break;
1504 case 0b00001: /* YIELD */
1505 /* When running in MTTCG we don't generate jumps to the yield and
1506 * WFE helpers as it won't affect the scheduling of other vCPUs.
1507 * If we wanted to more completely model WFE/SEV so we don't busy
1508 * spin unnecessarily we would need to do something more involved.
1510 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1511 s->base.is_jmp = DISAS_YIELD;
1513 break;
1514 case 0b00010: /* WFE */
1515 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1516 s->base.is_jmp = DISAS_WFE;
1518 break;
1519 case 0b00100: /* SEV */
1520 case 0b00101: /* SEVL */
1521 case 0b00110: /* DGH */
1522 /* we treat all as NOP at least for now */
1523 break;
1524 case 0b00111: /* XPACLRI */
1525 if (s->pauth_active) {
1526 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1528 break;
1529 case 0b01000: /* PACIA1716 */
1530 if (s->pauth_active) {
1531 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1533 break;
1534 case 0b01010: /* PACIB1716 */
1535 if (s->pauth_active) {
1536 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1538 break;
1539 case 0b01100: /* AUTIA1716 */
1540 if (s->pauth_active) {
1541 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1543 break;
1544 case 0b01110: /* AUTIB1716 */
1545 if (s->pauth_active) {
1546 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1548 break;
1549 case 0b10000: /* ESB */
1550 /* Without RAS, we must implement this as NOP. */
1551 if (dc_isar_feature(aa64_ras, s)) {
1553 * QEMU does not have a source of physical SErrors,
1554 * so we are only concerned with virtual SErrors.
1555 * The pseudocode in the ARM for this case is
1556 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1557 * AArch64.vESBOperation();
1558 * Most of the condition can be evaluated at translation time.
1559 * Test for EL2 present, and defer test for SEL2 to runtime.
1561 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1562 gen_helper_vesb(cpu_env);
1565 break;
1566 case 0b11000: /* PACIAZ */
1567 if (s->pauth_active) {
1568 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1569 new_tmp_a64_zero(s));
1571 break;
1572 case 0b11001: /* PACIASP */
1573 if (s->pauth_active) {
1574 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1576 break;
1577 case 0b11010: /* PACIBZ */
1578 if (s->pauth_active) {
1579 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1580 new_tmp_a64_zero(s));
1582 break;
1583 case 0b11011: /* PACIBSP */
1584 if (s->pauth_active) {
1585 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1587 break;
1588 case 0b11100: /* AUTIAZ */
1589 if (s->pauth_active) {
1590 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1591 new_tmp_a64_zero(s));
1593 break;
1594 case 0b11101: /* AUTIASP */
1595 if (s->pauth_active) {
1596 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1598 break;
1599 case 0b11110: /* AUTIBZ */
1600 if (s->pauth_active) {
1601 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1602 new_tmp_a64_zero(s));
1604 break;
1605 case 0b11111: /* AUTIBSP */
1606 if (s->pauth_active) {
1607 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1609 break;
1610 default:
1611 /* default specified as NOP equivalent */
1612 break;
1616 static void gen_clrex(DisasContext *s, uint32_t insn)
1618 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1621 /* CLREX, DSB, DMB, ISB */
1622 static void handle_sync(DisasContext *s, uint32_t insn,
1623 unsigned int op1, unsigned int op2, unsigned int crm)
1625 TCGBar bar;
1627 if (op1 != 3) {
1628 unallocated_encoding(s);
1629 return;
1632 switch (op2) {
1633 case 2: /* CLREX */
1634 gen_clrex(s, insn);
1635 return;
1636 case 4: /* DSB */
1637 case 5: /* DMB */
1638 switch (crm & 3) {
1639 case 1: /* MBReqTypes_Reads */
1640 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1641 break;
1642 case 2: /* MBReqTypes_Writes */
1643 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1644 break;
1645 default: /* MBReqTypes_All */
1646 bar = TCG_BAR_SC | TCG_MO_ALL;
1647 break;
1649 tcg_gen_mb(bar);
1650 return;
1651 case 6: /* ISB */
1652 /* We need to break the TB after this insn to execute
1653 * a self-modified code correctly and also to take
1654 * any pending interrupts immediately.
1656 reset_btype(s);
1657 gen_goto_tb(s, 0, 4);
1658 return;
1660 case 7: /* SB */
1661 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1662 goto do_unallocated;
1665 * TODO: There is no speculation barrier opcode for TCG;
1666 * MB and end the TB instead.
1668 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1669 gen_goto_tb(s, 0, 4);
1670 return;
1672 default:
1673 do_unallocated:
1674 unallocated_encoding(s);
1675 return;
1679 static void gen_xaflag(void)
1681 TCGv_i32 z = tcg_temp_new_i32();
1683 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1686 * (!C & !Z) << 31
1687 * (!(C | Z)) << 31
1688 * ~((C | Z) << 31)
1689 * ~-(C | Z)
1690 * (C | Z) - 1
1692 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1693 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1695 /* !(Z & C) */
1696 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1697 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1699 /* (!C & Z) << 31 -> -(Z & ~C) */
1700 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1701 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1703 /* C | Z */
1704 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1706 tcg_temp_free_i32(z);
1709 static void gen_axflag(void)
1711 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1712 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1714 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1715 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1717 tcg_gen_movi_i32(cpu_NF, 0);
1718 tcg_gen_movi_i32(cpu_VF, 0);
1721 /* MSR (immediate) - move immediate to processor state field */
1722 static void handle_msr_i(DisasContext *s, uint32_t insn,
1723 unsigned int op1, unsigned int op2, unsigned int crm)
1725 int op = op1 << 3 | op2;
1727 /* End the TB by default, chaining is ok. */
1728 s->base.is_jmp = DISAS_TOO_MANY;
1730 switch (op) {
1731 case 0x00: /* CFINV */
1732 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1733 goto do_unallocated;
1735 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1736 s->base.is_jmp = DISAS_NEXT;
1737 break;
1739 case 0x01: /* XAFlag */
1740 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1741 goto do_unallocated;
1743 gen_xaflag();
1744 s->base.is_jmp = DISAS_NEXT;
1745 break;
1747 case 0x02: /* AXFlag */
1748 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1749 goto do_unallocated;
1751 gen_axflag();
1752 s->base.is_jmp = DISAS_NEXT;
1753 break;
1755 case 0x03: /* UAO */
1756 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1757 goto do_unallocated;
1759 if (crm & 1) {
1760 set_pstate_bits(PSTATE_UAO);
1761 } else {
1762 clear_pstate_bits(PSTATE_UAO);
1764 gen_rebuild_hflags(s);
1765 break;
1767 case 0x04: /* PAN */
1768 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1769 goto do_unallocated;
1771 if (crm & 1) {
1772 set_pstate_bits(PSTATE_PAN);
1773 } else {
1774 clear_pstate_bits(PSTATE_PAN);
1776 gen_rebuild_hflags(s);
1777 break;
1779 case 0x05: /* SPSel */
1780 if (s->current_el == 0) {
1781 goto do_unallocated;
1783 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP));
1784 break;
1786 case 0x19: /* SSBS */
1787 if (!dc_isar_feature(aa64_ssbs, s)) {
1788 goto do_unallocated;
1790 if (crm & 1) {
1791 set_pstate_bits(PSTATE_SSBS);
1792 } else {
1793 clear_pstate_bits(PSTATE_SSBS);
1795 /* Don't need to rebuild hflags since SSBS is a nop */
1796 break;
1798 case 0x1a: /* DIT */
1799 if (!dc_isar_feature(aa64_dit, s)) {
1800 goto do_unallocated;
1802 if (crm & 1) {
1803 set_pstate_bits(PSTATE_DIT);
1804 } else {
1805 clear_pstate_bits(PSTATE_DIT);
1807 /* There's no need to rebuild hflags because DIT is a nop */
1808 break;
1810 case 0x1e: /* DAIFSet */
1811 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm));
1812 break;
1814 case 0x1f: /* DAIFClear */
1815 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm));
1816 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1817 s->base.is_jmp = DISAS_UPDATE_EXIT;
1818 break;
1820 case 0x1c: /* TCO */
1821 if (dc_isar_feature(aa64_mte, s)) {
1822 /* Full MTE is enabled -- set the TCO bit as directed. */
1823 if (crm & 1) {
1824 set_pstate_bits(PSTATE_TCO);
1825 } else {
1826 clear_pstate_bits(PSTATE_TCO);
1828 gen_rebuild_hflags(s);
1829 /* Many factors, including TCO, go into MTE_ACTIVE. */
1830 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1831 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1832 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
1833 s->base.is_jmp = DISAS_NEXT;
1834 } else {
1835 goto do_unallocated;
1837 break;
1839 case 0x1b: /* SVCR* */
1840 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) {
1841 goto do_unallocated;
1843 if (sme_access_check(s)) {
1844 int old = s->pstate_sm | (s->pstate_za << 1);
1845 int new = (crm & 1) * 3;
1846 int msk = (crm >> 1) & 3;
1848 if ((old ^ new) & msk) {
1849 /* At least one bit changes. */
1850 gen_helper_set_svcr(cpu_env, tcg_constant_i32(new),
1851 tcg_constant_i32(msk));
1852 } else {
1853 s->base.is_jmp = DISAS_NEXT;
1856 break;
1858 default:
1859 do_unallocated:
1860 unallocated_encoding(s);
1861 return;
1865 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1867 TCGv_i32 tmp = tcg_temp_new_i32();
1868 TCGv_i32 nzcv = tcg_temp_new_i32();
1870 /* build bit 31, N */
1871 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1872 /* build bit 30, Z */
1873 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1874 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1875 /* build bit 29, C */
1876 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1877 /* build bit 28, V */
1878 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1879 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1880 /* generate result */
1881 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1883 tcg_temp_free_i32(nzcv);
1884 tcg_temp_free_i32(tmp);
1887 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1889 TCGv_i32 nzcv = tcg_temp_new_i32();
1891 /* take NZCV from R[t] */
1892 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1894 /* bit 31, N */
1895 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1896 /* bit 30, Z */
1897 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1898 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1899 /* bit 29, C */
1900 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1901 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1902 /* bit 28, V */
1903 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1904 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1905 tcg_temp_free_i32(nzcv);
1908 static void gen_sysreg_undef(DisasContext *s, bool isread,
1909 uint8_t op0, uint8_t op1, uint8_t op2,
1910 uint8_t crn, uint8_t crm, uint8_t rt)
1913 * Generate code to emit an UNDEF with correct syndrome
1914 * information for a failed system register access.
1915 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
1916 * but if FEAT_IDST is implemented then read accesses to registers
1917 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
1918 * syndrome.
1920 uint32_t syndrome;
1922 if (isread && dc_isar_feature(aa64_ids, s) &&
1923 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
1924 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1925 } else {
1926 syndrome = syn_uncategorized();
1928 gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
1931 /* MRS - move from system register
1932 * MSR (register) - move to system register
1933 * SYS
1934 * SYSL
1935 * These are all essentially the same insn in 'read' and 'write'
1936 * versions, with varying op0 fields.
1938 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1939 unsigned int op0, unsigned int op1, unsigned int op2,
1940 unsigned int crn, unsigned int crm, unsigned int rt)
1942 uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1943 crn, crm, op0, op1, op2);
1944 const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
1945 TCGv_ptr tcg_ri = NULL;
1946 TCGv_i64 tcg_rt;
1948 if (!ri) {
1949 /* Unknown register; this might be a guest error or a QEMU
1950 * unimplemented feature.
1952 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1953 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1954 isread ? "read" : "write", op0, op1, crn, crm, op2);
1955 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
1956 return;
1959 /* Check access permissions */
1960 if (!cp_access_ok(s->current_el, ri, isread)) {
1961 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
1962 return;
1965 if (ri->accessfn || (ri->fgt && s->fgt_active)) {
1966 /* Emit code to perform further access permissions checks at
1967 * runtime; this may result in an exception.
1969 uint32_t syndrome;
1971 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1972 gen_a64_update_pc(s, 0);
1973 tcg_ri = tcg_temp_new_ptr();
1974 gen_helper_access_check_cp_reg(tcg_ri, cpu_env,
1975 tcg_constant_i32(key),
1976 tcg_constant_i32(syndrome),
1977 tcg_constant_i32(isread));
1978 } else if (ri->type & ARM_CP_RAISES_EXC) {
1980 * The readfn or writefn might raise an exception;
1981 * synchronize the CPU state in case it does.
1983 gen_a64_update_pc(s, 0);
1986 /* Handle special cases first */
1987 switch (ri->type & ARM_CP_SPECIAL_MASK) {
1988 case 0:
1989 break;
1990 case ARM_CP_NOP:
1991 goto exit;
1992 case ARM_CP_NZCV:
1993 tcg_rt = cpu_reg(s, rt);
1994 if (isread) {
1995 gen_get_nzcv(tcg_rt);
1996 } else {
1997 gen_set_nzcv(tcg_rt);
1999 goto exit;
2000 case ARM_CP_CURRENTEL:
2001 /* Reads as current EL value from pstate, which is
2002 * guaranteed to be constant by the tb flags.
2004 tcg_rt = cpu_reg(s, rt);
2005 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
2006 goto exit;
2007 case ARM_CP_DC_ZVA:
2008 /* Writes clear the aligned block of memory which rt points into. */
2009 if (s->mte_active[0]) {
2010 int desc = 0;
2012 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2013 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2014 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2016 tcg_rt = new_tmp_a64(s);
2017 gen_helper_mte_check_zva(tcg_rt, cpu_env,
2018 tcg_constant_i32(desc), cpu_reg(s, rt));
2019 } else {
2020 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2022 gen_helper_dc_zva(cpu_env, tcg_rt);
2023 goto exit;
2024 case ARM_CP_DC_GVA:
2026 TCGv_i64 clean_addr, tag;
2029 * DC_GVA, like DC_ZVA, requires that we supply the original
2030 * pointer for an invalid page. Probe that address first.
2032 tcg_rt = cpu_reg(s, rt);
2033 clean_addr = clean_data_tbi(s, tcg_rt);
2034 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2036 if (s->ata) {
2037 /* Extract the tag from the register to match STZGM. */
2038 tag = tcg_temp_new_i64();
2039 tcg_gen_shri_i64(tag, tcg_rt, 56);
2040 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2041 tcg_temp_free_i64(tag);
2044 goto exit;
2045 case ARM_CP_DC_GZVA:
2047 TCGv_i64 clean_addr, tag;
2049 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2050 tcg_rt = cpu_reg(s, rt);
2051 clean_addr = clean_data_tbi(s, tcg_rt);
2052 gen_helper_dc_zva(cpu_env, clean_addr);
2054 if (s->ata) {
2055 /* Extract the tag from the register to match STZGM. */
2056 tag = tcg_temp_new_i64();
2057 tcg_gen_shri_i64(tag, tcg_rt, 56);
2058 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2059 tcg_temp_free_i64(tag);
2062 goto exit;
2063 default:
2064 g_assert_not_reached();
2066 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2067 goto exit;
2068 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2069 goto exit;
2070 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2071 goto exit;
2074 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
2075 gen_io_start();
2078 tcg_rt = cpu_reg(s, rt);
2080 if (isread) {
2081 if (ri->type & ARM_CP_CONST) {
2082 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2083 } else if (ri->readfn) {
2084 if (!tcg_ri) {
2085 tcg_ri = gen_lookup_cp_reg(key);
2087 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_ri);
2088 } else {
2089 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
2091 } else {
2092 if (ri->type & ARM_CP_CONST) {
2093 /* If not forbidden by access permissions, treat as WI */
2094 goto exit;
2095 } else if (ri->writefn) {
2096 if (!tcg_ri) {
2097 tcg_ri = gen_lookup_cp_reg(key);
2099 gen_helper_set_cp_reg64(cpu_env, tcg_ri, tcg_rt);
2100 } else {
2101 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
2105 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
2106 /* I/O operations must end the TB here (whether read or write) */
2107 s->base.is_jmp = DISAS_UPDATE_EXIT;
2109 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2111 * A write to any coprocessor regiser that ends a TB
2112 * must rebuild the hflags for the next TB.
2114 gen_rebuild_hflags(s);
2116 * We default to ending the TB on a coprocessor register write,
2117 * but allow this to be suppressed by the register definition
2118 * (usually only necessary to work around guest bugs).
2120 s->base.is_jmp = DISAS_UPDATE_EXIT;
2123 exit:
2124 if (tcg_ri) {
2125 tcg_temp_free_ptr(tcg_ri);
2129 /* System
2130 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
2131 * +---------------------+---+-----+-----+-------+-------+-----+------+
2132 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
2133 * +---------------------+---+-----+-----+-------+-------+-----+------+
2135 static void disas_system(DisasContext *s, uint32_t insn)
2137 unsigned int l, op0, op1, crn, crm, op2, rt;
2138 l = extract32(insn, 21, 1);
2139 op0 = extract32(insn, 19, 2);
2140 op1 = extract32(insn, 16, 3);
2141 crn = extract32(insn, 12, 4);
2142 crm = extract32(insn, 8, 4);
2143 op2 = extract32(insn, 5, 3);
2144 rt = extract32(insn, 0, 5);
2146 if (op0 == 0) {
2147 if (l || rt != 31) {
2148 unallocated_encoding(s);
2149 return;
2151 switch (crn) {
2152 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
2153 handle_hint(s, insn, op1, op2, crm);
2154 break;
2155 case 3: /* CLREX, DSB, DMB, ISB */
2156 handle_sync(s, insn, op1, op2, crm);
2157 break;
2158 case 4: /* MSR (immediate) */
2159 handle_msr_i(s, insn, op1, op2, crm);
2160 break;
2161 default:
2162 unallocated_encoding(s);
2163 break;
2165 return;
2167 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
2170 /* Exception generation
2172 * 31 24 23 21 20 5 4 2 1 0
2173 * +-----------------+-----+------------------------+-----+----+
2174 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
2175 * +-----------------------+------------------------+----------+
2177 static void disas_exc(DisasContext *s, uint32_t insn)
2179 int opc = extract32(insn, 21, 3);
2180 int op2_ll = extract32(insn, 0, 5);
2181 int imm16 = extract32(insn, 5, 16);
2182 uint32_t syndrome;
2184 switch (opc) {
2185 case 0:
2186 /* For SVC, HVC and SMC we advance the single-step state
2187 * machine before taking the exception. This is architecturally
2188 * mandated, to ensure that single-stepping a system call
2189 * instruction works properly.
2191 switch (op2_ll) {
2192 case 1: /* SVC */
2193 syndrome = syn_aa64_svc(imm16);
2194 if (s->fgt_svc) {
2195 gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
2196 break;
2198 gen_ss_advance(s);
2199 gen_exception_insn(s, 4, EXCP_SWI, syndrome);
2200 break;
2201 case 2: /* HVC */
2202 if (s->current_el == 0) {
2203 unallocated_encoding(s);
2204 break;
2206 /* The pre HVC helper handles cases when HVC gets trapped
2207 * as an undefined insn by runtime configuration.
2209 gen_a64_update_pc(s, 0);
2210 gen_helper_pre_hvc(cpu_env);
2211 gen_ss_advance(s);
2212 gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(imm16), 2);
2213 break;
2214 case 3: /* SMC */
2215 if (s->current_el == 0) {
2216 unallocated_encoding(s);
2217 break;
2219 gen_a64_update_pc(s, 0);
2220 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16)));
2221 gen_ss_advance(s);
2222 gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(imm16), 3);
2223 break;
2224 default:
2225 unallocated_encoding(s);
2226 break;
2228 break;
2229 case 1:
2230 if (op2_ll != 0) {
2231 unallocated_encoding(s);
2232 break;
2234 /* BRK */
2235 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
2236 break;
2237 case 2:
2238 if (op2_ll != 0) {
2239 unallocated_encoding(s);
2240 break;
2242 /* HLT. This has two purposes.
2243 * Architecturally, it is an external halting debug instruction.
2244 * Since QEMU doesn't implement external debug, we treat this as
2245 * it is required for halting debug disabled: it will UNDEF.
2246 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2248 if (semihosting_enabled(s->current_el == 0) && imm16 == 0xf000) {
2249 gen_exception_internal_insn(s, EXCP_SEMIHOST);
2250 } else {
2251 unallocated_encoding(s);
2253 break;
2254 case 5:
2255 if (op2_ll < 1 || op2_ll > 3) {
2256 unallocated_encoding(s);
2257 break;
2259 /* DCPS1, DCPS2, DCPS3 */
2260 unallocated_encoding(s);
2261 break;
2262 default:
2263 unallocated_encoding(s);
2264 break;
2268 /* Unconditional branch (register)
2269 * 31 25 24 21 20 16 15 10 9 5 4 0
2270 * +---------------+-------+-------+-------+------+-------+
2271 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
2272 * +---------------+-------+-------+-------+------+-------+
2274 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2276 unsigned int opc, op2, op3, rn, op4;
2277 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */
2278 TCGv_i64 dst;
2279 TCGv_i64 modifier;
2281 opc = extract32(insn, 21, 4);
2282 op2 = extract32(insn, 16, 5);
2283 op3 = extract32(insn, 10, 6);
2284 rn = extract32(insn, 5, 5);
2285 op4 = extract32(insn, 0, 5);
2287 if (op2 != 0x1f) {
2288 goto do_unallocated;
2291 switch (opc) {
2292 case 0: /* BR */
2293 case 1: /* BLR */
2294 case 2: /* RET */
2295 btype_mod = opc;
2296 switch (op3) {
2297 case 0:
2298 /* BR, BLR, RET */
2299 if (op4 != 0) {
2300 goto do_unallocated;
2302 dst = cpu_reg(s, rn);
2303 break;
2305 case 2:
2306 case 3:
2307 if (!dc_isar_feature(aa64_pauth, s)) {
2308 goto do_unallocated;
2310 if (opc == 2) {
2311 /* RETAA, RETAB */
2312 if (rn != 0x1f || op4 != 0x1f) {
2313 goto do_unallocated;
2315 rn = 30;
2316 modifier = cpu_X[31];
2317 } else {
2318 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2319 if (op4 != 0x1f) {
2320 goto do_unallocated;
2322 modifier = new_tmp_a64_zero(s);
2324 if (s->pauth_active) {
2325 dst = new_tmp_a64(s);
2326 if (op3 == 2) {
2327 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2328 } else {
2329 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2331 } else {
2332 dst = cpu_reg(s, rn);
2334 break;
2336 default:
2337 goto do_unallocated;
2339 /* BLR also needs to load return address */
2340 if (opc == 1) {
2341 TCGv_i64 lr = cpu_reg(s, 30);
2342 if (dst == lr) {
2343 TCGv_i64 tmp = new_tmp_a64(s);
2344 tcg_gen_mov_i64(tmp, dst);
2345 dst = tmp;
2347 gen_pc_plus_diff(s, lr, curr_insn_len(s));
2349 gen_a64_set_pc(s, dst);
2350 break;
2352 case 8: /* BRAA */
2353 case 9: /* BLRAA */
2354 if (!dc_isar_feature(aa64_pauth, s)) {
2355 goto do_unallocated;
2357 if ((op3 & ~1) != 2) {
2358 goto do_unallocated;
2360 btype_mod = opc & 1;
2361 if (s->pauth_active) {
2362 dst = new_tmp_a64(s);
2363 modifier = cpu_reg_sp(s, op4);
2364 if (op3 == 2) {
2365 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2366 } else {
2367 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2369 } else {
2370 dst = cpu_reg(s, rn);
2372 /* BLRAA also needs to load return address */
2373 if (opc == 9) {
2374 TCGv_i64 lr = cpu_reg(s, 30);
2375 if (dst == lr) {
2376 TCGv_i64 tmp = new_tmp_a64(s);
2377 tcg_gen_mov_i64(tmp, dst);
2378 dst = tmp;
2380 gen_pc_plus_diff(s, lr, curr_insn_len(s));
2382 gen_a64_set_pc(s, dst);
2383 break;
2385 case 4: /* ERET */
2386 if (s->current_el == 0) {
2387 goto do_unallocated;
2389 switch (op3) {
2390 case 0: /* ERET */
2391 if (op4 != 0) {
2392 goto do_unallocated;
2394 if (s->fgt_eret) {
2395 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2);
2396 return;
2398 dst = tcg_temp_new_i64();
2399 tcg_gen_ld_i64(dst, cpu_env,
2400 offsetof(CPUARMState, elr_el[s->current_el]));
2401 break;
2403 case 2: /* ERETAA */
2404 case 3: /* ERETAB */
2405 if (!dc_isar_feature(aa64_pauth, s)) {
2406 goto do_unallocated;
2408 if (rn != 0x1f || op4 != 0x1f) {
2409 goto do_unallocated;
2411 /* The FGT trap takes precedence over an auth trap. */
2412 if (s->fgt_eret) {
2413 gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(op3), 2);
2414 return;
2416 dst = tcg_temp_new_i64();
2417 tcg_gen_ld_i64(dst, cpu_env,
2418 offsetof(CPUARMState, elr_el[s->current_el]));
2419 if (s->pauth_active) {
2420 modifier = cpu_X[31];
2421 if (op3 == 2) {
2422 gen_helper_autia(dst, cpu_env, dst, modifier);
2423 } else {
2424 gen_helper_autib(dst, cpu_env, dst, modifier);
2427 break;
2429 default:
2430 goto do_unallocated;
2432 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2433 gen_io_start();
2436 gen_helper_exception_return(cpu_env, dst);
2437 tcg_temp_free_i64(dst);
2438 /* Must exit loop to check un-masked IRQs */
2439 s->base.is_jmp = DISAS_EXIT;
2440 return;
2442 case 5: /* DRPS */
2443 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2444 goto do_unallocated;
2445 } else {
2446 unallocated_encoding(s);
2448 return;
2450 default:
2451 do_unallocated:
2452 unallocated_encoding(s);
2453 return;
2456 switch (btype_mod) {
2457 case 0: /* BR */
2458 if (dc_isar_feature(aa64_bti, s)) {
2459 /* BR to {x16,x17} or !guard -> 1, else 3. */
2460 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2462 break;
2464 case 1: /* BLR */
2465 if (dc_isar_feature(aa64_bti, s)) {
2466 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2467 set_btype(s, 2);
2469 break;
2471 default: /* RET or none of the above. */
2472 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2473 break;
2476 s->base.is_jmp = DISAS_JUMP;
2479 /* Branches, exception generating and system instructions */
2480 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2482 switch (extract32(insn, 25, 7)) {
2483 case 0x0a: case 0x0b:
2484 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2485 disas_uncond_b_imm(s, insn);
2486 break;
2487 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2488 disas_comp_b_imm(s, insn);
2489 break;
2490 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2491 disas_test_b_imm(s, insn);
2492 break;
2493 case 0x2a: /* Conditional branch (immediate) */
2494 disas_cond_b_imm(s, insn);
2495 break;
2496 case 0x6a: /* Exception generation / System */
2497 if (insn & (1 << 24)) {
2498 if (extract32(insn, 22, 2) == 0) {
2499 disas_system(s, insn);
2500 } else {
2501 unallocated_encoding(s);
2503 } else {
2504 disas_exc(s, insn);
2506 break;
2507 case 0x6b: /* Unconditional branch (register) */
2508 disas_uncond_b_reg(s, insn);
2509 break;
2510 default:
2511 unallocated_encoding(s);
2512 break;
2517 * Load/Store exclusive instructions are implemented by remembering
2518 * the value/address loaded, and seeing if these are the same
2519 * when the store is performed. This is not actually the architecturally
2520 * mandated semantics, but it works for typical guest code sequences
2521 * and avoids having to monitor regular stores.
2523 * The store exclusive uses the atomic cmpxchg primitives to avoid
2524 * races in multi-threaded linux-user and when MTTCG softmmu is
2525 * enabled.
2527 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2528 TCGv_i64 addr, int size, bool is_pair)
2530 int idx = get_mem_index(s);
2531 MemOp memop = s->be_data;
2533 g_assert(size <= 3);
2534 if (is_pair) {
2535 g_assert(size >= 2);
2536 if (size == 2) {
2537 /* The pair must be single-copy atomic for the doubleword. */
2538 memop |= MO_64 | MO_ALIGN;
2539 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2540 if (s->be_data == MO_LE) {
2541 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2542 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2543 } else {
2544 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2545 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2547 } else {
2548 /* The pair must be single-copy atomic for *each* doubleword, not
2549 the entire quadword, however it must be quadword aligned. */
2550 memop |= MO_64;
2551 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2552 memop | MO_ALIGN_16);
2554 TCGv_i64 addr2 = tcg_temp_new_i64();
2555 tcg_gen_addi_i64(addr2, addr, 8);
2556 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2557 tcg_temp_free_i64(addr2);
2559 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2560 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2562 } else {
2563 memop |= size | MO_ALIGN;
2564 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2565 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2567 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2570 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2571 TCGv_i64 addr, int size, int is_pair)
2573 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2574 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2575 * [addr] = {Rt};
2576 * if (is_pair) {
2577 * [addr + datasize] = {Rt2};
2579 * {Rd} = 0;
2580 * } else {
2581 * {Rd} = 1;
2583 * env->exclusive_addr = -1;
2585 TCGLabel *fail_label = gen_new_label();
2586 TCGLabel *done_label = gen_new_label();
2587 TCGv_i64 tmp;
2589 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2591 tmp = tcg_temp_new_i64();
2592 if (is_pair) {
2593 if (size == 2) {
2594 if (s->be_data == MO_LE) {
2595 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2596 } else {
2597 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2599 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2600 cpu_exclusive_val, tmp,
2601 get_mem_index(s),
2602 MO_64 | MO_ALIGN | s->be_data);
2603 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2604 } else {
2605 TCGv_i128 t16 = tcg_temp_new_i128();
2606 TCGv_i128 c16 = tcg_temp_new_i128();
2607 TCGv_i64 a, b;
2609 if (s->be_data == MO_LE) {
2610 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
2611 tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
2612 cpu_exclusive_high);
2613 } else {
2614 tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
2615 tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
2616 cpu_exclusive_val);
2619 tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
2620 get_mem_index(s),
2621 MO_128 | MO_ALIGN | s->be_data);
2622 tcg_temp_free_i128(c16);
2624 a = tcg_temp_new_i64();
2625 b = tcg_temp_new_i64();
2626 if (s->be_data == MO_LE) {
2627 tcg_gen_extr_i128_i64(a, b, t16);
2628 } else {
2629 tcg_gen_extr_i128_i64(b, a, t16);
2632 tcg_gen_xor_i64(a, a, cpu_exclusive_val);
2633 tcg_gen_xor_i64(b, b, cpu_exclusive_high);
2634 tcg_gen_or_i64(tmp, a, b);
2635 tcg_temp_free_i64(a);
2636 tcg_temp_free_i64(b);
2637 tcg_temp_free_i128(t16);
2639 tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
2641 } else {
2642 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2643 cpu_reg(s, rt), get_mem_index(s),
2644 size | MO_ALIGN | s->be_data);
2645 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2647 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2648 tcg_temp_free_i64(tmp);
2649 tcg_gen_br(done_label);
2651 gen_set_label(fail_label);
2652 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2653 gen_set_label(done_label);
2654 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2657 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2658 int rn, int size)
2660 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2661 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2662 int memidx = get_mem_index(s);
2663 TCGv_i64 clean_addr;
2665 if (rn == 31) {
2666 gen_check_sp_alignment(s);
2668 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size);
2669 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2670 size | MO_ALIGN | s->be_data);
2673 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2674 int rn, int size)
2676 TCGv_i64 s1 = cpu_reg(s, rs);
2677 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2678 TCGv_i64 t1 = cpu_reg(s, rt);
2679 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2680 TCGv_i64 clean_addr;
2681 int memidx = get_mem_index(s);
2683 if (rn == 31) {
2684 gen_check_sp_alignment(s);
2687 /* This is a single atomic access, despite the "pair". */
2688 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1);
2690 if (size == 2) {
2691 TCGv_i64 cmp = tcg_temp_new_i64();
2692 TCGv_i64 val = tcg_temp_new_i64();
2694 if (s->be_data == MO_LE) {
2695 tcg_gen_concat32_i64(val, t1, t2);
2696 tcg_gen_concat32_i64(cmp, s1, s2);
2697 } else {
2698 tcg_gen_concat32_i64(val, t2, t1);
2699 tcg_gen_concat32_i64(cmp, s2, s1);
2702 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2703 MO_64 | MO_ALIGN | s->be_data);
2704 tcg_temp_free_i64(val);
2706 if (s->be_data == MO_LE) {
2707 tcg_gen_extr32_i64(s1, s2, cmp);
2708 } else {
2709 tcg_gen_extr32_i64(s2, s1, cmp);
2711 tcg_temp_free_i64(cmp);
2712 } else {
2713 TCGv_i128 cmp = tcg_temp_new_i128();
2714 TCGv_i128 val = tcg_temp_new_i128();
2716 if (s->be_data == MO_LE) {
2717 tcg_gen_concat_i64_i128(val, t1, t2);
2718 tcg_gen_concat_i64_i128(cmp, s1, s2);
2719 } else {
2720 tcg_gen_concat_i64_i128(val, t2, t1);
2721 tcg_gen_concat_i64_i128(cmp, s2, s1);
2724 tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx,
2725 MO_128 | MO_ALIGN | s->be_data);
2726 tcg_temp_free_i128(val);
2728 if (s->be_data == MO_LE) {
2729 tcg_gen_extr_i128_i64(s1, s2, cmp);
2730 } else {
2731 tcg_gen_extr_i128_i64(s2, s1, cmp);
2733 tcg_temp_free_i128(cmp);
2737 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2738 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2740 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2742 int opc0 = extract32(opc, 0, 1);
2743 int regsize;
2745 if (is_signed) {
2746 regsize = opc0 ? 32 : 64;
2747 } else {
2748 regsize = size == 3 ? 64 : 32;
2750 return regsize == 64;
2753 /* Load/store exclusive
2755 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2756 * +-----+-------------+----+---+----+------+----+-------+------+------+
2757 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2758 * +-----+-------------+----+---+----+------+----+-------+------+------+
2760 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2761 * L: 0 -> store, 1 -> load
2762 * o2: 0 -> exclusive, 1 -> not
2763 * o1: 0 -> single register, 1 -> register pair
2764 * o0: 1 -> load-acquire/store-release, 0 -> not
2766 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2768 int rt = extract32(insn, 0, 5);
2769 int rn = extract32(insn, 5, 5);
2770 int rt2 = extract32(insn, 10, 5);
2771 int rs = extract32(insn, 16, 5);
2772 int is_lasr = extract32(insn, 15, 1);
2773 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2774 int size = extract32(insn, 30, 2);
2775 TCGv_i64 clean_addr;
2777 switch (o2_L_o1_o0) {
2778 case 0x0: /* STXR */
2779 case 0x1: /* STLXR */
2780 if (rn == 31) {
2781 gen_check_sp_alignment(s);
2783 if (is_lasr) {
2784 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2786 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2787 true, rn != 31, size);
2788 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2789 return;
2791 case 0x4: /* LDXR */
2792 case 0x5: /* LDAXR */
2793 if (rn == 31) {
2794 gen_check_sp_alignment(s);
2796 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2797 false, rn != 31, size);
2798 s->is_ldex = true;
2799 gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2800 if (is_lasr) {
2801 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2803 return;
2805 case 0x8: /* STLLR */
2806 if (!dc_isar_feature(aa64_lor, s)) {
2807 break;
2809 /* StoreLORelease is the same as Store-Release for QEMU. */
2810 /* fall through */
2811 case 0x9: /* STLR */
2812 /* Generate ISS for non-exclusive accesses including LASR. */
2813 if (rn == 31) {
2814 gen_check_sp_alignment(s);
2816 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2817 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2818 true, rn != 31, size);
2819 /* TODO: ARMv8.4-LSE SCTLR.nAA */
2820 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt,
2821 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2822 return;
2824 case 0xc: /* LDLAR */
2825 if (!dc_isar_feature(aa64_lor, s)) {
2826 break;
2828 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2829 /* fall through */
2830 case 0xd: /* LDAR */
2831 /* Generate ISS for non-exclusive accesses including LASR. */
2832 if (rn == 31) {
2833 gen_check_sp_alignment(s);
2835 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2836 false, rn != 31, size);
2837 /* TODO: ARMv8.4-LSE SCTLR.nAA */
2838 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true,
2839 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2840 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2841 return;
2843 case 0x2: case 0x3: /* CASP / STXP */
2844 if (size & 2) { /* STXP / STLXP */
2845 if (rn == 31) {
2846 gen_check_sp_alignment(s);
2848 if (is_lasr) {
2849 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2851 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2852 true, rn != 31, size);
2853 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2854 return;
2856 if (rt2 == 31
2857 && ((rt | rs) & 1) == 0
2858 && dc_isar_feature(aa64_atomics, s)) {
2859 /* CASP / CASPL */
2860 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2861 return;
2863 break;
2865 case 0x6: case 0x7: /* CASPA / LDXP */
2866 if (size & 2) { /* LDXP / LDAXP */
2867 if (rn == 31) {
2868 gen_check_sp_alignment(s);
2870 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2871 false, rn != 31, size);
2872 s->is_ldex = true;
2873 gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2874 if (is_lasr) {
2875 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2877 return;
2879 if (rt2 == 31
2880 && ((rt | rs) & 1) == 0
2881 && dc_isar_feature(aa64_atomics, s)) {
2882 /* CASPA / CASPAL */
2883 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2884 return;
2886 break;
2888 case 0xa: /* CAS */
2889 case 0xb: /* CASL */
2890 case 0xe: /* CASA */
2891 case 0xf: /* CASAL */
2892 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2893 gen_compare_and_swap(s, rs, rt, rn, size);
2894 return;
2896 break;
2898 unallocated_encoding(s);
2902 * Load register (literal)
2904 * 31 30 29 27 26 25 24 23 5 4 0
2905 * +-----+-------+---+-----+-------------------+-------+
2906 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2907 * +-----+-------+---+-----+-------------------+-------+
2909 * V: 1 -> vector (simd/fp)
2910 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2911 * 10-> 32 bit signed, 11 -> prefetch
2912 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2914 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2916 int rt = extract32(insn, 0, 5);
2917 int64_t imm = sextract32(insn, 5, 19) << 2;
2918 bool is_vector = extract32(insn, 26, 1);
2919 int opc = extract32(insn, 30, 2);
2920 bool is_signed = false;
2921 int size = 2;
2922 TCGv_i64 tcg_rt, clean_addr;
2924 if (is_vector) {
2925 if (opc == 3) {
2926 unallocated_encoding(s);
2927 return;
2929 size = 2 + opc;
2930 if (!fp_access_check(s)) {
2931 return;
2933 } else {
2934 if (opc == 3) {
2935 /* PRFM (literal) : prefetch */
2936 return;
2938 size = 2 + extract32(opc, 0, 1);
2939 is_signed = extract32(opc, 1, 1);
2942 tcg_rt = cpu_reg(s, rt);
2944 clean_addr = new_tmp_a64(s);
2945 gen_pc_plus_diff(s, clean_addr, imm);
2946 if (is_vector) {
2947 do_fp_ld(s, rt, clean_addr, size);
2948 } else {
2949 /* Only unsigned 32bit loads target 32bit registers. */
2950 bool iss_sf = opc != 0;
2952 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
2953 false, true, rt, iss_sf, false);
2958 * LDNP (Load Pair - non-temporal hint)
2959 * LDP (Load Pair - non vector)
2960 * LDPSW (Load Pair Signed Word - non vector)
2961 * STNP (Store Pair - non-temporal hint)
2962 * STP (Store Pair - non vector)
2963 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2964 * LDP (Load Pair of SIMD&FP)
2965 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2966 * STP (Store Pair of SIMD&FP)
2968 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2969 * +-----+-------+---+---+-------+---+-----------------------------+
2970 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2971 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2973 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2974 * LDPSW/STGP 01
2975 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2976 * V: 0 -> GPR, 1 -> Vector
2977 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2978 * 10 -> signed offset, 11 -> pre-index
2979 * L: 0 -> Store 1 -> Load
2981 * Rt, Rt2 = GPR or SIMD registers to be stored
2982 * Rn = general purpose register containing address
2983 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2985 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2987 int rt = extract32(insn, 0, 5);
2988 int rn = extract32(insn, 5, 5);
2989 int rt2 = extract32(insn, 10, 5);
2990 uint64_t offset = sextract64(insn, 15, 7);
2991 int index = extract32(insn, 23, 2);
2992 bool is_vector = extract32(insn, 26, 1);
2993 bool is_load = extract32(insn, 22, 1);
2994 int opc = extract32(insn, 30, 2);
2996 bool is_signed = false;
2997 bool postindex = false;
2998 bool wback = false;
2999 bool set_tag = false;
3001 TCGv_i64 clean_addr, dirty_addr;
3003 int size;
3005 if (opc == 3) {
3006 unallocated_encoding(s);
3007 return;
3010 if (is_vector) {
3011 size = 2 + opc;
3012 } else if (opc == 1 && !is_load) {
3013 /* STGP */
3014 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
3015 unallocated_encoding(s);
3016 return;
3018 size = 3;
3019 set_tag = true;
3020 } else {
3021 size = 2 + extract32(opc, 1, 1);
3022 is_signed = extract32(opc, 0, 1);
3023 if (!is_load && is_signed) {
3024 unallocated_encoding(s);
3025 return;
3029 switch (index) {
3030 case 1: /* post-index */
3031 postindex = true;
3032 wback = true;
3033 break;
3034 case 0:
3035 /* signed offset with "non-temporal" hint. Since we don't emulate
3036 * caches we don't care about hints to the cache system about
3037 * data access patterns, and handle this identically to plain
3038 * signed offset.
3040 if (is_signed) {
3041 /* There is no non-temporal-hint version of LDPSW */
3042 unallocated_encoding(s);
3043 return;
3045 postindex = false;
3046 break;
3047 case 2: /* signed offset, rn not updated */
3048 postindex = false;
3049 break;
3050 case 3: /* pre-index */
3051 postindex = false;
3052 wback = true;
3053 break;
3056 if (is_vector && !fp_access_check(s)) {
3057 return;
3060 offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
3062 if (rn == 31) {
3063 gen_check_sp_alignment(s);
3066 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3067 if (!postindex) {
3068 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3071 if (set_tag) {
3072 if (!s->ata) {
3074 * TODO: We could rely on the stores below, at least for
3075 * system mode, if we arrange to add MO_ALIGN_16.
3077 gen_helper_stg_stub(cpu_env, dirty_addr);
3078 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3079 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
3080 } else {
3081 gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
3085 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
3086 (wback || rn != 31) && !set_tag, 2 << size);
3088 if (is_vector) {
3089 if (is_load) {
3090 do_fp_ld(s, rt, clean_addr, size);
3091 } else {
3092 do_fp_st(s, rt, clean_addr, size);
3094 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3095 if (is_load) {
3096 do_fp_ld(s, rt2, clean_addr, size);
3097 } else {
3098 do_fp_st(s, rt2, clean_addr, size);
3100 } else {
3101 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3102 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
3104 if (is_load) {
3105 TCGv_i64 tmp = tcg_temp_new_i64();
3107 /* Do not modify tcg_rt before recognizing any exception
3108 * from the second load.
3110 do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN,
3111 false, false, 0, false, false);
3112 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3113 do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN,
3114 false, false, 0, false, false);
3116 tcg_gen_mov_i64(tcg_rt, tmp);
3117 tcg_temp_free_i64(tmp);
3118 } else {
3119 do_gpr_st(s, tcg_rt, clean_addr, size,
3120 false, 0, false, false);
3121 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3122 do_gpr_st(s, tcg_rt2, clean_addr, size,
3123 false, 0, false, false);
3127 if (wback) {
3128 if (postindex) {
3129 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3131 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3136 * Load/store (immediate post-indexed)
3137 * Load/store (immediate pre-indexed)
3138 * Load/store (unscaled immediate)
3140 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
3141 * +----+-------+---+-----+-----+---+--------+-----+------+------+
3142 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
3143 * +----+-------+---+-----+-----+---+--------+-----+------+------+
3145 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
3146 10 -> unprivileged
3147 * V = 0 -> non-vector
3148 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
3149 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3151 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
3152 int opc,
3153 int size,
3154 int rt,
3155 bool is_vector)
3157 int rn = extract32(insn, 5, 5);
3158 int imm9 = sextract32(insn, 12, 9);
3159 int idx = extract32(insn, 10, 2);
3160 bool is_signed = false;
3161 bool is_store = false;
3162 bool is_extended = false;
3163 bool is_unpriv = (idx == 2);
3164 bool iss_valid;
3165 bool post_index;
3166 bool writeback;
3167 int memidx;
3169 TCGv_i64 clean_addr, dirty_addr;
3171 if (is_vector) {
3172 size |= (opc & 2) << 1;
3173 if (size > 4 || is_unpriv) {
3174 unallocated_encoding(s);
3175 return;
3177 is_store = ((opc & 1) == 0);
3178 if (!fp_access_check(s)) {
3179 return;
3181 } else {
3182 if (size == 3 && opc == 2) {
3183 /* PRFM - prefetch */
3184 if (idx != 0) {
3185 unallocated_encoding(s);
3186 return;
3188 return;
3190 if (opc == 3 && size > 1) {
3191 unallocated_encoding(s);
3192 return;
3194 is_store = (opc == 0);
3195 is_signed = extract32(opc, 1, 1);
3196 is_extended = (size < 3) && extract32(opc, 0, 1);
3199 switch (idx) {
3200 case 0:
3201 case 2:
3202 post_index = false;
3203 writeback = false;
3204 break;
3205 case 1:
3206 post_index = true;
3207 writeback = true;
3208 break;
3209 case 3:
3210 post_index = false;
3211 writeback = true;
3212 break;
3213 default:
3214 g_assert_not_reached();
3217 iss_valid = !is_vector && !writeback;
3219 if (rn == 31) {
3220 gen_check_sp_alignment(s);
3223 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3224 if (!post_index) {
3225 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3228 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3229 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3230 writeback || rn != 31,
3231 size, is_unpriv, memidx);
3233 if (is_vector) {
3234 if (is_store) {
3235 do_fp_st(s, rt, clean_addr, size);
3236 } else {
3237 do_fp_ld(s, rt, clean_addr, size);
3239 } else {
3240 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3241 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3243 if (is_store) {
3244 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
3245 iss_valid, rt, iss_sf, false);
3246 } else {
3247 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3248 is_extended, memidx,
3249 iss_valid, rt, iss_sf, false);
3253 if (writeback) {
3254 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3255 if (post_index) {
3256 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3258 tcg_gen_mov_i64(tcg_rn, dirty_addr);
3263 * Load/store (register offset)
3265 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3266 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3267 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
3268 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3270 * For non-vector:
3271 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3272 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3273 * For vector:
3274 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3275 * opc<0>: 0 -> store, 1 -> load
3276 * V: 1 -> vector/simd
3277 * opt: extend encoding (see DecodeRegExtend)
3278 * S: if S=1 then scale (essentially index by sizeof(size))
3279 * Rt: register to transfer into/out of
3280 * Rn: address register or SP for base
3281 * Rm: offset register or ZR for offset
3283 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3284 int opc,
3285 int size,
3286 int rt,
3287 bool is_vector)
3289 int rn = extract32(insn, 5, 5);
3290 int shift = extract32(insn, 12, 1);
3291 int rm = extract32(insn, 16, 5);
3292 int opt = extract32(insn, 13, 3);
3293 bool is_signed = false;
3294 bool is_store = false;
3295 bool is_extended = false;
3297 TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3299 if (extract32(opt, 1, 1) == 0) {
3300 unallocated_encoding(s);
3301 return;
3304 if (is_vector) {
3305 size |= (opc & 2) << 1;
3306 if (size > 4) {
3307 unallocated_encoding(s);
3308 return;
3310 is_store = !extract32(opc, 0, 1);
3311 if (!fp_access_check(s)) {
3312 return;
3314 } else {
3315 if (size == 3 && opc == 2) {
3316 /* PRFM - prefetch */
3317 return;
3319 if (opc == 3 && size > 1) {
3320 unallocated_encoding(s);
3321 return;
3323 is_store = (opc == 0);
3324 is_signed = extract32(opc, 1, 1);
3325 is_extended = (size < 3) && extract32(opc, 0, 1);
3328 if (rn == 31) {
3329 gen_check_sp_alignment(s);
3331 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3333 tcg_rm = read_cpu_reg(s, rm, 1);
3334 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3336 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3337 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size);
3339 if (is_vector) {
3340 if (is_store) {
3341 do_fp_st(s, rt, clean_addr, size);
3342 } else {
3343 do_fp_ld(s, rt, clean_addr, size);
3345 } else {
3346 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3347 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3348 if (is_store) {
3349 do_gpr_st(s, tcg_rt, clean_addr, size,
3350 true, rt, iss_sf, false);
3351 } else {
3352 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3353 is_extended, true, rt, iss_sf, false);
3359 * Load/store (unsigned immediate)
3361 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3362 * +----+-------+---+-----+-----+------------+-------+------+
3363 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3364 * +----+-------+---+-----+-----+------------+-------+------+
3366 * For non-vector:
3367 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3368 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3369 * For vector:
3370 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3371 * opc<0>: 0 -> store, 1 -> load
3372 * Rn: base address register (inc SP)
3373 * Rt: target register
3375 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3376 int opc,
3377 int size,
3378 int rt,
3379 bool is_vector)
3381 int rn = extract32(insn, 5, 5);
3382 unsigned int imm12 = extract32(insn, 10, 12);
3383 unsigned int offset;
3385 TCGv_i64 clean_addr, dirty_addr;
3387 bool is_store;
3388 bool is_signed = false;
3389 bool is_extended = false;
3391 if (is_vector) {
3392 size |= (opc & 2) << 1;
3393 if (size > 4) {
3394 unallocated_encoding(s);
3395 return;
3397 is_store = !extract32(opc, 0, 1);
3398 if (!fp_access_check(s)) {
3399 return;
3401 } else {
3402 if (size == 3 && opc == 2) {
3403 /* PRFM - prefetch */
3404 return;
3406 if (opc == 3 && size > 1) {
3407 unallocated_encoding(s);
3408 return;
3410 is_store = (opc == 0);
3411 is_signed = extract32(opc, 1, 1);
3412 is_extended = (size < 3) && extract32(opc, 0, 1);
3415 if (rn == 31) {
3416 gen_check_sp_alignment(s);
3418 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3419 offset = imm12 << size;
3420 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3421 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size);
3423 if (is_vector) {
3424 if (is_store) {
3425 do_fp_st(s, rt, clean_addr, size);
3426 } else {
3427 do_fp_ld(s, rt, clean_addr, size);
3429 } else {
3430 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3431 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3432 if (is_store) {
3433 do_gpr_st(s, tcg_rt, clean_addr, size,
3434 true, rt, iss_sf, false);
3435 } else {
3436 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3437 is_extended, true, rt, iss_sf, false);
3442 /* Atomic memory operations
3444 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3445 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3446 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3447 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3449 * Rt: the result register
3450 * Rn: base address or SP
3451 * Rs: the source register for the operation
3452 * V: vector flag (always 0 as of v8.3)
3453 * A: acquire flag
3454 * R: release flag
3456 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3457 int size, int rt, bool is_vector)
3459 int rs = extract32(insn, 16, 5);
3460 int rn = extract32(insn, 5, 5);
3461 int o3_opc = extract32(insn, 12, 4);
3462 bool r = extract32(insn, 22, 1);
3463 bool a = extract32(insn, 23, 1);
3464 TCGv_i64 tcg_rs, tcg_rt, clean_addr;
3465 AtomicThreeOpFn *fn = NULL;
3466 MemOp mop = s->be_data | size | MO_ALIGN;
3468 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3469 unallocated_encoding(s);
3470 return;
3472 switch (o3_opc) {
3473 case 000: /* LDADD */
3474 fn = tcg_gen_atomic_fetch_add_i64;
3475 break;
3476 case 001: /* LDCLR */
3477 fn = tcg_gen_atomic_fetch_and_i64;
3478 break;
3479 case 002: /* LDEOR */
3480 fn = tcg_gen_atomic_fetch_xor_i64;
3481 break;
3482 case 003: /* LDSET */
3483 fn = tcg_gen_atomic_fetch_or_i64;
3484 break;
3485 case 004: /* LDSMAX */
3486 fn = tcg_gen_atomic_fetch_smax_i64;
3487 mop |= MO_SIGN;
3488 break;
3489 case 005: /* LDSMIN */
3490 fn = tcg_gen_atomic_fetch_smin_i64;
3491 mop |= MO_SIGN;
3492 break;
3493 case 006: /* LDUMAX */
3494 fn = tcg_gen_atomic_fetch_umax_i64;
3495 break;
3496 case 007: /* LDUMIN */
3497 fn = tcg_gen_atomic_fetch_umin_i64;
3498 break;
3499 case 010: /* SWP */
3500 fn = tcg_gen_atomic_xchg_i64;
3501 break;
3502 case 014: /* LDAPR, LDAPRH, LDAPRB */
3503 if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3504 rs != 31 || a != 1 || r != 0) {
3505 unallocated_encoding(s);
3506 return;
3508 break;
3509 default:
3510 unallocated_encoding(s);
3511 return;
3514 if (rn == 31) {
3515 gen_check_sp_alignment(s);
3517 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size);
3519 if (o3_opc == 014) {
3521 * LDAPR* are a special case because they are a simple load, not a
3522 * fetch-and-do-something op.
3523 * The architectural consistency requirements here are weaker than
3524 * full load-acquire (we only need "load-acquire processor consistent"),
3525 * but we choose to implement them as full LDAQ.
3527 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false,
3528 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3529 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3530 return;
3533 tcg_rs = read_cpu_reg(s, rs, true);
3534 tcg_rt = cpu_reg(s, rt);
3536 if (o3_opc == 1) { /* LDCLR */
3537 tcg_gen_not_i64(tcg_rs, tcg_rs);
3540 /* The tcg atomic primitives are all full barriers. Therefore we
3541 * can ignore the Acquire and Release bits of this instruction.
3543 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3545 if ((mop & MO_SIGN) && size != MO_64) {
3546 tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3551 * PAC memory operations
3553 * 31 30 27 26 24 22 21 12 11 10 5 0
3554 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3555 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3556 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3558 * Rt: the result register
3559 * Rn: base address or SP
3560 * V: vector flag (always 0 as of v8.3)
3561 * M: clear for key DA, set for key DB
3562 * W: pre-indexing flag
3563 * S: sign for imm9.
3565 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3566 int size, int rt, bool is_vector)
3568 int rn = extract32(insn, 5, 5);
3569 bool is_wback = extract32(insn, 11, 1);
3570 bool use_key_a = !extract32(insn, 23, 1);
3571 int offset;
3572 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3574 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3575 unallocated_encoding(s);
3576 return;
3579 if (rn == 31) {
3580 gen_check_sp_alignment(s);
3582 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3584 if (s->pauth_active) {
3585 if (use_key_a) {
3586 gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3587 new_tmp_a64_zero(s));
3588 } else {
3589 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3590 new_tmp_a64_zero(s));
3594 /* Form the 10-bit signed, scaled offset. */
3595 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3596 offset = sextract32(offset << size, 0, 10 + size);
3597 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3599 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3600 clean_addr = gen_mte_check1(s, dirty_addr, false,
3601 is_wback || rn != 31, size);
3603 tcg_rt = cpu_reg(s, rt);
3604 do_gpr_ld(s, tcg_rt, clean_addr, size,
3605 /* extend */ false, /* iss_valid */ !is_wback,
3606 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3608 if (is_wback) {
3609 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3614 * LDAPR/STLR (unscaled immediate)
3616 * 31 30 24 22 21 12 10 5 0
3617 * +------+-------------+-----+---+--------+-----+----+-----+
3618 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt |
3619 * +------+-------------+-----+---+--------+-----+----+-----+
3621 * Rt: source or destination register
3622 * Rn: base register
3623 * imm9: unscaled immediate offset
3624 * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3625 * size: size of load/store
3627 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3629 int rt = extract32(insn, 0, 5);
3630 int rn = extract32(insn, 5, 5);
3631 int offset = sextract32(insn, 12, 9);
3632 int opc = extract32(insn, 22, 2);
3633 int size = extract32(insn, 30, 2);
3634 TCGv_i64 clean_addr, dirty_addr;
3635 bool is_store = false;
3636 bool extend = false;
3637 bool iss_sf;
3638 MemOp mop;
3640 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3641 unallocated_encoding(s);
3642 return;
3645 /* TODO: ARMv8.4-LSE SCTLR.nAA */
3646 mop = size | MO_ALIGN;
3648 switch (opc) {
3649 case 0: /* STLURB */
3650 is_store = true;
3651 break;
3652 case 1: /* LDAPUR* */
3653 break;
3654 case 2: /* LDAPURS* 64-bit variant */
3655 if (size == 3) {
3656 unallocated_encoding(s);
3657 return;
3659 mop |= MO_SIGN;
3660 break;
3661 case 3: /* LDAPURS* 32-bit variant */
3662 if (size > 1) {
3663 unallocated_encoding(s);
3664 return;
3666 mop |= MO_SIGN;
3667 extend = true; /* zero-extend 32->64 after signed load */
3668 break;
3669 default:
3670 g_assert_not_reached();
3673 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc);
3675 if (rn == 31) {
3676 gen_check_sp_alignment(s);
3679 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3680 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3681 clean_addr = clean_data_tbi(s, dirty_addr);
3683 if (is_store) {
3684 /* Store-Release semantics */
3685 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3686 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true);
3687 } else {
3689 * Load-AcquirePC semantics; we implement as the slightly more
3690 * restrictive Load-Acquire.
3692 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop,
3693 extend, true, rt, iss_sf, true);
3694 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3698 /* Load/store register (all forms) */
3699 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3701 int rt = extract32(insn, 0, 5);
3702 int opc = extract32(insn, 22, 2);
3703 bool is_vector = extract32(insn, 26, 1);
3704 int size = extract32(insn, 30, 2);
3706 switch (extract32(insn, 24, 2)) {
3707 case 0:
3708 if (extract32(insn, 21, 1) == 0) {
3709 /* Load/store register (unscaled immediate)
3710 * Load/store immediate pre/post-indexed
3711 * Load/store register unprivileged
3713 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3714 return;
3716 switch (extract32(insn, 10, 2)) {
3717 case 0:
3718 disas_ldst_atomic(s, insn, size, rt, is_vector);
3719 return;
3720 case 2:
3721 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3722 return;
3723 default:
3724 disas_ldst_pac(s, insn, size, rt, is_vector);
3725 return;
3727 break;
3728 case 1:
3729 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3730 return;
3732 unallocated_encoding(s);
3735 /* AdvSIMD load/store multiple structures
3737 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3738 * +---+---+---------------+---+-------------+--------+------+------+------+
3739 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3740 * +---+---+---------------+---+-------------+--------+------+------+------+
3742 * AdvSIMD load/store multiple structures (post-indexed)
3744 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3745 * +---+---+---------------+---+---+---------+--------+------+------+------+
3746 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3747 * +---+---+---------------+---+---+---------+--------+------+------+------+
3749 * Rt: first (or only) SIMD&FP register to be transferred
3750 * Rn: base address or SP
3751 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3753 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3755 int rt = extract32(insn, 0, 5);
3756 int rn = extract32(insn, 5, 5);
3757 int rm = extract32(insn, 16, 5);
3758 int size = extract32(insn, 10, 2);
3759 int opcode = extract32(insn, 12, 4);
3760 bool is_store = !extract32(insn, 22, 1);
3761 bool is_postidx = extract32(insn, 23, 1);
3762 bool is_q = extract32(insn, 30, 1);
3763 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3764 MemOp endian, align, mop;
3766 int total; /* total bytes */
3767 int elements; /* elements per vector */
3768 int rpt; /* num iterations */
3769 int selem; /* structure elements */
3770 int r;
3772 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3773 unallocated_encoding(s);
3774 return;
3777 if (!is_postidx && rm != 0) {
3778 unallocated_encoding(s);
3779 return;
3782 /* From the shared decode logic */
3783 switch (opcode) {
3784 case 0x0:
3785 rpt = 1;
3786 selem = 4;
3787 break;
3788 case 0x2:
3789 rpt = 4;
3790 selem = 1;
3791 break;
3792 case 0x4:
3793 rpt = 1;
3794 selem = 3;
3795 break;
3796 case 0x6:
3797 rpt = 3;
3798 selem = 1;
3799 break;
3800 case 0x7:
3801 rpt = 1;
3802 selem = 1;
3803 break;
3804 case 0x8:
3805 rpt = 1;
3806 selem = 2;
3807 break;
3808 case 0xa:
3809 rpt = 2;
3810 selem = 1;
3811 break;
3812 default:
3813 unallocated_encoding(s);
3814 return;
3817 if (size == 3 && !is_q && selem != 1) {
3818 /* reserved */
3819 unallocated_encoding(s);
3820 return;
3823 if (!fp_access_check(s)) {
3824 return;
3827 if (rn == 31) {
3828 gen_check_sp_alignment(s);
3831 /* For our purposes, bytes are always little-endian. */
3832 endian = s->be_data;
3833 if (size == 0) {
3834 endian = MO_LE;
3837 total = rpt * selem * (is_q ? 16 : 8);
3838 tcg_rn = cpu_reg_sp(s, rn);
3841 * Issue the MTE check vs the logical repeat count, before we
3842 * promote consecutive little-endian elements below.
3844 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3845 total);
3848 * Consecutive little-endian elements from a single register
3849 * can be promoted to a larger little-endian operation.
3851 align = MO_ALIGN;
3852 if (selem == 1 && endian == MO_LE) {
3853 align = pow2_align(size);
3854 size = 3;
3856 if (!s->align_mem) {
3857 align = 0;
3859 mop = endian | size | align;
3861 elements = (is_q ? 16 : 8) >> size;
3862 tcg_ebytes = tcg_constant_i64(1 << size);
3863 for (r = 0; r < rpt; r++) {
3864 int e;
3865 for (e = 0; e < elements; e++) {
3866 int xs;
3867 for (xs = 0; xs < selem; xs++) {
3868 int tt = (rt + r + xs) % 32;
3869 if (is_store) {
3870 do_vec_st(s, tt, e, clean_addr, mop);
3871 } else {
3872 do_vec_ld(s, tt, e, clean_addr, mop);
3874 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3879 if (!is_store) {
3880 /* For non-quad operations, setting a slice of the low
3881 * 64 bits of the register clears the high 64 bits (in
3882 * the ARM ARM pseudocode this is implicit in the fact
3883 * that 'rval' is a 64 bit wide variable).
3884 * For quad operations, we might still need to zero the
3885 * high bits of SVE.
3887 for (r = 0; r < rpt * selem; r++) {
3888 int tt = (rt + r) % 32;
3889 clear_vec_high(s, is_q, tt);
3893 if (is_postidx) {
3894 if (rm == 31) {
3895 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3896 } else {
3897 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3902 /* AdvSIMD load/store single structure
3904 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3905 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3906 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3907 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3909 * AdvSIMD load/store single structure (post-indexed)
3911 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3912 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3913 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3914 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3916 * Rt: first (or only) SIMD&FP register to be transferred
3917 * Rn: base address or SP
3918 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3919 * index = encoded in Q:S:size dependent on size
3921 * lane_size = encoded in R, opc
3922 * transfer width = encoded in opc, S, size
3924 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3926 int rt = extract32(insn, 0, 5);
3927 int rn = extract32(insn, 5, 5);
3928 int rm = extract32(insn, 16, 5);
3929 int size = extract32(insn, 10, 2);
3930 int S = extract32(insn, 12, 1);
3931 int opc = extract32(insn, 13, 3);
3932 int R = extract32(insn, 21, 1);
3933 int is_load = extract32(insn, 22, 1);
3934 int is_postidx = extract32(insn, 23, 1);
3935 int is_q = extract32(insn, 30, 1);
3937 int scale = extract32(opc, 1, 2);
3938 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3939 bool replicate = false;
3940 int index = is_q << 3 | S << 2 | size;
3941 int xs, total;
3942 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3943 MemOp mop;
3945 if (extract32(insn, 31, 1)) {
3946 unallocated_encoding(s);
3947 return;
3949 if (!is_postidx && rm != 0) {
3950 unallocated_encoding(s);
3951 return;
3954 switch (scale) {
3955 case 3:
3956 if (!is_load || S) {
3957 unallocated_encoding(s);
3958 return;
3960 scale = size;
3961 replicate = true;
3962 break;
3963 case 0:
3964 break;
3965 case 1:
3966 if (extract32(size, 0, 1)) {
3967 unallocated_encoding(s);
3968 return;
3970 index >>= 1;
3971 break;
3972 case 2:
3973 if (extract32(size, 1, 1)) {
3974 unallocated_encoding(s);
3975 return;
3977 if (!extract32(size, 0, 1)) {
3978 index >>= 2;
3979 } else {
3980 if (S) {
3981 unallocated_encoding(s);
3982 return;
3984 index >>= 3;
3985 scale = 3;
3987 break;
3988 default:
3989 g_assert_not_reached();
3992 if (!fp_access_check(s)) {
3993 return;
3996 if (rn == 31) {
3997 gen_check_sp_alignment(s);
4000 total = selem << scale;
4001 tcg_rn = cpu_reg_sp(s, rn);
4003 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
4004 total);
4005 mop = finalize_memop(s, scale);
4007 tcg_ebytes = tcg_constant_i64(1 << scale);
4008 for (xs = 0; xs < selem; xs++) {
4009 if (replicate) {
4010 /* Load and replicate to all elements */
4011 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
4013 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
4014 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
4015 (is_q + 1) * 8, vec_full_reg_size(s),
4016 tcg_tmp);
4017 tcg_temp_free_i64(tcg_tmp);
4018 } else {
4019 /* Load/store one element per register */
4020 if (is_load) {
4021 do_vec_ld(s, rt, index, clean_addr, mop);
4022 } else {
4023 do_vec_st(s, rt, index, clean_addr, mop);
4026 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4027 rt = (rt + 1) % 32;
4030 if (is_postidx) {
4031 if (rm == 31) {
4032 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4033 } else {
4034 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
4040 * Load/Store memory tags
4042 * 31 30 29 24 22 21 12 10 5 0
4043 * +-----+-------------+-----+---+------+-----+------+------+
4044 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt |
4045 * +-----+-------------+-----+---+------+-----+------+------+
4047 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
4049 int rt = extract32(insn, 0, 5);
4050 int rn = extract32(insn, 5, 5);
4051 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
4052 int op2 = extract32(insn, 10, 2);
4053 int op1 = extract32(insn, 22, 2);
4054 bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
4055 int index = 0;
4056 TCGv_i64 addr, clean_addr, tcg_rt;
4058 /* We checked insn bits [29:24,21] in the caller. */
4059 if (extract32(insn, 30, 2) != 3) {
4060 goto do_unallocated;
4064 * @index is a tri-state variable which has 3 states:
4065 * < 0 : post-index, writeback
4066 * = 0 : signed offset
4067 * > 0 : pre-index, writeback
4069 switch (op1) {
4070 case 0:
4071 if (op2 != 0) {
4072 /* STG */
4073 index = op2 - 2;
4074 } else {
4075 /* STZGM */
4076 if (s->current_el == 0 || offset != 0) {
4077 goto do_unallocated;
4079 is_mult = is_zero = true;
4081 break;
4082 case 1:
4083 if (op2 != 0) {
4084 /* STZG */
4085 is_zero = true;
4086 index = op2 - 2;
4087 } else {
4088 /* LDG */
4089 is_load = true;
4091 break;
4092 case 2:
4093 if (op2 != 0) {
4094 /* ST2G */
4095 is_pair = true;
4096 index = op2 - 2;
4097 } else {
4098 /* STGM */
4099 if (s->current_el == 0 || offset != 0) {
4100 goto do_unallocated;
4102 is_mult = true;
4104 break;
4105 case 3:
4106 if (op2 != 0) {
4107 /* STZ2G */
4108 is_pair = is_zero = true;
4109 index = op2 - 2;
4110 } else {
4111 /* LDGM */
4112 if (s->current_el == 0 || offset != 0) {
4113 goto do_unallocated;
4115 is_mult = is_load = true;
4117 break;
4119 default:
4120 do_unallocated:
4121 unallocated_encoding(s);
4122 return;
4125 if (is_mult
4126 ? !dc_isar_feature(aa64_mte, s)
4127 : !dc_isar_feature(aa64_mte_insn_reg, s)) {
4128 goto do_unallocated;
4131 if (rn == 31) {
4132 gen_check_sp_alignment(s);
4135 addr = read_cpu_reg_sp(s, rn, true);
4136 if (index >= 0) {
4137 /* pre-index or signed offset */
4138 tcg_gen_addi_i64(addr, addr, offset);
4141 if (is_mult) {
4142 tcg_rt = cpu_reg(s, rt);
4144 if (is_zero) {
4145 int size = 4 << s->dcz_blocksize;
4147 if (s->ata) {
4148 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
4151 * The non-tags portion of STZGM is mostly like DC_ZVA,
4152 * except the alignment happens before the access.
4154 clean_addr = clean_data_tbi(s, addr);
4155 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4156 gen_helper_dc_zva(cpu_env, clean_addr);
4157 } else if (s->ata) {
4158 if (is_load) {
4159 gen_helper_ldgm(tcg_rt, cpu_env, addr);
4160 } else {
4161 gen_helper_stgm(cpu_env, addr, tcg_rt);
4163 } else {
4164 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
4165 int size = 4 << GMID_EL1_BS;
4167 clean_addr = clean_data_tbi(s, addr);
4168 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4169 gen_probe_access(s, clean_addr, acc, size);
4171 if (is_load) {
4172 /* The result tags are zeros. */
4173 tcg_gen_movi_i64(tcg_rt, 0);
4176 return;
4179 if (is_load) {
4180 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4181 tcg_rt = cpu_reg(s, rt);
4182 if (s->ata) {
4183 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
4184 } else {
4185 clean_addr = clean_data_tbi(s, addr);
4186 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4187 gen_address_with_allocation_tag0(tcg_rt, addr);
4189 } else {
4190 tcg_rt = cpu_reg_sp(s, rt);
4191 if (!s->ata) {
4193 * For STG and ST2G, we need to check alignment and probe memory.
4194 * TODO: For STZG and STZ2G, we could rely on the stores below,
4195 * at least for system mode; user-only won't enforce alignment.
4197 if (is_pair) {
4198 gen_helper_st2g_stub(cpu_env, addr);
4199 } else {
4200 gen_helper_stg_stub(cpu_env, addr);
4202 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4203 if (is_pair) {
4204 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
4205 } else {
4206 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
4208 } else {
4209 if (is_pair) {
4210 gen_helper_st2g(cpu_env, addr, tcg_rt);
4211 } else {
4212 gen_helper_stg(cpu_env, addr, tcg_rt);
4217 if (is_zero) {
4218 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4219 TCGv_i64 tcg_zero = tcg_constant_i64(0);
4220 int mem_index = get_mem_index(s);
4221 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE;
4223 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index,
4224 MO_UQ | MO_ALIGN_16);
4225 for (i = 8; i < n; i += 8) {
4226 tcg_gen_addi_i64(clean_addr, clean_addr, 8);
4227 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ);
4231 if (index != 0) {
4232 /* pre-index or post-index */
4233 if (index < 0) {
4234 /* post-index */
4235 tcg_gen_addi_i64(addr, addr, offset);
4237 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4241 /* Loads and stores */
4242 static void disas_ldst(DisasContext *s, uint32_t insn)
4244 switch (extract32(insn, 24, 6)) {
4245 case 0x08: /* Load/store exclusive */
4246 disas_ldst_excl(s, insn);
4247 break;
4248 case 0x18: case 0x1c: /* Load register (literal) */
4249 disas_ld_lit(s, insn);
4250 break;
4251 case 0x28: case 0x29:
4252 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4253 disas_ldst_pair(s, insn);
4254 break;
4255 case 0x38: case 0x39:
4256 case 0x3c: case 0x3d: /* Load/store register (all forms) */
4257 disas_ldst_reg(s, insn);
4258 break;
4259 case 0x0c: /* AdvSIMD load/store multiple structures */
4260 disas_ldst_multiple_struct(s, insn);
4261 break;
4262 case 0x0d: /* AdvSIMD load/store single structure */
4263 disas_ldst_single_struct(s, insn);
4264 break;
4265 case 0x19:
4266 if (extract32(insn, 21, 1) != 0) {
4267 disas_ldst_tag(s, insn);
4268 } else if (extract32(insn, 10, 2) == 0) {
4269 disas_ldst_ldapr_stlr(s, insn);
4270 } else {
4271 unallocated_encoding(s);
4273 break;
4274 default:
4275 unallocated_encoding(s);
4276 break;
4280 /* PC-rel. addressing
4281 * 31 30 29 28 24 23 5 4 0
4282 * +----+-------+-----------+-------------------+------+
4283 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
4284 * +----+-------+-----------+-------------------+------+
4286 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
4288 unsigned int page, rd;
4289 int64_t offset;
4291 page = extract32(insn, 31, 1);
4292 /* SignExtend(immhi:immlo) -> offset */
4293 offset = sextract64(insn, 5, 19);
4294 offset = offset << 2 | extract32(insn, 29, 2);
4295 rd = extract32(insn, 0, 5);
4297 if (page) {
4298 /* ADRP (page based) */
4299 offset <<= 12;
4300 /* The page offset is ok for TARGET_TB_PCREL. */
4301 offset -= s->pc_curr & 0xfff;
4304 gen_pc_plus_diff(s, cpu_reg(s, rd), offset);
4308 * Add/subtract (immediate)
4310 * 31 30 29 28 23 22 21 10 9 5 4 0
4311 * +--+--+--+-------------+--+-------------+-----+-----+
4312 * |sf|op| S| 1 0 0 0 1 0 |sh| imm12 | Rn | Rd |
4313 * +--+--+--+-------------+--+-------------+-----+-----+
4315 * sf: 0 -> 32bit, 1 -> 64bit
4316 * op: 0 -> add , 1 -> sub
4317 * S: 1 -> set flags
4318 * sh: 1 -> LSL imm by 12
4320 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
4322 int rd = extract32(insn, 0, 5);
4323 int rn = extract32(insn, 5, 5);
4324 uint64_t imm = extract32(insn, 10, 12);
4325 bool shift = extract32(insn, 22, 1);
4326 bool setflags = extract32(insn, 29, 1);
4327 bool sub_op = extract32(insn, 30, 1);
4328 bool is_64bit = extract32(insn, 31, 1);
4330 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
4331 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
4332 TCGv_i64 tcg_result;
4334 if (shift) {
4335 imm <<= 12;
4338 tcg_result = tcg_temp_new_i64();
4339 if (!setflags) {
4340 if (sub_op) {
4341 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
4342 } else {
4343 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
4345 } else {
4346 TCGv_i64 tcg_imm = tcg_constant_i64(imm);
4347 if (sub_op) {
4348 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4349 } else {
4350 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4354 if (is_64bit) {
4355 tcg_gen_mov_i64(tcg_rd, tcg_result);
4356 } else {
4357 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4360 tcg_temp_free_i64(tcg_result);
4364 * Add/subtract (immediate, with tags)
4366 * 31 30 29 28 23 22 21 16 14 10 9 5 4 0
4367 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4368 * |sf|op| S| 1 0 0 0 1 1 |o2| uimm6 |o3| uimm4 | Rn | Rd |
4369 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4371 * op: 0 -> add, 1 -> sub
4373 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn)
4375 int rd = extract32(insn, 0, 5);
4376 int rn = extract32(insn, 5, 5);
4377 int uimm4 = extract32(insn, 10, 4);
4378 int uimm6 = extract32(insn, 16, 6);
4379 bool sub_op = extract32(insn, 30, 1);
4380 TCGv_i64 tcg_rn, tcg_rd;
4381 int imm;
4383 /* Test all of sf=1, S=0, o2=0, o3=0. */
4384 if ((insn & 0xa040c000u) != 0x80000000u ||
4385 !dc_isar_feature(aa64_mte_insn_reg, s)) {
4386 unallocated_encoding(s);
4387 return;
4390 imm = uimm6 << LOG2_TAG_GRANULE;
4391 if (sub_op) {
4392 imm = -imm;
4395 tcg_rn = cpu_reg_sp(s, rn);
4396 tcg_rd = cpu_reg_sp(s, rd);
4398 if (s->ata) {
4399 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn,
4400 tcg_constant_i32(imm),
4401 tcg_constant_i32(uimm4));
4402 } else {
4403 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4404 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4408 /* The input should be a value in the bottom e bits (with higher
4409 * bits zero); returns that value replicated into every element
4410 * of size e in a 64 bit integer.
4412 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4414 assert(e != 0);
4415 while (e < 64) {
4416 mask |= mask << e;
4417 e *= 2;
4419 return mask;
4422 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
4423 static inline uint64_t bitmask64(unsigned int length)
4425 assert(length > 0 && length <= 64);
4426 return ~0ULL >> (64 - length);
4429 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
4430 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4431 * value (ie should cause a guest UNDEF exception), and true if they are
4432 * valid, in which case the decoded bit pattern is written to result.
4434 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4435 unsigned int imms, unsigned int immr)
4437 uint64_t mask;
4438 unsigned e, levels, s, r;
4439 int len;
4441 assert(immn < 2 && imms < 64 && immr < 64);
4443 /* The bit patterns we create here are 64 bit patterns which
4444 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4445 * 64 bits each. Each element contains the same value: a run
4446 * of between 1 and e-1 non-zero bits, rotated within the
4447 * element by between 0 and e-1 bits.
4449 * The element size and run length are encoded into immn (1 bit)
4450 * and imms (6 bits) as follows:
4451 * 64 bit elements: immn = 1, imms = <length of run - 1>
4452 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4453 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4454 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4455 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4456 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4457 * Notice that immn = 0, imms = 11111x is the only combination
4458 * not covered by one of the above options; this is reserved.
4459 * Further, <length of run - 1> all-ones is a reserved pattern.
4461 * In all cases the rotation is by immr % e (and immr is 6 bits).
4464 /* First determine the element size */
4465 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4466 if (len < 1) {
4467 /* This is the immn == 0, imms == 0x11111x case */
4468 return false;
4470 e = 1 << len;
4472 levels = e - 1;
4473 s = imms & levels;
4474 r = immr & levels;
4476 if (s == levels) {
4477 /* <length of run - 1> mustn't be all-ones. */
4478 return false;
4481 /* Create the value of one element: s+1 set bits rotated
4482 * by r within the element (which is e bits wide)...
4484 mask = bitmask64(s + 1);
4485 if (r) {
4486 mask = (mask >> r) | (mask << (e - r));
4487 mask &= bitmask64(e);
4489 /* ...then replicate the element over the whole 64 bit value */
4490 mask = bitfield_replicate(mask, e);
4491 *result = mask;
4492 return true;
4495 /* Logical (immediate)
4496 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4497 * +----+-----+-------------+---+------+------+------+------+
4498 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
4499 * +----+-----+-------------+---+------+------+------+------+
4501 static void disas_logic_imm(DisasContext *s, uint32_t insn)
4503 unsigned int sf, opc, is_n, immr, imms, rn, rd;
4504 TCGv_i64 tcg_rd, tcg_rn;
4505 uint64_t wmask;
4506 bool is_and = false;
4508 sf = extract32(insn, 31, 1);
4509 opc = extract32(insn, 29, 2);
4510 is_n = extract32(insn, 22, 1);
4511 immr = extract32(insn, 16, 6);
4512 imms = extract32(insn, 10, 6);
4513 rn = extract32(insn, 5, 5);
4514 rd = extract32(insn, 0, 5);
4516 if (!sf && is_n) {
4517 unallocated_encoding(s);
4518 return;
4521 if (opc == 0x3) { /* ANDS */
4522 tcg_rd = cpu_reg(s, rd);
4523 } else {
4524 tcg_rd = cpu_reg_sp(s, rd);
4526 tcg_rn = cpu_reg(s, rn);
4528 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
4529 /* some immediate field values are reserved */
4530 unallocated_encoding(s);
4531 return;
4534 if (!sf) {
4535 wmask &= 0xffffffff;
4538 switch (opc) {
4539 case 0x3: /* ANDS */
4540 case 0x0: /* AND */
4541 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
4542 is_and = true;
4543 break;
4544 case 0x1: /* ORR */
4545 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
4546 break;
4547 case 0x2: /* EOR */
4548 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
4549 break;
4550 default:
4551 assert(FALSE); /* must handle all above */
4552 break;
4555 if (!sf && !is_and) {
4556 /* zero extend final result; we know we can skip this for AND
4557 * since the immediate had the high 32 bits clear.
4559 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4562 if (opc == 3) { /* ANDS */
4563 gen_logic_CC(sf, tcg_rd);
4568 * Move wide (immediate)
4570 * 31 30 29 28 23 22 21 20 5 4 0
4571 * +--+-----+-------------+-----+----------------+------+
4572 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
4573 * +--+-----+-------------+-----+----------------+------+
4575 * sf: 0 -> 32 bit, 1 -> 64 bit
4576 * opc: 00 -> N, 10 -> Z, 11 -> K
4577 * hw: shift/16 (0,16, and sf only 32, 48)
4579 static void disas_movw_imm(DisasContext *s, uint32_t insn)
4581 int rd = extract32(insn, 0, 5);
4582 uint64_t imm = extract32(insn, 5, 16);
4583 int sf = extract32(insn, 31, 1);
4584 int opc = extract32(insn, 29, 2);
4585 int pos = extract32(insn, 21, 2) << 4;
4586 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4588 if (!sf && (pos >= 32)) {
4589 unallocated_encoding(s);
4590 return;
4593 switch (opc) {
4594 case 0: /* MOVN */
4595 case 2: /* MOVZ */
4596 imm <<= pos;
4597 if (opc == 0) {
4598 imm = ~imm;
4600 if (!sf) {
4601 imm &= 0xffffffffu;
4603 tcg_gen_movi_i64(tcg_rd, imm);
4604 break;
4605 case 3: /* MOVK */
4606 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_constant_i64(imm), pos, 16);
4607 if (!sf) {
4608 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4610 break;
4611 default:
4612 unallocated_encoding(s);
4613 break;
4617 /* Bitfield
4618 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4619 * +----+-----+-------------+---+------+------+------+------+
4620 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
4621 * +----+-----+-------------+---+------+------+------+------+
4623 static void disas_bitfield(DisasContext *s, uint32_t insn)
4625 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
4626 TCGv_i64 tcg_rd, tcg_tmp;
4628 sf = extract32(insn, 31, 1);
4629 opc = extract32(insn, 29, 2);
4630 n = extract32(insn, 22, 1);
4631 ri = extract32(insn, 16, 6);
4632 si = extract32(insn, 10, 6);
4633 rn = extract32(insn, 5, 5);
4634 rd = extract32(insn, 0, 5);
4635 bitsize = sf ? 64 : 32;
4637 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
4638 unallocated_encoding(s);
4639 return;
4642 tcg_rd = cpu_reg(s, rd);
4644 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
4645 to be smaller than bitsize, we'll never reference data outside the
4646 low 32-bits anyway. */
4647 tcg_tmp = read_cpu_reg(s, rn, 1);
4649 /* Recognize simple(r) extractions. */
4650 if (si >= ri) {
4651 /* Wd<s-r:0> = Wn<s:r> */
4652 len = (si - ri) + 1;
4653 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
4654 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4655 goto done;
4656 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
4657 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4658 return;
4660 /* opc == 1, BFXIL fall through to deposit */
4661 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4662 pos = 0;
4663 } else {
4664 /* Handle the ri > si case with a deposit
4665 * Wd<32+s-r,32-r> = Wn<s:0>
4667 len = si + 1;
4668 pos = (bitsize - ri) & (bitsize - 1);
4671 if (opc == 0 && len < ri) {
4672 /* SBFM: sign extend the destination field from len to fill
4673 the balance of the word. Let the deposit below insert all
4674 of those sign bits. */
4675 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4676 len = ri;
4679 if (opc == 1) { /* BFM, BFXIL */
4680 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4681 } else {
4682 /* SBFM or UBFM: We start with zero, and we haven't modified
4683 any bits outside bitsize, therefore the zero-extension
4684 below is unneeded. */
4685 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4686 return;
4689 done:
4690 if (!sf) { /* zero extend final result */
4691 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4695 /* Extract
4696 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
4697 * +----+------+-------------+---+----+------+--------+------+------+
4698 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
4699 * +----+------+-------------+---+----+------+--------+------+------+
4701 static void disas_extract(DisasContext *s, uint32_t insn)
4703 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4705 sf = extract32(insn, 31, 1);
4706 n = extract32(insn, 22, 1);
4707 rm = extract32(insn, 16, 5);
4708 imm = extract32(insn, 10, 6);
4709 rn = extract32(insn, 5, 5);
4710 rd = extract32(insn, 0, 5);
4711 op21 = extract32(insn, 29, 2);
4712 op0 = extract32(insn, 21, 1);
4713 bitsize = sf ? 64 : 32;
4715 if (sf != n || op21 || op0 || imm >= bitsize) {
4716 unallocated_encoding(s);
4717 } else {
4718 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4720 tcg_rd = cpu_reg(s, rd);
4722 if (unlikely(imm == 0)) {
4723 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4724 * so an extract from bit 0 is a special case.
4726 if (sf) {
4727 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4728 } else {
4729 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4731 } else {
4732 tcg_rm = cpu_reg(s, rm);
4733 tcg_rn = cpu_reg(s, rn);
4735 if (sf) {
4736 /* Specialization to ROR happens in EXTRACT2. */
4737 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm);
4738 } else {
4739 TCGv_i32 t0 = tcg_temp_new_i32();
4741 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4742 if (rm == rn) {
4743 tcg_gen_rotri_i32(t0, t0, imm);
4744 } else {
4745 TCGv_i32 t1 = tcg_temp_new_i32();
4746 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4747 tcg_gen_extract2_i32(t0, t0, t1, imm);
4748 tcg_temp_free_i32(t1);
4750 tcg_gen_extu_i32_i64(tcg_rd, t0);
4751 tcg_temp_free_i32(t0);
4757 /* Data processing - immediate */
4758 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4760 switch (extract32(insn, 23, 6)) {
4761 case 0x20: case 0x21: /* PC-rel. addressing */
4762 disas_pc_rel_adr(s, insn);
4763 break;
4764 case 0x22: /* Add/subtract (immediate) */
4765 disas_add_sub_imm(s, insn);
4766 break;
4767 case 0x23: /* Add/subtract (immediate, with tags) */
4768 disas_add_sub_imm_with_tags(s, insn);
4769 break;
4770 case 0x24: /* Logical (immediate) */
4771 disas_logic_imm(s, insn);
4772 break;
4773 case 0x25: /* Move wide (immediate) */
4774 disas_movw_imm(s, insn);
4775 break;
4776 case 0x26: /* Bitfield */
4777 disas_bitfield(s, insn);
4778 break;
4779 case 0x27: /* Extract */
4780 disas_extract(s, insn);
4781 break;
4782 default:
4783 unallocated_encoding(s);
4784 break;
4788 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4789 * Note that it is the caller's responsibility to ensure that the
4790 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4791 * mandated semantics for out of range shifts.
4793 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4794 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4796 switch (shift_type) {
4797 case A64_SHIFT_TYPE_LSL:
4798 tcg_gen_shl_i64(dst, src, shift_amount);
4799 break;
4800 case A64_SHIFT_TYPE_LSR:
4801 tcg_gen_shr_i64(dst, src, shift_amount);
4802 break;
4803 case A64_SHIFT_TYPE_ASR:
4804 if (!sf) {
4805 tcg_gen_ext32s_i64(dst, src);
4807 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4808 break;
4809 case A64_SHIFT_TYPE_ROR:
4810 if (sf) {
4811 tcg_gen_rotr_i64(dst, src, shift_amount);
4812 } else {
4813 TCGv_i32 t0, t1;
4814 t0 = tcg_temp_new_i32();
4815 t1 = tcg_temp_new_i32();
4816 tcg_gen_extrl_i64_i32(t0, src);
4817 tcg_gen_extrl_i64_i32(t1, shift_amount);
4818 tcg_gen_rotr_i32(t0, t0, t1);
4819 tcg_gen_extu_i32_i64(dst, t0);
4820 tcg_temp_free_i32(t0);
4821 tcg_temp_free_i32(t1);
4823 break;
4824 default:
4825 assert(FALSE); /* all shift types should be handled */
4826 break;
4829 if (!sf) { /* zero extend final result */
4830 tcg_gen_ext32u_i64(dst, dst);
4834 /* Shift a TCGv src by immediate, put result in dst.
4835 * The shift amount must be in range (this should always be true as the
4836 * relevant instructions will UNDEF on bad shift immediates).
4838 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4839 enum a64_shift_type shift_type, unsigned int shift_i)
4841 assert(shift_i < (sf ? 64 : 32));
4843 if (shift_i == 0) {
4844 tcg_gen_mov_i64(dst, src);
4845 } else {
4846 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4850 /* Logical (shifted register)
4851 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4852 * +----+-----+-----------+-------+---+------+--------+------+------+
4853 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4854 * +----+-----+-----------+-------+---+------+--------+------+------+
4856 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4858 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4859 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4861 sf = extract32(insn, 31, 1);
4862 opc = extract32(insn, 29, 2);
4863 shift_type = extract32(insn, 22, 2);
4864 invert = extract32(insn, 21, 1);
4865 rm = extract32(insn, 16, 5);
4866 shift_amount = extract32(insn, 10, 6);
4867 rn = extract32(insn, 5, 5);
4868 rd = extract32(insn, 0, 5);
4870 if (!sf && (shift_amount & (1 << 5))) {
4871 unallocated_encoding(s);
4872 return;
4875 tcg_rd = cpu_reg(s, rd);
4877 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4878 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4879 * register-register MOV and MVN, so it is worth special casing.
4881 tcg_rm = cpu_reg(s, rm);
4882 if (invert) {
4883 tcg_gen_not_i64(tcg_rd, tcg_rm);
4884 if (!sf) {
4885 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4887 } else {
4888 if (sf) {
4889 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4890 } else {
4891 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4894 return;
4897 tcg_rm = read_cpu_reg(s, rm, sf);
4899 if (shift_amount) {
4900 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4903 tcg_rn = cpu_reg(s, rn);
4905 switch (opc | (invert << 2)) {
4906 case 0: /* AND */
4907 case 3: /* ANDS */
4908 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4909 break;
4910 case 1: /* ORR */
4911 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4912 break;
4913 case 2: /* EOR */
4914 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4915 break;
4916 case 4: /* BIC */
4917 case 7: /* BICS */
4918 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4919 break;
4920 case 5: /* ORN */
4921 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4922 break;
4923 case 6: /* EON */
4924 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4925 break;
4926 default:
4927 assert(FALSE);
4928 break;
4931 if (!sf) {
4932 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4935 if (opc == 3) {
4936 gen_logic_CC(sf, tcg_rd);
4941 * Add/subtract (extended register)
4943 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4944 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4945 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4946 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4948 * sf: 0 -> 32bit, 1 -> 64bit
4949 * op: 0 -> add , 1 -> sub
4950 * S: 1 -> set flags
4951 * opt: 00
4952 * option: extension type (see DecodeRegExtend)
4953 * imm3: optional shift to Rm
4955 * Rd = Rn + LSL(extend(Rm), amount)
4957 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4959 int rd = extract32(insn, 0, 5);
4960 int rn = extract32(insn, 5, 5);
4961 int imm3 = extract32(insn, 10, 3);
4962 int option = extract32(insn, 13, 3);
4963 int rm = extract32(insn, 16, 5);
4964 int opt = extract32(insn, 22, 2);
4965 bool setflags = extract32(insn, 29, 1);
4966 bool sub_op = extract32(insn, 30, 1);
4967 bool sf = extract32(insn, 31, 1);
4969 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4970 TCGv_i64 tcg_rd;
4971 TCGv_i64 tcg_result;
4973 if (imm3 > 4 || opt != 0) {
4974 unallocated_encoding(s);
4975 return;
4978 /* non-flag setting ops may use SP */
4979 if (!setflags) {
4980 tcg_rd = cpu_reg_sp(s, rd);
4981 } else {
4982 tcg_rd = cpu_reg(s, rd);
4984 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4986 tcg_rm = read_cpu_reg(s, rm, sf);
4987 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4989 tcg_result = tcg_temp_new_i64();
4991 if (!setflags) {
4992 if (sub_op) {
4993 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4994 } else {
4995 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4997 } else {
4998 if (sub_op) {
4999 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5000 } else {
5001 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5005 if (sf) {
5006 tcg_gen_mov_i64(tcg_rd, tcg_result);
5007 } else {
5008 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5011 tcg_temp_free_i64(tcg_result);
5015 * Add/subtract (shifted register)
5017 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
5018 * +--+--+--+-----------+-----+--+-------+---------+------+------+
5019 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
5020 * +--+--+--+-----------+-----+--+-------+---------+------+------+
5022 * sf: 0 -> 32bit, 1 -> 64bit
5023 * op: 0 -> add , 1 -> sub
5024 * S: 1 -> set flags
5025 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
5026 * imm6: Shift amount to apply to Rm before the add/sub
5028 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
5030 int rd = extract32(insn, 0, 5);
5031 int rn = extract32(insn, 5, 5);
5032 int imm6 = extract32(insn, 10, 6);
5033 int rm = extract32(insn, 16, 5);
5034 int shift_type = extract32(insn, 22, 2);
5035 bool setflags = extract32(insn, 29, 1);
5036 bool sub_op = extract32(insn, 30, 1);
5037 bool sf = extract32(insn, 31, 1);
5039 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5040 TCGv_i64 tcg_rn, tcg_rm;
5041 TCGv_i64 tcg_result;
5043 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
5044 unallocated_encoding(s);
5045 return;
5048 tcg_rn = read_cpu_reg(s, rn, sf);
5049 tcg_rm = read_cpu_reg(s, rm, sf);
5051 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
5053 tcg_result = tcg_temp_new_i64();
5055 if (!setflags) {
5056 if (sub_op) {
5057 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5058 } else {
5059 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5061 } else {
5062 if (sub_op) {
5063 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5064 } else {
5065 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5069 if (sf) {
5070 tcg_gen_mov_i64(tcg_rd, tcg_result);
5071 } else {
5072 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5075 tcg_temp_free_i64(tcg_result);
5078 /* Data-processing (3 source)
5080 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
5081 * +--+------+-----------+------+------+----+------+------+------+
5082 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
5083 * +--+------+-----------+------+------+----+------+------+------+
5085 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
5087 int rd = extract32(insn, 0, 5);
5088 int rn = extract32(insn, 5, 5);
5089 int ra = extract32(insn, 10, 5);
5090 int rm = extract32(insn, 16, 5);
5091 int op_id = (extract32(insn, 29, 3) << 4) |
5092 (extract32(insn, 21, 3) << 1) |
5093 extract32(insn, 15, 1);
5094 bool sf = extract32(insn, 31, 1);
5095 bool is_sub = extract32(op_id, 0, 1);
5096 bool is_high = extract32(op_id, 2, 1);
5097 bool is_signed = false;
5098 TCGv_i64 tcg_op1;
5099 TCGv_i64 tcg_op2;
5100 TCGv_i64 tcg_tmp;
5102 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
5103 switch (op_id) {
5104 case 0x42: /* SMADDL */
5105 case 0x43: /* SMSUBL */
5106 case 0x44: /* SMULH */
5107 is_signed = true;
5108 break;
5109 case 0x0: /* MADD (32bit) */
5110 case 0x1: /* MSUB (32bit) */
5111 case 0x40: /* MADD (64bit) */
5112 case 0x41: /* MSUB (64bit) */
5113 case 0x4a: /* UMADDL */
5114 case 0x4b: /* UMSUBL */
5115 case 0x4c: /* UMULH */
5116 break;
5117 default:
5118 unallocated_encoding(s);
5119 return;
5122 if (is_high) {
5123 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5124 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5125 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5126 TCGv_i64 tcg_rm = cpu_reg(s, rm);
5128 if (is_signed) {
5129 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5130 } else {
5131 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5134 tcg_temp_free_i64(low_bits);
5135 return;
5138 tcg_op1 = tcg_temp_new_i64();
5139 tcg_op2 = tcg_temp_new_i64();
5140 tcg_tmp = tcg_temp_new_i64();
5142 if (op_id < 0x42) {
5143 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5144 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5145 } else {
5146 if (is_signed) {
5147 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5148 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5149 } else {
5150 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5151 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5155 if (ra == 31 && !is_sub) {
5156 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5157 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5158 } else {
5159 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5160 if (is_sub) {
5161 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5162 } else {
5163 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5167 if (!sf) {
5168 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5171 tcg_temp_free_i64(tcg_op1);
5172 tcg_temp_free_i64(tcg_op2);
5173 tcg_temp_free_i64(tcg_tmp);
5176 /* Add/subtract (with carry)
5177 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
5178 * +--+--+--+------------------------+------+-------------+------+-----+
5179 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
5180 * +--+--+--+------------------------+------+-------------+------+-----+
5183 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5185 unsigned int sf, op, setflags, rm, rn, rd;
5186 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5188 sf = extract32(insn, 31, 1);
5189 op = extract32(insn, 30, 1);
5190 setflags = extract32(insn, 29, 1);
5191 rm = extract32(insn, 16, 5);
5192 rn = extract32(insn, 5, 5);
5193 rd = extract32(insn, 0, 5);
5195 tcg_rd = cpu_reg(s, rd);
5196 tcg_rn = cpu_reg(s, rn);
5198 if (op) {
5199 tcg_y = new_tmp_a64(s);
5200 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5201 } else {
5202 tcg_y = cpu_reg(s, rm);
5205 if (setflags) {
5206 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5207 } else {
5208 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5213 * Rotate right into flags
5214 * 31 30 29 21 15 10 5 4 0
5215 * +--+--+--+-----------------+--------+-----------+------+--+------+
5216 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
5217 * +--+--+--+-----------------+--------+-----------+------+--+------+
5219 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5221 int mask = extract32(insn, 0, 4);
5222 int o2 = extract32(insn, 4, 1);
5223 int rn = extract32(insn, 5, 5);
5224 int imm6 = extract32(insn, 15, 6);
5225 int sf_op_s = extract32(insn, 29, 3);
5226 TCGv_i64 tcg_rn;
5227 TCGv_i32 nzcv;
5229 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5230 unallocated_encoding(s);
5231 return;
5234 tcg_rn = read_cpu_reg(s, rn, 1);
5235 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5237 nzcv = tcg_temp_new_i32();
5238 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5240 if (mask & 8) { /* N */
5241 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5243 if (mask & 4) { /* Z */
5244 tcg_gen_not_i32(cpu_ZF, nzcv);
5245 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5247 if (mask & 2) { /* C */
5248 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5250 if (mask & 1) { /* V */
5251 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5254 tcg_temp_free_i32(nzcv);
5258 * Evaluate into flags
5259 * 31 30 29 21 15 14 10 5 4 0
5260 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5261 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
5262 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5264 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5266 int o3_mask = extract32(insn, 0, 5);
5267 int rn = extract32(insn, 5, 5);
5268 int o2 = extract32(insn, 15, 6);
5269 int sz = extract32(insn, 14, 1);
5270 int sf_op_s = extract32(insn, 29, 3);
5271 TCGv_i32 tmp;
5272 int shift;
5274 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5275 !dc_isar_feature(aa64_condm_4, s)) {
5276 unallocated_encoding(s);
5277 return;
5279 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
5281 tmp = tcg_temp_new_i32();
5282 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5283 tcg_gen_shli_i32(cpu_NF, tmp, shift);
5284 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5285 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5286 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5287 tcg_temp_free_i32(tmp);
5290 /* Conditional compare (immediate / register)
5291 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5292 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5293 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
5294 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5295 * [1] y [0] [0]
5297 static void disas_cc(DisasContext *s, uint32_t insn)
5299 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5300 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5301 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5302 DisasCompare c;
5304 if (!extract32(insn, 29, 1)) {
5305 unallocated_encoding(s);
5306 return;
5308 if (insn & (1 << 10 | 1 << 4)) {
5309 unallocated_encoding(s);
5310 return;
5312 sf = extract32(insn, 31, 1);
5313 op = extract32(insn, 30, 1);
5314 is_imm = extract32(insn, 11, 1);
5315 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5316 cond = extract32(insn, 12, 4);
5317 rn = extract32(insn, 5, 5);
5318 nzcv = extract32(insn, 0, 4);
5320 /* Set T0 = !COND. */
5321 tcg_t0 = tcg_temp_new_i32();
5322 arm_test_cc(&c, cond);
5323 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5324 arm_free_cc(&c);
5326 /* Load the arguments for the new comparison. */
5327 if (is_imm) {
5328 tcg_y = new_tmp_a64(s);
5329 tcg_gen_movi_i64(tcg_y, y);
5330 } else {
5331 tcg_y = cpu_reg(s, y);
5333 tcg_rn = cpu_reg(s, rn);
5335 /* Set the flags for the new comparison. */
5336 tcg_tmp = tcg_temp_new_i64();
5337 if (op) {
5338 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5339 } else {
5340 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5342 tcg_temp_free_i64(tcg_tmp);
5344 /* If COND was false, force the flags to #nzcv. Compute two masks
5345 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5346 * For tcg hosts that support ANDC, we can make do with just T1.
5347 * In either case, allow the tcg optimizer to delete any unused mask.
5349 tcg_t1 = tcg_temp_new_i32();
5350 tcg_t2 = tcg_temp_new_i32();
5351 tcg_gen_neg_i32(tcg_t1, tcg_t0);
5352 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5354 if (nzcv & 8) { /* N */
5355 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5356 } else {
5357 if (TCG_TARGET_HAS_andc_i32) {
5358 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5359 } else {
5360 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5363 if (nzcv & 4) { /* Z */
5364 if (TCG_TARGET_HAS_andc_i32) {
5365 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5366 } else {
5367 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5369 } else {
5370 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5372 if (nzcv & 2) { /* C */
5373 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5374 } else {
5375 if (TCG_TARGET_HAS_andc_i32) {
5376 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5377 } else {
5378 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5381 if (nzcv & 1) { /* V */
5382 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5383 } else {
5384 if (TCG_TARGET_HAS_andc_i32) {
5385 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5386 } else {
5387 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5390 tcg_temp_free_i32(tcg_t0);
5391 tcg_temp_free_i32(tcg_t1);
5392 tcg_temp_free_i32(tcg_t2);
5395 /* Conditional select
5396 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
5397 * +----+----+---+-----------------+------+------+-----+------+------+
5398 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
5399 * +----+----+---+-----------------+------+------+-----+------+------+
5401 static void disas_cond_select(DisasContext *s, uint32_t insn)
5403 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5404 TCGv_i64 tcg_rd, zero;
5405 DisasCompare64 c;
5407 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5408 /* S == 1 or op2<1> == 1 */
5409 unallocated_encoding(s);
5410 return;
5412 sf = extract32(insn, 31, 1);
5413 else_inv = extract32(insn, 30, 1);
5414 rm = extract32(insn, 16, 5);
5415 cond = extract32(insn, 12, 4);
5416 else_inc = extract32(insn, 10, 1);
5417 rn = extract32(insn, 5, 5);
5418 rd = extract32(insn, 0, 5);
5420 tcg_rd = cpu_reg(s, rd);
5422 a64_test_cc(&c, cond);
5423 zero = tcg_constant_i64(0);
5425 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5426 /* CSET & CSETM. */
5427 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5428 if (else_inv) {
5429 tcg_gen_neg_i64(tcg_rd, tcg_rd);
5431 } else {
5432 TCGv_i64 t_true = cpu_reg(s, rn);
5433 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5434 if (else_inv && else_inc) {
5435 tcg_gen_neg_i64(t_false, t_false);
5436 } else if (else_inv) {
5437 tcg_gen_not_i64(t_false, t_false);
5438 } else if (else_inc) {
5439 tcg_gen_addi_i64(t_false, t_false, 1);
5441 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5444 a64_free_cc(&c);
5446 if (!sf) {
5447 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5451 static void handle_clz(DisasContext *s, unsigned int sf,
5452 unsigned int rn, unsigned int rd)
5454 TCGv_i64 tcg_rd, tcg_rn;
5455 tcg_rd = cpu_reg(s, rd);
5456 tcg_rn = cpu_reg(s, rn);
5458 if (sf) {
5459 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5460 } else {
5461 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5462 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5463 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5464 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5465 tcg_temp_free_i32(tcg_tmp32);
5469 static void handle_cls(DisasContext *s, unsigned int sf,
5470 unsigned int rn, unsigned int rd)
5472 TCGv_i64 tcg_rd, tcg_rn;
5473 tcg_rd = cpu_reg(s, rd);
5474 tcg_rn = cpu_reg(s, rn);
5476 if (sf) {
5477 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5478 } else {
5479 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5480 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5481 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5482 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5483 tcg_temp_free_i32(tcg_tmp32);
5487 static void handle_rbit(DisasContext *s, unsigned int sf,
5488 unsigned int rn, unsigned int rd)
5490 TCGv_i64 tcg_rd, tcg_rn;
5491 tcg_rd = cpu_reg(s, rd);
5492 tcg_rn = cpu_reg(s, rn);
5494 if (sf) {
5495 gen_helper_rbit64(tcg_rd, tcg_rn);
5496 } else {
5497 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5498 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5499 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5500 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5501 tcg_temp_free_i32(tcg_tmp32);
5505 /* REV with sf==1, opcode==3 ("REV64") */
5506 static void handle_rev64(DisasContext *s, unsigned int sf,
5507 unsigned int rn, unsigned int rd)
5509 if (!sf) {
5510 unallocated_encoding(s);
5511 return;
5513 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5516 /* REV with sf==0, opcode==2
5517 * REV32 (sf==1, opcode==2)
5519 static void handle_rev32(DisasContext *s, unsigned int sf,
5520 unsigned int rn, unsigned int rd)
5522 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5523 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5525 if (sf) {
5526 tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5527 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5528 } else {
5529 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5533 /* REV16 (opcode==1) */
5534 static void handle_rev16(DisasContext *s, unsigned int sf,
5535 unsigned int rn, unsigned int rd)
5537 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5538 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5539 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5540 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5542 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5543 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5544 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5545 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5546 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5548 tcg_temp_free_i64(tcg_tmp);
5551 /* Data-processing (1 source)
5552 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5553 * +----+---+---+-----------------+---------+--------+------+------+
5554 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
5555 * +----+---+---+-----------------+---------+--------+------+------+
5557 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5559 unsigned int sf, opcode, opcode2, rn, rd;
5560 TCGv_i64 tcg_rd;
5562 if (extract32(insn, 29, 1)) {
5563 unallocated_encoding(s);
5564 return;
5567 sf = extract32(insn, 31, 1);
5568 opcode = extract32(insn, 10, 6);
5569 opcode2 = extract32(insn, 16, 5);
5570 rn = extract32(insn, 5, 5);
5571 rd = extract32(insn, 0, 5);
5573 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5575 switch (MAP(sf, opcode2, opcode)) {
5576 case MAP(0, 0x00, 0x00): /* RBIT */
5577 case MAP(1, 0x00, 0x00):
5578 handle_rbit(s, sf, rn, rd);
5579 break;
5580 case MAP(0, 0x00, 0x01): /* REV16 */
5581 case MAP(1, 0x00, 0x01):
5582 handle_rev16(s, sf, rn, rd);
5583 break;
5584 case MAP(0, 0x00, 0x02): /* REV/REV32 */
5585 case MAP(1, 0x00, 0x02):
5586 handle_rev32(s, sf, rn, rd);
5587 break;
5588 case MAP(1, 0x00, 0x03): /* REV64 */
5589 handle_rev64(s, sf, rn, rd);
5590 break;
5591 case MAP(0, 0x00, 0x04): /* CLZ */
5592 case MAP(1, 0x00, 0x04):
5593 handle_clz(s, sf, rn, rd);
5594 break;
5595 case MAP(0, 0x00, 0x05): /* CLS */
5596 case MAP(1, 0x00, 0x05):
5597 handle_cls(s, sf, rn, rd);
5598 break;
5599 case MAP(1, 0x01, 0x00): /* PACIA */
5600 if (s->pauth_active) {
5601 tcg_rd = cpu_reg(s, rd);
5602 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5603 } else if (!dc_isar_feature(aa64_pauth, s)) {
5604 goto do_unallocated;
5606 break;
5607 case MAP(1, 0x01, 0x01): /* PACIB */
5608 if (s->pauth_active) {
5609 tcg_rd = cpu_reg(s, rd);
5610 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5611 } else if (!dc_isar_feature(aa64_pauth, s)) {
5612 goto do_unallocated;
5614 break;
5615 case MAP(1, 0x01, 0x02): /* PACDA */
5616 if (s->pauth_active) {
5617 tcg_rd = cpu_reg(s, rd);
5618 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5619 } else if (!dc_isar_feature(aa64_pauth, s)) {
5620 goto do_unallocated;
5622 break;
5623 case MAP(1, 0x01, 0x03): /* PACDB */
5624 if (s->pauth_active) {
5625 tcg_rd = cpu_reg(s, rd);
5626 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5627 } else if (!dc_isar_feature(aa64_pauth, s)) {
5628 goto do_unallocated;
5630 break;
5631 case MAP(1, 0x01, 0x04): /* AUTIA */
5632 if (s->pauth_active) {
5633 tcg_rd = cpu_reg(s, rd);
5634 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5635 } else if (!dc_isar_feature(aa64_pauth, s)) {
5636 goto do_unallocated;
5638 break;
5639 case MAP(1, 0x01, 0x05): /* AUTIB */
5640 if (s->pauth_active) {
5641 tcg_rd = cpu_reg(s, rd);
5642 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5643 } else if (!dc_isar_feature(aa64_pauth, s)) {
5644 goto do_unallocated;
5646 break;
5647 case MAP(1, 0x01, 0x06): /* AUTDA */
5648 if (s->pauth_active) {
5649 tcg_rd = cpu_reg(s, rd);
5650 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5651 } else if (!dc_isar_feature(aa64_pauth, s)) {
5652 goto do_unallocated;
5654 break;
5655 case MAP(1, 0x01, 0x07): /* AUTDB */
5656 if (s->pauth_active) {
5657 tcg_rd = cpu_reg(s, rd);
5658 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5659 } else if (!dc_isar_feature(aa64_pauth, s)) {
5660 goto do_unallocated;
5662 break;
5663 case MAP(1, 0x01, 0x08): /* PACIZA */
5664 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5665 goto do_unallocated;
5666 } else if (s->pauth_active) {
5667 tcg_rd = cpu_reg(s, rd);
5668 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5670 break;
5671 case MAP(1, 0x01, 0x09): /* PACIZB */
5672 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5673 goto do_unallocated;
5674 } else if (s->pauth_active) {
5675 tcg_rd = cpu_reg(s, rd);
5676 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5678 break;
5679 case MAP(1, 0x01, 0x0a): /* PACDZA */
5680 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5681 goto do_unallocated;
5682 } else if (s->pauth_active) {
5683 tcg_rd = cpu_reg(s, rd);
5684 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5686 break;
5687 case MAP(1, 0x01, 0x0b): /* PACDZB */
5688 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5689 goto do_unallocated;
5690 } else if (s->pauth_active) {
5691 tcg_rd = cpu_reg(s, rd);
5692 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5694 break;
5695 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5696 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5697 goto do_unallocated;
5698 } else if (s->pauth_active) {
5699 tcg_rd = cpu_reg(s, rd);
5700 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5702 break;
5703 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5704 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5705 goto do_unallocated;
5706 } else if (s->pauth_active) {
5707 tcg_rd = cpu_reg(s, rd);
5708 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5710 break;
5711 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5712 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5713 goto do_unallocated;
5714 } else if (s->pauth_active) {
5715 tcg_rd = cpu_reg(s, rd);
5716 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5718 break;
5719 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5720 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5721 goto do_unallocated;
5722 } else if (s->pauth_active) {
5723 tcg_rd = cpu_reg(s, rd);
5724 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5726 break;
5727 case MAP(1, 0x01, 0x10): /* XPACI */
5728 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5729 goto do_unallocated;
5730 } else if (s->pauth_active) {
5731 tcg_rd = cpu_reg(s, rd);
5732 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5734 break;
5735 case MAP(1, 0x01, 0x11): /* XPACD */
5736 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5737 goto do_unallocated;
5738 } else if (s->pauth_active) {
5739 tcg_rd = cpu_reg(s, rd);
5740 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5742 break;
5743 default:
5744 do_unallocated:
5745 unallocated_encoding(s);
5746 break;
5749 #undef MAP
5752 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5753 unsigned int rm, unsigned int rn, unsigned int rd)
5755 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5756 tcg_rd = cpu_reg(s, rd);
5758 if (!sf && is_signed) {
5759 tcg_n = new_tmp_a64(s);
5760 tcg_m = new_tmp_a64(s);
5761 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5762 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5763 } else {
5764 tcg_n = read_cpu_reg(s, rn, sf);
5765 tcg_m = read_cpu_reg(s, rm, sf);
5768 if (is_signed) {
5769 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5770 } else {
5771 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5774 if (!sf) { /* zero extend final result */
5775 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5779 /* LSLV, LSRV, ASRV, RORV */
5780 static void handle_shift_reg(DisasContext *s,
5781 enum a64_shift_type shift_type, unsigned int sf,
5782 unsigned int rm, unsigned int rn, unsigned int rd)
5784 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5785 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5786 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5788 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5789 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5790 tcg_temp_free_i64(tcg_shift);
5793 /* CRC32[BHWX], CRC32C[BHWX] */
5794 static void handle_crc32(DisasContext *s,
5795 unsigned int sf, unsigned int sz, bool crc32c,
5796 unsigned int rm, unsigned int rn, unsigned int rd)
5798 TCGv_i64 tcg_acc, tcg_val;
5799 TCGv_i32 tcg_bytes;
5801 if (!dc_isar_feature(aa64_crc32, s)
5802 || (sf == 1 && sz != 3)
5803 || (sf == 0 && sz == 3)) {
5804 unallocated_encoding(s);
5805 return;
5808 if (sz == 3) {
5809 tcg_val = cpu_reg(s, rm);
5810 } else {
5811 uint64_t mask;
5812 switch (sz) {
5813 case 0:
5814 mask = 0xFF;
5815 break;
5816 case 1:
5817 mask = 0xFFFF;
5818 break;
5819 case 2:
5820 mask = 0xFFFFFFFF;
5821 break;
5822 default:
5823 g_assert_not_reached();
5825 tcg_val = new_tmp_a64(s);
5826 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5829 tcg_acc = cpu_reg(s, rn);
5830 tcg_bytes = tcg_constant_i32(1 << sz);
5832 if (crc32c) {
5833 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5834 } else {
5835 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5839 /* Data-processing (2 source)
5840 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5841 * +----+---+---+-----------------+------+--------+------+------+
5842 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5843 * +----+---+---+-----------------+------+--------+------+------+
5845 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5847 unsigned int sf, rm, opcode, rn, rd, setflag;
5848 sf = extract32(insn, 31, 1);
5849 setflag = extract32(insn, 29, 1);
5850 rm = extract32(insn, 16, 5);
5851 opcode = extract32(insn, 10, 6);
5852 rn = extract32(insn, 5, 5);
5853 rd = extract32(insn, 0, 5);
5855 if (setflag && opcode != 0) {
5856 unallocated_encoding(s);
5857 return;
5860 switch (opcode) {
5861 case 0: /* SUBP(S) */
5862 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5863 goto do_unallocated;
5864 } else {
5865 TCGv_i64 tcg_n, tcg_m, tcg_d;
5867 tcg_n = read_cpu_reg_sp(s, rn, true);
5868 tcg_m = read_cpu_reg_sp(s, rm, true);
5869 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5870 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5871 tcg_d = cpu_reg(s, rd);
5873 if (setflag) {
5874 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5875 } else {
5876 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5879 break;
5880 case 2: /* UDIV */
5881 handle_div(s, false, sf, rm, rn, rd);
5882 break;
5883 case 3: /* SDIV */
5884 handle_div(s, true, sf, rm, rn, rd);
5885 break;
5886 case 4: /* IRG */
5887 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5888 goto do_unallocated;
5890 if (s->ata) {
5891 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5892 cpu_reg_sp(s, rn), cpu_reg(s, rm));
5893 } else {
5894 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5895 cpu_reg_sp(s, rn));
5897 break;
5898 case 5: /* GMI */
5899 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5900 goto do_unallocated;
5901 } else {
5902 TCGv_i64 t = tcg_temp_new_i64();
5904 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5905 tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5906 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5908 tcg_temp_free_i64(t);
5910 break;
5911 case 8: /* LSLV */
5912 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5913 break;
5914 case 9: /* LSRV */
5915 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5916 break;
5917 case 10: /* ASRV */
5918 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5919 break;
5920 case 11: /* RORV */
5921 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5922 break;
5923 case 12: /* PACGA */
5924 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5925 goto do_unallocated;
5927 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5928 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5929 break;
5930 case 16:
5931 case 17:
5932 case 18:
5933 case 19:
5934 case 20:
5935 case 21:
5936 case 22:
5937 case 23: /* CRC32 */
5939 int sz = extract32(opcode, 0, 2);
5940 bool crc32c = extract32(opcode, 2, 1);
5941 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5942 break;
5944 default:
5945 do_unallocated:
5946 unallocated_encoding(s);
5947 break;
5952 * Data processing - register
5953 * 31 30 29 28 25 21 20 16 10 0
5954 * +--+---+--+---+-------+-----+-------+-------+---------+
5955 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5956 * +--+---+--+---+-------+-----+-------+-------+---------+
5958 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5960 int op0 = extract32(insn, 30, 1);
5961 int op1 = extract32(insn, 28, 1);
5962 int op2 = extract32(insn, 21, 4);
5963 int op3 = extract32(insn, 10, 6);
5965 if (!op1) {
5966 if (op2 & 8) {
5967 if (op2 & 1) {
5968 /* Add/sub (extended register) */
5969 disas_add_sub_ext_reg(s, insn);
5970 } else {
5971 /* Add/sub (shifted register) */
5972 disas_add_sub_reg(s, insn);
5974 } else {
5975 /* Logical (shifted register) */
5976 disas_logic_reg(s, insn);
5978 return;
5981 switch (op2) {
5982 case 0x0:
5983 switch (op3) {
5984 case 0x00: /* Add/subtract (with carry) */
5985 disas_adc_sbc(s, insn);
5986 break;
5988 case 0x01: /* Rotate right into flags */
5989 case 0x21:
5990 disas_rotate_right_into_flags(s, insn);
5991 break;
5993 case 0x02: /* Evaluate into flags */
5994 case 0x12:
5995 case 0x22:
5996 case 0x32:
5997 disas_evaluate_into_flags(s, insn);
5998 break;
6000 default:
6001 goto do_unallocated;
6003 break;
6005 case 0x2: /* Conditional compare */
6006 disas_cc(s, insn); /* both imm and reg forms */
6007 break;
6009 case 0x4: /* Conditional select */
6010 disas_cond_select(s, insn);
6011 break;
6013 case 0x6: /* Data-processing */
6014 if (op0) { /* (1 source) */
6015 disas_data_proc_1src(s, insn);
6016 } else { /* (2 source) */
6017 disas_data_proc_2src(s, insn);
6019 break;
6020 case 0x8 ... 0xf: /* (3 source) */
6021 disas_data_proc_3src(s, insn);
6022 break;
6024 default:
6025 do_unallocated:
6026 unallocated_encoding(s);
6027 break;
6031 static void handle_fp_compare(DisasContext *s, int size,
6032 unsigned int rn, unsigned int rm,
6033 bool cmp_with_zero, bool signal_all_nans)
6035 TCGv_i64 tcg_flags = tcg_temp_new_i64();
6036 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
6038 if (size == MO_64) {
6039 TCGv_i64 tcg_vn, tcg_vm;
6041 tcg_vn = read_fp_dreg(s, rn);
6042 if (cmp_with_zero) {
6043 tcg_vm = tcg_constant_i64(0);
6044 } else {
6045 tcg_vm = read_fp_dreg(s, rm);
6047 if (signal_all_nans) {
6048 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6049 } else {
6050 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6052 tcg_temp_free_i64(tcg_vn);
6053 tcg_temp_free_i64(tcg_vm);
6054 } else {
6055 TCGv_i32 tcg_vn = tcg_temp_new_i32();
6056 TCGv_i32 tcg_vm = tcg_temp_new_i32();
6058 read_vec_element_i32(s, tcg_vn, rn, 0, size);
6059 if (cmp_with_zero) {
6060 tcg_gen_movi_i32(tcg_vm, 0);
6061 } else {
6062 read_vec_element_i32(s, tcg_vm, rm, 0, size);
6065 switch (size) {
6066 case MO_32:
6067 if (signal_all_nans) {
6068 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6069 } else {
6070 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6072 break;
6073 case MO_16:
6074 if (signal_all_nans) {
6075 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6076 } else {
6077 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6079 break;
6080 default:
6081 g_assert_not_reached();
6084 tcg_temp_free_i32(tcg_vn);
6085 tcg_temp_free_i32(tcg_vm);
6088 tcg_temp_free_ptr(fpst);
6090 gen_set_nzcv(tcg_flags);
6092 tcg_temp_free_i64(tcg_flags);
6095 /* Floating point compare
6096 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
6097 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6098 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
6099 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6101 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6103 unsigned int mos, type, rm, op, rn, opc, op2r;
6104 int size;
6106 mos = extract32(insn, 29, 3);
6107 type = extract32(insn, 22, 2);
6108 rm = extract32(insn, 16, 5);
6109 op = extract32(insn, 14, 2);
6110 rn = extract32(insn, 5, 5);
6111 opc = extract32(insn, 3, 2);
6112 op2r = extract32(insn, 0, 3);
6114 if (mos || op || op2r) {
6115 unallocated_encoding(s);
6116 return;
6119 switch (type) {
6120 case 0:
6121 size = MO_32;
6122 break;
6123 case 1:
6124 size = MO_64;
6125 break;
6126 case 3:
6127 size = MO_16;
6128 if (dc_isar_feature(aa64_fp16, s)) {
6129 break;
6131 /* fallthru */
6132 default:
6133 unallocated_encoding(s);
6134 return;
6137 if (!fp_access_check(s)) {
6138 return;
6141 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6144 /* Floating point conditional compare
6145 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
6146 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6147 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
6148 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6150 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6152 unsigned int mos, type, rm, cond, rn, op, nzcv;
6153 TCGLabel *label_continue = NULL;
6154 int size;
6156 mos = extract32(insn, 29, 3);
6157 type = extract32(insn, 22, 2);
6158 rm = extract32(insn, 16, 5);
6159 cond = extract32(insn, 12, 4);
6160 rn = extract32(insn, 5, 5);
6161 op = extract32(insn, 4, 1);
6162 nzcv = extract32(insn, 0, 4);
6164 if (mos) {
6165 unallocated_encoding(s);
6166 return;
6169 switch (type) {
6170 case 0:
6171 size = MO_32;
6172 break;
6173 case 1:
6174 size = MO_64;
6175 break;
6176 case 3:
6177 size = MO_16;
6178 if (dc_isar_feature(aa64_fp16, s)) {
6179 break;
6181 /* fallthru */
6182 default:
6183 unallocated_encoding(s);
6184 return;
6187 if (!fp_access_check(s)) {
6188 return;
6191 if (cond < 0x0e) { /* not always */
6192 TCGLabel *label_match = gen_new_label();
6193 label_continue = gen_new_label();
6194 arm_gen_test_cc(cond, label_match);
6195 /* nomatch: */
6196 gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6197 tcg_gen_br(label_continue);
6198 gen_set_label(label_match);
6201 handle_fp_compare(s, size, rn, rm, false, op);
6203 if (cond < 0x0e) {
6204 gen_set_label(label_continue);
6208 /* Floating point conditional select
6209 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6210 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6211 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
6212 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6214 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6216 unsigned int mos, type, rm, cond, rn, rd;
6217 TCGv_i64 t_true, t_false;
6218 DisasCompare64 c;
6219 MemOp sz;
6221 mos = extract32(insn, 29, 3);
6222 type = extract32(insn, 22, 2);
6223 rm = extract32(insn, 16, 5);
6224 cond = extract32(insn, 12, 4);
6225 rn = extract32(insn, 5, 5);
6226 rd = extract32(insn, 0, 5);
6228 if (mos) {
6229 unallocated_encoding(s);
6230 return;
6233 switch (type) {
6234 case 0:
6235 sz = MO_32;
6236 break;
6237 case 1:
6238 sz = MO_64;
6239 break;
6240 case 3:
6241 sz = MO_16;
6242 if (dc_isar_feature(aa64_fp16, s)) {
6243 break;
6245 /* fallthru */
6246 default:
6247 unallocated_encoding(s);
6248 return;
6251 if (!fp_access_check(s)) {
6252 return;
6255 /* Zero extend sreg & hreg inputs to 64 bits now. */
6256 t_true = tcg_temp_new_i64();
6257 t_false = tcg_temp_new_i64();
6258 read_vec_element(s, t_true, rn, 0, sz);
6259 read_vec_element(s, t_false, rm, 0, sz);
6261 a64_test_cc(&c, cond);
6262 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6263 t_true, t_false);
6264 tcg_temp_free_i64(t_false);
6265 a64_free_cc(&c);
6267 /* Note that sregs & hregs write back zeros to the high bits,
6268 and we've already done the zero-extension. */
6269 write_fp_dreg(s, rd, t_true);
6270 tcg_temp_free_i64(t_true);
6273 /* Floating-point data-processing (1 source) - half precision */
6274 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6276 TCGv_ptr fpst = NULL;
6277 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6278 TCGv_i32 tcg_res = tcg_temp_new_i32();
6280 switch (opcode) {
6281 case 0x0: /* FMOV */
6282 tcg_gen_mov_i32(tcg_res, tcg_op);
6283 break;
6284 case 0x1: /* FABS */
6285 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6286 break;
6287 case 0x2: /* FNEG */
6288 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6289 break;
6290 case 0x3: /* FSQRT */
6291 fpst = fpstatus_ptr(FPST_FPCR_F16);
6292 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6293 break;
6294 case 0x8: /* FRINTN */
6295 case 0x9: /* FRINTP */
6296 case 0xa: /* FRINTM */
6297 case 0xb: /* FRINTZ */
6298 case 0xc: /* FRINTA */
6300 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
6301 fpst = fpstatus_ptr(FPST_FPCR_F16);
6303 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6304 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6306 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6307 tcg_temp_free_i32(tcg_rmode);
6308 break;
6310 case 0xe: /* FRINTX */
6311 fpst = fpstatus_ptr(FPST_FPCR_F16);
6312 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6313 break;
6314 case 0xf: /* FRINTI */
6315 fpst = fpstatus_ptr(FPST_FPCR_F16);
6316 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6317 break;
6318 default:
6319 g_assert_not_reached();
6322 write_fp_sreg(s, rd, tcg_res);
6324 if (fpst) {
6325 tcg_temp_free_ptr(fpst);
6327 tcg_temp_free_i32(tcg_op);
6328 tcg_temp_free_i32(tcg_res);
6331 /* Floating-point data-processing (1 source) - single precision */
6332 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6334 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6335 TCGv_i32 tcg_op, tcg_res;
6336 TCGv_ptr fpst;
6337 int rmode = -1;
6339 tcg_op = read_fp_sreg(s, rn);
6340 tcg_res = tcg_temp_new_i32();
6342 switch (opcode) {
6343 case 0x0: /* FMOV */
6344 tcg_gen_mov_i32(tcg_res, tcg_op);
6345 goto done;
6346 case 0x1: /* FABS */
6347 gen_helper_vfp_abss(tcg_res, tcg_op);
6348 goto done;
6349 case 0x2: /* FNEG */
6350 gen_helper_vfp_negs(tcg_res, tcg_op);
6351 goto done;
6352 case 0x3: /* FSQRT */
6353 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6354 goto done;
6355 case 0x6: /* BFCVT */
6356 gen_fpst = gen_helper_bfcvt;
6357 break;
6358 case 0x8: /* FRINTN */
6359 case 0x9: /* FRINTP */
6360 case 0xa: /* FRINTM */
6361 case 0xb: /* FRINTZ */
6362 case 0xc: /* FRINTA */
6363 rmode = arm_rmode_to_sf(opcode & 7);
6364 gen_fpst = gen_helper_rints;
6365 break;
6366 case 0xe: /* FRINTX */
6367 gen_fpst = gen_helper_rints_exact;
6368 break;
6369 case 0xf: /* FRINTI */
6370 gen_fpst = gen_helper_rints;
6371 break;
6372 case 0x10: /* FRINT32Z */
6373 rmode = float_round_to_zero;
6374 gen_fpst = gen_helper_frint32_s;
6375 break;
6376 case 0x11: /* FRINT32X */
6377 gen_fpst = gen_helper_frint32_s;
6378 break;
6379 case 0x12: /* FRINT64Z */
6380 rmode = float_round_to_zero;
6381 gen_fpst = gen_helper_frint64_s;
6382 break;
6383 case 0x13: /* FRINT64X */
6384 gen_fpst = gen_helper_frint64_s;
6385 break;
6386 default:
6387 g_assert_not_reached();
6390 fpst = fpstatus_ptr(FPST_FPCR);
6391 if (rmode >= 0) {
6392 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6393 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6394 gen_fpst(tcg_res, tcg_op, fpst);
6395 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6396 tcg_temp_free_i32(tcg_rmode);
6397 } else {
6398 gen_fpst(tcg_res, tcg_op, fpst);
6400 tcg_temp_free_ptr(fpst);
6402 done:
6403 write_fp_sreg(s, rd, tcg_res);
6404 tcg_temp_free_i32(tcg_op);
6405 tcg_temp_free_i32(tcg_res);
6408 /* Floating-point data-processing (1 source) - double precision */
6409 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6411 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6412 TCGv_i64 tcg_op, tcg_res;
6413 TCGv_ptr fpst;
6414 int rmode = -1;
6416 switch (opcode) {
6417 case 0x0: /* FMOV */
6418 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6419 return;
6422 tcg_op = read_fp_dreg(s, rn);
6423 tcg_res = tcg_temp_new_i64();
6425 switch (opcode) {
6426 case 0x1: /* FABS */
6427 gen_helper_vfp_absd(tcg_res, tcg_op);
6428 goto done;
6429 case 0x2: /* FNEG */
6430 gen_helper_vfp_negd(tcg_res, tcg_op);
6431 goto done;
6432 case 0x3: /* FSQRT */
6433 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6434 goto done;
6435 case 0x8: /* FRINTN */
6436 case 0x9: /* FRINTP */
6437 case 0xa: /* FRINTM */
6438 case 0xb: /* FRINTZ */
6439 case 0xc: /* FRINTA */
6440 rmode = arm_rmode_to_sf(opcode & 7);
6441 gen_fpst = gen_helper_rintd;
6442 break;
6443 case 0xe: /* FRINTX */
6444 gen_fpst = gen_helper_rintd_exact;
6445 break;
6446 case 0xf: /* FRINTI */
6447 gen_fpst = gen_helper_rintd;
6448 break;
6449 case 0x10: /* FRINT32Z */
6450 rmode = float_round_to_zero;
6451 gen_fpst = gen_helper_frint32_d;
6452 break;
6453 case 0x11: /* FRINT32X */
6454 gen_fpst = gen_helper_frint32_d;
6455 break;
6456 case 0x12: /* FRINT64Z */
6457 rmode = float_round_to_zero;
6458 gen_fpst = gen_helper_frint64_d;
6459 break;
6460 case 0x13: /* FRINT64X */
6461 gen_fpst = gen_helper_frint64_d;
6462 break;
6463 default:
6464 g_assert_not_reached();
6467 fpst = fpstatus_ptr(FPST_FPCR);
6468 if (rmode >= 0) {
6469 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6470 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6471 gen_fpst(tcg_res, tcg_op, fpst);
6472 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6473 tcg_temp_free_i32(tcg_rmode);
6474 } else {
6475 gen_fpst(tcg_res, tcg_op, fpst);
6477 tcg_temp_free_ptr(fpst);
6479 done:
6480 write_fp_dreg(s, rd, tcg_res);
6481 tcg_temp_free_i64(tcg_op);
6482 tcg_temp_free_i64(tcg_res);
6485 static void handle_fp_fcvt(DisasContext *s, int opcode,
6486 int rd, int rn, int dtype, int ntype)
6488 switch (ntype) {
6489 case 0x0:
6491 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6492 if (dtype == 1) {
6493 /* Single to double */
6494 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6495 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6496 write_fp_dreg(s, rd, tcg_rd);
6497 tcg_temp_free_i64(tcg_rd);
6498 } else {
6499 /* Single to half */
6500 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6501 TCGv_i32 ahp = get_ahp_flag();
6502 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6504 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6505 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6506 write_fp_sreg(s, rd, tcg_rd);
6507 tcg_temp_free_i32(tcg_rd);
6508 tcg_temp_free_i32(ahp);
6509 tcg_temp_free_ptr(fpst);
6511 tcg_temp_free_i32(tcg_rn);
6512 break;
6514 case 0x1:
6516 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6517 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6518 if (dtype == 0) {
6519 /* Double to single */
6520 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6521 } else {
6522 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6523 TCGv_i32 ahp = get_ahp_flag();
6524 /* Double to half */
6525 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6526 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6527 tcg_temp_free_ptr(fpst);
6528 tcg_temp_free_i32(ahp);
6530 write_fp_sreg(s, rd, tcg_rd);
6531 tcg_temp_free_i32(tcg_rd);
6532 tcg_temp_free_i64(tcg_rn);
6533 break;
6535 case 0x3:
6537 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6538 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6539 TCGv_i32 tcg_ahp = get_ahp_flag();
6540 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6541 if (dtype == 0) {
6542 /* Half to single */
6543 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6544 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6545 write_fp_sreg(s, rd, tcg_rd);
6546 tcg_temp_free_i32(tcg_rd);
6547 } else {
6548 /* Half to double */
6549 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6550 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6551 write_fp_dreg(s, rd, tcg_rd);
6552 tcg_temp_free_i64(tcg_rd);
6554 tcg_temp_free_i32(tcg_rn);
6555 tcg_temp_free_ptr(tcg_fpst);
6556 tcg_temp_free_i32(tcg_ahp);
6557 break;
6559 default:
6560 g_assert_not_reached();
6564 /* Floating point data-processing (1 source)
6565 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
6566 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6567 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
6568 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6570 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6572 int mos = extract32(insn, 29, 3);
6573 int type = extract32(insn, 22, 2);
6574 int opcode = extract32(insn, 15, 6);
6575 int rn = extract32(insn, 5, 5);
6576 int rd = extract32(insn, 0, 5);
6578 if (mos) {
6579 goto do_unallocated;
6582 switch (opcode) {
6583 case 0x4: case 0x5: case 0x7:
6585 /* FCVT between half, single and double precision */
6586 int dtype = extract32(opcode, 0, 2);
6587 if (type == 2 || dtype == type) {
6588 goto do_unallocated;
6590 if (!fp_access_check(s)) {
6591 return;
6594 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6595 break;
6598 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6599 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6600 goto do_unallocated;
6602 /* fall through */
6603 case 0x0 ... 0x3:
6604 case 0x8 ... 0xc:
6605 case 0xe ... 0xf:
6606 /* 32-to-32 and 64-to-64 ops */
6607 switch (type) {
6608 case 0:
6609 if (!fp_access_check(s)) {
6610 return;
6612 handle_fp_1src_single(s, opcode, rd, rn);
6613 break;
6614 case 1:
6615 if (!fp_access_check(s)) {
6616 return;
6618 handle_fp_1src_double(s, opcode, rd, rn);
6619 break;
6620 case 3:
6621 if (!dc_isar_feature(aa64_fp16, s)) {
6622 goto do_unallocated;
6625 if (!fp_access_check(s)) {
6626 return;
6628 handle_fp_1src_half(s, opcode, rd, rn);
6629 break;
6630 default:
6631 goto do_unallocated;
6633 break;
6635 case 0x6:
6636 switch (type) {
6637 case 1: /* BFCVT */
6638 if (!dc_isar_feature(aa64_bf16, s)) {
6639 goto do_unallocated;
6641 if (!fp_access_check(s)) {
6642 return;
6644 handle_fp_1src_single(s, opcode, rd, rn);
6645 break;
6646 default:
6647 goto do_unallocated;
6649 break;
6651 default:
6652 do_unallocated:
6653 unallocated_encoding(s);
6654 break;
6658 /* Floating-point data-processing (2 source) - single precision */
6659 static void handle_fp_2src_single(DisasContext *s, int opcode,
6660 int rd, int rn, int rm)
6662 TCGv_i32 tcg_op1;
6663 TCGv_i32 tcg_op2;
6664 TCGv_i32 tcg_res;
6665 TCGv_ptr fpst;
6667 tcg_res = tcg_temp_new_i32();
6668 fpst = fpstatus_ptr(FPST_FPCR);
6669 tcg_op1 = read_fp_sreg(s, rn);
6670 tcg_op2 = read_fp_sreg(s, rm);
6672 switch (opcode) {
6673 case 0x0: /* FMUL */
6674 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6675 break;
6676 case 0x1: /* FDIV */
6677 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6678 break;
6679 case 0x2: /* FADD */
6680 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6681 break;
6682 case 0x3: /* FSUB */
6683 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6684 break;
6685 case 0x4: /* FMAX */
6686 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6687 break;
6688 case 0x5: /* FMIN */
6689 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6690 break;
6691 case 0x6: /* FMAXNM */
6692 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6693 break;
6694 case 0x7: /* FMINNM */
6695 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6696 break;
6697 case 0x8: /* FNMUL */
6698 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6699 gen_helper_vfp_negs(tcg_res, tcg_res);
6700 break;
6703 write_fp_sreg(s, rd, tcg_res);
6705 tcg_temp_free_ptr(fpst);
6706 tcg_temp_free_i32(tcg_op1);
6707 tcg_temp_free_i32(tcg_op2);
6708 tcg_temp_free_i32(tcg_res);
6711 /* Floating-point data-processing (2 source) - double precision */
6712 static void handle_fp_2src_double(DisasContext *s, int opcode,
6713 int rd, int rn, int rm)
6715 TCGv_i64 tcg_op1;
6716 TCGv_i64 tcg_op2;
6717 TCGv_i64 tcg_res;
6718 TCGv_ptr fpst;
6720 tcg_res = tcg_temp_new_i64();
6721 fpst = fpstatus_ptr(FPST_FPCR);
6722 tcg_op1 = read_fp_dreg(s, rn);
6723 tcg_op2 = read_fp_dreg(s, rm);
6725 switch (opcode) {
6726 case 0x0: /* FMUL */
6727 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6728 break;
6729 case 0x1: /* FDIV */
6730 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6731 break;
6732 case 0x2: /* FADD */
6733 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6734 break;
6735 case 0x3: /* FSUB */
6736 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6737 break;
6738 case 0x4: /* FMAX */
6739 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6740 break;
6741 case 0x5: /* FMIN */
6742 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6743 break;
6744 case 0x6: /* FMAXNM */
6745 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6746 break;
6747 case 0x7: /* FMINNM */
6748 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6749 break;
6750 case 0x8: /* FNMUL */
6751 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6752 gen_helper_vfp_negd(tcg_res, tcg_res);
6753 break;
6756 write_fp_dreg(s, rd, tcg_res);
6758 tcg_temp_free_ptr(fpst);
6759 tcg_temp_free_i64(tcg_op1);
6760 tcg_temp_free_i64(tcg_op2);
6761 tcg_temp_free_i64(tcg_res);
6764 /* Floating-point data-processing (2 source) - half precision */
6765 static void handle_fp_2src_half(DisasContext *s, int opcode,
6766 int rd, int rn, int rm)
6768 TCGv_i32 tcg_op1;
6769 TCGv_i32 tcg_op2;
6770 TCGv_i32 tcg_res;
6771 TCGv_ptr fpst;
6773 tcg_res = tcg_temp_new_i32();
6774 fpst = fpstatus_ptr(FPST_FPCR_F16);
6775 tcg_op1 = read_fp_hreg(s, rn);
6776 tcg_op2 = read_fp_hreg(s, rm);
6778 switch (opcode) {
6779 case 0x0: /* FMUL */
6780 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6781 break;
6782 case 0x1: /* FDIV */
6783 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6784 break;
6785 case 0x2: /* FADD */
6786 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6787 break;
6788 case 0x3: /* FSUB */
6789 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6790 break;
6791 case 0x4: /* FMAX */
6792 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6793 break;
6794 case 0x5: /* FMIN */
6795 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6796 break;
6797 case 0x6: /* FMAXNM */
6798 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6799 break;
6800 case 0x7: /* FMINNM */
6801 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6802 break;
6803 case 0x8: /* FNMUL */
6804 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6805 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6806 break;
6807 default:
6808 g_assert_not_reached();
6811 write_fp_sreg(s, rd, tcg_res);
6813 tcg_temp_free_ptr(fpst);
6814 tcg_temp_free_i32(tcg_op1);
6815 tcg_temp_free_i32(tcg_op2);
6816 tcg_temp_free_i32(tcg_res);
6819 /* Floating point data-processing (2 source)
6820 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6821 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6822 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6823 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6825 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6827 int mos = extract32(insn, 29, 3);
6828 int type = extract32(insn, 22, 2);
6829 int rd = extract32(insn, 0, 5);
6830 int rn = extract32(insn, 5, 5);
6831 int rm = extract32(insn, 16, 5);
6832 int opcode = extract32(insn, 12, 4);
6834 if (opcode > 8 || mos) {
6835 unallocated_encoding(s);
6836 return;
6839 switch (type) {
6840 case 0:
6841 if (!fp_access_check(s)) {
6842 return;
6844 handle_fp_2src_single(s, opcode, rd, rn, rm);
6845 break;
6846 case 1:
6847 if (!fp_access_check(s)) {
6848 return;
6850 handle_fp_2src_double(s, opcode, rd, rn, rm);
6851 break;
6852 case 3:
6853 if (!dc_isar_feature(aa64_fp16, s)) {
6854 unallocated_encoding(s);
6855 return;
6857 if (!fp_access_check(s)) {
6858 return;
6860 handle_fp_2src_half(s, opcode, rd, rn, rm);
6861 break;
6862 default:
6863 unallocated_encoding(s);
6867 /* Floating-point data-processing (3 source) - single precision */
6868 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6869 int rd, int rn, int rm, int ra)
6871 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6872 TCGv_i32 tcg_res = tcg_temp_new_i32();
6873 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6875 tcg_op1 = read_fp_sreg(s, rn);
6876 tcg_op2 = read_fp_sreg(s, rm);
6877 tcg_op3 = read_fp_sreg(s, ra);
6879 /* These are fused multiply-add, and must be done as one
6880 * floating point operation with no rounding between the
6881 * multiplication and addition steps.
6882 * NB that doing the negations here as separate steps is
6883 * correct : an input NaN should come out with its sign bit
6884 * flipped if it is a negated-input.
6886 if (o1 == true) {
6887 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6890 if (o0 != o1) {
6891 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6894 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6896 write_fp_sreg(s, rd, tcg_res);
6898 tcg_temp_free_ptr(fpst);
6899 tcg_temp_free_i32(tcg_op1);
6900 tcg_temp_free_i32(tcg_op2);
6901 tcg_temp_free_i32(tcg_op3);
6902 tcg_temp_free_i32(tcg_res);
6905 /* Floating-point data-processing (3 source) - double precision */
6906 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6907 int rd, int rn, int rm, int ra)
6909 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6910 TCGv_i64 tcg_res = tcg_temp_new_i64();
6911 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6913 tcg_op1 = read_fp_dreg(s, rn);
6914 tcg_op2 = read_fp_dreg(s, rm);
6915 tcg_op3 = read_fp_dreg(s, ra);
6917 /* These are fused multiply-add, and must be done as one
6918 * floating point operation with no rounding between the
6919 * multiplication and addition steps.
6920 * NB that doing the negations here as separate steps is
6921 * correct : an input NaN should come out with its sign bit
6922 * flipped if it is a negated-input.
6924 if (o1 == true) {
6925 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6928 if (o0 != o1) {
6929 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6932 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6934 write_fp_dreg(s, rd, tcg_res);
6936 tcg_temp_free_ptr(fpst);
6937 tcg_temp_free_i64(tcg_op1);
6938 tcg_temp_free_i64(tcg_op2);
6939 tcg_temp_free_i64(tcg_op3);
6940 tcg_temp_free_i64(tcg_res);
6943 /* Floating-point data-processing (3 source) - half precision */
6944 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6945 int rd, int rn, int rm, int ra)
6947 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6948 TCGv_i32 tcg_res = tcg_temp_new_i32();
6949 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6951 tcg_op1 = read_fp_hreg(s, rn);
6952 tcg_op2 = read_fp_hreg(s, rm);
6953 tcg_op3 = read_fp_hreg(s, ra);
6955 /* These are fused multiply-add, and must be done as one
6956 * floating point operation with no rounding between the
6957 * multiplication and addition steps.
6958 * NB that doing the negations here as separate steps is
6959 * correct : an input NaN should come out with its sign bit
6960 * flipped if it is a negated-input.
6962 if (o1 == true) {
6963 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6966 if (o0 != o1) {
6967 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6970 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6972 write_fp_sreg(s, rd, tcg_res);
6974 tcg_temp_free_ptr(fpst);
6975 tcg_temp_free_i32(tcg_op1);
6976 tcg_temp_free_i32(tcg_op2);
6977 tcg_temp_free_i32(tcg_op3);
6978 tcg_temp_free_i32(tcg_res);
6981 /* Floating point data-processing (3 source)
6982 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6983 * +---+---+---+-----------+------+----+------+----+------+------+------+
6984 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6985 * +---+---+---+-----------+------+----+------+----+------+------+------+
6987 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6989 int mos = extract32(insn, 29, 3);
6990 int type = extract32(insn, 22, 2);
6991 int rd = extract32(insn, 0, 5);
6992 int rn = extract32(insn, 5, 5);
6993 int ra = extract32(insn, 10, 5);
6994 int rm = extract32(insn, 16, 5);
6995 bool o0 = extract32(insn, 15, 1);
6996 bool o1 = extract32(insn, 21, 1);
6998 if (mos) {
6999 unallocated_encoding(s);
7000 return;
7003 switch (type) {
7004 case 0:
7005 if (!fp_access_check(s)) {
7006 return;
7008 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
7009 break;
7010 case 1:
7011 if (!fp_access_check(s)) {
7012 return;
7014 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
7015 break;
7016 case 3:
7017 if (!dc_isar_feature(aa64_fp16, s)) {
7018 unallocated_encoding(s);
7019 return;
7021 if (!fp_access_check(s)) {
7022 return;
7024 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
7025 break;
7026 default:
7027 unallocated_encoding(s);
7031 /* Floating point immediate
7032 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
7033 * +---+---+---+-----------+------+---+------------+-------+------+------+
7034 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
7035 * +---+---+---+-----------+------+---+------------+-------+------+------+
7037 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7039 int rd = extract32(insn, 0, 5);
7040 int imm5 = extract32(insn, 5, 5);
7041 int imm8 = extract32(insn, 13, 8);
7042 int type = extract32(insn, 22, 2);
7043 int mos = extract32(insn, 29, 3);
7044 uint64_t imm;
7045 MemOp sz;
7047 if (mos || imm5) {
7048 unallocated_encoding(s);
7049 return;
7052 switch (type) {
7053 case 0:
7054 sz = MO_32;
7055 break;
7056 case 1:
7057 sz = MO_64;
7058 break;
7059 case 3:
7060 sz = MO_16;
7061 if (dc_isar_feature(aa64_fp16, s)) {
7062 break;
7064 /* fallthru */
7065 default:
7066 unallocated_encoding(s);
7067 return;
7070 if (!fp_access_check(s)) {
7071 return;
7074 imm = vfp_expand_imm(sz, imm8);
7075 write_fp_dreg(s, rd, tcg_constant_i64(imm));
7078 /* Handle floating point <=> fixed point conversions. Note that we can
7079 * also deal with fp <=> integer conversions as a special case (scale == 64)
7080 * OPTME: consider handling that special case specially or at least skipping
7081 * the call to scalbn in the helpers for zero shifts.
7083 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7084 bool itof, int rmode, int scale, int sf, int type)
7086 bool is_signed = !(opcode & 1);
7087 TCGv_ptr tcg_fpstatus;
7088 TCGv_i32 tcg_shift, tcg_single;
7089 TCGv_i64 tcg_double;
7091 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7093 tcg_shift = tcg_constant_i32(64 - scale);
7095 if (itof) {
7096 TCGv_i64 tcg_int = cpu_reg(s, rn);
7097 if (!sf) {
7098 TCGv_i64 tcg_extend = new_tmp_a64(s);
7100 if (is_signed) {
7101 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7102 } else {
7103 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7106 tcg_int = tcg_extend;
7109 switch (type) {
7110 case 1: /* float64 */
7111 tcg_double = tcg_temp_new_i64();
7112 if (is_signed) {
7113 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7114 tcg_shift, tcg_fpstatus);
7115 } else {
7116 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7117 tcg_shift, tcg_fpstatus);
7119 write_fp_dreg(s, rd, tcg_double);
7120 tcg_temp_free_i64(tcg_double);
7121 break;
7123 case 0: /* float32 */
7124 tcg_single = tcg_temp_new_i32();
7125 if (is_signed) {
7126 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7127 tcg_shift, tcg_fpstatus);
7128 } else {
7129 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7130 tcg_shift, tcg_fpstatus);
7132 write_fp_sreg(s, rd, tcg_single);
7133 tcg_temp_free_i32(tcg_single);
7134 break;
7136 case 3: /* float16 */
7137 tcg_single = tcg_temp_new_i32();
7138 if (is_signed) {
7139 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7140 tcg_shift, tcg_fpstatus);
7141 } else {
7142 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7143 tcg_shift, tcg_fpstatus);
7145 write_fp_sreg(s, rd, tcg_single);
7146 tcg_temp_free_i32(tcg_single);
7147 break;
7149 default:
7150 g_assert_not_reached();
7152 } else {
7153 TCGv_i64 tcg_int = cpu_reg(s, rd);
7154 TCGv_i32 tcg_rmode;
7156 if (extract32(opcode, 2, 1)) {
7157 /* There are too many rounding modes to all fit into rmode,
7158 * so FCVTA[US] is a special case.
7160 rmode = FPROUNDING_TIEAWAY;
7163 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
7165 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7167 switch (type) {
7168 case 1: /* float64 */
7169 tcg_double = read_fp_dreg(s, rn);
7170 if (is_signed) {
7171 if (!sf) {
7172 gen_helper_vfp_tosld(tcg_int, tcg_double,
7173 tcg_shift, tcg_fpstatus);
7174 } else {
7175 gen_helper_vfp_tosqd(tcg_int, tcg_double,
7176 tcg_shift, tcg_fpstatus);
7178 } else {
7179 if (!sf) {
7180 gen_helper_vfp_tould(tcg_int, tcg_double,
7181 tcg_shift, tcg_fpstatus);
7182 } else {
7183 gen_helper_vfp_touqd(tcg_int, tcg_double,
7184 tcg_shift, tcg_fpstatus);
7187 if (!sf) {
7188 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7190 tcg_temp_free_i64(tcg_double);
7191 break;
7193 case 0: /* float32 */
7194 tcg_single = read_fp_sreg(s, rn);
7195 if (sf) {
7196 if (is_signed) {
7197 gen_helper_vfp_tosqs(tcg_int, tcg_single,
7198 tcg_shift, tcg_fpstatus);
7199 } else {
7200 gen_helper_vfp_touqs(tcg_int, tcg_single,
7201 tcg_shift, tcg_fpstatus);
7203 } else {
7204 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7205 if (is_signed) {
7206 gen_helper_vfp_tosls(tcg_dest, tcg_single,
7207 tcg_shift, tcg_fpstatus);
7208 } else {
7209 gen_helper_vfp_touls(tcg_dest, tcg_single,
7210 tcg_shift, tcg_fpstatus);
7212 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7213 tcg_temp_free_i32(tcg_dest);
7215 tcg_temp_free_i32(tcg_single);
7216 break;
7218 case 3: /* float16 */
7219 tcg_single = read_fp_sreg(s, rn);
7220 if (sf) {
7221 if (is_signed) {
7222 gen_helper_vfp_tosqh(tcg_int, tcg_single,
7223 tcg_shift, tcg_fpstatus);
7224 } else {
7225 gen_helper_vfp_touqh(tcg_int, tcg_single,
7226 tcg_shift, tcg_fpstatus);
7228 } else {
7229 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7230 if (is_signed) {
7231 gen_helper_vfp_toslh(tcg_dest, tcg_single,
7232 tcg_shift, tcg_fpstatus);
7233 } else {
7234 gen_helper_vfp_toulh(tcg_dest, tcg_single,
7235 tcg_shift, tcg_fpstatus);
7237 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7238 tcg_temp_free_i32(tcg_dest);
7240 tcg_temp_free_i32(tcg_single);
7241 break;
7243 default:
7244 g_assert_not_reached();
7247 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7248 tcg_temp_free_i32(tcg_rmode);
7251 tcg_temp_free_ptr(tcg_fpstatus);
7254 /* Floating point <-> fixed point conversions
7255 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7256 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7257 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
7258 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7260 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7262 int rd = extract32(insn, 0, 5);
7263 int rn = extract32(insn, 5, 5);
7264 int scale = extract32(insn, 10, 6);
7265 int opcode = extract32(insn, 16, 3);
7266 int rmode = extract32(insn, 19, 2);
7267 int type = extract32(insn, 22, 2);
7268 bool sbit = extract32(insn, 29, 1);
7269 bool sf = extract32(insn, 31, 1);
7270 bool itof;
7272 if (sbit || (!sf && scale < 32)) {
7273 unallocated_encoding(s);
7274 return;
7277 switch (type) {
7278 case 0: /* float32 */
7279 case 1: /* float64 */
7280 break;
7281 case 3: /* float16 */
7282 if (dc_isar_feature(aa64_fp16, s)) {
7283 break;
7285 /* fallthru */
7286 default:
7287 unallocated_encoding(s);
7288 return;
7291 switch ((rmode << 3) | opcode) {
7292 case 0x2: /* SCVTF */
7293 case 0x3: /* UCVTF */
7294 itof = true;
7295 break;
7296 case 0x18: /* FCVTZS */
7297 case 0x19: /* FCVTZU */
7298 itof = false;
7299 break;
7300 default:
7301 unallocated_encoding(s);
7302 return;
7305 if (!fp_access_check(s)) {
7306 return;
7309 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7312 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7314 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7315 * without conversion.
7318 if (itof) {
7319 TCGv_i64 tcg_rn = cpu_reg(s, rn);
7320 TCGv_i64 tmp;
7322 switch (type) {
7323 case 0:
7324 /* 32 bit */
7325 tmp = tcg_temp_new_i64();
7326 tcg_gen_ext32u_i64(tmp, tcg_rn);
7327 write_fp_dreg(s, rd, tmp);
7328 tcg_temp_free_i64(tmp);
7329 break;
7330 case 1:
7331 /* 64 bit */
7332 write_fp_dreg(s, rd, tcg_rn);
7333 break;
7334 case 2:
7335 /* 64 bit to top half. */
7336 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
7337 clear_vec_high(s, true, rd);
7338 break;
7339 case 3:
7340 /* 16 bit */
7341 tmp = tcg_temp_new_i64();
7342 tcg_gen_ext16u_i64(tmp, tcg_rn);
7343 write_fp_dreg(s, rd, tmp);
7344 tcg_temp_free_i64(tmp);
7345 break;
7346 default:
7347 g_assert_not_reached();
7349 } else {
7350 TCGv_i64 tcg_rd = cpu_reg(s, rd);
7352 switch (type) {
7353 case 0:
7354 /* 32 bit */
7355 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
7356 break;
7357 case 1:
7358 /* 64 bit */
7359 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
7360 break;
7361 case 2:
7362 /* 64 bits from top half */
7363 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
7364 break;
7365 case 3:
7366 /* 16 bit */
7367 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
7368 break;
7369 default:
7370 g_assert_not_reached();
7375 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7377 TCGv_i64 t = read_fp_dreg(s, rn);
7378 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7380 gen_helper_fjcvtzs(t, t, fpstatus);
7382 tcg_temp_free_ptr(fpstatus);
7384 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7385 tcg_gen_extrh_i64_i32(cpu_ZF, t);
7386 tcg_gen_movi_i32(cpu_CF, 0);
7387 tcg_gen_movi_i32(cpu_NF, 0);
7388 tcg_gen_movi_i32(cpu_VF, 0);
7390 tcg_temp_free_i64(t);
7393 /* Floating point <-> integer conversions
7394 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7395 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7396 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7397 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7399 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7401 int rd = extract32(insn, 0, 5);
7402 int rn = extract32(insn, 5, 5);
7403 int opcode = extract32(insn, 16, 3);
7404 int rmode = extract32(insn, 19, 2);
7405 int type = extract32(insn, 22, 2);
7406 bool sbit = extract32(insn, 29, 1);
7407 bool sf = extract32(insn, 31, 1);
7408 bool itof = false;
7410 if (sbit) {
7411 goto do_unallocated;
7414 switch (opcode) {
7415 case 2: /* SCVTF */
7416 case 3: /* UCVTF */
7417 itof = true;
7418 /* fallthru */
7419 case 4: /* FCVTAS */
7420 case 5: /* FCVTAU */
7421 if (rmode != 0) {
7422 goto do_unallocated;
7424 /* fallthru */
7425 case 0: /* FCVT[NPMZ]S */
7426 case 1: /* FCVT[NPMZ]U */
7427 switch (type) {
7428 case 0: /* float32 */
7429 case 1: /* float64 */
7430 break;
7431 case 3: /* float16 */
7432 if (!dc_isar_feature(aa64_fp16, s)) {
7433 goto do_unallocated;
7435 break;
7436 default:
7437 goto do_unallocated;
7439 if (!fp_access_check(s)) {
7440 return;
7442 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7443 break;
7445 default:
7446 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7447 case 0b01100110: /* FMOV half <-> 32-bit int */
7448 case 0b01100111:
7449 case 0b11100110: /* FMOV half <-> 64-bit int */
7450 case 0b11100111:
7451 if (!dc_isar_feature(aa64_fp16, s)) {
7452 goto do_unallocated;
7454 /* fallthru */
7455 case 0b00000110: /* FMOV 32-bit */
7456 case 0b00000111:
7457 case 0b10100110: /* FMOV 64-bit */
7458 case 0b10100111:
7459 case 0b11001110: /* FMOV top half of 128-bit */
7460 case 0b11001111:
7461 if (!fp_access_check(s)) {
7462 return;
7464 itof = opcode & 1;
7465 handle_fmov(s, rd, rn, type, itof);
7466 break;
7468 case 0b00111110: /* FJCVTZS */
7469 if (!dc_isar_feature(aa64_jscvt, s)) {
7470 goto do_unallocated;
7471 } else if (fp_access_check(s)) {
7472 handle_fjcvtzs(s, rd, rn);
7474 break;
7476 default:
7477 do_unallocated:
7478 unallocated_encoding(s);
7479 return;
7481 break;
7485 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7486 * 31 30 29 28 25 24 0
7487 * +---+---+---+---------+-----------------------------+
7488 * | | 0 | | 1 1 1 1 | |
7489 * +---+---+---+---------+-----------------------------+
7491 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7493 if (extract32(insn, 24, 1)) {
7494 /* Floating point data-processing (3 source) */
7495 disas_fp_3src(s, insn);
7496 } else if (extract32(insn, 21, 1) == 0) {
7497 /* Floating point to fixed point conversions */
7498 disas_fp_fixed_conv(s, insn);
7499 } else {
7500 switch (extract32(insn, 10, 2)) {
7501 case 1:
7502 /* Floating point conditional compare */
7503 disas_fp_ccomp(s, insn);
7504 break;
7505 case 2:
7506 /* Floating point data-processing (2 source) */
7507 disas_fp_2src(s, insn);
7508 break;
7509 case 3:
7510 /* Floating point conditional select */
7511 disas_fp_csel(s, insn);
7512 break;
7513 case 0:
7514 switch (ctz32(extract32(insn, 12, 4))) {
7515 case 0: /* [15:12] == xxx1 */
7516 /* Floating point immediate */
7517 disas_fp_imm(s, insn);
7518 break;
7519 case 1: /* [15:12] == xx10 */
7520 /* Floating point compare */
7521 disas_fp_compare(s, insn);
7522 break;
7523 case 2: /* [15:12] == x100 */
7524 /* Floating point data-processing (1 source) */
7525 disas_fp_1src(s, insn);
7526 break;
7527 case 3: /* [15:12] == 1000 */
7528 unallocated_encoding(s);
7529 break;
7530 default: /* [15:12] == 0000 */
7531 /* Floating point <-> integer conversions */
7532 disas_fp_int_conv(s, insn);
7533 break;
7535 break;
7540 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7541 int pos)
7543 /* Extract 64 bits from the middle of two concatenated 64 bit
7544 * vector register slices left:right. The extracted bits start
7545 * at 'pos' bits into the right (least significant) side.
7546 * We return the result in tcg_right, and guarantee not to
7547 * trash tcg_left.
7549 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7550 assert(pos > 0 && pos < 64);
7552 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7553 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7554 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7556 tcg_temp_free_i64(tcg_tmp);
7559 /* EXT
7560 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
7561 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7562 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
7563 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7565 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7567 int is_q = extract32(insn, 30, 1);
7568 int op2 = extract32(insn, 22, 2);
7569 int imm4 = extract32(insn, 11, 4);
7570 int rm = extract32(insn, 16, 5);
7571 int rn = extract32(insn, 5, 5);
7572 int rd = extract32(insn, 0, 5);
7573 int pos = imm4 << 3;
7574 TCGv_i64 tcg_resl, tcg_resh;
7576 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7577 unallocated_encoding(s);
7578 return;
7581 if (!fp_access_check(s)) {
7582 return;
7585 tcg_resh = tcg_temp_new_i64();
7586 tcg_resl = tcg_temp_new_i64();
7588 /* Vd gets bits starting at pos bits into Vm:Vn. This is
7589 * either extracting 128 bits from a 128:128 concatenation, or
7590 * extracting 64 bits from a 64:64 concatenation.
7592 if (!is_q) {
7593 read_vec_element(s, tcg_resl, rn, 0, MO_64);
7594 if (pos != 0) {
7595 read_vec_element(s, tcg_resh, rm, 0, MO_64);
7596 do_ext64(s, tcg_resh, tcg_resl, pos);
7598 } else {
7599 TCGv_i64 tcg_hh;
7600 typedef struct {
7601 int reg;
7602 int elt;
7603 } EltPosns;
7604 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7605 EltPosns *elt = eltposns;
7607 if (pos >= 64) {
7608 elt++;
7609 pos -= 64;
7612 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7613 elt++;
7614 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7615 elt++;
7616 if (pos != 0) {
7617 do_ext64(s, tcg_resh, tcg_resl, pos);
7618 tcg_hh = tcg_temp_new_i64();
7619 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7620 do_ext64(s, tcg_hh, tcg_resh, pos);
7621 tcg_temp_free_i64(tcg_hh);
7625 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7626 tcg_temp_free_i64(tcg_resl);
7627 if (is_q) {
7628 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7630 tcg_temp_free_i64(tcg_resh);
7631 clear_vec_high(s, is_q, rd);
7634 /* TBL/TBX
7635 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7636 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7637 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7638 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7640 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7642 int op2 = extract32(insn, 22, 2);
7643 int is_q = extract32(insn, 30, 1);
7644 int rm = extract32(insn, 16, 5);
7645 int rn = extract32(insn, 5, 5);
7646 int rd = extract32(insn, 0, 5);
7647 int is_tbx = extract32(insn, 12, 1);
7648 int len = (extract32(insn, 13, 2) + 1) * 16;
7650 if (op2 != 0) {
7651 unallocated_encoding(s);
7652 return;
7655 if (!fp_access_check(s)) {
7656 return;
7659 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7660 vec_full_reg_offset(s, rm), cpu_env,
7661 is_q ? 16 : 8, vec_full_reg_size(s),
7662 (len << 6) | (is_tbx << 5) | rn,
7663 gen_helper_simd_tblx);
7666 /* ZIP/UZP/TRN
7667 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7668 * +---+---+-------------+------+---+------+---+------------------+------+
7669 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7670 * +---+---+-------------+------+---+------+---+------------------+------+
7672 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7674 int rd = extract32(insn, 0, 5);
7675 int rn = extract32(insn, 5, 5);
7676 int rm = extract32(insn, 16, 5);
7677 int size = extract32(insn, 22, 2);
7678 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7679 * bit 2 indicates 1 vs 2 variant of the insn.
7681 int opcode = extract32(insn, 12, 2);
7682 bool part = extract32(insn, 14, 1);
7683 bool is_q = extract32(insn, 30, 1);
7684 int esize = 8 << size;
7685 int i, ofs;
7686 int datasize = is_q ? 128 : 64;
7687 int elements = datasize / esize;
7688 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
7690 if (opcode == 0 || (size == 3 && !is_q)) {
7691 unallocated_encoding(s);
7692 return;
7695 if (!fp_access_check(s)) {
7696 return;
7699 tcg_resl = tcg_const_i64(0);
7700 tcg_resh = is_q ? tcg_const_i64(0) : NULL;
7701 tcg_res = tcg_temp_new_i64();
7703 for (i = 0; i < elements; i++) {
7704 switch (opcode) {
7705 case 1: /* UZP1/2 */
7707 int midpoint = elements / 2;
7708 if (i < midpoint) {
7709 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
7710 } else {
7711 read_vec_element(s, tcg_res, rm,
7712 2 * (i - midpoint) + part, size);
7714 break;
7716 case 2: /* TRN1/2 */
7717 if (i & 1) {
7718 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
7719 } else {
7720 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
7722 break;
7723 case 3: /* ZIP1/2 */
7725 int base = part * elements / 2;
7726 if (i & 1) {
7727 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
7728 } else {
7729 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
7731 break;
7733 default:
7734 g_assert_not_reached();
7737 ofs = i * esize;
7738 if (ofs < 64) {
7739 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
7740 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
7741 } else {
7742 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
7743 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
7747 tcg_temp_free_i64(tcg_res);
7749 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7750 tcg_temp_free_i64(tcg_resl);
7752 if (is_q) {
7753 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7754 tcg_temp_free_i64(tcg_resh);
7756 clear_vec_high(s, is_q, rd);
7760 * do_reduction_op helper
7762 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7763 * important for correct NaN propagation that we do these
7764 * operations in exactly the order specified by the pseudocode.
7766 * This is a recursive function, TCG temps should be freed by the
7767 * calling function once it is done with the values.
7769 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7770 int esize, int size, int vmap, TCGv_ptr fpst)
7772 if (esize == size) {
7773 int element;
7774 MemOp msize = esize == 16 ? MO_16 : MO_32;
7775 TCGv_i32 tcg_elem;
7777 /* We should have one register left here */
7778 assert(ctpop8(vmap) == 1);
7779 element = ctz32(vmap);
7780 assert(element < 8);
7782 tcg_elem = tcg_temp_new_i32();
7783 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7784 return tcg_elem;
7785 } else {
7786 int bits = size / 2;
7787 int shift = ctpop8(vmap) / 2;
7788 int vmap_lo = (vmap >> shift) & vmap;
7789 int vmap_hi = (vmap & ~vmap_lo);
7790 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7792 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7793 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7794 tcg_res = tcg_temp_new_i32();
7796 switch (fpopcode) {
7797 case 0x0c: /* fmaxnmv half-precision */
7798 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7799 break;
7800 case 0x0f: /* fmaxv half-precision */
7801 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7802 break;
7803 case 0x1c: /* fminnmv half-precision */
7804 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7805 break;
7806 case 0x1f: /* fminv half-precision */
7807 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7808 break;
7809 case 0x2c: /* fmaxnmv */
7810 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7811 break;
7812 case 0x2f: /* fmaxv */
7813 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7814 break;
7815 case 0x3c: /* fminnmv */
7816 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7817 break;
7818 case 0x3f: /* fminv */
7819 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7820 break;
7821 default:
7822 g_assert_not_reached();
7825 tcg_temp_free_i32(tcg_hi);
7826 tcg_temp_free_i32(tcg_lo);
7827 return tcg_res;
7831 /* AdvSIMD across lanes
7832 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7833 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7834 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7835 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7837 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7839 int rd = extract32(insn, 0, 5);
7840 int rn = extract32(insn, 5, 5);
7841 int size = extract32(insn, 22, 2);
7842 int opcode = extract32(insn, 12, 5);
7843 bool is_q = extract32(insn, 30, 1);
7844 bool is_u = extract32(insn, 29, 1);
7845 bool is_fp = false;
7846 bool is_min = false;
7847 int esize;
7848 int elements;
7849 int i;
7850 TCGv_i64 tcg_res, tcg_elt;
7852 switch (opcode) {
7853 case 0x1b: /* ADDV */
7854 if (is_u) {
7855 unallocated_encoding(s);
7856 return;
7858 /* fall through */
7859 case 0x3: /* SADDLV, UADDLV */
7860 case 0xa: /* SMAXV, UMAXV */
7861 case 0x1a: /* SMINV, UMINV */
7862 if (size == 3 || (size == 2 && !is_q)) {
7863 unallocated_encoding(s);
7864 return;
7866 break;
7867 case 0xc: /* FMAXNMV, FMINNMV */
7868 case 0xf: /* FMAXV, FMINV */
7869 /* Bit 1 of size field encodes min vs max and the actual size
7870 * depends on the encoding of the U bit. If not set (and FP16
7871 * enabled) then we do half-precision float instead of single
7872 * precision.
7874 is_min = extract32(size, 1, 1);
7875 is_fp = true;
7876 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7877 size = 1;
7878 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7879 unallocated_encoding(s);
7880 return;
7881 } else {
7882 size = 2;
7884 break;
7885 default:
7886 unallocated_encoding(s);
7887 return;
7890 if (!fp_access_check(s)) {
7891 return;
7894 esize = 8 << size;
7895 elements = (is_q ? 128 : 64) / esize;
7897 tcg_res = tcg_temp_new_i64();
7898 tcg_elt = tcg_temp_new_i64();
7900 /* These instructions operate across all lanes of a vector
7901 * to produce a single result. We can guarantee that a 64
7902 * bit intermediate is sufficient:
7903 * + for [US]ADDLV the maximum element size is 32 bits, and
7904 * the result type is 64 bits
7905 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7906 * same as the element size, which is 32 bits at most
7907 * For the integer operations we can choose to work at 64
7908 * or 32 bits and truncate at the end; for simplicity
7909 * we use 64 bits always. The floating point
7910 * ops do require 32 bit intermediates, though.
7912 if (!is_fp) {
7913 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7915 for (i = 1; i < elements; i++) {
7916 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7918 switch (opcode) {
7919 case 0x03: /* SADDLV / UADDLV */
7920 case 0x1b: /* ADDV */
7921 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7922 break;
7923 case 0x0a: /* SMAXV / UMAXV */
7924 if (is_u) {
7925 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7926 } else {
7927 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7929 break;
7930 case 0x1a: /* SMINV / UMINV */
7931 if (is_u) {
7932 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7933 } else {
7934 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7936 break;
7937 default:
7938 g_assert_not_reached();
7942 } else {
7943 /* Floating point vector reduction ops which work across 32
7944 * bit (single) or 16 bit (half-precision) intermediates.
7945 * Note that correct NaN propagation requires that we do these
7946 * operations in exactly the order specified by the pseudocode.
7948 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7949 int fpopcode = opcode | is_min << 4 | is_u << 5;
7950 int vmap = (1 << elements) - 1;
7951 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7952 (is_q ? 128 : 64), vmap, fpst);
7953 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7954 tcg_temp_free_i32(tcg_res32);
7955 tcg_temp_free_ptr(fpst);
7958 tcg_temp_free_i64(tcg_elt);
7960 /* Now truncate the result to the width required for the final output */
7961 if (opcode == 0x03) {
7962 /* SADDLV, UADDLV: result is 2*esize */
7963 size++;
7966 switch (size) {
7967 case 0:
7968 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7969 break;
7970 case 1:
7971 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7972 break;
7973 case 2:
7974 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7975 break;
7976 case 3:
7977 break;
7978 default:
7979 g_assert_not_reached();
7982 write_fp_dreg(s, rd, tcg_res);
7983 tcg_temp_free_i64(tcg_res);
7986 /* DUP (Element, Vector)
7988 * 31 30 29 21 20 16 15 10 9 5 4 0
7989 * +---+---+-------------------+--------+-------------+------+------+
7990 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7991 * +---+---+-------------------+--------+-------------+------+------+
7993 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7995 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7996 int imm5)
7998 int size = ctz32(imm5);
7999 int index;
8001 if (size > 3 || (size == 3 && !is_q)) {
8002 unallocated_encoding(s);
8003 return;
8006 if (!fp_access_check(s)) {
8007 return;
8010 index = imm5 >> (size + 1);
8011 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
8012 vec_reg_offset(s, rn, index, size),
8013 is_q ? 16 : 8, vec_full_reg_size(s));
8016 /* DUP (element, scalar)
8017 * 31 21 20 16 15 10 9 5 4 0
8018 * +-----------------------+--------+-------------+------+------+
8019 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
8020 * +-----------------------+--------+-------------+------+------+
8022 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
8023 int imm5)
8025 int size = ctz32(imm5);
8026 int index;
8027 TCGv_i64 tmp;
8029 if (size > 3) {
8030 unallocated_encoding(s);
8031 return;
8034 if (!fp_access_check(s)) {
8035 return;
8038 index = imm5 >> (size + 1);
8040 /* This instruction just extracts the specified element and
8041 * zero-extends it into the bottom of the destination register.
8043 tmp = tcg_temp_new_i64();
8044 read_vec_element(s, tmp, rn, index, size);
8045 write_fp_dreg(s, rd, tmp);
8046 tcg_temp_free_i64(tmp);
8049 /* DUP (General)
8051 * 31 30 29 21 20 16 15 10 9 5 4 0
8052 * +---+---+-------------------+--------+-------------+------+------+
8053 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
8054 * +---+---+-------------------+--------+-------------+------+------+
8056 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8058 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
8059 int imm5)
8061 int size = ctz32(imm5);
8062 uint32_t dofs, oprsz, maxsz;
8064 if (size > 3 || ((size == 3) && !is_q)) {
8065 unallocated_encoding(s);
8066 return;
8069 if (!fp_access_check(s)) {
8070 return;
8073 dofs = vec_full_reg_offset(s, rd);
8074 oprsz = is_q ? 16 : 8;
8075 maxsz = vec_full_reg_size(s);
8077 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
8080 /* INS (Element)
8082 * 31 21 20 16 15 14 11 10 9 5 4 0
8083 * +-----------------------+--------+------------+---+------+------+
8084 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8085 * +-----------------------+--------+------------+---+------+------+
8087 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8088 * index: encoded in imm5<4:size+1>
8090 static void handle_simd_inse(DisasContext *s, int rd, int rn,
8091 int imm4, int imm5)
8093 int size = ctz32(imm5);
8094 int src_index, dst_index;
8095 TCGv_i64 tmp;
8097 if (size > 3) {
8098 unallocated_encoding(s);
8099 return;
8102 if (!fp_access_check(s)) {
8103 return;
8106 dst_index = extract32(imm5, 1+size, 5);
8107 src_index = extract32(imm4, size, 4);
8109 tmp = tcg_temp_new_i64();
8111 read_vec_element(s, tmp, rn, src_index, size);
8112 write_vec_element(s, tmp, rd, dst_index, size);
8114 tcg_temp_free_i64(tmp);
8116 /* INS is considered a 128-bit write for SVE. */
8117 clear_vec_high(s, true, rd);
8121 /* INS (General)
8123 * 31 21 20 16 15 10 9 5 4 0
8124 * +-----------------------+--------+-------------+------+------+
8125 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
8126 * +-----------------------+--------+-------------+------+------+
8128 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8129 * index: encoded in imm5<4:size+1>
8131 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
8133 int size = ctz32(imm5);
8134 int idx;
8136 if (size > 3) {
8137 unallocated_encoding(s);
8138 return;
8141 if (!fp_access_check(s)) {
8142 return;
8145 idx = extract32(imm5, 1 + size, 4 - size);
8146 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
8148 /* INS is considered a 128-bit write for SVE. */
8149 clear_vec_high(s, true, rd);
8153 * UMOV (General)
8154 * SMOV (General)
8156 * 31 30 29 21 20 16 15 12 10 9 5 4 0
8157 * +---+---+-------------------+--------+-------------+------+------+
8158 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
8159 * +---+---+-------------------+--------+-------------+------+------+
8161 * U: unsigned when set
8162 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8164 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
8165 int rn, int rd, int imm5)
8167 int size = ctz32(imm5);
8168 int element;
8169 TCGv_i64 tcg_rd;
8171 /* Check for UnallocatedEncodings */
8172 if (is_signed) {
8173 if (size > 2 || (size == 2 && !is_q)) {
8174 unallocated_encoding(s);
8175 return;
8177 } else {
8178 if (size > 3
8179 || (size < 3 && is_q)
8180 || (size == 3 && !is_q)) {
8181 unallocated_encoding(s);
8182 return;
8186 if (!fp_access_check(s)) {
8187 return;
8190 element = extract32(imm5, 1+size, 4);
8192 tcg_rd = cpu_reg(s, rd);
8193 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
8194 if (is_signed && !is_q) {
8195 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8199 /* AdvSIMD copy
8200 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8201 * +---+---+----+-----------------+------+---+------+---+------+------+
8202 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8203 * +---+---+----+-----------------+------+---+------+---+------+------+
8205 static void disas_simd_copy(DisasContext *s, uint32_t insn)
8207 int rd = extract32(insn, 0, 5);
8208 int rn = extract32(insn, 5, 5);
8209 int imm4 = extract32(insn, 11, 4);
8210 int op = extract32(insn, 29, 1);
8211 int is_q = extract32(insn, 30, 1);
8212 int imm5 = extract32(insn, 16, 5);
8214 if (op) {
8215 if (is_q) {
8216 /* INS (element) */
8217 handle_simd_inse(s, rd, rn, imm4, imm5);
8218 } else {
8219 unallocated_encoding(s);
8221 } else {
8222 switch (imm4) {
8223 case 0:
8224 /* DUP (element - vector) */
8225 handle_simd_dupe(s, is_q, rd, rn, imm5);
8226 break;
8227 case 1:
8228 /* DUP (general) */
8229 handle_simd_dupg(s, is_q, rd, rn, imm5);
8230 break;
8231 case 3:
8232 if (is_q) {
8233 /* INS (general) */
8234 handle_simd_insg(s, rd, rn, imm5);
8235 } else {
8236 unallocated_encoding(s);
8238 break;
8239 case 5:
8240 case 7:
8241 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
8242 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
8243 break;
8244 default:
8245 unallocated_encoding(s);
8246 break;
8251 /* AdvSIMD modified immediate
8252 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
8253 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8254 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
8255 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8257 * There are a number of operations that can be carried out here:
8258 * MOVI - move (shifted) imm into register
8259 * MVNI - move inverted (shifted) imm into register
8260 * ORR - bitwise OR of (shifted) imm with register
8261 * BIC - bitwise clear of (shifted) imm with register
8262 * With ARMv8.2 we also have:
8263 * FMOV half-precision
8265 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8267 int rd = extract32(insn, 0, 5);
8268 int cmode = extract32(insn, 12, 4);
8269 int o2 = extract32(insn, 11, 1);
8270 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8271 bool is_neg = extract32(insn, 29, 1);
8272 bool is_q = extract32(insn, 30, 1);
8273 uint64_t imm = 0;
8275 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
8276 /* Check for FMOV (vector, immediate) - half-precision */
8277 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
8278 unallocated_encoding(s);
8279 return;
8283 if (!fp_access_check(s)) {
8284 return;
8287 if (cmode == 15 && o2 && !is_neg) {
8288 /* FMOV (vector, immediate) - half-precision */
8289 imm = vfp_expand_imm(MO_16, abcdefgh);
8290 /* now duplicate across the lanes */
8291 imm = dup_const(MO_16, imm);
8292 } else {
8293 imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8296 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8297 /* MOVI or MVNI, with MVNI negation handled above. */
8298 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8299 vec_full_reg_size(s), imm);
8300 } else {
8301 /* ORR or BIC, with BIC negation to AND handled above. */
8302 if (is_neg) {
8303 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8304 } else {
8305 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8310 /* AdvSIMD scalar copy
8311 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8312 * +-----+----+-----------------+------+---+------+---+------+------+
8313 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8314 * +-----+----+-----------------+------+---+------+---+------+------+
8316 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
8318 int rd = extract32(insn, 0, 5);
8319 int rn = extract32(insn, 5, 5);
8320 int imm4 = extract32(insn, 11, 4);
8321 int imm5 = extract32(insn, 16, 5);
8322 int op = extract32(insn, 29, 1);
8324 if (op != 0 || imm4 != 0) {
8325 unallocated_encoding(s);
8326 return;
8329 /* DUP (element, scalar) */
8330 handle_simd_dupes(s, rd, rn, imm5);
8333 /* AdvSIMD scalar pairwise
8334 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8335 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8336 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
8337 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8339 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8341 int u = extract32(insn, 29, 1);
8342 int size = extract32(insn, 22, 2);
8343 int opcode = extract32(insn, 12, 5);
8344 int rn = extract32(insn, 5, 5);
8345 int rd = extract32(insn, 0, 5);
8346 TCGv_ptr fpst;
8348 /* For some ops (the FP ones), size[1] is part of the encoding.
8349 * For ADDP strictly it is not but size[1] is always 1 for valid
8350 * encodings.
8352 opcode |= (extract32(size, 1, 1) << 5);
8354 switch (opcode) {
8355 case 0x3b: /* ADDP */
8356 if (u || size != 3) {
8357 unallocated_encoding(s);
8358 return;
8360 if (!fp_access_check(s)) {
8361 return;
8364 fpst = NULL;
8365 break;
8366 case 0xc: /* FMAXNMP */
8367 case 0xd: /* FADDP */
8368 case 0xf: /* FMAXP */
8369 case 0x2c: /* FMINNMP */
8370 case 0x2f: /* FMINP */
8371 /* FP op, size[0] is 32 or 64 bit*/
8372 if (!u) {
8373 if (!dc_isar_feature(aa64_fp16, s)) {
8374 unallocated_encoding(s);
8375 return;
8376 } else {
8377 size = MO_16;
8379 } else {
8380 size = extract32(size, 0, 1) ? MO_64 : MO_32;
8383 if (!fp_access_check(s)) {
8384 return;
8387 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8388 break;
8389 default:
8390 unallocated_encoding(s);
8391 return;
8394 if (size == MO_64) {
8395 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8396 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8397 TCGv_i64 tcg_res = tcg_temp_new_i64();
8399 read_vec_element(s, tcg_op1, rn, 0, MO_64);
8400 read_vec_element(s, tcg_op2, rn, 1, MO_64);
8402 switch (opcode) {
8403 case 0x3b: /* ADDP */
8404 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8405 break;
8406 case 0xc: /* FMAXNMP */
8407 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8408 break;
8409 case 0xd: /* FADDP */
8410 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8411 break;
8412 case 0xf: /* FMAXP */
8413 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8414 break;
8415 case 0x2c: /* FMINNMP */
8416 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8417 break;
8418 case 0x2f: /* FMINP */
8419 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8420 break;
8421 default:
8422 g_assert_not_reached();
8425 write_fp_dreg(s, rd, tcg_res);
8427 tcg_temp_free_i64(tcg_op1);
8428 tcg_temp_free_i64(tcg_op2);
8429 tcg_temp_free_i64(tcg_res);
8430 } else {
8431 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8432 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8433 TCGv_i32 tcg_res = tcg_temp_new_i32();
8435 read_vec_element_i32(s, tcg_op1, rn, 0, size);
8436 read_vec_element_i32(s, tcg_op2, rn, 1, size);
8438 if (size == MO_16) {
8439 switch (opcode) {
8440 case 0xc: /* FMAXNMP */
8441 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8442 break;
8443 case 0xd: /* FADDP */
8444 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8445 break;
8446 case 0xf: /* FMAXP */
8447 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8448 break;
8449 case 0x2c: /* FMINNMP */
8450 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8451 break;
8452 case 0x2f: /* FMINP */
8453 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8454 break;
8455 default:
8456 g_assert_not_reached();
8458 } else {
8459 switch (opcode) {
8460 case 0xc: /* FMAXNMP */
8461 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8462 break;
8463 case 0xd: /* FADDP */
8464 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8465 break;
8466 case 0xf: /* FMAXP */
8467 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8468 break;
8469 case 0x2c: /* FMINNMP */
8470 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8471 break;
8472 case 0x2f: /* FMINP */
8473 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8474 break;
8475 default:
8476 g_assert_not_reached();
8480 write_fp_sreg(s, rd, tcg_res);
8482 tcg_temp_free_i32(tcg_op1);
8483 tcg_temp_free_i32(tcg_op2);
8484 tcg_temp_free_i32(tcg_res);
8487 if (fpst) {
8488 tcg_temp_free_ptr(fpst);
8493 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8495 * This code is handles the common shifting code and is used by both
8496 * the vector and scalar code.
8498 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8499 TCGv_i64 tcg_rnd, bool accumulate,
8500 bool is_u, int size, int shift)
8502 bool extended_result = false;
8503 bool round = tcg_rnd != NULL;
8504 int ext_lshift = 0;
8505 TCGv_i64 tcg_src_hi;
8507 if (round && size == 3) {
8508 extended_result = true;
8509 ext_lshift = 64 - shift;
8510 tcg_src_hi = tcg_temp_new_i64();
8511 } else if (shift == 64) {
8512 if (!accumulate && is_u) {
8513 /* result is zero */
8514 tcg_gen_movi_i64(tcg_res, 0);
8515 return;
8519 /* Deal with the rounding step */
8520 if (round) {
8521 if (extended_result) {
8522 TCGv_i64 tcg_zero = tcg_constant_i64(0);
8523 if (!is_u) {
8524 /* take care of sign extending tcg_res */
8525 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8526 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8527 tcg_src, tcg_src_hi,
8528 tcg_rnd, tcg_zero);
8529 } else {
8530 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8531 tcg_src, tcg_zero,
8532 tcg_rnd, tcg_zero);
8534 } else {
8535 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8539 /* Now do the shift right */
8540 if (round && extended_result) {
8541 /* extended case, >64 bit precision required */
8542 if (ext_lshift == 0) {
8543 /* special case, only high bits matter */
8544 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8545 } else {
8546 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8547 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8548 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8550 } else {
8551 if (is_u) {
8552 if (shift == 64) {
8553 /* essentially shifting in 64 zeros */
8554 tcg_gen_movi_i64(tcg_src, 0);
8555 } else {
8556 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8558 } else {
8559 if (shift == 64) {
8560 /* effectively extending the sign-bit */
8561 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8562 } else {
8563 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8568 if (accumulate) {
8569 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8570 } else {
8571 tcg_gen_mov_i64(tcg_res, tcg_src);
8574 if (extended_result) {
8575 tcg_temp_free_i64(tcg_src_hi);
8579 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8580 static void handle_scalar_simd_shri(DisasContext *s,
8581 bool is_u, int immh, int immb,
8582 int opcode, int rn, int rd)
8584 const int size = 3;
8585 int immhb = immh << 3 | immb;
8586 int shift = 2 * (8 << size) - immhb;
8587 bool accumulate = false;
8588 bool round = false;
8589 bool insert = false;
8590 TCGv_i64 tcg_rn;
8591 TCGv_i64 tcg_rd;
8592 TCGv_i64 tcg_round;
8594 if (!extract32(immh, 3, 1)) {
8595 unallocated_encoding(s);
8596 return;
8599 if (!fp_access_check(s)) {
8600 return;
8603 switch (opcode) {
8604 case 0x02: /* SSRA / USRA (accumulate) */
8605 accumulate = true;
8606 break;
8607 case 0x04: /* SRSHR / URSHR (rounding) */
8608 round = true;
8609 break;
8610 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8611 accumulate = round = true;
8612 break;
8613 case 0x08: /* SRI */
8614 insert = true;
8615 break;
8618 if (round) {
8619 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8620 } else {
8621 tcg_round = NULL;
8624 tcg_rn = read_fp_dreg(s, rn);
8625 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8627 if (insert) {
8628 /* shift count same as element size is valid but does nothing;
8629 * special case to avoid potential shift by 64.
8631 int esize = 8 << size;
8632 if (shift != esize) {
8633 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8634 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8636 } else {
8637 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8638 accumulate, is_u, size, shift);
8641 write_fp_dreg(s, rd, tcg_rd);
8643 tcg_temp_free_i64(tcg_rn);
8644 tcg_temp_free_i64(tcg_rd);
8647 /* SHL/SLI - Scalar shift left */
8648 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8649 int immh, int immb, int opcode,
8650 int rn, int rd)
8652 int size = 32 - clz32(immh) - 1;
8653 int immhb = immh << 3 | immb;
8654 int shift = immhb - (8 << size);
8655 TCGv_i64 tcg_rn;
8656 TCGv_i64 tcg_rd;
8658 if (!extract32(immh, 3, 1)) {
8659 unallocated_encoding(s);
8660 return;
8663 if (!fp_access_check(s)) {
8664 return;
8667 tcg_rn = read_fp_dreg(s, rn);
8668 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8670 if (insert) {
8671 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8672 } else {
8673 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8676 write_fp_dreg(s, rd, tcg_rd);
8678 tcg_temp_free_i64(tcg_rn);
8679 tcg_temp_free_i64(tcg_rd);
8682 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8683 * (signed/unsigned) narrowing */
8684 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8685 bool is_u_shift, bool is_u_narrow,
8686 int immh, int immb, int opcode,
8687 int rn, int rd)
8689 int immhb = immh << 3 | immb;
8690 int size = 32 - clz32(immh) - 1;
8691 int esize = 8 << size;
8692 int shift = (2 * esize) - immhb;
8693 int elements = is_scalar ? 1 : (64 / esize);
8694 bool round = extract32(opcode, 0, 1);
8695 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8696 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8697 TCGv_i32 tcg_rd_narrowed;
8698 TCGv_i64 tcg_final;
8700 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8701 { gen_helper_neon_narrow_sat_s8,
8702 gen_helper_neon_unarrow_sat8 },
8703 { gen_helper_neon_narrow_sat_s16,
8704 gen_helper_neon_unarrow_sat16 },
8705 { gen_helper_neon_narrow_sat_s32,
8706 gen_helper_neon_unarrow_sat32 },
8707 { NULL, NULL },
8709 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8710 gen_helper_neon_narrow_sat_u8,
8711 gen_helper_neon_narrow_sat_u16,
8712 gen_helper_neon_narrow_sat_u32,
8713 NULL
8715 NeonGenNarrowEnvFn *narrowfn;
8717 int i;
8719 assert(size < 4);
8721 if (extract32(immh, 3, 1)) {
8722 unallocated_encoding(s);
8723 return;
8726 if (!fp_access_check(s)) {
8727 return;
8730 if (is_u_shift) {
8731 narrowfn = unsigned_narrow_fns[size];
8732 } else {
8733 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8736 tcg_rn = tcg_temp_new_i64();
8737 tcg_rd = tcg_temp_new_i64();
8738 tcg_rd_narrowed = tcg_temp_new_i32();
8739 tcg_final = tcg_const_i64(0);
8741 if (round) {
8742 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8743 } else {
8744 tcg_round = NULL;
8747 for (i = 0; i < elements; i++) {
8748 read_vec_element(s, tcg_rn, rn, i, ldop);
8749 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8750 false, is_u_shift, size+1, shift);
8751 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8752 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8753 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8756 if (!is_q) {
8757 write_vec_element(s, tcg_final, rd, 0, MO_64);
8758 } else {
8759 write_vec_element(s, tcg_final, rd, 1, MO_64);
8762 tcg_temp_free_i64(tcg_rn);
8763 tcg_temp_free_i64(tcg_rd);
8764 tcg_temp_free_i32(tcg_rd_narrowed);
8765 tcg_temp_free_i64(tcg_final);
8767 clear_vec_high(s, is_q, rd);
8770 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8771 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8772 bool src_unsigned, bool dst_unsigned,
8773 int immh, int immb, int rn, int rd)
8775 int immhb = immh << 3 | immb;
8776 int size = 32 - clz32(immh) - 1;
8777 int shift = immhb - (8 << size);
8778 int pass;
8780 assert(immh != 0);
8781 assert(!(scalar && is_q));
8783 if (!scalar) {
8784 if (!is_q && extract32(immh, 3, 1)) {
8785 unallocated_encoding(s);
8786 return;
8789 /* Since we use the variable-shift helpers we must
8790 * replicate the shift count into each element of
8791 * the tcg_shift value.
8793 switch (size) {
8794 case 0:
8795 shift |= shift << 8;
8796 /* fall through */
8797 case 1:
8798 shift |= shift << 16;
8799 break;
8800 case 2:
8801 case 3:
8802 break;
8803 default:
8804 g_assert_not_reached();
8808 if (!fp_access_check(s)) {
8809 return;
8812 if (size == 3) {
8813 TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8814 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8815 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8816 { NULL, gen_helper_neon_qshl_u64 },
8818 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8819 int maxpass = is_q ? 2 : 1;
8821 for (pass = 0; pass < maxpass; pass++) {
8822 TCGv_i64 tcg_op = tcg_temp_new_i64();
8824 read_vec_element(s, tcg_op, rn, pass, MO_64);
8825 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8826 write_vec_element(s, tcg_op, rd, pass, MO_64);
8828 tcg_temp_free_i64(tcg_op);
8830 clear_vec_high(s, is_q, rd);
8831 } else {
8832 TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8833 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8835 { gen_helper_neon_qshl_s8,
8836 gen_helper_neon_qshl_s16,
8837 gen_helper_neon_qshl_s32 },
8838 { gen_helper_neon_qshlu_s8,
8839 gen_helper_neon_qshlu_s16,
8840 gen_helper_neon_qshlu_s32 }
8841 }, {
8842 { NULL, NULL, NULL },
8843 { gen_helper_neon_qshl_u8,
8844 gen_helper_neon_qshl_u16,
8845 gen_helper_neon_qshl_u32 }
8848 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8849 MemOp memop = scalar ? size : MO_32;
8850 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8852 for (pass = 0; pass < maxpass; pass++) {
8853 TCGv_i32 tcg_op = tcg_temp_new_i32();
8855 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8856 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8857 if (scalar) {
8858 switch (size) {
8859 case 0:
8860 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8861 break;
8862 case 1:
8863 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8864 break;
8865 case 2:
8866 break;
8867 default:
8868 g_assert_not_reached();
8870 write_fp_sreg(s, rd, tcg_op);
8871 } else {
8872 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8875 tcg_temp_free_i32(tcg_op);
8878 if (!scalar) {
8879 clear_vec_high(s, is_q, rd);
8884 /* Common vector code for handling integer to FP conversion */
8885 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8886 int elements, int is_signed,
8887 int fracbits, int size)
8889 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8890 TCGv_i32 tcg_shift = NULL;
8892 MemOp mop = size | (is_signed ? MO_SIGN : 0);
8893 int pass;
8895 if (fracbits || size == MO_64) {
8896 tcg_shift = tcg_constant_i32(fracbits);
8899 if (size == MO_64) {
8900 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8901 TCGv_i64 tcg_double = tcg_temp_new_i64();
8903 for (pass = 0; pass < elements; pass++) {
8904 read_vec_element(s, tcg_int64, rn, pass, mop);
8906 if (is_signed) {
8907 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8908 tcg_shift, tcg_fpst);
8909 } else {
8910 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8911 tcg_shift, tcg_fpst);
8913 if (elements == 1) {
8914 write_fp_dreg(s, rd, tcg_double);
8915 } else {
8916 write_vec_element(s, tcg_double, rd, pass, MO_64);
8920 tcg_temp_free_i64(tcg_int64);
8921 tcg_temp_free_i64(tcg_double);
8923 } else {
8924 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8925 TCGv_i32 tcg_float = tcg_temp_new_i32();
8927 for (pass = 0; pass < elements; pass++) {
8928 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8930 switch (size) {
8931 case MO_32:
8932 if (fracbits) {
8933 if (is_signed) {
8934 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8935 tcg_shift, tcg_fpst);
8936 } else {
8937 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8938 tcg_shift, tcg_fpst);
8940 } else {
8941 if (is_signed) {
8942 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8943 } else {
8944 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8947 break;
8948 case MO_16:
8949 if (fracbits) {
8950 if (is_signed) {
8951 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8952 tcg_shift, tcg_fpst);
8953 } else {
8954 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8955 tcg_shift, tcg_fpst);
8957 } else {
8958 if (is_signed) {
8959 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8960 } else {
8961 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8964 break;
8965 default:
8966 g_assert_not_reached();
8969 if (elements == 1) {
8970 write_fp_sreg(s, rd, tcg_float);
8971 } else {
8972 write_vec_element_i32(s, tcg_float, rd, pass, size);
8976 tcg_temp_free_i32(tcg_int32);
8977 tcg_temp_free_i32(tcg_float);
8980 tcg_temp_free_ptr(tcg_fpst);
8982 clear_vec_high(s, elements << size == 16, rd);
8985 /* UCVTF/SCVTF - Integer to FP conversion */
8986 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8987 bool is_q, bool is_u,
8988 int immh, int immb, int opcode,
8989 int rn, int rd)
8991 int size, elements, fracbits;
8992 int immhb = immh << 3 | immb;
8994 if (immh & 8) {
8995 size = MO_64;
8996 if (!is_scalar && !is_q) {
8997 unallocated_encoding(s);
8998 return;
9000 } else if (immh & 4) {
9001 size = MO_32;
9002 } else if (immh & 2) {
9003 size = MO_16;
9004 if (!dc_isar_feature(aa64_fp16, s)) {
9005 unallocated_encoding(s);
9006 return;
9008 } else {
9009 /* immh == 0 would be a failure of the decode logic */
9010 g_assert(immh == 1);
9011 unallocated_encoding(s);
9012 return;
9015 if (is_scalar) {
9016 elements = 1;
9017 } else {
9018 elements = (8 << is_q) >> size;
9020 fracbits = (16 << size) - immhb;
9022 if (!fp_access_check(s)) {
9023 return;
9026 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9029 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9030 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9031 bool is_q, bool is_u,
9032 int immh, int immb, int rn, int rd)
9034 int immhb = immh << 3 | immb;
9035 int pass, size, fracbits;
9036 TCGv_ptr tcg_fpstatus;
9037 TCGv_i32 tcg_rmode, tcg_shift;
9039 if (immh & 0x8) {
9040 size = MO_64;
9041 if (!is_scalar && !is_q) {
9042 unallocated_encoding(s);
9043 return;
9045 } else if (immh & 0x4) {
9046 size = MO_32;
9047 } else if (immh & 0x2) {
9048 size = MO_16;
9049 if (!dc_isar_feature(aa64_fp16, s)) {
9050 unallocated_encoding(s);
9051 return;
9053 } else {
9054 /* Should have split out AdvSIMD modified immediate earlier. */
9055 assert(immh == 1);
9056 unallocated_encoding(s);
9057 return;
9060 if (!fp_access_check(s)) {
9061 return;
9064 assert(!(is_scalar && is_q));
9066 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
9067 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9068 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9069 fracbits = (16 << size) - immhb;
9070 tcg_shift = tcg_constant_i32(fracbits);
9072 if (size == MO_64) {
9073 int maxpass = is_scalar ? 1 : 2;
9075 for (pass = 0; pass < maxpass; pass++) {
9076 TCGv_i64 tcg_op = tcg_temp_new_i64();
9078 read_vec_element(s, tcg_op, rn, pass, MO_64);
9079 if (is_u) {
9080 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9081 } else {
9082 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9084 write_vec_element(s, tcg_op, rd, pass, MO_64);
9085 tcg_temp_free_i64(tcg_op);
9087 clear_vec_high(s, is_q, rd);
9088 } else {
9089 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9090 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9092 switch (size) {
9093 case MO_16:
9094 if (is_u) {
9095 fn = gen_helper_vfp_touhh;
9096 } else {
9097 fn = gen_helper_vfp_toshh;
9099 break;
9100 case MO_32:
9101 if (is_u) {
9102 fn = gen_helper_vfp_touls;
9103 } else {
9104 fn = gen_helper_vfp_tosls;
9106 break;
9107 default:
9108 g_assert_not_reached();
9111 for (pass = 0; pass < maxpass; pass++) {
9112 TCGv_i32 tcg_op = tcg_temp_new_i32();
9114 read_vec_element_i32(s, tcg_op, rn, pass, size);
9115 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9116 if (is_scalar) {
9117 write_fp_sreg(s, rd, tcg_op);
9118 } else {
9119 write_vec_element_i32(s, tcg_op, rd, pass, size);
9121 tcg_temp_free_i32(tcg_op);
9123 if (!is_scalar) {
9124 clear_vec_high(s, is_q, rd);
9128 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9129 tcg_temp_free_ptr(tcg_fpstatus);
9130 tcg_temp_free_i32(tcg_rmode);
9133 /* AdvSIMD scalar shift by immediate
9134 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9135 * +-----+---+-------------+------+------+--------+---+------+------+
9136 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9137 * +-----+---+-------------+------+------+--------+---+------+------+
9139 * This is the scalar version so it works on a fixed sized registers
9141 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9143 int rd = extract32(insn, 0, 5);
9144 int rn = extract32(insn, 5, 5);
9145 int opcode = extract32(insn, 11, 5);
9146 int immb = extract32(insn, 16, 3);
9147 int immh = extract32(insn, 19, 4);
9148 bool is_u = extract32(insn, 29, 1);
9150 if (immh == 0) {
9151 unallocated_encoding(s);
9152 return;
9155 switch (opcode) {
9156 case 0x08: /* SRI */
9157 if (!is_u) {
9158 unallocated_encoding(s);
9159 return;
9161 /* fall through */
9162 case 0x00: /* SSHR / USHR */
9163 case 0x02: /* SSRA / USRA */
9164 case 0x04: /* SRSHR / URSHR */
9165 case 0x06: /* SRSRA / URSRA */
9166 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9167 break;
9168 case 0x0a: /* SHL / SLI */
9169 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9170 break;
9171 case 0x1c: /* SCVTF, UCVTF */
9172 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9173 opcode, rn, rd);
9174 break;
9175 case 0x10: /* SQSHRUN, SQSHRUN2 */
9176 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9177 if (!is_u) {
9178 unallocated_encoding(s);
9179 return;
9181 handle_vec_simd_sqshrn(s, true, false, false, true,
9182 immh, immb, opcode, rn, rd);
9183 break;
9184 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9185 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9186 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9187 immh, immb, opcode, rn, rd);
9188 break;
9189 case 0xc: /* SQSHLU */
9190 if (!is_u) {
9191 unallocated_encoding(s);
9192 return;
9194 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9195 break;
9196 case 0xe: /* SQSHL, UQSHL */
9197 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9198 break;
9199 case 0x1f: /* FCVTZS, FCVTZU */
9200 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9201 break;
9202 default:
9203 unallocated_encoding(s);
9204 break;
9208 /* AdvSIMD scalar three different
9209 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
9210 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9211 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
9212 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9214 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9216 bool is_u = extract32(insn, 29, 1);
9217 int size = extract32(insn, 22, 2);
9218 int opcode = extract32(insn, 12, 4);
9219 int rm = extract32(insn, 16, 5);
9220 int rn = extract32(insn, 5, 5);
9221 int rd = extract32(insn, 0, 5);
9223 if (is_u) {
9224 unallocated_encoding(s);
9225 return;
9228 switch (opcode) {
9229 case 0x9: /* SQDMLAL, SQDMLAL2 */
9230 case 0xb: /* SQDMLSL, SQDMLSL2 */
9231 case 0xd: /* SQDMULL, SQDMULL2 */
9232 if (size == 0 || size == 3) {
9233 unallocated_encoding(s);
9234 return;
9236 break;
9237 default:
9238 unallocated_encoding(s);
9239 return;
9242 if (!fp_access_check(s)) {
9243 return;
9246 if (size == 2) {
9247 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9248 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9249 TCGv_i64 tcg_res = tcg_temp_new_i64();
9251 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9252 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9254 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9255 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
9257 switch (opcode) {
9258 case 0xd: /* SQDMULL, SQDMULL2 */
9259 break;
9260 case 0xb: /* SQDMLSL, SQDMLSL2 */
9261 tcg_gen_neg_i64(tcg_res, tcg_res);
9262 /* fall through */
9263 case 0x9: /* SQDMLAL, SQDMLAL2 */
9264 read_vec_element(s, tcg_op1, rd, 0, MO_64);
9265 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
9266 tcg_res, tcg_op1);
9267 break;
9268 default:
9269 g_assert_not_reached();
9272 write_fp_dreg(s, rd, tcg_res);
9274 tcg_temp_free_i64(tcg_op1);
9275 tcg_temp_free_i64(tcg_op2);
9276 tcg_temp_free_i64(tcg_res);
9277 } else {
9278 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9279 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9280 TCGv_i64 tcg_res = tcg_temp_new_i64();
9282 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9283 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
9285 switch (opcode) {
9286 case 0xd: /* SQDMULL, SQDMULL2 */
9287 break;
9288 case 0xb: /* SQDMLSL, SQDMLSL2 */
9289 gen_helper_neon_negl_u32(tcg_res, tcg_res);
9290 /* fall through */
9291 case 0x9: /* SQDMLAL, SQDMLAL2 */
9293 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9294 read_vec_element(s, tcg_op3, rd, 0, MO_32);
9295 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
9296 tcg_res, tcg_op3);
9297 tcg_temp_free_i64(tcg_op3);
9298 break;
9300 default:
9301 g_assert_not_reached();
9304 tcg_gen_ext32u_i64(tcg_res, tcg_res);
9305 write_fp_dreg(s, rd, tcg_res);
9307 tcg_temp_free_i32(tcg_op1);
9308 tcg_temp_free_i32(tcg_op2);
9309 tcg_temp_free_i64(tcg_res);
9313 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9314 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9316 /* Handle 64x64->64 opcodes which are shared between the scalar
9317 * and vector 3-same groups. We cover every opcode where size == 3
9318 * is valid in either the three-reg-same (integer, not pairwise)
9319 * or scalar-three-reg-same groups.
9321 TCGCond cond;
9323 switch (opcode) {
9324 case 0x1: /* SQADD */
9325 if (u) {
9326 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9327 } else {
9328 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9330 break;
9331 case 0x5: /* SQSUB */
9332 if (u) {
9333 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9334 } else {
9335 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9337 break;
9338 case 0x6: /* CMGT, CMHI */
9339 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
9340 * We implement this using setcond (test) and then negating.
9342 cond = u ? TCG_COND_GTU : TCG_COND_GT;
9343 do_cmop:
9344 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9345 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9346 break;
9347 case 0x7: /* CMGE, CMHS */
9348 cond = u ? TCG_COND_GEU : TCG_COND_GE;
9349 goto do_cmop;
9350 case 0x11: /* CMTST, CMEQ */
9351 if (u) {
9352 cond = TCG_COND_EQ;
9353 goto do_cmop;
9355 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9356 break;
9357 case 0x8: /* SSHL, USHL */
9358 if (u) {
9359 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9360 } else {
9361 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9363 break;
9364 case 0x9: /* SQSHL, UQSHL */
9365 if (u) {
9366 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9367 } else {
9368 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9370 break;
9371 case 0xa: /* SRSHL, URSHL */
9372 if (u) {
9373 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9374 } else {
9375 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9377 break;
9378 case 0xb: /* SQRSHL, UQRSHL */
9379 if (u) {
9380 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9381 } else {
9382 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9384 break;
9385 case 0x10: /* ADD, SUB */
9386 if (u) {
9387 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9388 } else {
9389 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9391 break;
9392 default:
9393 g_assert_not_reached();
9397 /* Handle the 3-same-operands float operations; shared by the scalar
9398 * and vector encodings. The caller must filter out any encodings
9399 * not allocated for the encoding it is dealing with.
9401 static void handle_3same_float(DisasContext *s, int size, int elements,
9402 int fpopcode, int rd, int rn, int rm)
9404 int pass;
9405 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9407 for (pass = 0; pass < elements; pass++) {
9408 if (size) {
9409 /* Double */
9410 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9411 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9412 TCGv_i64 tcg_res = tcg_temp_new_i64();
9414 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9415 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9417 switch (fpopcode) {
9418 case 0x39: /* FMLS */
9419 /* As usual for ARM, separate negation for fused multiply-add */
9420 gen_helper_vfp_negd(tcg_op1, tcg_op1);
9421 /* fall through */
9422 case 0x19: /* FMLA */
9423 read_vec_element(s, tcg_res, rd, pass, MO_64);
9424 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
9425 tcg_res, fpst);
9426 break;
9427 case 0x18: /* FMAXNM */
9428 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9429 break;
9430 case 0x1a: /* FADD */
9431 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
9432 break;
9433 case 0x1b: /* FMULX */
9434 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
9435 break;
9436 case 0x1c: /* FCMEQ */
9437 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9438 break;
9439 case 0x1e: /* FMAX */
9440 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9441 break;
9442 case 0x1f: /* FRECPS */
9443 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9444 break;
9445 case 0x38: /* FMINNM */
9446 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9447 break;
9448 case 0x3a: /* FSUB */
9449 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9450 break;
9451 case 0x3e: /* FMIN */
9452 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9453 break;
9454 case 0x3f: /* FRSQRTS */
9455 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9456 break;
9457 case 0x5b: /* FMUL */
9458 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9459 break;
9460 case 0x5c: /* FCMGE */
9461 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9462 break;
9463 case 0x5d: /* FACGE */
9464 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9465 break;
9466 case 0x5f: /* FDIV */
9467 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9468 break;
9469 case 0x7a: /* FABD */
9470 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9471 gen_helper_vfp_absd(tcg_res, tcg_res);
9472 break;
9473 case 0x7c: /* FCMGT */
9474 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9475 break;
9476 case 0x7d: /* FACGT */
9477 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9478 break;
9479 default:
9480 g_assert_not_reached();
9483 write_vec_element(s, tcg_res, rd, pass, MO_64);
9485 tcg_temp_free_i64(tcg_res);
9486 tcg_temp_free_i64(tcg_op1);
9487 tcg_temp_free_i64(tcg_op2);
9488 } else {
9489 /* Single */
9490 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9491 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9492 TCGv_i32 tcg_res = tcg_temp_new_i32();
9494 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9495 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9497 switch (fpopcode) {
9498 case 0x39: /* FMLS */
9499 /* As usual for ARM, separate negation for fused multiply-add */
9500 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9501 /* fall through */
9502 case 0x19: /* FMLA */
9503 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9504 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9505 tcg_res, fpst);
9506 break;
9507 case 0x1a: /* FADD */
9508 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9509 break;
9510 case 0x1b: /* FMULX */
9511 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9512 break;
9513 case 0x1c: /* FCMEQ */
9514 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9515 break;
9516 case 0x1e: /* FMAX */
9517 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9518 break;
9519 case 0x1f: /* FRECPS */
9520 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9521 break;
9522 case 0x18: /* FMAXNM */
9523 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9524 break;
9525 case 0x38: /* FMINNM */
9526 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9527 break;
9528 case 0x3a: /* FSUB */
9529 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9530 break;
9531 case 0x3e: /* FMIN */
9532 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9533 break;
9534 case 0x3f: /* FRSQRTS */
9535 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9536 break;
9537 case 0x5b: /* FMUL */
9538 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9539 break;
9540 case 0x5c: /* FCMGE */
9541 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9542 break;
9543 case 0x5d: /* FACGE */
9544 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9545 break;
9546 case 0x5f: /* FDIV */
9547 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9548 break;
9549 case 0x7a: /* FABD */
9550 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9551 gen_helper_vfp_abss(tcg_res, tcg_res);
9552 break;
9553 case 0x7c: /* FCMGT */
9554 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9555 break;
9556 case 0x7d: /* FACGT */
9557 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9558 break;
9559 default:
9560 g_assert_not_reached();
9563 if (elements == 1) {
9564 /* scalar single so clear high part */
9565 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9567 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9568 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9569 tcg_temp_free_i64(tcg_tmp);
9570 } else {
9571 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9574 tcg_temp_free_i32(tcg_res);
9575 tcg_temp_free_i32(tcg_op1);
9576 tcg_temp_free_i32(tcg_op2);
9580 tcg_temp_free_ptr(fpst);
9582 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9585 /* AdvSIMD scalar three same
9586 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9587 * +-----+---+-----------+------+---+------+--------+---+------+------+
9588 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9589 * +-----+---+-----------+------+---+------+--------+---+------+------+
9591 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9593 int rd = extract32(insn, 0, 5);
9594 int rn = extract32(insn, 5, 5);
9595 int opcode = extract32(insn, 11, 5);
9596 int rm = extract32(insn, 16, 5);
9597 int size = extract32(insn, 22, 2);
9598 bool u = extract32(insn, 29, 1);
9599 TCGv_i64 tcg_rd;
9601 if (opcode >= 0x18) {
9602 /* Floating point: U, size[1] and opcode indicate operation */
9603 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9604 switch (fpopcode) {
9605 case 0x1b: /* FMULX */
9606 case 0x1f: /* FRECPS */
9607 case 0x3f: /* FRSQRTS */
9608 case 0x5d: /* FACGE */
9609 case 0x7d: /* FACGT */
9610 case 0x1c: /* FCMEQ */
9611 case 0x5c: /* FCMGE */
9612 case 0x7c: /* FCMGT */
9613 case 0x7a: /* FABD */
9614 break;
9615 default:
9616 unallocated_encoding(s);
9617 return;
9620 if (!fp_access_check(s)) {
9621 return;
9624 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9625 return;
9628 switch (opcode) {
9629 case 0x1: /* SQADD, UQADD */
9630 case 0x5: /* SQSUB, UQSUB */
9631 case 0x9: /* SQSHL, UQSHL */
9632 case 0xb: /* SQRSHL, UQRSHL */
9633 break;
9634 case 0x8: /* SSHL, USHL */
9635 case 0xa: /* SRSHL, URSHL */
9636 case 0x6: /* CMGT, CMHI */
9637 case 0x7: /* CMGE, CMHS */
9638 case 0x11: /* CMTST, CMEQ */
9639 case 0x10: /* ADD, SUB (vector) */
9640 if (size != 3) {
9641 unallocated_encoding(s);
9642 return;
9644 break;
9645 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9646 if (size != 1 && size != 2) {
9647 unallocated_encoding(s);
9648 return;
9650 break;
9651 default:
9652 unallocated_encoding(s);
9653 return;
9656 if (!fp_access_check(s)) {
9657 return;
9660 tcg_rd = tcg_temp_new_i64();
9662 if (size == 3) {
9663 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9664 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9666 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9667 tcg_temp_free_i64(tcg_rn);
9668 tcg_temp_free_i64(tcg_rm);
9669 } else {
9670 /* Do a single operation on the lowest element in the vector.
9671 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9672 * no side effects for all these operations.
9673 * OPTME: special-purpose helpers would avoid doing some
9674 * unnecessary work in the helper for the 8 and 16 bit cases.
9676 NeonGenTwoOpEnvFn *genenvfn;
9677 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9678 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9679 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9681 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9682 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9684 switch (opcode) {
9685 case 0x1: /* SQADD, UQADD */
9687 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9688 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9689 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9690 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9692 genenvfn = fns[size][u];
9693 break;
9695 case 0x5: /* SQSUB, UQSUB */
9697 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9698 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9699 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9700 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9702 genenvfn = fns[size][u];
9703 break;
9705 case 0x9: /* SQSHL, UQSHL */
9707 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9708 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9709 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9710 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9712 genenvfn = fns[size][u];
9713 break;
9715 case 0xb: /* SQRSHL, UQRSHL */
9717 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9718 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9719 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9720 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9722 genenvfn = fns[size][u];
9723 break;
9725 case 0x16: /* SQDMULH, SQRDMULH */
9727 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9728 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9729 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9731 assert(size == 1 || size == 2);
9732 genenvfn = fns[size - 1][u];
9733 break;
9735 default:
9736 g_assert_not_reached();
9739 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9740 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9741 tcg_temp_free_i32(tcg_rd32);
9742 tcg_temp_free_i32(tcg_rn);
9743 tcg_temp_free_i32(tcg_rm);
9746 write_fp_dreg(s, rd, tcg_rd);
9748 tcg_temp_free_i64(tcg_rd);
9751 /* AdvSIMD scalar three same FP16
9752 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9753 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9754 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9755 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9756 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9757 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9759 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9760 uint32_t insn)
9762 int rd = extract32(insn, 0, 5);
9763 int rn = extract32(insn, 5, 5);
9764 int opcode = extract32(insn, 11, 3);
9765 int rm = extract32(insn, 16, 5);
9766 bool u = extract32(insn, 29, 1);
9767 bool a = extract32(insn, 23, 1);
9768 int fpopcode = opcode | (a << 3) | (u << 4);
9769 TCGv_ptr fpst;
9770 TCGv_i32 tcg_op1;
9771 TCGv_i32 tcg_op2;
9772 TCGv_i32 tcg_res;
9774 switch (fpopcode) {
9775 case 0x03: /* FMULX */
9776 case 0x04: /* FCMEQ (reg) */
9777 case 0x07: /* FRECPS */
9778 case 0x0f: /* FRSQRTS */
9779 case 0x14: /* FCMGE (reg) */
9780 case 0x15: /* FACGE */
9781 case 0x1a: /* FABD */
9782 case 0x1c: /* FCMGT (reg) */
9783 case 0x1d: /* FACGT */
9784 break;
9785 default:
9786 unallocated_encoding(s);
9787 return;
9790 if (!dc_isar_feature(aa64_fp16, s)) {
9791 unallocated_encoding(s);
9794 if (!fp_access_check(s)) {
9795 return;
9798 fpst = fpstatus_ptr(FPST_FPCR_F16);
9800 tcg_op1 = read_fp_hreg(s, rn);
9801 tcg_op2 = read_fp_hreg(s, rm);
9802 tcg_res = tcg_temp_new_i32();
9804 switch (fpopcode) {
9805 case 0x03: /* FMULX */
9806 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9807 break;
9808 case 0x04: /* FCMEQ (reg) */
9809 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9810 break;
9811 case 0x07: /* FRECPS */
9812 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9813 break;
9814 case 0x0f: /* FRSQRTS */
9815 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9816 break;
9817 case 0x14: /* FCMGE (reg) */
9818 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9819 break;
9820 case 0x15: /* FACGE */
9821 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9822 break;
9823 case 0x1a: /* FABD */
9824 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9825 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9826 break;
9827 case 0x1c: /* FCMGT (reg) */
9828 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9829 break;
9830 case 0x1d: /* FACGT */
9831 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9832 break;
9833 default:
9834 g_assert_not_reached();
9837 write_fp_sreg(s, rd, tcg_res);
9840 tcg_temp_free_i32(tcg_res);
9841 tcg_temp_free_i32(tcg_op1);
9842 tcg_temp_free_i32(tcg_op2);
9843 tcg_temp_free_ptr(fpst);
9846 /* AdvSIMD scalar three same extra
9847 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9848 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9849 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9850 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9852 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9853 uint32_t insn)
9855 int rd = extract32(insn, 0, 5);
9856 int rn = extract32(insn, 5, 5);
9857 int opcode = extract32(insn, 11, 4);
9858 int rm = extract32(insn, 16, 5);
9859 int size = extract32(insn, 22, 2);
9860 bool u = extract32(insn, 29, 1);
9861 TCGv_i32 ele1, ele2, ele3;
9862 TCGv_i64 res;
9863 bool feature;
9865 switch (u * 16 + opcode) {
9866 case 0x10: /* SQRDMLAH (vector) */
9867 case 0x11: /* SQRDMLSH (vector) */
9868 if (size != 1 && size != 2) {
9869 unallocated_encoding(s);
9870 return;
9872 feature = dc_isar_feature(aa64_rdm, s);
9873 break;
9874 default:
9875 unallocated_encoding(s);
9876 return;
9878 if (!feature) {
9879 unallocated_encoding(s);
9880 return;
9882 if (!fp_access_check(s)) {
9883 return;
9886 /* Do a single operation on the lowest element in the vector.
9887 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9888 * with no side effects for all these operations.
9889 * OPTME: special-purpose helpers would avoid doing some
9890 * unnecessary work in the helper for the 16 bit cases.
9892 ele1 = tcg_temp_new_i32();
9893 ele2 = tcg_temp_new_i32();
9894 ele3 = tcg_temp_new_i32();
9896 read_vec_element_i32(s, ele1, rn, 0, size);
9897 read_vec_element_i32(s, ele2, rm, 0, size);
9898 read_vec_element_i32(s, ele3, rd, 0, size);
9900 switch (opcode) {
9901 case 0x0: /* SQRDMLAH */
9902 if (size == 1) {
9903 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9904 } else {
9905 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9907 break;
9908 case 0x1: /* SQRDMLSH */
9909 if (size == 1) {
9910 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9911 } else {
9912 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9914 break;
9915 default:
9916 g_assert_not_reached();
9918 tcg_temp_free_i32(ele1);
9919 tcg_temp_free_i32(ele2);
9921 res = tcg_temp_new_i64();
9922 tcg_gen_extu_i32_i64(res, ele3);
9923 tcg_temp_free_i32(ele3);
9925 write_fp_dreg(s, rd, res);
9926 tcg_temp_free_i64(res);
9929 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9930 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9931 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9933 /* Handle 64->64 opcodes which are shared between the scalar and
9934 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9935 * is valid in either group and also the double-precision fp ops.
9936 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9937 * requires them.
9939 TCGCond cond;
9941 switch (opcode) {
9942 case 0x4: /* CLS, CLZ */
9943 if (u) {
9944 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9945 } else {
9946 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9948 break;
9949 case 0x5: /* NOT */
9950 /* This opcode is shared with CNT and RBIT but we have earlier
9951 * enforced that size == 3 if and only if this is the NOT insn.
9953 tcg_gen_not_i64(tcg_rd, tcg_rn);
9954 break;
9955 case 0x7: /* SQABS, SQNEG */
9956 if (u) {
9957 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9958 } else {
9959 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9961 break;
9962 case 0xa: /* CMLT */
9963 /* 64 bit integer comparison against zero, result is
9964 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9965 * subtracting 1.
9967 cond = TCG_COND_LT;
9968 do_cmop:
9969 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9970 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9971 break;
9972 case 0x8: /* CMGT, CMGE */
9973 cond = u ? TCG_COND_GE : TCG_COND_GT;
9974 goto do_cmop;
9975 case 0x9: /* CMEQ, CMLE */
9976 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9977 goto do_cmop;
9978 case 0xb: /* ABS, NEG */
9979 if (u) {
9980 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9981 } else {
9982 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9984 break;
9985 case 0x2f: /* FABS */
9986 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9987 break;
9988 case 0x6f: /* FNEG */
9989 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9990 break;
9991 case 0x7f: /* FSQRT */
9992 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9993 break;
9994 case 0x1a: /* FCVTNS */
9995 case 0x1b: /* FCVTMS */
9996 case 0x1c: /* FCVTAS */
9997 case 0x3a: /* FCVTPS */
9998 case 0x3b: /* FCVTZS */
9999 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
10000 break;
10001 case 0x5a: /* FCVTNU */
10002 case 0x5b: /* FCVTMU */
10003 case 0x5c: /* FCVTAU */
10004 case 0x7a: /* FCVTPU */
10005 case 0x7b: /* FCVTZU */
10006 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
10007 break;
10008 case 0x18: /* FRINTN */
10009 case 0x19: /* FRINTM */
10010 case 0x38: /* FRINTP */
10011 case 0x39: /* FRINTZ */
10012 case 0x58: /* FRINTA */
10013 case 0x79: /* FRINTI */
10014 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
10015 break;
10016 case 0x59: /* FRINTX */
10017 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
10018 break;
10019 case 0x1e: /* FRINT32Z */
10020 case 0x5e: /* FRINT32X */
10021 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
10022 break;
10023 case 0x1f: /* FRINT64Z */
10024 case 0x5f: /* FRINT64X */
10025 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
10026 break;
10027 default:
10028 g_assert_not_reached();
10032 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
10033 bool is_scalar, bool is_u, bool is_q,
10034 int size, int rn, int rd)
10036 bool is_double = (size == MO_64);
10037 TCGv_ptr fpst;
10039 if (!fp_access_check(s)) {
10040 return;
10043 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
10045 if (is_double) {
10046 TCGv_i64 tcg_op = tcg_temp_new_i64();
10047 TCGv_i64 tcg_zero = tcg_constant_i64(0);
10048 TCGv_i64 tcg_res = tcg_temp_new_i64();
10049 NeonGenTwoDoubleOpFn *genfn;
10050 bool swap = false;
10051 int pass;
10053 switch (opcode) {
10054 case 0x2e: /* FCMLT (zero) */
10055 swap = true;
10056 /* fallthrough */
10057 case 0x2c: /* FCMGT (zero) */
10058 genfn = gen_helper_neon_cgt_f64;
10059 break;
10060 case 0x2d: /* FCMEQ (zero) */
10061 genfn = gen_helper_neon_ceq_f64;
10062 break;
10063 case 0x6d: /* FCMLE (zero) */
10064 swap = true;
10065 /* fall through */
10066 case 0x6c: /* FCMGE (zero) */
10067 genfn = gen_helper_neon_cge_f64;
10068 break;
10069 default:
10070 g_assert_not_reached();
10073 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10074 read_vec_element(s, tcg_op, rn, pass, MO_64);
10075 if (swap) {
10076 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10077 } else {
10078 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10080 write_vec_element(s, tcg_res, rd, pass, MO_64);
10082 tcg_temp_free_i64(tcg_res);
10083 tcg_temp_free_i64(tcg_op);
10085 clear_vec_high(s, !is_scalar, rd);
10086 } else {
10087 TCGv_i32 tcg_op = tcg_temp_new_i32();
10088 TCGv_i32 tcg_zero = tcg_constant_i32(0);
10089 TCGv_i32 tcg_res = tcg_temp_new_i32();
10090 NeonGenTwoSingleOpFn *genfn;
10091 bool swap = false;
10092 int pass, maxpasses;
10094 if (size == MO_16) {
10095 switch (opcode) {
10096 case 0x2e: /* FCMLT (zero) */
10097 swap = true;
10098 /* fall through */
10099 case 0x2c: /* FCMGT (zero) */
10100 genfn = gen_helper_advsimd_cgt_f16;
10101 break;
10102 case 0x2d: /* FCMEQ (zero) */
10103 genfn = gen_helper_advsimd_ceq_f16;
10104 break;
10105 case 0x6d: /* FCMLE (zero) */
10106 swap = true;
10107 /* fall through */
10108 case 0x6c: /* FCMGE (zero) */
10109 genfn = gen_helper_advsimd_cge_f16;
10110 break;
10111 default:
10112 g_assert_not_reached();
10114 } else {
10115 switch (opcode) {
10116 case 0x2e: /* FCMLT (zero) */
10117 swap = true;
10118 /* fall through */
10119 case 0x2c: /* FCMGT (zero) */
10120 genfn = gen_helper_neon_cgt_f32;
10121 break;
10122 case 0x2d: /* FCMEQ (zero) */
10123 genfn = gen_helper_neon_ceq_f32;
10124 break;
10125 case 0x6d: /* FCMLE (zero) */
10126 swap = true;
10127 /* fall through */
10128 case 0x6c: /* FCMGE (zero) */
10129 genfn = gen_helper_neon_cge_f32;
10130 break;
10131 default:
10132 g_assert_not_reached();
10136 if (is_scalar) {
10137 maxpasses = 1;
10138 } else {
10139 int vector_size = 8 << is_q;
10140 maxpasses = vector_size >> size;
10143 for (pass = 0; pass < maxpasses; pass++) {
10144 read_vec_element_i32(s, tcg_op, rn, pass, size);
10145 if (swap) {
10146 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10147 } else {
10148 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10150 if (is_scalar) {
10151 write_fp_sreg(s, rd, tcg_res);
10152 } else {
10153 write_vec_element_i32(s, tcg_res, rd, pass, size);
10156 tcg_temp_free_i32(tcg_res);
10157 tcg_temp_free_i32(tcg_op);
10158 if (!is_scalar) {
10159 clear_vec_high(s, is_q, rd);
10163 tcg_temp_free_ptr(fpst);
10166 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
10167 bool is_scalar, bool is_u, bool is_q,
10168 int size, int rn, int rd)
10170 bool is_double = (size == 3);
10171 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10173 if (is_double) {
10174 TCGv_i64 tcg_op = tcg_temp_new_i64();
10175 TCGv_i64 tcg_res = tcg_temp_new_i64();
10176 int pass;
10178 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10179 read_vec_element(s, tcg_op, rn, pass, MO_64);
10180 switch (opcode) {
10181 case 0x3d: /* FRECPE */
10182 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
10183 break;
10184 case 0x3f: /* FRECPX */
10185 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
10186 break;
10187 case 0x7d: /* FRSQRTE */
10188 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
10189 break;
10190 default:
10191 g_assert_not_reached();
10193 write_vec_element(s, tcg_res, rd, pass, MO_64);
10195 tcg_temp_free_i64(tcg_res);
10196 tcg_temp_free_i64(tcg_op);
10197 clear_vec_high(s, !is_scalar, rd);
10198 } else {
10199 TCGv_i32 tcg_op = tcg_temp_new_i32();
10200 TCGv_i32 tcg_res = tcg_temp_new_i32();
10201 int pass, maxpasses;
10203 if (is_scalar) {
10204 maxpasses = 1;
10205 } else {
10206 maxpasses = is_q ? 4 : 2;
10209 for (pass = 0; pass < maxpasses; pass++) {
10210 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10212 switch (opcode) {
10213 case 0x3c: /* URECPE */
10214 gen_helper_recpe_u32(tcg_res, tcg_op);
10215 break;
10216 case 0x3d: /* FRECPE */
10217 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
10218 break;
10219 case 0x3f: /* FRECPX */
10220 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
10221 break;
10222 case 0x7d: /* FRSQRTE */
10223 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
10224 break;
10225 default:
10226 g_assert_not_reached();
10229 if (is_scalar) {
10230 write_fp_sreg(s, rd, tcg_res);
10231 } else {
10232 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10235 tcg_temp_free_i32(tcg_res);
10236 tcg_temp_free_i32(tcg_op);
10237 if (!is_scalar) {
10238 clear_vec_high(s, is_q, rd);
10241 tcg_temp_free_ptr(fpst);
10244 static void handle_2misc_narrow(DisasContext *s, bool scalar,
10245 int opcode, bool u, bool is_q,
10246 int size, int rn, int rd)
10248 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10249 * in the source becomes a size element in the destination).
10251 int pass;
10252 TCGv_i32 tcg_res[2];
10253 int destelt = is_q ? 2 : 0;
10254 int passes = scalar ? 1 : 2;
10256 if (scalar) {
10257 tcg_res[1] = tcg_constant_i32(0);
10260 for (pass = 0; pass < passes; pass++) {
10261 TCGv_i64 tcg_op = tcg_temp_new_i64();
10262 NeonGenNarrowFn *genfn = NULL;
10263 NeonGenNarrowEnvFn *genenvfn = NULL;
10265 if (scalar) {
10266 read_vec_element(s, tcg_op, rn, pass, size + 1);
10267 } else {
10268 read_vec_element(s, tcg_op, rn, pass, MO_64);
10270 tcg_res[pass] = tcg_temp_new_i32();
10272 switch (opcode) {
10273 case 0x12: /* XTN, SQXTUN */
10275 static NeonGenNarrowFn * const xtnfns[3] = {
10276 gen_helper_neon_narrow_u8,
10277 gen_helper_neon_narrow_u16,
10278 tcg_gen_extrl_i64_i32,
10280 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10281 gen_helper_neon_unarrow_sat8,
10282 gen_helper_neon_unarrow_sat16,
10283 gen_helper_neon_unarrow_sat32,
10285 if (u) {
10286 genenvfn = sqxtunfns[size];
10287 } else {
10288 genfn = xtnfns[size];
10290 break;
10292 case 0x14: /* SQXTN, UQXTN */
10294 static NeonGenNarrowEnvFn * const fns[3][2] = {
10295 { gen_helper_neon_narrow_sat_s8,
10296 gen_helper_neon_narrow_sat_u8 },
10297 { gen_helper_neon_narrow_sat_s16,
10298 gen_helper_neon_narrow_sat_u16 },
10299 { gen_helper_neon_narrow_sat_s32,
10300 gen_helper_neon_narrow_sat_u32 },
10302 genenvfn = fns[size][u];
10303 break;
10305 case 0x16: /* FCVTN, FCVTN2 */
10306 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10307 if (size == 2) {
10308 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
10309 } else {
10310 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10311 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10312 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10313 TCGv_i32 ahp = get_ahp_flag();
10315 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10316 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10317 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10318 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10319 tcg_temp_free_i32(tcg_lo);
10320 tcg_temp_free_i32(tcg_hi);
10321 tcg_temp_free_ptr(fpst);
10322 tcg_temp_free_i32(ahp);
10324 break;
10325 case 0x36: /* BFCVTN, BFCVTN2 */
10327 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10328 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10329 tcg_temp_free_ptr(fpst);
10331 break;
10332 case 0x56: /* FCVTXN, FCVTXN2 */
10333 /* 64 bit to 32 bit float conversion
10334 * with von Neumann rounding (round to odd)
10336 assert(size == 2);
10337 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
10338 break;
10339 default:
10340 g_assert_not_reached();
10343 if (genfn) {
10344 genfn(tcg_res[pass], tcg_op);
10345 } else if (genenvfn) {
10346 genenvfn(tcg_res[pass], cpu_env, tcg_op);
10349 tcg_temp_free_i64(tcg_op);
10352 for (pass = 0; pass < 2; pass++) {
10353 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10354 tcg_temp_free_i32(tcg_res[pass]);
10356 clear_vec_high(s, is_q, rd);
10359 /* Remaining saturating accumulating ops */
10360 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10361 bool is_q, int size, int rn, int rd)
10363 bool is_double = (size == 3);
10365 if (is_double) {
10366 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10367 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10368 int pass;
10370 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10371 read_vec_element(s, tcg_rn, rn, pass, MO_64);
10372 read_vec_element(s, tcg_rd, rd, pass, MO_64);
10374 if (is_u) { /* USQADD */
10375 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10376 } else { /* SUQADD */
10377 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10379 write_vec_element(s, tcg_rd, rd, pass, MO_64);
10381 tcg_temp_free_i64(tcg_rd);
10382 tcg_temp_free_i64(tcg_rn);
10383 clear_vec_high(s, !is_scalar, rd);
10384 } else {
10385 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10386 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10387 int pass, maxpasses;
10389 if (is_scalar) {
10390 maxpasses = 1;
10391 } else {
10392 maxpasses = is_q ? 4 : 2;
10395 for (pass = 0; pass < maxpasses; pass++) {
10396 if (is_scalar) {
10397 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10398 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10399 } else {
10400 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10401 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10404 if (is_u) { /* USQADD */
10405 switch (size) {
10406 case 0:
10407 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10408 break;
10409 case 1:
10410 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10411 break;
10412 case 2:
10413 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10414 break;
10415 default:
10416 g_assert_not_reached();
10418 } else { /* SUQADD */
10419 switch (size) {
10420 case 0:
10421 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10422 break;
10423 case 1:
10424 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10425 break;
10426 case 2:
10427 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10428 break;
10429 default:
10430 g_assert_not_reached();
10434 if (is_scalar) {
10435 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10437 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10439 tcg_temp_free_i32(tcg_rd);
10440 tcg_temp_free_i32(tcg_rn);
10441 clear_vec_high(s, is_q, rd);
10445 /* AdvSIMD scalar two reg misc
10446 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
10447 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10448 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
10449 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10451 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10453 int rd = extract32(insn, 0, 5);
10454 int rn = extract32(insn, 5, 5);
10455 int opcode = extract32(insn, 12, 5);
10456 int size = extract32(insn, 22, 2);
10457 bool u = extract32(insn, 29, 1);
10458 bool is_fcvt = false;
10459 int rmode;
10460 TCGv_i32 tcg_rmode;
10461 TCGv_ptr tcg_fpstatus;
10463 switch (opcode) {
10464 case 0x3: /* USQADD / SUQADD*/
10465 if (!fp_access_check(s)) {
10466 return;
10468 handle_2misc_satacc(s, true, u, false, size, rn, rd);
10469 return;
10470 case 0x7: /* SQABS / SQNEG */
10471 break;
10472 case 0xa: /* CMLT */
10473 if (u) {
10474 unallocated_encoding(s);
10475 return;
10477 /* fall through */
10478 case 0x8: /* CMGT, CMGE */
10479 case 0x9: /* CMEQ, CMLE */
10480 case 0xb: /* ABS, NEG */
10481 if (size != 3) {
10482 unallocated_encoding(s);
10483 return;
10485 break;
10486 case 0x12: /* SQXTUN */
10487 if (!u) {
10488 unallocated_encoding(s);
10489 return;
10491 /* fall through */
10492 case 0x14: /* SQXTN, UQXTN */
10493 if (size == 3) {
10494 unallocated_encoding(s);
10495 return;
10497 if (!fp_access_check(s)) {
10498 return;
10500 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10501 return;
10502 case 0xc ... 0xf:
10503 case 0x16 ... 0x1d:
10504 case 0x1f:
10505 /* Floating point: U, size[1] and opcode indicate operation;
10506 * size[0] indicates single or double precision.
10508 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10509 size = extract32(size, 0, 1) ? 3 : 2;
10510 switch (opcode) {
10511 case 0x2c: /* FCMGT (zero) */
10512 case 0x2d: /* FCMEQ (zero) */
10513 case 0x2e: /* FCMLT (zero) */
10514 case 0x6c: /* FCMGE (zero) */
10515 case 0x6d: /* FCMLE (zero) */
10516 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10517 return;
10518 case 0x1d: /* SCVTF */
10519 case 0x5d: /* UCVTF */
10521 bool is_signed = (opcode == 0x1d);
10522 if (!fp_access_check(s)) {
10523 return;
10525 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10526 return;
10528 case 0x3d: /* FRECPE */
10529 case 0x3f: /* FRECPX */
10530 case 0x7d: /* FRSQRTE */
10531 if (!fp_access_check(s)) {
10532 return;
10534 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10535 return;
10536 case 0x1a: /* FCVTNS */
10537 case 0x1b: /* FCVTMS */
10538 case 0x3a: /* FCVTPS */
10539 case 0x3b: /* FCVTZS */
10540 case 0x5a: /* FCVTNU */
10541 case 0x5b: /* FCVTMU */
10542 case 0x7a: /* FCVTPU */
10543 case 0x7b: /* FCVTZU */
10544 is_fcvt = true;
10545 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10546 break;
10547 case 0x1c: /* FCVTAS */
10548 case 0x5c: /* FCVTAU */
10549 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10550 is_fcvt = true;
10551 rmode = FPROUNDING_TIEAWAY;
10552 break;
10553 case 0x56: /* FCVTXN, FCVTXN2 */
10554 if (size == 2) {
10555 unallocated_encoding(s);
10556 return;
10558 if (!fp_access_check(s)) {
10559 return;
10561 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10562 return;
10563 default:
10564 unallocated_encoding(s);
10565 return;
10567 break;
10568 default:
10569 unallocated_encoding(s);
10570 return;
10573 if (!fp_access_check(s)) {
10574 return;
10577 if (is_fcvt) {
10578 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10579 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10580 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10581 } else {
10582 tcg_rmode = NULL;
10583 tcg_fpstatus = NULL;
10586 if (size == 3) {
10587 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10588 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10590 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10591 write_fp_dreg(s, rd, tcg_rd);
10592 tcg_temp_free_i64(tcg_rd);
10593 tcg_temp_free_i64(tcg_rn);
10594 } else {
10595 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10596 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10598 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10600 switch (opcode) {
10601 case 0x7: /* SQABS, SQNEG */
10603 NeonGenOneOpEnvFn *genfn;
10604 static NeonGenOneOpEnvFn * const fns[3][2] = {
10605 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10606 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10607 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10609 genfn = fns[size][u];
10610 genfn(tcg_rd, cpu_env, tcg_rn);
10611 break;
10613 case 0x1a: /* FCVTNS */
10614 case 0x1b: /* FCVTMS */
10615 case 0x1c: /* FCVTAS */
10616 case 0x3a: /* FCVTPS */
10617 case 0x3b: /* FCVTZS */
10618 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10619 tcg_fpstatus);
10620 break;
10621 case 0x5a: /* FCVTNU */
10622 case 0x5b: /* FCVTMU */
10623 case 0x5c: /* FCVTAU */
10624 case 0x7a: /* FCVTPU */
10625 case 0x7b: /* FCVTZU */
10626 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10627 tcg_fpstatus);
10628 break;
10629 default:
10630 g_assert_not_reached();
10633 write_fp_sreg(s, rd, tcg_rd);
10634 tcg_temp_free_i32(tcg_rd);
10635 tcg_temp_free_i32(tcg_rn);
10638 if (is_fcvt) {
10639 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10640 tcg_temp_free_i32(tcg_rmode);
10641 tcg_temp_free_ptr(tcg_fpstatus);
10645 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10646 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10647 int immh, int immb, int opcode, int rn, int rd)
10649 int size = 32 - clz32(immh) - 1;
10650 int immhb = immh << 3 | immb;
10651 int shift = 2 * (8 << size) - immhb;
10652 GVecGen2iFn *gvec_fn;
10654 if (extract32(immh, 3, 1) && !is_q) {
10655 unallocated_encoding(s);
10656 return;
10658 tcg_debug_assert(size <= 3);
10660 if (!fp_access_check(s)) {
10661 return;
10664 switch (opcode) {
10665 case 0x02: /* SSRA / USRA (accumulate) */
10666 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10667 break;
10669 case 0x08: /* SRI */
10670 gvec_fn = gen_gvec_sri;
10671 break;
10673 case 0x00: /* SSHR / USHR */
10674 if (is_u) {
10675 if (shift == 8 << size) {
10676 /* Shift count the same size as element size produces zero. */
10677 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10678 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10679 return;
10681 gvec_fn = tcg_gen_gvec_shri;
10682 } else {
10683 /* Shift count the same size as element size produces all sign. */
10684 if (shift == 8 << size) {
10685 shift -= 1;
10687 gvec_fn = tcg_gen_gvec_sari;
10689 break;
10691 case 0x04: /* SRSHR / URSHR (rounding) */
10692 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10693 break;
10695 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10696 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10697 break;
10699 default:
10700 g_assert_not_reached();
10703 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10706 /* SHL/SLI - Vector shift left */
10707 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10708 int immh, int immb, int opcode, int rn, int rd)
10710 int size = 32 - clz32(immh) - 1;
10711 int immhb = immh << 3 | immb;
10712 int shift = immhb - (8 << size);
10714 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10715 assert(size >= 0 && size <= 3);
10717 if (extract32(immh, 3, 1) && !is_q) {
10718 unallocated_encoding(s);
10719 return;
10722 if (!fp_access_check(s)) {
10723 return;
10726 if (insert) {
10727 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10728 } else {
10729 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10733 /* USHLL/SHLL - Vector shift left with widening */
10734 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10735 int immh, int immb, int opcode, int rn, int rd)
10737 int size = 32 - clz32(immh) - 1;
10738 int immhb = immh << 3 | immb;
10739 int shift = immhb - (8 << size);
10740 int dsize = 64;
10741 int esize = 8 << size;
10742 int elements = dsize/esize;
10743 TCGv_i64 tcg_rn = new_tmp_a64(s);
10744 TCGv_i64 tcg_rd = new_tmp_a64(s);
10745 int i;
10747 if (size >= 3) {
10748 unallocated_encoding(s);
10749 return;
10752 if (!fp_access_check(s)) {
10753 return;
10756 /* For the LL variants the store is larger than the load,
10757 * so if rd == rn we would overwrite parts of our input.
10758 * So load everything right now and use shifts in the main loop.
10760 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10762 for (i = 0; i < elements; i++) {
10763 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10764 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10765 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10766 write_vec_element(s, tcg_rd, rd, i, size + 1);
10770 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10771 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10772 int immh, int immb, int opcode, int rn, int rd)
10774 int immhb = immh << 3 | immb;
10775 int size = 32 - clz32(immh) - 1;
10776 int dsize = 64;
10777 int esize = 8 << size;
10778 int elements = dsize/esize;
10779 int shift = (2 * esize) - immhb;
10780 bool round = extract32(opcode, 0, 1);
10781 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10782 TCGv_i64 tcg_round;
10783 int i;
10785 if (extract32(immh, 3, 1)) {
10786 unallocated_encoding(s);
10787 return;
10790 if (!fp_access_check(s)) {
10791 return;
10794 tcg_rn = tcg_temp_new_i64();
10795 tcg_rd = tcg_temp_new_i64();
10796 tcg_final = tcg_temp_new_i64();
10797 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10799 if (round) {
10800 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10801 } else {
10802 tcg_round = NULL;
10805 for (i = 0; i < elements; i++) {
10806 read_vec_element(s, tcg_rn, rn, i, size+1);
10807 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10808 false, true, size+1, shift);
10810 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10813 if (!is_q) {
10814 write_vec_element(s, tcg_final, rd, 0, MO_64);
10815 } else {
10816 write_vec_element(s, tcg_final, rd, 1, MO_64);
10818 tcg_temp_free_i64(tcg_rn);
10819 tcg_temp_free_i64(tcg_rd);
10820 tcg_temp_free_i64(tcg_final);
10822 clear_vec_high(s, is_q, rd);
10826 /* AdvSIMD shift by immediate
10827 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10828 * +---+---+---+-------------+------+------+--------+---+------+------+
10829 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10830 * +---+---+---+-------------+------+------+--------+---+------+------+
10832 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10834 int rd = extract32(insn, 0, 5);
10835 int rn = extract32(insn, 5, 5);
10836 int opcode = extract32(insn, 11, 5);
10837 int immb = extract32(insn, 16, 3);
10838 int immh = extract32(insn, 19, 4);
10839 bool is_u = extract32(insn, 29, 1);
10840 bool is_q = extract32(insn, 30, 1);
10842 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10843 assert(immh != 0);
10845 switch (opcode) {
10846 case 0x08: /* SRI */
10847 if (!is_u) {
10848 unallocated_encoding(s);
10849 return;
10851 /* fall through */
10852 case 0x00: /* SSHR / USHR */
10853 case 0x02: /* SSRA / USRA (accumulate) */
10854 case 0x04: /* SRSHR / URSHR (rounding) */
10855 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10856 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10857 break;
10858 case 0x0a: /* SHL / SLI */
10859 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10860 break;
10861 case 0x10: /* SHRN */
10862 case 0x11: /* RSHRN / SQRSHRUN */
10863 if (is_u) {
10864 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10865 opcode, rn, rd);
10866 } else {
10867 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10869 break;
10870 case 0x12: /* SQSHRN / UQSHRN */
10871 case 0x13: /* SQRSHRN / UQRSHRN */
10872 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10873 opcode, rn, rd);
10874 break;
10875 case 0x14: /* SSHLL / USHLL */
10876 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10877 break;
10878 case 0x1c: /* SCVTF / UCVTF */
10879 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10880 opcode, rn, rd);
10881 break;
10882 case 0xc: /* SQSHLU */
10883 if (!is_u) {
10884 unallocated_encoding(s);
10885 return;
10887 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10888 break;
10889 case 0xe: /* SQSHL, UQSHL */
10890 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10891 break;
10892 case 0x1f: /* FCVTZS/ FCVTZU */
10893 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10894 return;
10895 default:
10896 unallocated_encoding(s);
10897 return;
10901 /* Generate code to do a "long" addition or subtraction, ie one done in
10902 * TCGv_i64 on vector lanes twice the width specified by size.
10904 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10905 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10907 static NeonGenTwo64OpFn * const fns[3][2] = {
10908 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10909 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10910 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10912 NeonGenTwo64OpFn *genfn;
10913 assert(size < 3);
10915 genfn = fns[size][is_sub];
10916 genfn(tcg_res, tcg_op1, tcg_op2);
10919 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10920 int opcode, int rd, int rn, int rm)
10922 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10923 TCGv_i64 tcg_res[2];
10924 int pass, accop;
10926 tcg_res[0] = tcg_temp_new_i64();
10927 tcg_res[1] = tcg_temp_new_i64();
10929 /* Does this op do an adding accumulate, a subtracting accumulate,
10930 * or no accumulate at all?
10932 switch (opcode) {
10933 case 5:
10934 case 8:
10935 case 9:
10936 accop = 1;
10937 break;
10938 case 10:
10939 case 11:
10940 accop = -1;
10941 break;
10942 default:
10943 accop = 0;
10944 break;
10947 if (accop != 0) {
10948 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10949 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10952 /* size == 2 means two 32x32->64 operations; this is worth special
10953 * casing because we can generally handle it inline.
10955 if (size == 2) {
10956 for (pass = 0; pass < 2; pass++) {
10957 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10958 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10959 TCGv_i64 tcg_passres;
10960 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10962 int elt = pass + is_q * 2;
10964 read_vec_element(s, tcg_op1, rn, elt, memop);
10965 read_vec_element(s, tcg_op2, rm, elt, memop);
10967 if (accop == 0) {
10968 tcg_passres = tcg_res[pass];
10969 } else {
10970 tcg_passres = tcg_temp_new_i64();
10973 switch (opcode) {
10974 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10975 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10976 break;
10977 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10978 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10979 break;
10980 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10981 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10983 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10984 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10986 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10987 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10988 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10989 tcg_passres,
10990 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10991 tcg_temp_free_i64(tcg_tmp1);
10992 tcg_temp_free_i64(tcg_tmp2);
10993 break;
10995 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10996 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10997 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10998 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10999 break;
11000 case 9: /* SQDMLAL, SQDMLAL2 */
11001 case 11: /* SQDMLSL, SQDMLSL2 */
11002 case 13: /* SQDMULL, SQDMULL2 */
11003 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
11004 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
11005 tcg_passres, tcg_passres);
11006 break;
11007 default:
11008 g_assert_not_reached();
11011 if (opcode == 9 || opcode == 11) {
11012 /* saturating accumulate ops */
11013 if (accop < 0) {
11014 tcg_gen_neg_i64(tcg_passres, tcg_passres);
11016 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
11017 tcg_res[pass], tcg_passres);
11018 } else if (accop > 0) {
11019 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
11020 } else if (accop < 0) {
11021 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
11024 if (accop != 0) {
11025 tcg_temp_free_i64(tcg_passres);
11028 tcg_temp_free_i64(tcg_op1);
11029 tcg_temp_free_i64(tcg_op2);
11031 } else {
11032 /* size 0 or 1, generally helper functions */
11033 for (pass = 0; pass < 2; pass++) {
11034 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11035 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11036 TCGv_i64 tcg_passres;
11037 int elt = pass + is_q * 2;
11039 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
11040 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
11042 if (accop == 0) {
11043 tcg_passres = tcg_res[pass];
11044 } else {
11045 tcg_passres = tcg_temp_new_i64();
11048 switch (opcode) {
11049 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11050 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11052 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
11053 static NeonGenWidenFn * const widenfns[2][2] = {
11054 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11055 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11057 NeonGenWidenFn *widenfn = widenfns[size][is_u];
11059 widenfn(tcg_op2_64, tcg_op2);
11060 widenfn(tcg_passres, tcg_op1);
11061 gen_neon_addl(size, (opcode == 2), tcg_passres,
11062 tcg_passres, tcg_op2_64);
11063 tcg_temp_free_i64(tcg_op2_64);
11064 break;
11066 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11067 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11068 if (size == 0) {
11069 if (is_u) {
11070 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
11071 } else {
11072 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
11074 } else {
11075 if (is_u) {
11076 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
11077 } else {
11078 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
11081 break;
11082 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11083 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11084 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
11085 if (size == 0) {
11086 if (is_u) {
11087 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
11088 } else {
11089 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
11091 } else {
11092 if (is_u) {
11093 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
11094 } else {
11095 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11098 break;
11099 case 9: /* SQDMLAL, SQDMLAL2 */
11100 case 11: /* SQDMLSL, SQDMLSL2 */
11101 case 13: /* SQDMULL, SQDMULL2 */
11102 assert(size == 1);
11103 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11104 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
11105 tcg_passres, tcg_passres);
11106 break;
11107 default:
11108 g_assert_not_reached();
11110 tcg_temp_free_i32(tcg_op1);
11111 tcg_temp_free_i32(tcg_op2);
11113 if (accop != 0) {
11114 if (opcode == 9 || opcode == 11) {
11115 /* saturating accumulate ops */
11116 if (accop < 0) {
11117 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
11119 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
11120 tcg_res[pass],
11121 tcg_passres);
11122 } else {
11123 gen_neon_addl(size, (accop < 0), tcg_res[pass],
11124 tcg_res[pass], tcg_passres);
11126 tcg_temp_free_i64(tcg_passres);
11131 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
11132 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
11133 tcg_temp_free_i64(tcg_res[0]);
11134 tcg_temp_free_i64(tcg_res[1]);
11137 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
11138 int opcode, int rd, int rn, int rm)
11140 TCGv_i64 tcg_res[2];
11141 int part = is_q ? 2 : 0;
11142 int pass;
11144 for (pass = 0; pass < 2; pass++) {
11145 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11146 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11147 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
11148 static NeonGenWidenFn * const widenfns[3][2] = {
11149 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11150 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11151 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
11153 NeonGenWidenFn *widenfn = widenfns[size][is_u];
11155 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11156 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
11157 widenfn(tcg_op2_wide, tcg_op2);
11158 tcg_temp_free_i32(tcg_op2);
11159 tcg_res[pass] = tcg_temp_new_i64();
11160 gen_neon_addl(size, (opcode == 3),
11161 tcg_res[pass], tcg_op1, tcg_op2_wide);
11162 tcg_temp_free_i64(tcg_op1);
11163 tcg_temp_free_i64(tcg_op2_wide);
11166 for (pass = 0; pass < 2; pass++) {
11167 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11168 tcg_temp_free_i64(tcg_res[pass]);
11172 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
11174 tcg_gen_addi_i64(in, in, 1U << 31);
11175 tcg_gen_extrh_i64_i32(res, in);
11178 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
11179 int opcode, int rd, int rn, int rm)
11181 TCGv_i32 tcg_res[2];
11182 int part = is_q ? 2 : 0;
11183 int pass;
11185 for (pass = 0; pass < 2; pass++) {
11186 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11187 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11188 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
11189 static NeonGenNarrowFn * const narrowfns[3][2] = {
11190 { gen_helper_neon_narrow_high_u8,
11191 gen_helper_neon_narrow_round_high_u8 },
11192 { gen_helper_neon_narrow_high_u16,
11193 gen_helper_neon_narrow_round_high_u16 },
11194 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
11196 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
11198 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11199 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11201 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
11203 tcg_temp_free_i64(tcg_op1);
11204 tcg_temp_free_i64(tcg_op2);
11206 tcg_res[pass] = tcg_temp_new_i32();
11207 gennarrow(tcg_res[pass], tcg_wideres);
11208 tcg_temp_free_i64(tcg_wideres);
11211 for (pass = 0; pass < 2; pass++) {
11212 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
11213 tcg_temp_free_i32(tcg_res[pass]);
11215 clear_vec_high(s, is_q, rd);
11218 /* AdvSIMD three different
11219 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
11220 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11221 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
11222 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11224 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
11226 /* Instructions in this group fall into three basic classes
11227 * (in each case with the operation working on each element in
11228 * the input vectors):
11229 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
11230 * 128 bit input)
11231 * (2) wide 64 x 128 -> 128
11232 * (3) narrowing 128 x 128 -> 64
11233 * Here we do initial decode, catch unallocated cases and
11234 * dispatch to separate functions for each class.
11236 int is_q = extract32(insn, 30, 1);
11237 int is_u = extract32(insn, 29, 1);
11238 int size = extract32(insn, 22, 2);
11239 int opcode = extract32(insn, 12, 4);
11240 int rm = extract32(insn, 16, 5);
11241 int rn = extract32(insn, 5, 5);
11242 int rd = extract32(insn, 0, 5);
11244 switch (opcode) {
11245 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
11246 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
11247 /* 64 x 128 -> 128 */
11248 if (size == 3) {
11249 unallocated_encoding(s);
11250 return;
11252 if (!fp_access_check(s)) {
11253 return;
11255 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
11256 break;
11257 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
11258 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
11259 /* 128 x 128 -> 64 */
11260 if (size == 3) {
11261 unallocated_encoding(s);
11262 return;
11264 if (!fp_access_check(s)) {
11265 return;
11267 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
11268 break;
11269 case 14: /* PMULL, PMULL2 */
11270 if (is_u) {
11271 unallocated_encoding(s);
11272 return;
11274 switch (size) {
11275 case 0: /* PMULL.P8 */
11276 if (!fp_access_check(s)) {
11277 return;
11279 /* The Q field specifies lo/hi half input for this insn. */
11280 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11281 gen_helper_neon_pmull_h);
11282 break;
11284 case 3: /* PMULL.P64 */
11285 if (!dc_isar_feature(aa64_pmull, s)) {
11286 unallocated_encoding(s);
11287 return;
11289 if (!fp_access_check(s)) {
11290 return;
11292 /* The Q field specifies lo/hi half input for this insn. */
11293 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11294 gen_helper_gvec_pmull_q);
11295 break;
11297 default:
11298 unallocated_encoding(s);
11299 break;
11301 return;
11302 case 9: /* SQDMLAL, SQDMLAL2 */
11303 case 11: /* SQDMLSL, SQDMLSL2 */
11304 case 13: /* SQDMULL, SQDMULL2 */
11305 if (is_u || size == 0) {
11306 unallocated_encoding(s);
11307 return;
11309 /* fall through */
11310 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11311 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11312 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11313 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11314 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11315 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11316 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
11317 /* 64 x 64 -> 128 */
11318 if (size == 3) {
11319 unallocated_encoding(s);
11320 return;
11322 if (!fp_access_check(s)) {
11323 return;
11326 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
11327 break;
11328 default:
11329 /* opcode 15 not allocated */
11330 unallocated_encoding(s);
11331 break;
11335 /* Logic op (opcode == 3) subgroup of C3.6.16. */
11336 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
11338 int rd = extract32(insn, 0, 5);
11339 int rn = extract32(insn, 5, 5);
11340 int rm = extract32(insn, 16, 5);
11341 int size = extract32(insn, 22, 2);
11342 bool is_u = extract32(insn, 29, 1);
11343 bool is_q = extract32(insn, 30, 1);
11345 if (!fp_access_check(s)) {
11346 return;
11349 switch (size + 4 * is_u) {
11350 case 0: /* AND */
11351 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
11352 return;
11353 case 1: /* BIC */
11354 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
11355 return;
11356 case 2: /* ORR */
11357 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
11358 return;
11359 case 3: /* ORN */
11360 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
11361 return;
11362 case 4: /* EOR */
11363 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
11364 return;
11366 case 5: /* BSL bitwise select */
11367 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
11368 return;
11369 case 6: /* BIT, bitwise insert if true */
11370 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
11371 return;
11372 case 7: /* BIF, bitwise insert if false */
11373 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
11374 return;
11376 default:
11377 g_assert_not_reached();
11381 /* Pairwise op subgroup of C3.6.16.
11383 * This is called directly or via the handle_3same_float for float pairwise
11384 * operations where the opcode and size are calculated differently.
11386 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
11387 int size, int rn, int rm, int rd)
11389 TCGv_ptr fpst;
11390 int pass;
11392 /* Floating point operations need fpst */
11393 if (opcode >= 0x58) {
11394 fpst = fpstatus_ptr(FPST_FPCR);
11395 } else {
11396 fpst = NULL;
11399 if (!fp_access_check(s)) {
11400 return;
11403 /* These operations work on the concatenated rm:rn, with each pair of
11404 * adjacent elements being operated on to produce an element in the result.
11406 if (size == 3) {
11407 TCGv_i64 tcg_res[2];
11409 for (pass = 0; pass < 2; pass++) {
11410 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11411 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11412 int passreg = (pass == 0) ? rn : rm;
11414 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11415 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11416 tcg_res[pass] = tcg_temp_new_i64();
11418 switch (opcode) {
11419 case 0x17: /* ADDP */
11420 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11421 break;
11422 case 0x58: /* FMAXNMP */
11423 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11424 break;
11425 case 0x5a: /* FADDP */
11426 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11427 break;
11428 case 0x5e: /* FMAXP */
11429 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11430 break;
11431 case 0x78: /* FMINNMP */
11432 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11433 break;
11434 case 0x7e: /* FMINP */
11435 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11436 break;
11437 default:
11438 g_assert_not_reached();
11441 tcg_temp_free_i64(tcg_op1);
11442 tcg_temp_free_i64(tcg_op2);
11445 for (pass = 0; pass < 2; pass++) {
11446 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11447 tcg_temp_free_i64(tcg_res[pass]);
11449 } else {
11450 int maxpass = is_q ? 4 : 2;
11451 TCGv_i32 tcg_res[4];
11453 for (pass = 0; pass < maxpass; pass++) {
11454 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11455 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11456 NeonGenTwoOpFn *genfn = NULL;
11457 int passreg = pass < (maxpass / 2) ? rn : rm;
11458 int passelt = (is_q && (pass & 1)) ? 2 : 0;
11460 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11461 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11462 tcg_res[pass] = tcg_temp_new_i32();
11464 switch (opcode) {
11465 case 0x17: /* ADDP */
11467 static NeonGenTwoOpFn * const fns[3] = {
11468 gen_helper_neon_padd_u8,
11469 gen_helper_neon_padd_u16,
11470 tcg_gen_add_i32,
11472 genfn = fns[size];
11473 break;
11475 case 0x14: /* SMAXP, UMAXP */
11477 static NeonGenTwoOpFn * const fns[3][2] = {
11478 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11479 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11480 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11482 genfn = fns[size][u];
11483 break;
11485 case 0x15: /* SMINP, UMINP */
11487 static NeonGenTwoOpFn * const fns[3][2] = {
11488 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11489 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11490 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11492 genfn = fns[size][u];
11493 break;
11495 /* The FP operations are all on single floats (32 bit) */
11496 case 0x58: /* FMAXNMP */
11497 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11498 break;
11499 case 0x5a: /* FADDP */
11500 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11501 break;
11502 case 0x5e: /* FMAXP */
11503 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11504 break;
11505 case 0x78: /* FMINNMP */
11506 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11507 break;
11508 case 0x7e: /* FMINP */
11509 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11510 break;
11511 default:
11512 g_assert_not_reached();
11515 /* FP ops called directly, otherwise call now */
11516 if (genfn) {
11517 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11520 tcg_temp_free_i32(tcg_op1);
11521 tcg_temp_free_i32(tcg_op2);
11524 for (pass = 0; pass < maxpass; pass++) {
11525 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11526 tcg_temp_free_i32(tcg_res[pass]);
11528 clear_vec_high(s, is_q, rd);
11531 if (fpst) {
11532 tcg_temp_free_ptr(fpst);
11536 /* Floating point op subgroup of C3.6.16. */
11537 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11539 /* For floating point ops, the U, size[1] and opcode bits
11540 * together indicate the operation. size[0] indicates single
11541 * or double.
11543 int fpopcode = extract32(insn, 11, 5)
11544 | (extract32(insn, 23, 1) << 5)
11545 | (extract32(insn, 29, 1) << 6);
11546 int is_q = extract32(insn, 30, 1);
11547 int size = extract32(insn, 22, 1);
11548 int rm = extract32(insn, 16, 5);
11549 int rn = extract32(insn, 5, 5);
11550 int rd = extract32(insn, 0, 5);
11552 int datasize = is_q ? 128 : 64;
11553 int esize = 32 << size;
11554 int elements = datasize / esize;
11556 if (size == 1 && !is_q) {
11557 unallocated_encoding(s);
11558 return;
11561 switch (fpopcode) {
11562 case 0x58: /* FMAXNMP */
11563 case 0x5a: /* FADDP */
11564 case 0x5e: /* FMAXP */
11565 case 0x78: /* FMINNMP */
11566 case 0x7e: /* FMINP */
11567 if (size && !is_q) {
11568 unallocated_encoding(s);
11569 return;
11571 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11572 rn, rm, rd);
11573 return;
11574 case 0x1b: /* FMULX */
11575 case 0x1f: /* FRECPS */
11576 case 0x3f: /* FRSQRTS */
11577 case 0x5d: /* FACGE */
11578 case 0x7d: /* FACGT */
11579 case 0x19: /* FMLA */
11580 case 0x39: /* FMLS */
11581 case 0x18: /* FMAXNM */
11582 case 0x1a: /* FADD */
11583 case 0x1c: /* FCMEQ */
11584 case 0x1e: /* FMAX */
11585 case 0x38: /* FMINNM */
11586 case 0x3a: /* FSUB */
11587 case 0x3e: /* FMIN */
11588 case 0x5b: /* FMUL */
11589 case 0x5c: /* FCMGE */
11590 case 0x5f: /* FDIV */
11591 case 0x7a: /* FABD */
11592 case 0x7c: /* FCMGT */
11593 if (!fp_access_check(s)) {
11594 return;
11596 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11597 return;
11599 case 0x1d: /* FMLAL */
11600 case 0x3d: /* FMLSL */
11601 case 0x59: /* FMLAL2 */
11602 case 0x79: /* FMLSL2 */
11603 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11604 unallocated_encoding(s);
11605 return;
11607 if (fp_access_check(s)) {
11608 int is_s = extract32(insn, 23, 1);
11609 int is_2 = extract32(insn, 29, 1);
11610 int data = (is_2 << 1) | is_s;
11611 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11612 vec_full_reg_offset(s, rn),
11613 vec_full_reg_offset(s, rm), cpu_env,
11614 is_q ? 16 : 8, vec_full_reg_size(s),
11615 data, gen_helper_gvec_fmlal_a64);
11617 return;
11619 default:
11620 unallocated_encoding(s);
11621 return;
11625 /* Integer op subgroup of C3.6.16. */
11626 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11628 int is_q = extract32(insn, 30, 1);
11629 int u = extract32(insn, 29, 1);
11630 int size = extract32(insn, 22, 2);
11631 int opcode = extract32(insn, 11, 5);
11632 int rm = extract32(insn, 16, 5);
11633 int rn = extract32(insn, 5, 5);
11634 int rd = extract32(insn, 0, 5);
11635 int pass;
11636 TCGCond cond;
11638 switch (opcode) {
11639 case 0x13: /* MUL, PMUL */
11640 if (u && size != 0) {
11641 unallocated_encoding(s);
11642 return;
11644 /* fall through */
11645 case 0x0: /* SHADD, UHADD */
11646 case 0x2: /* SRHADD, URHADD */
11647 case 0x4: /* SHSUB, UHSUB */
11648 case 0xc: /* SMAX, UMAX */
11649 case 0xd: /* SMIN, UMIN */
11650 case 0xe: /* SABD, UABD */
11651 case 0xf: /* SABA, UABA */
11652 case 0x12: /* MLA, MLS */
11653 if (size == 3) {
11654 unallocated_encoding(s);
11655 return;
11657 break;
11658 case 0x16: /* SQDMULH, SQRDMULH */
11659 if (size == 0 || size == 3) {
11660 unallocated_encoding(s);
11661 return;
11663 break;
11664 default:
11665 if (size == 3 && !is_q) {
11666 unallocated_encoding(s);
11667 return;
11669 break;
11672 if (!fp_access_check(s)) {
11673 return;
11676 switch (opcode) {
11677 case 0x01: /* SQADD, UQADD */
11678 if (u) {
11679 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11680 } else {
11681 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11683 return;
11684 case 0x05: /* SQSUB, UQSUB */
11685 if (u) {
11686 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11687 } else {
11688 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11690 return;
11691 case 0x08: /* SSHL, USHL */
11692 if (u) {
11693 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11694 } else {
11695 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11697 return;
11698 case 0x0c: /* SMAX, UMAX */
11699 if (u) {
11700 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11701 } else {
11702 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11704 return;
11705 case 0x0d: /* SMIN, UMIN */
11706 if (u) {
11707 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11708 } else {
11709 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11711 return;
11712 case 0xe: /* SABD, UABD */
11713 if (u) {
11714 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11715 } else {
11716 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11718 return;
11719 case 0xf: /* SABA, UABA */
11720 if (u) {
11721 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11722 } else {
11723 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11725 return;
11726 case 0x10: /* ADD, SUB */
11727 if (u) {
11728 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11729 } else {
11730 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11732 return;
11733 case 0x13: /* MUL, PMUL */
11734 if (!u) { /* MUL */
11735 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11736 } else { /* PMUL */
11737 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11739 return;
11740 case 0x12: /* MLA, MLS */
11741 if (u) {
11742 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11743 } else {
11744 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11746 return;
11747 case 0x16: /* SQDMULH, SQRDMULH */
11749 static gen_helper_gvec_3_ptr * const fns[2][2] = {
11750 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11751 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11753 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11755 return;
11756 case 0x11:
11757 if (!u) { /* CMTST */
11758 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11759 return;
11761 /* else CMEQ */
11762 cond = TCG_COND_EQ;
11763 goto do_gvec_cmp;
11764 case 0x06: /* CMGT, CMHI */
11765 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11766 goto do_gvec_cmp;
11767 case 0x07: /* CMGE, CMHS */
11768 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11769 do_gvec_cmp:
11770 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11771 vec_full_reg_offset(s, rn),
11772 vec_full_reg_offset(s, rm),
11773 is_q ? 16 : 8, vec_full_reg_size(s));
11774 return;
11777 if (size == 3) {
11778 assert(is_q);
11779 for (pass = 0; pass < 2; pass++) {
11780 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11781 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11782 TCGv_i64 tcg_res = tcg_temp_new_i64();
11784 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11785 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11787 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11789 write_vec_element(s, tcg_res, rd, pass, MO_64);
11791 tcg_temp_free_i64(tcg_res);
11792 tcg_temp_free_i64(tcg_op1);
11793 tcg_temp_free_i64(tcg_op2);
11795 } else {
11796 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11797 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11798 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11799 TCGv_i32 tcg_res = tcg_temp_new_i32();
11800 NeonGenTwoOpFn *genfn = NULL;
11801 NeonGenTwoOpEnvFn *genenvfn = NULL;
11803 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11804 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11806 switch (opcode) {
11807 case 0x0: /* SHADD, UHADD */
11809 static NeonGenTwoOpFn * const fns[3][2] = {
11810 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11811 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11812 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11814 genfn = fns[size][u];
11815 break;
11817 case 0x2: /* SRHADD, URHADD */
11819 static NeonGenTwoOpFn * const fns[3][2] = {
11820 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11821 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11822 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11824 genfn = fns[size][u];
11825 break;
11827 case 0x4: /* SHSUB, UHSUB */
11829 static NeonGenTwoOpFn * const fns[3][2] = {
11830 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11831 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11832 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11834 genfn = fns[size][u];
11835 break;
11837 case 0x9: /* SQSHL, UQSHL */
11839 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11840 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11841 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11842 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11844 genenvfn = fns[size][u];
11845 break;
11847 case 0xa: /* SRSHL, URSHL */
11849 static NeonGenTwoOpFn * const fns[3][2] = {
11850 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11851 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11852 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11854 genfn = fns[size][u];
11855 break;
11857 case 0xb: /* SQRSHL, UQRSHL */
11859 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11860 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11861 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11862 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11864 genenvfn = fns[size][u];
11865 break;
11867 default:
11868 g_assert_not_reached();
11871 if (genenvfn) {
11872 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11873 } else {
11874 genfn(tcg_res, tcg_op1, tcg_op2);
11877 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11879 tcg_temp_free_i32(tcg_res);
11880 tcg_temp_free_i32(tcg_op1);
11881 tcg_temp_free_i32(tcg_op2);
11884 clear_vec_high(s, is_q, rd);
11887 /* AdvSIMD three same
11888 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11889 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11890 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11891 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11893 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11895 int opcode = extract32(insn, 11, 5);
11897 switch (opcode) {
11898 case 0x3: /* logic ops */
11899 disas_simd_3same_logic(s, insn);
11900 break;
11901 case 0x17: /* ADDP */
11902 case 0x14: /* SMAXP, UMAXP */
11903 case 0x15: /* SMINP, UMINP */
11905 /* Pairwise operations */
11906 int is_q = extract32(insn, 30, 1);
11907 int u = extract32(insn, 29, 1);
11908 int size = extract32(insn, 22, 2);
11909 int rm = extract32(insn, 16, 5);
11910 int rn = extract32(insn, 5, 5);
11911 int rd = extract32(insn, 0, 5);
11912 if (opcode == 0x17) {
11913 if (u || (size == 3 && !is_q)) {
11914 unallocated_encoding(s);
11915 return;
11917 } else {
11918 if (size == 3) {
11919 unallocated_encoding(s);
11920 return;
11923 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11924 break;
11926 case 0x18 ... 0x31:
11927 /* floating point ops, sz[1] and U are part of opcode */
11928 disas_simd_3same_float(s, insn);
11929 break;
11930 default:
11931 disas_simd_3same_int(s, insn);
11932 break;
11937 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11939 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11940 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11941 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11942 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11944 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11945 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11948 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11950 int opcode = extract32(insn, 11, 3);
11951 int u = extract32(insn, 29, 1);
11952 int a = extract32(insn, 23, 1);
11953 int is_q = extract32(insn, 30, 1);
11954 int rm = extract32(insn, 16, 5);
11955 int rn = extract32(insn, 5, 5);
11956 int rd = extract32(insn, 0, 5);
11958 * For these floating point ops, the U, a and opcode bits
11959 * together indicate the operation.
11961 int fpopcode = opcode | (a << 3) | (u << 4);
11962 int datasize = is_q ? 128 : 64;
11963 int elements = datasize / 16;
11964 bool pairwise;
11965 TCGv_ptr fpst;
11966 int pass;
11968 switch (fpopcode) {
11969 case 0x0: /* FMAXNM */
11970 case 0x1: /* FMLA */
11971 case 0x2: /* FADD */
11972 case 0x3: /* FMULX */
11973 case 0x4: /* FCMEQ */
11974 case 0x6: /* FMAX */
11975 case 0x7: /* FRECPS */
11976 case 0x8: /* FMINNM */
11977 case 0x9: /* FMLS */
11978 case 0xa: /* FSUB */
11979 case 0xe: /* FMIN */
11980 case 0xf: /* FRSQRTS */
11981 case 0x13: /* FMUL */
11982 case 0x14: /* FCMGE */
11983 case 0x15: /* FACGE */
11984 case 0x17: /* FDIV */
11985 case 0x1a: /* FABD */
11986 case 0x1c: /* FCMGT */
11987 case 0x1d: /* FACGT */
11988 pairwise = false;
11989 break;
11990 case 0x10: /* FMAXNMP */
11991 case 0x12: /* FADDP */
11992 case 0x16: /* FMAXP */
11993 case 0x18: /* FMINNMP */
11994 case 0x1e: /* FMINP */
11995 pairwise = true;
11996 break;
11997 default:
11998 unallocated_encoding(s);
11999 return;
12002 if (!dc_isar_feature(aa64_fp16, s)) {
12003 unallocated_encoding(s);
12004 return;
12007 if (!fp_access_check(s)) {
12008 return;
12011 fpst = fpstatus_ptr(FPST_FPCR_F16);
12013 if (pairwise) {
12014 int maxpass = is_q ? 8 : 4;
12015 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
12016 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
12017 TCGv_i32 tcg_res[8];
12019 for (pass = 0; pass < maxpass; pass++) {
12020 int passreg = pass < (maxpass / 2) ? rn : rm;
12021 int passelt = (pass << 1) & (maxpass - 1);
12023 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
12024 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
12025 tcg_res[pass] = tcg_temp_new_i32();
12027 switch (fpopcode) {
12028 case 0x10: /* FMAXNMP */
12029 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
12030 fpst);
12031 break;
12032 case 0x12: /* FADDP */
12033 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
12034 break;
12035 case 0x16: /* FMAXP */
12036 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
12037 break;
12038 case 0x18: /* FMINNMP */
12039 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
12040 fpst);
12041 break;
12042 case 0x1e: /* FMINP */
12043 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
12044 break;
12045 default:
12046 g_assert_not_reached();
12050 for (pass = 0; pass < maxpass; pass++) {
12051 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
12052 tcg_temp_free_i32(tcg_res[pass]);
12055 tcg_temp_free_i32(tcg_op1);
12056 tcg_temp_free_i32(tcg_op2);
12058 } else {
12059 for (pass = 0; pass < elements; pass++) {
12060 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
12061 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
12062 TCGv_i32 tcg_res = tcg_temp_new_i32();
12064 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
12065 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
12067 switch (fpopcode) {
12068 case 0x0: /* FMAXNM */
12069 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12070 break;
12071 case 0x1: /* FMLA */
12072 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12073 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12074 fpst);
12075 break;
12076 case 0x2: /* FADD */
12077 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
12078 break;
12079 case 0x3: /* FMULX */
12080 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
12081 break;
12082 case 0x4: /* FCMEQ */
12083 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12084 break;
12085 case 0x6: /* FMAX */
12086 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
12087 break;
12088 case 0x7: /* FRECPS */
12089 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12090 break;
12091 case 0x8: /* FMINNM */
12092 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12093 break;
12094 case 0x9: /* FMLS */
12095 /* As usual for ARM, separate negation for fused multiply-add */
12096 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
12097 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12098 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12099 fpst);
12100 break;
12101 case 0xa: /* FSUB */
12102 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12103 break;
12104 case 0xe: /* FMIN */
12105 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
12106 break;
12107 case 0xf: /* FRSQRTS */
12108 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12109 break;
12110 case 0x13: /* FMUL */
12111 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
12112 break;
12113 case 0x14: /* FCMGE */
12114 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12115 break;
12116 case 0x15: /* FACGE */
12117 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12118 break;
12119 case 0x17: /* FDIV */
12120 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
12121 break;
12122 case 0x1a: /* FABD */
12123 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12124 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
12125 break;
12126 case 0x1c: /* FCMGT */
12127 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12128 break;
12129 case 0x1d: /* FACGT */
12130 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12131 break;
12132 default:
12133 g_assert_not_reached();
12136 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12137 tcg_temp_free_i32(tcg_res);
12138 tcg_temp_free_i32(tcg_op1);
12139 tcg_temp_free_i32(tcg_op2);
12143 tcg_temp_free_ptr(fpst);
12145 clear_vec_high(s, is_q, rd);
12148 /* AdvSIMD three same extra
12149 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
12150 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12151 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
12152 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12154 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
12156 int rd = extract32(insn, 0, 5);
12157 int rn = extract32(insn, 5, 5);
12158 int opcode = extract32(insn, 11, 4);
12159 int rm = extract32(insn, 16, 5);
12160 int size = extract32(insn, 22, 2);
12161 bool u = extract32(insn, 29, 1);
12162 bool is_q = extract32(insn, 30, 1);
12163 bool feature;
12164 int rot;
12166 switch (u * 16 + opcode) {
12167 case 0x10: /* SQRDMLAH (vector) */
12168 case 0x11: /* SQRDMLSH (vector) */
12169 if (size != 1 && size != 2) {
12170 unallocated_encoding(s);
12171 return;
12173 feature = dc_isar_feature(aa64_rdm, s);
12174 break;
12175 case 0x02: /* SDOT (vector) */
12176 case 0x12: /* UDOT (vector) */
12177 if (size != MO_32) {
12178 unallocated_encoding(s);
12179 return;
12181 feature = dc_isar_feature(aa64_dp, s);
12182 break;
12183 case 0x03: /* USDOT */
12184 if (size != MO_32) {
12185 unallocated_encoding(s);
12186 return;
12188 feature = dc_isar_feature(aa64_i8mm, s);
12189 break;
12190 case 0x04: /* SMMLA */
12191 case 0x14: /* UMMLA */
12192 case 0x05: /* USMMLA */
12193 if (!is_q || size != MO_32) {
12194 unallocated_encoding(s);
12195 return;
12197 feature = dc_isar_feature(aa64_i8mm, s);
12198 break;
12199 case 0x18: /* FCMLA, #0 */
12200 case 0x19: /* FCMLA, #90 */
12201 case 0x1a: /* FCMLA, #180 */
12202 case 0x1b: /* FCMLA, #270 */
12203 case 0x1c: /* FCADD, #90 */
12204 case 0x1e: /* FCADD, #270 */
12205 if (size == 0
12206 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
12207 || (size == 3 && !is_q)) {
12208 unallocated_encoding(s);
12209 return;
12211 feature = dc_isar_feature(aa64_fcma, s);
12212 break;
12213 case 0x1d: /* BFMMLA */
12214 if (size != MO_16 || !is_q) {
12215 unallocated_encoding(s);
12216 return;
12218 feature = dc_isar_feature(aa64_bf16, s);
12219 break;
12220 case 0x1f:
12221 switch (size) {
12222 case 1: /* BFDOT */
12223 case 3: /* BFMLAL{B,T} */
12224 feature = dc_isar_feature(aa64_bf16, s);
12225 break;
12226 default:
12227 unallocated_encoding(s);
12228 return;
12230 break;
12231 default:
12232 unallocated_encoding(s);
12233 return;
12235 if (!feature) {
12236 unallocated_encoding(s);
12237 return;
12239 if (!fp_access_check(s)) {
12240 return;
12243 switch (opcode) {
12244 case 0x0: /* SQRDMLAH (vector) */
12245 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
12246 return;
12248 case 0x1: /* SQRDMLSH (vector) */
12249 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
12250 return;
12252 case 0x2: /* SDOT / UDOT */
12253 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
12254 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
12255 return;
12257 case 0x3: /* USDOT */
12258 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
12259 return;
12261 case 0x04: /* SMMLA, UMMLA */
12262 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
12263 u ? gen_helper_gvec_ummla_b
12264 : gen_helper_gvec_smmla_b);
12265 return;
12266 case 0x05: /* USMMLA */
12267 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
12268 return;
12270 case 0x8: /* FCMLA, #0 */
12271 case 0x9: /* FCMLA, #90 */
12272 case 0xa: /* FCMLA, #180 */
12273 case 0xb: /* FCMLA, #270 */
12274 rot = extract32(opcode, 0, 2);
12275 switch (size) {
12276 case 1:
12277 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
12278 gen_helper_gvec_fcmlah);
12279 break;
12280 case 2:
12281 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
12282 gen_helper_gvec_fcmlas);
12283 break;
12284 case 3:
12285 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
12286 gen_helper_gvec_fcmlad);
12287 break;
12288 default:
12289 g_assert_not_reached();
12291 return;
12293 case 0xc: /* FCADD, #90 */
12294 case 0xe: /* FCADD, #270 */
12295 rot = extract32(opcode, 1, 1);
12296 switch (size) {
12297 case 1:
12298 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12299 gen_helper_gvec_fcaddh);
12300 break;
12301 case 2:
12302 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12303 gen_helper_gvec_fcadds);
12304 break;
12305 case 3:
12306 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12307 gen_helper_gvec_fcaddd);
12308 break;
12309 default:
12310 g_assert_not_reached();
12312 return;
12314 case 0xd: /* BFMMLA */
12315 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
12316 return;
12317 case 0xf:
12318 switch (size) {
12319 case 1: /* BFDOT */
12320 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
12321 break;
12322 case 3: /* BFMLAL{B,T} */
12323 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
12324 gen_helper_gvec_bfmlal);
12325 break;
12326 default:
12327 g_assert_not_reached();
12329 return;
12331 default:
12332 g_assert_not_reached();
12336 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
12337 int size, int rn, int rd)
12339 /* Handle 2-reg-misc ops which are widening (so each size element
12340 * in the source becomes a 2*size element in the destination.
12341 * The only instruction like this is FCVTL.
12343 int pass;
12345 if (size == 3) {
12346 /* 32 -> 64 bit fp conversion */
12347 TCGv_i64 tcg_res[2];
12348 int srcelt = is_q ? 2 : 0;
12350 for (pass = 0; pass < 2; pass++) {
12351 TCGv_i32 tcg_op = tcg_temp_new_i32();
12352 tcg_res[pass] = tcg_temp_new_i64();
12354 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
12355 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
12356 tcg_temp_free_i32(tcg_op);
12358 for (pass = 0; pass < 2; pass++) {
12359 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12360 tcg_temp_free_i64(tcg_res[pass]);
12362 } else {
12363 /* 16 -> 32 bit fp conversion */
12364 int srcelt = is_q ? 4 : 0;
12365 TCGv_i32 tcg_res[4];
12366 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
12367 TCGv_i32 ahp = get_ahp_flag();
12369 for (pass = 0; pass < 4; pass++) {
12370 tcg_res[pass] = tcg_temp_new_i32();
12372 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
12373 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
12374 fpst, ahp);
12376 for (pass = 0; pass < 4; pass++) {
12377 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
12378 tcg_temp_free_i32(tcg_res[pass]);
12381 tcg_temp_free_ptr(fpst);
12382 tcg_temp_free_i32(ahp);
12386 static void handle_rev(DisasContext *s, int opcode, bool u,
12387 bool is_q, int size, int rn, int rd)
12389 int op = (opcode << 1) | u;
12390 int opsz = op + size;
12391 int grp_size = 3 - opsz;
12392 int dsize = is_q ? 128 : 64;
12393 int i;
12395 if (opsz >= 3) {
12396 unallocated_encoding(s);
12397 return;
12400 if (!fp_access_check(s)) {
12401 return;
12404 if (size == 0) {
12405 /* Special case bytes, use bswap op on each group of elements */
12406 int groups = dsize / (8 << grp_size);
12408 for (i = 0; i < groups; i++) {
12409 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
12411 read_vec_element(s, tcg_tmp, rn, i, grp_size);
12412 switch (grp_size) {
12413 case MO_16:
12414 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12415 break;
12416 case MO_32:
12417 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12418 break;
12419 case MO_64:
12420 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
12421 break;
12422 default:
12423 g_assert_not_reached();
12425 write_vec_element(s, tcg_tmp, rd, i, grp_size);
12426 tcg_temp_free_i64(tcg_tmp);
12428 clear_vec_high(s, is_q, rd);
12429 } else {
12430 int revmask = (1 << grp_size) - 1;
12431 int esize = 8 << size;
12432 int elements = dsize / esize;
12433 TCGv_i64 tcg_rn = tcg_temp_new_i64();
12434 TCGv_i64 tcg_rd = tcg_const_i64(0);
12435 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
12437 for (i = 0; i < elements; i++) {
12438 int e_rev = (i & 0xf) ^ revmask;
12439 int off = e_rev * esize;
12440 read_vec_element(s, tcg_rn, rn, i, size);
12441 if (off >= 64) {
12442 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
12443 tcg_rn, off - 64, esize);
12444 } else {
12445 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
12448 write_vec_element(s, tcg_rd, rd, 0, MO_64);
12449 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
12451 tcg_temp_free_i64(tcg_rd_hi);
12452 tcg_temp_free_i64(tcg_rd);
12453 tcg_temp_free_i64(tcg_rn);
12457 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12458 bool is_q, int size, int rn, int rd)
12460 /* Implement the pairwise operations from 2-misc:
12461 * SADDLP, UADDLP, SADALP, UADALP.
12462 * These all add pairs of elements in the input to produce a
12463 * double-width result element in the output (possibly accumulating).
12465 bool accum = (opcode == 0x6);
12466 int maxpass = is_q ? 2 : 1;
12467 int pass;
12468 TCGv_i64 tcg_res[2];
12470 if (size == 2) {
12471 /* 32 + 32 -> 64 op */
12472 MemOp memop = size + (u ? 0 : MO_SIGN);
12474 for (pass = 0; pass < maxpass; pass++) {
12475 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12476 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12478 tcg_res[pass] = tcg_temp_new_i64();
12480 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12481 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12482 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12483 if (accum) {
12484 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12485 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12488 tcg_temp_free_i64(tcg_op1);
12489 tcg_temp_free_i64(tcg_op2);
12491 } else {
12492 for (pass = 0; pass < maxpass; pass++) {
12493 TCGv_i64 tcg_op = tcg_temp_new_i64();
12494 NeonGenOne64OpFn *genfn;
12495 static NeonGenOne64OpFn * const fns[2][2] = {
12496 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
12497 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
12500 genfn = fns[size][u];
12502 tcg_res[pass] = tcg_temp_new_i64();
12504 read_vec_element(s, tcg_op, rn, pass, MO_64);
12505 genfn(tcg_res[pass], tcg_op);
12507 if (accum) {
12508 read_vec_element(s, tcg_op, rd, pass, MO_64);
12509 if (size == 0) {
12510 gen_helper_neon_addl_u16(tcg_res[pass],
12511 tcg_res[pass], tcg_op);
12512 } else {
12513 gen_helper_neon_addl_u32(tcg_res[pass],
12514 tcg_res[pass], tcg_op);
12517 tcg_temp_free_i64(tcg_op);
12520 if (!is_q) {
12521 tcg_res[1] = tcg_constant_i64(0);
12523 for (pass = 0; pass < 2; pass++) {
12524 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12525 tcg_temp_free_i64(tcg_res[pass]);
12529 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12531 /* Implement SHLL and SHLL2 */
12532 int pass;
12533 int part = is_q ? 2 : 0;
12534 TCGv_i64 tcg_res[2];
12536 for (pass = 0; pass < 2; pass++) {
12537 static NeonGenWidenFn * const widenfns[3] = {
12538 gen_helper_neon_widen_u8,
12539 gen_helper_neon_widen_u16,
12540 tcg_gen_extu_i32_i64,
12542 NeonGenWidenFn *widenfn = widenfns[size];
12543 TCGv_i32 tcg_op = tcg_temp_new_i32();
12545 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12546 tcg_res[pass] = tcg_temp_new_i64();
12547 widenfn(tcg_res[pass], tcg_op);
12548 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12550 tcg_temp_free_i32(tcg_op);
12553 for (pass = 0; pass < 2; pass++) {
12554 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12555 tcg_temp_free_i64(tcg_res[pass]);
12559 /* AdvSIMD two reg misc
12560 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
12561 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12562 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
12563 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12565 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12567 int size = extract32(insn, 22, 2);
12568 int opcode = extract32(insn, 12, 5);
12569 bool u = extract32(insn, 29, 1);
12570 bool is_q = extract32(insn, 30, 1);
12571 int rn = extract32(insn, 5, 5);
12572 int rd = extract32(insn, 0, 5);
12573 bool need_fpstatus = false;
12574 bool need_rmode = false;
12575 int rmode = -1;
12576 TCGv_i32 tcg_rmode;
12577 TCGv_ptr tcg_fpstatus;
12579 switch (opcode) {
12580 case 0x0: /* REV64, REV32 */
12581 case 0x1: /* REV16 */
12582 handle_rev(s, opcode, u, is_q, size, rn, rd);
12583 return;
12584 case 0x5: /* CNT, NOT, RBIT */
12585 if (u && size == 0) {
12586 /* NOT */
12587 break;
12588 } else if (u && size == 1) {
12589 /* RBIT */
12590 break;
12591 } else if (!u && size == 0) {
12592 /* CNT */
12593 break;
12595 unallocated_encoding(s);
12596 return;
12597 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12598 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12599 if (size == 3) {
12600 unallocated_encoding(s);
12601 return;
12603 if (!fp_access_check(s)) {
12604 return;
12607 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12608 return;
12609 case 0x4: /* CLS, CLZ */
12610 if (size == 3) {
12611 unallocated_encoding(s);
12612 return;
12614 break;
12615 case 0x2: /* SADDLP, UADDLP */
12616 case 0x6: /* SADALP, UADALP */
12617 if (size == 3) {
12618 unallocated_encoding(s);
12619 return;
12621 if (!fp_access_check(s)) {
12622 return;
12624 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12625 return;
12626 case 0x13: /* SHLL, SHLL2 */
12627 if (u == 0 || size == 3) {
12628 unallocated_encoding(s);
12629 return;
12631 if (!fp_access_check(s)) {
12632 return;
12634 handle_shll(s, is_q, size, rn, rd);
12635 return;
12636 case 0xa: /* CMLT */
12637 if (u == 1) {
12638 unallocated_encoding(s);
12639 return;
12641 /* fall through */
12642 case 0x8: /* CMGT, CMGE */
12643 case 0x9: /* CMEQ, CMLE */
12644 case 0xb: /* ABS, NEG */
12645 if (size == 3 && !is_q) {
12646 unallocated_encoding(s);
12647 return;
12649 break;
12650 case 0x3: /* SUQADD, USQADD */
12651 if (size == 3 && !is_q) {
12652 unallocated_encoding(s);
12653 return;
12655 if (!fp_access_check(s)) {
12656 return;
12658 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12659 return;
12660 case 0x7: /* SQABS, SQNEG */
12661 if (size == 3 && !is_q) {
12662 unallocated_encoding(s);
12663 return;
12665 break;
12666 case 0xc ... 0xf:
12667 case 0x16 ... 0x1f:
12669 /* Floating point: U, size[1] and opcode indicate operation;
12670 * size[0] indicates single or double precision.
12672 int is_double = extract32(size, 0, 1);
12673 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12674 size = is_double ? 3 : 2;
12675 switch (opcode) {
12676 case 0x2f: /* FABS */
12677 case 0x6f: /* FNEG */
12678 if (size == 3 && !is_q) {
12679 unallocated_encoding(s);
12680 return;
12682 break;
12683 case 0x1d: /* SCVTF */
12684 case 0x5d: /* UCVTF */
12686 bool is_signed = (opcode == 0x1d) ? true : false;
12687 int elements = is_double ? 2 : is_q ? 4 : 2;
12688 if (is_double && !is_q) {
12689 unallocated_encoding(s);
12690 return;
12692 if (!fp_access_check(s)) {
12693 return;
12695 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12696 return;
12698 case 0x2c: /* FCMGT (zero) */
12699 case 0x2d: /* FCMEQ (zero) */
12700 case 0x2e: /* FCMLT (zero) */
12701 case 0x6c: /* FCMGE (zero) */
12702 case 0x6d: /* FCMLE (zero) */
12703 if (size == 3 && !is_q) {
12704 unallocated_encoding(s);
12705 return;
12707 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12708 return;
12709 case 0x7f: /* FSQRT */
12710 if (size == 3 && !is_q) {
12711 unallocated_encoding(s);
12712 return;
12714 break;
12715 case 0x1a: /* FCVTNS */
12716 case 0x1b: /* FCVTMS */
12717 case 0x3a: /* FCVTPS */
12718 case 0x3b: /* FCVTZS */
12719 case 0x5a: /* FCVTNU */
12720 case 0x5b: /* FCVTMU */
12721 case 0x7a: /* FCVTPU */
12722 case 0x7b: /* FCVTZU */
12723 need_fpstatus = true;
12724 need_rmode = true;
12725 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12726 if (size == 3 && !is_q) {
12727 unallocated_encoding(s);
12728 return;
12730 break;
12731 case 0x5c: /* FCVTAU */
12732 case 0x1c: /* FCVTAS */
12733 need_fpstatus = true;
12734 need_rmode = true;
12735 rmode = FPROUNDING_TIEAWAY;
12736 if (size == 3 && !is_q) {
12737 unallocated_encoding(s);
12738 return;
12740 break;
12741 case 0x3c: /* URECPE */
12742 if (size == 3) {
12743 unallocated_encoding(s);
12744 return;
12746 /* fall through */
12747 case 0x3d: /* FRECPE */
12748 case 0x7d: /* FRSQRTE */
12749 if (size == 3 && !is_q) {
12750 unallocated_encoding(s);
12751 return;
12753 if (!fp_access_check(s)) {
12754 return;
12756 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12757 return;
12758 case 0x56: /* FCVTXN, FCVTXN2 */
12759 if (size == 2) {
12760 unallocated_encoding(s);
12761 return;
12763 /* fall through */
12764 case 0x16: /* FCVTN, FCVTN2 */
12765 /* handle_2misc_narrow does a 2*size -> size operation, but these
12766 * instructions encode the source size rather than dest size.
12768 if (!fp_access_check(s)) {
12769 return;
12771 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12772 return;
12773 case 0x36: /* BFCVTN, BFCVTN2 */
12774 if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12775 unallocated_encoding(s);
12776 return;
12778 if (!fp_access_check(s)) {
12779 return;
12781 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12782 return;
12783 case 0x17: /* FCVTL, FCVTL2 */
12784 if (!fp_access_check(s)) {
12785 return;
12787 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12788 return;
12789 case 0x18: /* FRINTN */
12790 case 0x19: /* FRINTM */
12791 case 0x38: /* FRINTP */
12792 case 0x39: /* FRINTZ */
12793 need_rmode = true;
12794 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12795 /* fall through */
12796 case 0x59: /* FRINTX */
12797 case 0x79: /* FRINTI */
12798 need_fpstatus = true;
12799 if (size == 3 && !is_q) {
12800 unallocated_encoding(s);
12801 return;
12803 break;
12804 case 0x58: /* FRINTA */
12805 need_rmode = true;
12806 rmode = FPROUNDING_TIEAWAY;
12807 need_fpstatus = true;
12808 if (size == 3 && !is_q) {
12809 unallocated_encoding(s);
12810 return;
12812 break;
12813 case 0x7c: /* URSQRTE */
12814 if (size == 3) {
12815 unallocated_encoding(s);
12816 return;
12818 break;
12819 case 0x1e: /* FRINT32Z */
12820 case 0x1f: /* FRINT64Z */
12821 need_rmode = true;
12822 rmode = FPROUNDING_ZERO;
12823 /* fall through */
12824 case 0x5e: /* FRINT32X */
12825 case 0x5f: /* FRINT64X */
12826 need_fpstatus = true;
12827 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12828 unallocated_encoding(s);
12829 return;
12831 break;
12832 default:
12833 unallocated_encoding(s);
12834 return;
12836 break;
12838 default:
12839 unallocated_encoding(s);
12840 return;
12843 if (!fp_access_check(s)) {
12844 return;
12847 if (need_fpstatus || need_rmode) {
12848 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12849 } else {
12850 tcg_fpstatus = NULL;
12852 if (need_rmode) {
12853 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12854 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12855 } else {
12856 tcg_rmode = NULL;
12859 switch (opcode) {
12860 case 0x5:
12861 if (u && size == 0) { /* NOT */
12862 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12863 return;
12865 break;
12866 case 0x8: /* CMGT, CMGE */
12867 if (u) {
12868 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12869 } else {
12870 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12872 return;
12873 case 0x9: /* CMEQ, CMLE */
12874 if (u) {
12875 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12876 } else {
12877 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12879 return;
12880 case 0xa: /* CMLT */
12881 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12882 return;
12883 case 0xb:
12884 if (u) { /* ABS, NEG */
12885 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12886 } else {
12887 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12889 return;
12892 if (size == 3) {
12893 /* All 64-bit element operations can be shared with scalar 2misc */
12894 int pass;
12896 /* Coverity claims (size == 3 && !is_q) has been eliminated
12897 * from all paths leading to here.
12899 tcg_debug_assert(is_q);
12900 for (pass = 0; pass < 2; pass++) {
12901 TCGv_i64 tcg_op = tcg_temp_new_i64();
12902 TCGv_i64 tcg_res = tcg_temp_new_i64();
12904 read_vec_element(s, tcg_op, rn, pass, MO_64);
12906 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12907 tcg_rmode, tcg_fpstatus);
12909 write_vec_element(s, tcg_res, rd, pass, MO_64);
12911 tcg_temp_free_i64(tcg_res);
12912 tcg_temp_free_i64(tcg_op);
12914 } else {
12915 int pass;
12917 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12918 TCGv_i32 tcg_op = tcg_temp_new_i32();
12919 TCGv_i32 tcg_res = tcg_temp_new_i32();
12921 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12923 if (size == 2) {
12924 /* Special cases for 32 bit elements */
12925 switch (opcode) {
12926 case 0x4: /* CLS */
12927 if (u) {
12928 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12929 } else {
12930 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12932 break;
12933 case 0x7: /* SQABS, SQNEG */
12934 if (u) {
12935 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12936 } else {
12937 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12939 break;
12940 case 0x2f: /* FABS */
12941 gen_helper_vfp_abss(tcg_res, tcg_op);
12942 break;
12943 case 0x6f: /* FNEG */
12944 gen_helper_vfp_negs(tcg_res, tcg_op);
12945 break;
12946 case 0x7f: /* FSQRT */
12947 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12948 break;
12949 case 0x1a: /* FCVTNS */
12950 case 0x1b: /* FCVTMS */
12951 case 0x1c: /* FCVTAS */
12952 case 0x3a: /* FCVTPS */
12953 case 0x3b: /* FCVTZS */
12954 gen_helper_vfp_tosls(tcg_res, tcg_op,
12955 tcg_constant_i32(0), tcg_fpstatus);
12956 break;
12957 case 0x5a: /* FCVTNU */
12958 case 0x5b: /* FCVTMU */
12959 case 0x5c: /* FCVTAU */
12960 case 0x7a: /* FCVTPU */
12961 case 0x7b: /* FCVTZU */
12962 gen_helper_vfp_touls(tcg_res, tcg_op,
12963 tcg_constant_i32(0), tcg_fpstatus);
12964 break;
12965 case 0x18: /* FRINTN */
12966 case 0x19: /* FRINTM */
12967 case 0x38: /* FRINTP */
12968 case 0x39: /* FRINTZ */
12969 case 0x58: /* FRINTA */
12970 case 0x79: /* FRINTI */
12971 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12972 break;
12973 case 0x59: /* FRINTX */
12974 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12975 break;
12976 case 0x7c: /* URSQRTE */
12977 gen_helper_rsqrte_u32(tcg_res, tcg_op);
12978 break;
12979 case 0x1e: /* FRINT32Z */
12980 case 0x5e: /* FRINT32X */
12981 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12982 break;
12983 case 0x1f: /* FRINT64Z */
12984 case 0x5f: /* FRINT64X */
12985 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12986 break;
12987 default:
12988 g_assert_not_reached();
12990 } else {
12991 /* Use helpers for 8 and 16 bit elements */
12992 switch (opcode) {
12993 case 0x5: /* CNT, RBIT */
12994 /* For these two insns size is part of the opcode specifier
12995 * (handled earlier); they always operate on byte elements.
12997 if (u) {
12998 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12999 } else {
13000 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
13002 break;
13003 case 0x7: /* SQABS, SQNEG */
13005 NeonGenOneOpEnvFn *genfn;
13006 static NeonGenOneOpEnvFn * const fns[2][2] = {
13007 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
13008 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
13010 genfn = fns[size][u];
13011 genfn(tcg_res, cpu_env, tcg_op);
13012 break;
13014 case 0x4: /* CLS, CLZ */
13015 if (u) {
13016 if (size == 0) {
13017 gen_helper_neon_clz_u8(tcg_res, tcg_op);
13018 } else {
13019 gen_helper_neon_clz_u16(tcg_res, tcg_op);
13021 } else {
13022 if (size == 0) {
13023 gen_helper_neon_cls_s8(tcg_res, tcg_op);
13024 } else {
13025 gen_helper_neon_cls_s16(tcg_res, tcg_op);
13028 break;
13029 default:
13030 g_assert_not_reached();
13034 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13036 tcg_temp_free_i32(tcg_res);
13037 tcg_temp_free_i32(tcg_op);
13040 clear_vec_high(s, is_q, rd);
13042 if (need_rmode) {
13043 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13044 tcg_temp_free_i32(tcg_rmode);
13046 if (need_fpstatus) {
13047 tcg_temp_free_ptr(tcg_fpstatus);
13051 /* AdvSIMD [scalar] two register miscellaneous (FP16)
13053 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
13054 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
13055 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
13056 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
13057 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
13058 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
13060 * This actually covers two groups where scalar access is governed by
13061 * bit 28. A bunch of the instructions (float to integral) only exist
13062 * in the vector form and are un-allocated for the scalar decode. Also
13063 * in the scalar decode Q is always 1.
13065 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
13067 int fpop, opcode, a, u;
13068 int rn, rd;
13069 bool is_q;
13070 bool is_scalar;
13071 bool only_in_vector = false;
13073 int pass;
13074 TCGv_i32 tcg_rmode = NULL;
13075 TCGv_ptr tcg_fpstatus = NULL;
13076 bool need_rmode = false;
13077 bool need_fpst = true;
13078 int rmode;
13080 if (!dc_isar_feature(aa64_fp16, s)) {
13081 unallocated_encoding(s);
13082 return;
13085 rd = extract32(insn, 0, 5);
13086 rn = extract32(insn, 5, 5);
13088 a = extract32(insn, 23, 1);
13089 u = extract32(insn, 29, 1);
13090 is_scalar = extract32(insn, 28, 1);
13091 is_q = extract32(insn, 30, 1);
13093 opcode = extract32(insn, 12, 5);
13094 fpop = deposit32(opcode, 5, 1, a);
13095 fpop = deposit32(fpop, 6, 1, u);
13097 switch (fpop) {
13098 case 0x1d: /* SCVTF */
13099 case 0x5d: /* UCVTF */
13101 int elements;
13103 if (is_scalar) {
13104 elements = 1;
13105 } else {
13106 elements = (is_q ? 8 : 4);
13109 if (!fp_access_check(s)) {
13110 return;
13112 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
13113 return;
13115 break;
13116 case 0x2c: /* FCMGT (zero) */
13117 case 0x2d: /* FCMEQ (zero) */
13118 case 0x2e: /* FCMLT (zero) */
13119 case 0x6c: /* FCMGE (zero) */
13120 case 0x6d: /* FCMLE (zero) */
13121 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
13122 return;
13123 case 0x3d: /* FRECPE */
13124 case 0x3f: /* FRECPX */
13125 break;
13126 case 0x18: /* FRINTN */
13127 need_rmode = true;
13128 only_in_vector = true;
13129 rmode = FPROUNDING_TIEEVEN;
13130 break;
13131 case 0x19: /* FRINTM */
13132 need_rmode = true;
13133 only_in_vector = true;
13134 rmode = FPROUNDING_NEGINF;
13135 break;
13136 case 0x38: /* FRINTP */
13137 need_rmode = true;
13138 only_in_vector = true;
13139 rmode = FPROUNDING_POSINF;
13140 break;
13141 case 0x39: /* FRINTZ */
13142 need_rmode = true;
13143 only_in_vector = true;
13144 rmode = FPROUNDING_ZERO;
13145 break;
13146 case 0x58: /* FRINTA */
13147 need_rmode = true;
13148 only_in_vector = true;
13149 rmode = FPROUNDING_TIEAWAY;
13150 break;
13151 case 0x59: /* FRINTX */
13152 case 0x79: /* FRINTI */
13153 only_in_vector = true;
13154 /* current rounding mode */
13155 break;
13156 case 0x1a: /* FCVTNS */
13157 need_rmode = true;
13158 rmode = FPROUNDING_TIEEVEN;
13159 break;
13160 case 0x1b: /* FCVTMS */
13161 need_rmode = true;
13162 rmode = FPROUNDING_NEGINF;
13163 break;
13164 case 0x1c: /* FCVTAS */
13165 need_rmode = true;
13166 rmode = FPROUNDING_TIEAWAY;
13167 break;
13168 case 0x3a: /* FCVTPS */
13169 need_rmode = true;
13170 rmode = FPROUNDING_POSINF;
13171 break;
13172 case 0x3b: /* FCVTZS */
13173 need_rmode = true;
13174 rmode = FPROUNDING_ZERO;
13175 break;
13176 case 0x5a: /* FCVTNU */
13177 need_rmode = true;
13178 rmode = FPROUNDING_TIEEVEN;
13179 break;
13180 case 0x5b: /* FCVTMU */
13181 need_rmode = true;
13182 rmode = FPROUNDING_NEGINF;
13183 break;
13184 case 0x5c: /* FCVTAU */
13185 need_rmode = true;
13186 rmode = FPROUNDING_TIEAWAY;
13187 break;
13188 case 0x7a: /* FCVTPU */
13189 need_rmode = true;
13190 rmode = FPROUNDING_POSINF;
13191 break;
13192 case 0x7b: /* FCVTZU */
13193 need_rmode = true;
13194 rmode = FPROUNDING_ZERO;
13195 break;
13196 case 0x2f: /* FABS */
13197 case 0x6f: /* FNEG */
13198 need_fpst = false;
13199 break;
13200 case 0x7d: /* FRSQRTE */
13201 case 0x7f: /* FSQRT (vector) */
13202 break;
13203 default:
13204 unallocated_encoding(s);
13205 return;
13209 /* Check additional constraints for the scalar encoding */
13210 if (is_scalar) {
13211 if (!is_q) {
13212 unallocated_encoding(s);
13213 return;
13215 /* FRINTxx is only in the vector form */
13216 if (only_in_vector) {
13217 unallocated_encoding(s);
13218 return;
13222 if (!fp_access_check(s)) {
13223 return;
13226 if (need_rmode || need_fpst) {
13227 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
13230 if (need_rmode) {
13231 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
13232 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13235 if (is_scalar) {
13236 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
13237 TCGv_i32 tcg_res = tcg_temp_new_i32();
13239 switch (fpop) {
13240 case 0x1a: /* FCVTNS */
13241 case 0x1b: /* FCVTMS */
13242 case 0x1c: /* FCVTAS */
13243 case 0x3a: /* FCVTPS */
13244 case 0x3b: /* FCVTZS */
13245 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13246 break;
13247 case 0x3d: /* FRECPE */
13248 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13249 break;
13250 case 0x3f: /* FRECPX */
13251 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
13252 break;
13253 case 0x5a: /* FCVTNU */
13254 case 0x5b: /* FCVTMU */
13255 case 0x5c: /* FCVTAU */
13256 case 0x7a: /* FCVTPU */
13257 case 0x7b: /* FCVTZU */
13258 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13259 break;
13260 case 0x6f: /* FNEG */
13261 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13262 break;
13263 case 0x7d: /* FRSQRTE */
13264 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13265 break;
13266 default:
13267 g_assert_not_reached();
13270 /* limit any sign extension going on */
13271 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
13272 write_fp_sreg(s, rd, tcg_res);
13274 tcg_temp_free_i32(tcg_res);
13275 tcg_temp_free_i32(tcg_op);
13276 } else {
13277 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
13278 TCGv_i32 tcg_op = tcg_temp_new_i32();
13279 TCGv_i32 tcg_res = tcg_temp_new_i32();
13281 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
13283 switch (fpop) {
13284 case 0x1a: /* FCVTNS */
13285 case 0x1b: /* FCVTMS */
13286 case 0x1c: /* FCVTAS */
13287 case 0x3a: /* FCVTPS */
13288 case 0x3b: /* FCVTZS */
13289 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13290 break;
13291 case 0x3d: /* FRECPE */
13292 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13293 break;
13294 case 0x5a: /* FCVTNU */
13295 case 0x5b: /* FCVTMU */
13296 case 0x5c: /* FCVTAU */
13297 case 0x7a: /* FCVTPU */
13298 case 0x7b: /* FCVTZU */
13299 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13300 break;
13301 case 0x18: /* FRINTN */
13302 case 0x19: /* FRINTM */
13303 case 0x38: /* FRINTP */
13304 case 0x39: /* FRINTZ */
13305 case 0x58: /* FRINTA */
13306 case 0x79: /* FRINTI */
13307 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
13308 break;
13309 case 0x59: /* FRINTX */
13310 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
13311 break;
13312 case 0x2f: /* FABS */
13313 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
13314 break;
13315 case 0x6f: /* FNEG */
13316 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13317 break;
13318 case 0x7d: /* FRSQRTE */
13319 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13320 break;
13321 case 0x7f: /* FSQRT */
13322 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
13323 break;
13324 default:
13325 g_assert_not_reached();
13328 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
13330 tcg_temp_free_i32(tcg_res);
13331 tcg_temp_free_i32(tcg_op);
13334 clear_vec_high(s, is_q, rd);
13337 if (tcg_rmode) {
13338 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13339 tcg_temp_free_i32(tcg_rmode);
13342 if (tcg_fpstatus) {
13343 tcg_temp_free_ptr(tcg_fpstatus);
13347 /* AdvSIMD scalar x indexed element
13348 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
13349 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13350 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
13351 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13352 * AdvSIMD vector x indexed element
13353 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
13354 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13355 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
13356 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13358 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
13360 /* This encoding has two kinds of instruction:
13361 * normal, where we perform elt x idxelt => elt for each
13362 * element in the vector
13363 * long, where we perform elt x idxelt and generate a result of
13364 * double the width of the input element
13365 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
13367 bool is_scalar = extract32(insn, 28, 1);
13368 bool is_q = extract32(insn, 30, 1);
13369 bool u = extract32(insn, 29, 1);
13370 int size = extract32(insn, 22, 2);
13371 int l = extract32(insn, 21, 1);
13372 int m = extract32(insn, 20, 1);
13373 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
13374 int rm = extract32(insn, 16, 4);
13375 int opcode = extract32(insn, 12, 4);
13376 int h = extract32(insn, 11, 1);
13377 int rn = extract32(insn, 5, 5);
13378 int rd = extract32(insn, 0, 5);
13379 bool is_long = false;
13380 int is_fp = 0;
13381 bool is_fp16 = false;
13382 int index;
13383 TCGv_ptr fpst;
13385 switch (16 * u + opcode) {
13386 case 0x08: /* MUL */
13387 case 0x10: /* MLA */
13388 case 0x14: /* MLS */
13389 if (is_scalar) {
13390 unallocated_encoding(s);
13391 return;
13393 break;
13394 case 0x02: /* SMLAL, SMLAL2 */
13395 case 0x12: /* UMLAL, UMLAL2 */
13396 case 0x06: /* SMLSL, SMLSL2 */
13397 case 0x16: /* UMLSL, UMLSL2 */
13398 case 0x0a: /* SMULL, SMULL2 */
13399 case 0x1a: /* UMULL, UMULL2 */
13400 if (is_scalar) {
13401 unallocated_encoding(s);
13402 return;
13404 is_long = true;
13405 break;
13406 case 0x03: /* SQDMLAL, SQDMLAL2 */
13407 case 0x07: /* SQDMLSL, SQDMLSL2 */
13408 case 0x0b: /* SQDMULL, SQDMULL2 */
13409 is_long = true;
13410 break;
13411 case 0x0c: /* SQDMULH */
13412 case 0x0d: /* SQRDMULH */
13413 break;
13414 case 0x01: /* FMLA */
13415 case 0x05: /* FMLS */
13416 case 0x09: /* FMUL */
13417 case 0x19: /* FMULX */
13418 is_fp = 1;
13419 break;
13420 case 0x1d: /* SQRDMLAH */
13421 case 0x1f: /* SQRDMLSH */
13422 if (!dc_isar_feature(aa64_rdm, s)) {
13423 unallocated_encoding(s);
13424 return;
13426 break;
13427 case 0x0e: /* SDOT */
13428 case 0x1e: /* UDOT */
13429 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
13430 unallocated_encoding(s);
13431 return;
13433 break;
13434 case 0x0f:
13435 switch (size) {
13436 case 0: /* SUDOT */
13437 case 2: /* USDOT */
13438 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
13439 unallocated_encoding(s);
13440 return;
13442 size = MO_32;
13443 break;
13444 case 1: /* BFDOT */
13445 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13446 unallocated_encoding(s);
13447 return;
13449 size = MO_32;
13450 break;
13451 case 3: /* BFMLAL{B,T} */
13452 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13453 unallocated_encoding(s);
13454 return;
13456 /* can't set is_fp without other incorrect size checks */
13457 size = MO_16;
13458 break;
13459 default:
13460 unallocated_encoding(s);
13461 return;
13463 break;
13464 case 0x11: /* FCMLA #0 */
13465 case 0x13: /* FCMLA #90 */
13466 case 0x15: /* FCMLA #180 */
13467 case 0x17: /* FCMLA #270 */
13468 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
13469 unallocated_encoding(s);
13470 return;
13472 is_fp = 2;
13473 break;
13474 case 0x00: /* FMLAL */
13475 case 0x04: /* FMLSL */
13476 case 0x18: /* FMLAL2 */
13477 case 0x1c: /* FMLSL2 */
13478 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
13479 unallocated_encoding(s);
13480 return;
13482 size = MO_16;
13483 /* is_fp, but we pass cpu_env not fp_status. */
13484 break;
13485 default:
13486 unallocated_encoding(s);
13487 return;
13490 switch (is_fp) {
13491 case 1: /* normal fp */
13492 /* convert insn encoded size to MemOp size */
13493 switch (size) {
13494 case 0: /* half-precision */
13495 size = MO_16;
13496 is_fp16 = true;
13497 break;
13498 case MO_32: /* single precision */
13499 case MO_64: /* double precision */
13500 break;
13501 default:
13502 unallocated_encoding(s);
13503 return;
13505 break;
13507 case 2: /* complex fp */
13508 /* Each indexable element is a complex pair. */
13509 size += 1;
13510 switch (size) {
13511 case MO_32:
13512 if (h && !is_q) {
13513 unallocated_encoding(s);
13514 return;
13516 is_fp16 = true;
13517 break;
13518 case MO_64:
13519 break;
13520 default:
13521 unallocated_encoding(s);
13522 return;
13524 break;
13526 default: /* integer */
13527 switch (size) {
13528 case MO_8:
13529 case MO_64:
13530 unallocated_encoding(s);
13531 return;
13533 break;
13535 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13536 unallocated_encoding(s);
13537 return;
13540 /* Given MemOp size, adjust register and indexing. */
13541 switch (size) {
13542 case MO_16:
13543 index = h << 2 | l << 1 | m;
13544 break;
13545 case MO_32:
13546 index = h << 1 | l;
13547 rm |= m << 4;
13548 break;
13549 case MO_64:
13550 if (l || !is_q) {
13551 unallocated_encoding(s);
13552 return;
13554 index = h;
13555 rm |= m << 4;
13556 break;
13557 default:
13558 g_assert_not_reached();
13561 if (!fp_access_check(s)) {
13562 return;
13565 if (is_fp) {
13566 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
13567 } else {
13568 fpst = NULL;
13571 switch (16 * u + opcode) {
13572 case 0x0e: /* SDOT */
13573 case 0x1e: /* UDOT */
13574 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13575 u ? gen_helper_gvec_udot_idx_b
13576 : gen_helper_gvec_sdot_idx_b);
13577 return;
13578 case 0x0f:
13579 switch (extract32(insn, 22, 2)) {
13580 case 0: /* SUDOT */
13581 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13582 gen_helper_gvec_sudot_idx_b);
13583 return;
13584 case 1: /* BFDOT */
13585 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13586 gen_helper_gvec_bfdot_idx);
13587 return;
13588 case 2: /* USDOT */
13589 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13590 gen_helper_gvec_usdot_idx_b);
13591 return;
13592 case 3: /* BFMLAL{B,T} */
13593 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
13594 gen_helper_gvec_bfmlal_idx);
13595 return;
13597 g_assert_not_reached();
13598 case 0x11: /* FCMLA #0 */
13599 case 0x13: /* FCMLA #90 */
13600 case 0x15: /* FCMLA #180 */
13601 case 0x17: /* FCMLA #270 */
13603 int rot = extract32(insn, 13, 2);
13604 int data = (index << 2) | rot;
13605 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13606 vec_full_reg_offset(s, rn),
13607 vec_full_reg_offset(s, rm),
13608 vec_full_reg_offset(s, rd), fpst,
13609 is_q ? 16 : 8, vec_full_reg_size(s), data,
13610 size == MO_64
13611 ? gen_helper_gvec_fcmlas_idx
13612 : gen_helper_gvec_fcmlah_idx);
13613 tcg_temp_free_ptr(fpst);
13615 return;
13617 case 0x00: /* FMLAL */
13618 case 0x04: /* FMLSL */
13619 case 0x18: /* FMLAL2 */
13620 case 0x1c: /* FMLSL2 */
13622 int is_s = extract32(opcode, 2, 1);
13623 int is_2 = u;
13624 int data = (index << 2) | (is_2 << 1) | is_s;
13625 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13626 vec_full_reg_offset(s, rn),
13627 vec_full_reg_offset(s, rm), cpu_env,
13628 is_q ? 16 : 8, vec_full_reg_size(s),
13629 data, gen_helper_gvec_fmlal_idx_a64);
13631 return;
13633 case 0x08: /* MUL */
13634 if (!is_long && !is_scalar) {
13635 static gen_helper_gvec_3 * const fns[3] = {
13636 gen_helper_gvec_mul_idx_h,
13637 gen_helper_gvec_mul_idx_s,
13638 gen_helper_gvec_mul_idx_d,
13640 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13641 vec_full_reg_offset(s, rn),
13642 vec_full_reg_offset(s, rm),
13643 is_q ? 16 : 8, vec_full_reg_size(s),
13644 index, fns[size - 1]);
13645 return;
13647 break;
13649 case 0x10: /* MLA */
13650 if (!is_long && !is_scalar) {
13651 static gen_helper_gvec_4 * const fns[3] = {
13652 gen_helper_gvec_mla_idx_h,
13653 gen_helper_gvec_mla_idx_s,
13654 gen_helper_gvec_mla_idx_d,
13656 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13657 vec_full_reg_offset(s, rn),
13658 vec_full_reg_offset(s, rm),
13659 vec_full_reg_offset(s, rd),
13660 is_q ? 16 : 8, vec_full_reg_size(s),
13661 index, fns[size - 1]);
13662 return;
13664 break;
13666 case 0x14: /* MLS */
13667 if (!is_long && !is_scalar) {
13668 static gen_helper_gvec_4 * const fns[3] = {
13669 gen_helper_gvec_mls_idx_h,
13670 gen_helper_gvec_mls_idx_s,
13671 gen_helper_gvec_mls_idx_d,
13673 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13674 vec_full_reg_offset(s, rn),
13675 vec_full_reg_offset(s, rm),
13676 vec_full_reg_offset(s, rd),
13677 is_q ? 16 : 8, vec_full_reg_size(s),
13678 index, fns[size - 1]);
13679 return;
13681 break;
13684 if (size == 3) {
13685 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13686 int pass;
13688 assert(is_fp && is_q && !is_long);
13690 read_vec_element(s, tcg_idx, rm, index, MO_64);
13692 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13693 TCGv_i64 tcg_op = tcg_temp_new_i64();
13694 TCGv_i64 tcg_res = tcg_temp_new_i64();
13696 read_vec_element(s, tcg_op, rn, pass, MO_64);
13698 switch (16 * u + opcode) {
13699 case 0x05: /* FMLS */
13700 /* As usual for ARM, separate negation for fused multiply-add */
13701 gen_helper_vfp_negd(tcg_op, tcg_op);
13702 /* fall through */
13703 case 0x01: /* FMLA */
13704 read_vec_element(s, tcg_res, rd, pass, MO_64);
13705 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13706 break;
13707 case 0x09: /* FMUL */
13708 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13709 break;
13710 case 0x19: /* FMULX */
13711 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13712 break;
13713 default:
13714 g_assert_not_reached();
13717 write_vec_element(s, tcg_res, rd, pass, MO_64);
13718 tcg_temp_free_i64(tcg_op);
13719 tcg_temp_free_i64(tcg_res);
13722 tcg_temp_free_i64(tcg_idx);
13723 clear_vec_high(s, !is_scalar, rd);
13724 } else if (!is_long) {
13725 /* 32 bit floating point, or 16 or 32 bit integer.
13726 * For the 16 bit scalar case we use the usual Neon helpers and
13727 * rely on the fact that 0 op 0 == 0 with no side effects.
13729 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13730 int pass, maxpasses;
13732 if (is_scalar) {
13733 maxpasses = 1;
13734 } else {
13735 maxpasses = is_q ? 4 : 2;
13738 read_vec_element_i32(s, tcg_idx, rm, index, size);
13740 if (size == 1 && !is_scalar) {
13741 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13742 * the index into both halves of the 32 bit tcg_idx and then use
13743 * the usual Neon helpers.
13745 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13748 for (pass = 0; pass < maxpasses; pass++) {
13749 TCGv_i32 tcg_op = tcg_temp_new_i32();
13750 TCGv_i32 tcg_res = tcg_temp_new_i32();
13752 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13754 switch (16 * u + opcode) {
13755 case 0x08: /* MUL */
13756 case 0x10: /* MLA */
13757 case 0x14: /* MLS */
13759 static NeonGenTwoOpFn * const fns[2][2] = {
13760 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13761 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13763 NeonGenTwoOpFn *genfn;
13764 bool is_sub = opcode == 0x4;
13766 if (size == 1) {
13767 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13768 } else {
13769 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13771 if (opcode == 0x8) {
13772 break;
13774 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13775 genfn = fns[size - 1][is_sub];
13776 genfn(tcg_res, tcg_op, tcg_res);
13777 break;
13779 case 0x05: /* FMLS */
13780 case 0x01: /* FMLA */
13781 read_vec_element_i32(s, tcg_res, rd, pass,
13782 is_scalar ? size : MO_32);
13783 switch (size) {
13784 case 1:
13785 if (opcode == 0x5) {
13786 /* As usual for ARM, separate negation for fused
13787 * multiply-add */
13788 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13790 if (is_scalar) {
13791 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13792 tcg_res, fpst);
13793 } else {
13794 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13795 tcg_res, fpst);
13797 break;
13798 case 2:
13799 if (opcode == 0x5) {
13800 /* As usual for ARM, separate negation for
13801 * fused multiply-add */
13802 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13804 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13805 tcg_res, fpst);
13806 break;
13807 default:
13808 g_assert_not_reached();
13810 break;
13811 case 0x09: /* FMUL */
13812 switch (size) {
13813 case 1:
13814 if (is_scalar) {
13815 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13816 tcg_idx, fpst);
13817 } else {
13818 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13819 tcg_idx, fpst);
13821 break;
13822 case 2:
13823 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13824 break;
13825 default:
13826 g_assert_not_reached();
13828 break;
13829 case 0x19: /* FMULX */
13830 switch (size) {
13831 case 1:
13832 if (is_scalar) {
13833 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13834 tcg_idx, fpst);
13835 } else {
13836 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13837 tcg_idx, fpst);
13839 break;
13840 case 2:
13841 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13842 break;
13843 default:
13844 g_assert_not_reached();
13846 break;
13847 case 0x0c: /* SQDMULH */
13848 if (size == 1) {
13849 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13850 tcg_op, tcg_idx);
13851 } else {
13852 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13853 tcg_op, tcg_idx);
13855 break;
13856 case 0x0d: /* SQRDMULH */
13857 if (size == 1) {
13858 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13859 tcg_op, tcg_idx);
13860 } else {
13861 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13862 tcg_op, tcg_idx);
13864 break;
13865 case 0x1d: /* SQRDMLAH */
13866 read_vec_element_i32(s, tcg_res, rd, pass,
13867 is_scalar ? size : MO_32);
13868 if (size == 1) {
13869 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13870 tcg_op, tcg_idx, tcg_res);
13871 } else {
13872 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13873 tcg_op, tcg_idx, tcg_res);
13875 break;
13876 case 0x1f: /* SQRDMLSH */
13877 read_vec_element_i32(s, tcg_res, rd, pass,
13878 is_scalar ? size : MO_32);
13879 if (size == 1) {
13880 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13881 tcg_op, tcg_idx, tcg_res);
13882 } else {
13883 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13884 tcg_op, tcg_idx, tcg_res);
13886 break;
13887 default:
13888 g_assert_not_reached();
13891 if (is_scalar) {
13892 write_fp_sreg(s, rd, tcg_res);
13893 } else {
13894 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13897 tcg_temp_free_i32(tcg_op);
13898 tcg_temp_free_i32(tcg_res);
13901 tcg_temp_free_i32(tcg_idx);
13902 clear_vec_high(s, is_q, rd);
13903 } else {
13904 /* long ops: 16x16->32 or 32x32->64 */
13905 TCGv_i64 tcg_res[2];
13906 int pass;
13907 bool satop = extract32(opcode, 0, 1);
13908 MemOp memop = MO_32;
13910 if (satop || !u) {
13911 memop |= MO_SIGN;
13914 if (size == 2) {
13915 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13917 read_vec_element(s, tcg_idx, rm, index, memop);
13919 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13920 TCGv_i64 tcg_op = tcg_temp_new_i64();
13921 TCGv_i64 tcg_passres;
13922 int passelt;
13924 if (is_scalar) {
13925 passelt = 0;
13926 } else {
13927 passelt = pass + (is_q * 2);
13930 read_vec_element(s, tcg_op, rn, passelt, memop);
13932 tcg_res[pass] = tcg_temp_new_i64();
13934 if (opcode == 0xa || opcode == 0xb) {
13935 /* Non-accumulating ops */
13936 tcg_passres = tcg_res[pass];
13937 } else {
13938 tcg_passres = tcg_temp_new_i64();
13941 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13942 tcg_temp_free_i64(tcg_op);
13944 if (satop) {
13945 /* saturating, doubling */
13946 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13947 tcg_passres, tcg_passres);
13950 if (opcode == 0xa || opcode == 0xb) {
13951 continue;
13954 /* Accumulating op: handle accumulate step */
13955 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13957 switch (opcode) {
13958 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13959 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13960 break;
13961 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13962 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13963 break;
13964 case 0x7: /* SQDMLSL, SQDMLSL2 */
13965 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13966 /* fall through */
13967 case 0x3: /* SQDMLAL, SQDMLAL2 */
13968 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13969 tcg_res[pass],
13970 tcg_passres);
13971 break;
13972 default:
13973 g_assert_not_reached();
13975 tcg_temp_free_i64(tcg_passres);
13977 tcg_temp_free_i64(tcg_idx);
13979 clear_vec_high(s, !is_scalar, rd);
13980 } else {
13981 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13983 assert(size == 1);
13984 read_vec_element_i32(s, tcg_idx, rm, index, size);
13986 if (!is_scalar) {
13987 /* The simplest way to handle the 16x16 indexed ops is to
13988 * duplicate the index into both halves of the 32 bit tcg_idx
13989 * and then use the usual Neon helpers.
13991 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13994 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13995 TCGv_i32 tcg_op = tcg_temp_new_i32();
13996 TCGv_i64 tcg_passres;
13998 if (is_scalar) {
13999 read_vec_element_i32(s, tcg_op, rn, pass, size);
14000 } else {
14001 read_vec_element_i32(s, tcg_op, rn,
14002 pass + (is_q * 2), MO_32);
14005 tcg_res[pass] = tcg_temp_new_i64();
14007 if (opcode == 0xa || opcode == 0xb) {
14008 /* Non-accumulating ops */
14009 tcg_passres = tcg_res[pass];
14010 } else {
14011 tcg_passres = tcg_temp_new_i64();
14014 if (memop & MO_SIGN) {
14015 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
14016 } else {
14017 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
14019 if (satop) {
14020 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
14021 tcg_passres, tcg_passres);
14023 tcg_temp_free_i32(tcg_op);
14025 if (opcode == 0xa || opcode == 0xb) {
14026 continue;
14029 /* Accumulating op: handle accumulate step */
14030 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
14032 switch (opcode) {
14033 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
14034 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
14035 tcg_passres);
14036 break;
14037 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
14038 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
14039 tcg_passres);
14040 break;
14041 case 0x7: /* SQDMLSL, SQDMLSL2 */
14042 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
14043 /* fall through */
14044 case 0x3: /* SQDMLAL, SQDMLAL2 */
14045 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
14046 tcg_res[pass],
14047 tcg_passres);
14048 break;
14049 default:
14050 g_assert_not_reached();
14052 tcg_temp_free_i64(tcg_passres);
14054 tcg_temp_free_i32(tcg_idx);
14056 if (is_scalar) {
14057 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
14061 if (is_scalar) {
14062 tcg_res[1] = tcg_constant_i64(0);
14065 for (pass = 0; pass < 2; pass++) {
14066 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
14067 tcg_temp_free_i64(tcg_res[pass]);
14071 if (fpst) {
14072 tcg_temp_free_ptr(fpst);
14076 /* Crypto AES
14077 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
14078 * +-----------------+------+-----------+--------+-----+------+------+
14079 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
14080 * +-----------------+------+-----------+--------+-----+------+------+
14082 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
14084 int size = extract32(insn, 22, 2);
14085 int opcode = extract32(insn, 12, 5);
14086 int rn = extract32(insn, 5, 5);
14087 int rd = extract32(insn, 0, 5);
14088 int decrypt;
14089 gen_helper_gvec_2 *genfn2 = NULL;
14090 gen_helper_gvec_3 *genfn3 = NULL;
14092 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
14093 unallocated_encoding(s);
14094 return;
14097 switch (opcode) {
14098 case 0x4: /* AESE */
14099 decrypt = 0;
14100 genfn3 = gen_helper_crypto_aese;
14101 break;
14102 case 0x6: /* AESMC */
14103 decrypt = 0;
14104 genfn2 = gen_helper_crypto_aesmc;
14105 break;
14106 case 0x5: /* AESD */
14107 decrypt = 1;
14108 genfn3 = gen_helper_crypto_aese;
14109 break;
14110 case 0x7: /* AESIMC */
14111 decrypt = 1;
14112 genfn2 = gen_helper_crypto_aesmc;
14113 break;
14114 default:
14115 unallocated_encoding(s);
14116 return;
14119 if (!fp_access_check(s)) {
14120 return;
14122 if (genfn2) {
14123 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
14124 } else {
14125 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
14129 /* Crypto three-reg SHA
14130 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
14131 * +-----------------+------+---+------+---+--------+-----+------+------+
14132 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
14133 * +-----------------+------+---+------+---+--------+-----+------+------+
14135 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
14137 int size = extract32(insn, 22, 2);
14138 int opcode = extract32(insn, 12, 3);
14139 int rm = extract32(insn, 16, 5);
14140 int rn = extract32(insn, 5, 5);
14141 int rd = extract32(insn, 0, 5);
14142 gen_helper_gvec_3 *genfn;
14143 bool feature;
14145 if (size != 0) {
14146 unallocated_encoding(s);
14147 return;
14150 switch (opcode) {
14151 case 0: /* SHA1C */
14152 genfn = gen_helper_crypto_sha1c;
14153 feature = dc_isar_feature(aa64_sha1, s);
14154 break;
14155 case 1: /* SHA1P */
14156 genfn = gen_helper_crypto_sha1p;
14157 feature = dc_isar_feature(aa64_sha1, s);
14158 break;
14159 case 2: /* SHA1M */
14160 genfn = gen_helper_crypto_sha1m;
14161 feature = dc_isar_feature(aa64_sha1, s);
14162 break;
14163 case 3: /* SHA1SU0 */
14164 genfn = gen_helper_crypto_sha1su0;
14165 feature = dc_isar_feature(aa64_sha1, s);
14166 break;
14167 case 4: /* SHA256H */
14168 genfn = gen_helper_crypto_sha256h;
14169 feature = dc_isar_feature(aa64_sha256, s);
14170 break;
14171 case 5: /* SHA256H2 */
14172 genfn = gen_helper_crypto_sha256h2;
14173 feature = dc_isar_feature(aa64_sha256, s);
14174 break;
14175 case 6: /* SHA256SU1 */
14176 genfn = gen_helper_crypto_sha256su1;
14177 feature = dc_isar_feature(aa64_sha256, s);
14178 break;
14179 default:
14180 unallocated_encoding(s);
14181 return;
14184 if (!feature) {
14185 unallocated_encoding(s);
14186 return;
14189 if (!fp_access_check(s)) {
14190 return;
14192 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
14195 /* Crypto two-reg SHA
14196 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
14197 * +-----------------+------+-----------+--------+-----+------+------+
14198 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
14199 * +-----------------+------+-----------+--------+-----+------+------+
14201 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
14203 int size = extract32(insn, 22, 2);
14204 int opcode = extract32(insn, 12, 5);
14205 int rn = extract32(insn, 5, 5);
14206 int rd = extract32(insn, 0, 5);
14207 gen_helper_gvec_2 *genfn;
14208 bool feature;
14210 if (size != 0) {
14211 unallocated_encoding(s);
14212 return;
14215 switch (opcode) {
14216 case 0: /* SHA1H */
14217 feature = dc_isar_feature(aa64_sha1, s);
14218 genfn = gen_helper_crypto_sha1h;
14219 break;
14220 case 1: /* SHA1SU1 */
14221 feature = dc_isar_feature(aa64_sha1, s);
14222 genfn = gen_helper_crypto_sha1su1;
14223 break;
14224 case 2: /* SHA256SU0 */
14225 feature = dc_isar_feature(aa64_sha256, s);
14226 genfn = gen_helper_crypto_sha256su0;
14227 break;
14228 default:
14229 unallocated_encoding(s);
14230 return;
14233 if (!feature) {
14234 unallocated_encoding(s);
14235 return;
14238 if (!fp_access_check(s)) {
14239 return;
14241 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
14244 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
14246 tcg_gen_rotli_i64(d, m, 1);
14247 tcg_gen_xor_i64(d, d, n);
14250 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
14252 tcg_gen_rotli_vec(vece, d, m, 1);
14253 tcg_gen_xor_vec(vece, d, d, n);
14256 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
14257 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
14259 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
14260 static const GVecGen3 op = {
14261 .fni8 = gen_rax1_i64,
14262 .fniv = gen_rax1_vec,
14263 .opt_opc = vecop_list,
14264 .fno = gen_helper_crypto_rax1,
14265 .vece = MO_64,
14267 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
14270 /* Crypto three-reg SHA512
14271 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14272 * +-----------------------+------+---+---+-----+--------+------+------+
14273 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
14274 * +-----------------------+------+---+---+-----+--------+------+------+
14276 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
14278 int opcode = extract32(insn, 10, 2);
14279 int o = extract32(insn, 14, 1);
14280 int rm = extract32(insn, 16, 5);
14281 int rn = extract32(insn, 5, 5);
14282 int rd = extract32(insn, 0, 5);
14283 bool feature;
14284 gen_helper_gvec_3 *oolfn = NULL;
14285 GVecGen3Fn *gvecfn = NULL;
14287 if (o == 0) {
14288 switch (opcode) {
14289 case 0: /* SHA512H */
14290 feature = dc_isar_feature(aa64_sha512, s);
14291 oolfn = gen_helper_crypto_sha512h;
14292 break;
14293 case 1: /* SHA512H2 */
14294 feature = dc_isar_feature(aa64_sha512, s);
14295 oolfn = gen_helper_crypto_sha512h2;
14296 break;
14297 case 2: /* SHA512SU1 */
14298 feature = dc_isar_feature(aa64_sha512, s);
14299 oolfn = gen_helper_crypto_sha512su1;
14300 break;
14301 case 3: /* RAX1 */
14302 feature = dc_isar_feature(aa64_sha3, s);
14303 gvecfn = gen_gvec_rax1;
14304 break;
14305 default:
14306 g_assert_not_reached();
14308 } else {
14309 switch (opcode) {
14310 case 0: /* SM3PARTW1 */
14311 feature = dc_isar_feature(aa64_sm3, s);
14312 oolfn = gen_helper_crypto_sm3partw1;
14313 break;
14314 case 1: /* SM3PARTW2 */
14315 feature = dc_isar_feature(aa64_sm3, s);
14316 oolfn = gen_helper_crypto_sm3partw2;
14317 break;
14318 case 2: /* SM4EKEY */
14319 feature = dc_isar_feature(aa64_sm4, s);
14320 oolfn = gen_helper_crypto_sm4ekey;
14321 break;
14322 default:
14323 unallocated_encoding(s);
14324 return;
14328 if (!feature) {
14329 unallocated_encoding(s);
14330 return;
14333 if (!fp_access_check(s)) {
14334 return;
14337 if (oolfn) {
14338 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
14339 } else {
14340 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
14344 /* Crypto two-reg SHA512
14345 * 31 12 11 10 9 5 4 0
14346 * +-----------------------------------------+--------+------+------+
14347 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
14348 * +-----------------------------------------+--------+------+------+
14350 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
14352 int opcode = extract32(insn, 10, 2);
14353 int rn = extract32(insn, 5, 5);
14354 int rd = extract32(insn, 0, 5);
14355 bool feature;
14357 switch (opcode) {
14358 case 0: /* SHA512SU0 */
14359 feature = dc_isar_feature(aa64_sha512, s);
14360 break;
14361 case 1: /* SM4E */
14362 feature = dc_isar_feature(aa64_sm4, s);
14363 break;
14364 default:
14365 unallocated_encoding(s);
14366 return;
14369 if (!feature) {
14370 unallocated_encoding(s);
14371 return;
14374 if (!fp_access_check(s)) {
14375 return;
14378 switch (opcode) {
14379 case 0: /* SHA512SU0 */
14380 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
14381 break;
14382 case 1: /* SM4E */
14383 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
14384 break;
14385 default:
14386 g_assert_not_reached();
14390 /* Crypto four-register
14391 * 31 23 22 21 20 16 15 14 10 9 5 4 0
14392 * +-------------------+-----+------+---+------+------+------+
14393 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
14394 * +-------------------+-----+------+---+------+------+------+
14396 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
14398 int op0 = extract32(insn, 21, 2);
14399 int rm = extract32(insn, 16, 5);
14400 int ra = extract32(insn, 10, 5);
14401 int rn = extract32(insn, 5, 5);
14402 int rd = extract32(insn, 0, 5);
14403 bool feature;
14405 switch (op0) {
14406 case 0: /* EOR3 */
14407 case 1: /* BCAX */
14408 feature = dc_isar_feature(aa64_sha3, s);
14409 break;
14410 case 2: /* SM3SS1 */
14411 feature = dc_isar_feature(aa64_sm3, s);
14412 break;
14413 default:
14414 unallocated_encoding(s);
14415 return;
14418 if (!feature) {
14419 unallocated_encoding(s);
14420 return;
14423 if (!fp_access_check(s)) {
14424 return;
14427 if (op0 < 2) {
14428 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
14429 int pass;
14431 tcg_op1 = tcg_temp_new_i64();
14432 tcg_op2 = tcg_temp_new_i64();
14433 tcg_op3 = tcg_temp_new_i64();
14434 tcg_res[0] = tcg_temp_new_i64();
14435 tcg_res[1] = tcg_temp_new_i64();
14437 for (pass = 0; pass < 2; pass++) {
14438 read_vec_element(s, tcg_op1, rn, pass, MO_64);
14439 read_vec_element(s, tcg_op2, rm, pass, MO_64);
14440 read_vec_element(s, tcg_op3, ra, pass, MO_64);
14442 if (op0 == 0) {
14443 /* EOR3 */
14444 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
14445 } else {
14446 /* BCAX */
14447 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
14449 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
14451 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
14452 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
14454 tcg_temp_free_i64(tcg_op1);
14455 tcg_temp_free_i64(tcg_op2);
14456 tcg_temp_free_i64(tcg_op3);
14457 tcg_temp_free_i64(tcg_res[0]);
14458 tcg_temp_free_i64(tcg_res[1]);
14459 } else {
14460 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
14462 tcg_op1 = tcg_temp_new_i32();
14463 tcg_op2 = tcg_temp_new_i32();
14464 tcg_op3 = tcg_temp_new_i32();
14465 tcg_res = tcg_temp_new_i32();
14466 tcg_zero = tcg_constant_i32(0);
14468 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
14469 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
14470 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
14472 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
14473 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
14474 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
14475 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
14477 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
14478 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
14479 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
14480 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
14482 tcg_temp_free_i32(tcg_op1);
14483 tcg_temp_free_i32(tcg_op2);
14484 tcg_temp_free_i32(tcg_op3);
14485 tcg_temp_free_i32(tcg_res);
14489 /* Crypto XAR
14490 * 31 21 20 16 15 10 9 5 4 0
14491 * +-----------------------+------+--------+------+------+
14492 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
14493 * +-----------------------+------+--------+------+------+
14495 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
14497 int rm = extract32(insn, 16, 5);
14498 int imm6 = extract32(insn, 10, 6);
14499 int rn = extract32(insn, 5, 5);
14500 int rd = extract32(insn, 0, 5);
14502 if (!dc_isar_feature(aa64_sha3, s)) {
14503 unallocated_encoding(s);
14504 return;
14507 if (!fp_access_check(s)) {
14508 return;
14511 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
14512 vec_full_reg_offset(s, rn),
14513 vec_full_reg_offset(s, rm), imm6, 16,
14514 vec_full_reg_size(s));
14517 /* Crypto three-reg imm2
14518 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14519 * +-----------------------+------+-----+------+--------+------+------+
14520 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
14521 * +-----------------------+------+-----+------+--------+------+------+
14523 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
14525 static gen_helper_gvec_3 * const fns[4] = {
14526 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
14527 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
14529 int opcode = extract32(insn, 10, 2);
14530 int imm2 = extract32(insn, 12, 2);
14531 int rm = extract32(insn, 16, 5);
14532 int rn = extract32(insn, 5, 5);
14533 int rd = extract32(insn, 0, 5);
14535 if (!dc_isar_feature(aa64_sm3, s)) {
14536 unallocated_encoding(s);
14537 return;
14540 if (!fp_access_check(s)) {
14541 return;
14544 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
14547 /* C3.6 Data processing - SIMD, inc Crypto
14549 * As the decode gets a little complex we are using a table based
14550 * approach for this part of the decode.
14552 static const AArch64DecodeTable data_proc_simd[] = {
14553 /* pattern , mask , fn */
14554 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
14555 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
14556 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
14557 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
14558 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
14559 { 0x0e000400, 0x9fe08400, disas_simd_copy },
14560 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
14561 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
14562 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
14563 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
14564 { 0x0e000000, 0xbf208c00, disas_simd_tb },
14565 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
14566 { 0x2e000000, 0xbf208400, disas_simd_ext },
14567 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
14568 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
14569 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
14570 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
14571 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
14572 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
14573 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
14574 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
14575 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
14576 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
14577 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
14578 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
14579 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
14580 { 0xce000000, 0xff808000, disas_crypto_four_reg },
14581 { 0xce800000, 0xffe00000, disas_crypto_xar },
14582 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
14583 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
14584 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
14585 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
14586 { 0x00000000, 0x00000000, NULL }
14589 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
14591 /* Note that this is called with all non-FP cases from
14592 * table C3-6 so it must UNDEF for entries not specifically
14593 * allocated to instructions in that table.
14595 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
14596 if (fn) {
14597 fn(s, insn);
14598 } else {
14599 unallocated_encoding(s);
14603 /* C3.6 Data processing - SIMD and floating point */
14604 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
14606 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
14607 disas_data_proc_fp(s, insn);
14608 } else {
14609 /* SIMD, including crypto */
14610 disas_data_proc_simd(s, insn);
14615 * Include the generated SME FA64 decoder.
14618 #include "decode-sme-fa64.c.inc"
14620 static bool trans_OK(DisasContext *s, arg_OK *a)
14622 return true;
14625 static bool trans_FAIL(DisasContext *s, arg_OK *a)
14627 s->is_nonstreaming = true;
14628 return true;
14632 * is_guarded_page:
14633 * @env: The cpu environment
14634 * @s: The DisasContext
14636 * Return true if the page is guarded.
14638 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14640 uint64_t addr = s->base.pc_first;
14641 #ifdef CONFIG_USER_ONLY
14642 return page_get_flags(addr) & PAGE_BTI;
14643 #else
14644 CPUTLBEntryFull *full;
14645 void *host;
14646 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14647 int flags;
14650 * We test this immediately after reading an insn, which means
14651 * that the TLB entry must be present and valid, and thus this
14652 * access will never raise an exception.
14654 flags = probe_access_full(env, addr, MMU_INST_FETCH, mmu_idx,
14655 false, &host, &full, 0);
14656 assert(!(flags & TLB_INVALID_MASK));
14658 return full->guarded;
14659 #endif
14663 * btype_destination_ok:
14664 * @insn: The instruction at the branch destination
14665 * @bt: SCTLR_ELx.BT
14666 * @btype: PSTATE.BTYPE, and is non-zero
14668 * On a guarded page, there are a limited number of insns
14669 * that may be present at the branch target:
14670 * - branch target identifiers,
14671 * - paciasp, pacibsp,
14672 * - BRK insn
14673 * - HLT insn
14674 * Anything else causes a Branch Target Exception.
14676 * Return true if the branch is compatible, false to raise BTITRAP.
14678 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14680 if ((insn & 0xfffff01fu) == 0xd503201fu) {
14681 /* HINT space */
14682 switch (extract32(insn, 5, 7)) {
14683 case 0b011001: /* PACIASP */
14684 case 0b011011: /* PACIBSP */
14686 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14687 * with btype == 3. Otherwise all btype are ok.
14689 return !bt || btype != 3;
14690 case 0b100000: /* BTI */
14691 /* Not compatible with any btype. */
14692 return false;
14693 case 0b100010: /* BTI c */
14694 /* Not compatible with btype == 3 */
14695 return btype != 3;
14696 case 0b100100: /* BTI j */
14697 /* Not compatible with btype == 2 */
14698 return btype != 2;
14699 case 0b100110: /* BTI jc */
14700 /* Compatible with any btype. */
14701 return true;
14703 } else {
14704 switch (insn & 0xffe0001fu) {
14705 case 0xd4200000u: /* BRK */
14706 case 0xd4400000u: /* HLT */
14707 /* Give priority to the breakpoint exception. */
14708 return true;
14711 return false;
14714 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14715 CPUState *cpu)
14717 DisasContext *dc = container_of(dcbase, DisasContext, base);
14718 CPUARMState *env = cpu->env_ptr;
14719 ARMCPU *arm_cpu = env_archcpu(env);
14720 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14721 int bound, core_mmu_idx;
14723 dc->isar = &arm_cpu->isar;
14724 dc->condjmp = 0;
14725 dc->pc_save = dc->base.pc_first;
14726 dc->aarch64 = true;
14727 dc->thumb = false;
14728 dc->sctlr_b = 0;
14729 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14730 dc->condexec_mask = 0;
14731 dc->condexec_cond = 0;
14732 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14733 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14734 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14735 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14736 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14737 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14738 #if !defined(CONFIG_USER_ONLY)
14739 dc->user = (dc->current_el == 0);
14740 #endif
14741 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14742 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14743 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14744 dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
14745 dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
14746 dc->fgt_eret = EX_TBFLAG_A64(tb_flags, FGT_ERET);
14747 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14748 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
14749 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
14750 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
14751 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14752 dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14753 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14754 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14755 dc->ata = EX_TBFLAG_A64(tb_flags, ATA);
14756 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14757 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14758 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
14759 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
14760 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
14761 dc->vec_len = 0;
14762 dc->vec_stride = 0;
14763 dc->cp_regs = arm_cpu->cp_regs;
14764 dc->features = env->features;
14765 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14767 #ifdef CONFIG_USER_ONLY
14768 /* In sve_probe_page, we assume TBI is enabled. */
14769 tcg_debug_assert(dc->tbid & 1);
14770 #endif
14772 /* Single step state. The code-generation logic here is:
14773 * SS_ACTIVE == 0:
14774 * generate code with no special handling for single-stepping (except
14775 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14776 * this happens anyway because those changes are all system register or
14777 * PSTATE writes).
14778 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14779 * emit code for one insn
14780 * emit code to clear PSTATE.SS
14781 * emit code to generate software step exception for completed step
14782 * end TB (as usual for having generated an exception)
14783 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14784 * emit code to generate a software step exception
14785 * end the TB
14787 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14788 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14789 dc->is_ldex = false;
14791 /* Bound the number of insns to execute to those left on the page. */
14792 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14794 /* If architectural single step active, limit to 1. */
14795 if (dc->ss_active) {
14796 bound = 1;
14798 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14800 init_tmp_a64_array(dc);
14803 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14807 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14809 DisasContext *dc = container_of(dcbase, DisasContext, base);
14810 target_ulong pc_arg = dc->base.pc_next;
14812 if (TARGET_TB_PCREL) {
14813 pc_arg &= ~TARGET_PAGE_MASK;
14815 tcg_gen_insn_start(pc_arg, 0, 0);
14816 dc->insn_start = tcg_last_op();
14819 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14821 DisasContext *s = container_of(dcbase, DisasContext, base);
14822 CPUARMState *env = cpu->env_ptr;
14823 uint64_t pc = s->base.pc_next;
14824 uint32_t insn;
14826 /* Singlestep exceptions have the highest priority. */
14827 if (s->ss_active && !s->pstate_ss) {
14828 /* Singlestep state is Active-pending.
14829 * If we're in this state at the start of a TB then either
14830 * a) we just took an exception to an EL which is being debugged
14831 * and this is the first insn in the exception handler
14832 * b) debug exceptions were masked and we just unmasked them
14833 * without changing EL (eg by clearing PSTATE.D)
14834 * In either case we're going to take a swstep exception in the
14835 * "did not step an insn" case, and so the syndrome ISV and EX
14836 * bits should be zero.
14838 assert(s->base.num_insns == 1);
14839 gen_swstep_exception(s, 0, 0);
14840 s->base.is_jmp = DISAS_NORETURN;
14841 s->base.pc_next = pc + 4;
14842 return;
14845 if (pc & 3) {
14847 * PC alignment fault. This has priority over the instruction abort
14848 * that we would receive from a translation fault via arm_ldl_code.
14849 * This should only be possible after an indirect branch, at the
14850 * start of the TB.
14852 assert(s->base.num_insns == 1);
14853 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc));
14854 s->base.is_jmp = DISAS_NORETURN;
14855 s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14856 return;
14859 s->pc_curr = pc;
14860 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14861 s->insn = insn;
14862 s->base.pc_next = pc + 4;
14864 s->fp_access_checked = false;
14865 s->sve_access_checked = false;
14867 if (s->pstate_il) {
14869 * Illegal execution state. This has priority over BTI
14870 * exceptions, but comes after instruction abort exceptions.
14872 gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
14873 return;
14876 if (dc_isar_feature(aa64_bti, s)) {
14877 if (s->base.num_insns == 1) {
14879 * At the first insn of the TB, compute s->guarded_page.
14880 * We delayed computing this until successfully reading
14881 * the first insn of the TB, above. This (mostly) ensures
14882 * that the softmmu tlb entry has been populated, and the
14883 * page table GP bit is available.
14885 * Note that we need to compute this even if btype == 0,
14886 * because this value is used for BR instructions later
14887 * where ENV is not available.
14889 s->guarded_page = is_guarded_page(env, s);
14891 /* First insn can have btype set to non-zero. */
14892 tcg_debug_assert(s->btype >= 0);
14895 * Note that the Branch Target Exception has fairly high
14896 * priority -- below debugging exceptions but above most
14897 * everything else. This allows us to handle this now
14898 * instead of waiting until the insn is otherwise decoded.
14900 if (s->btype != 0
14901 && s->guarded_page
14902 && !btype_destination_ok(insn, s->bt, s->btype)) {
14903 gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
14904 return;
14906 } else {
14907 /* Not the first insn: btype must be 0. */
14908 tcg_debug_assert(s->btype == 0);
14912 s->is_nonstreaming = false;
14913 if (s->sme_trap_nonstreaming) {
14914 disas_sme_fa64(s, insn);
14917 switch (extract32(insn, 25, 4)) {
14918 case 0x0:
14919 if (!extract32(insn, 31, 1) || !disas_sme(s, insn)) {
14920 unallocated_encoding(s);
14922 break;
14923 case 0x1: case 0x3: /* UNALLOCATED */
14924 unallocated_encoding(s);
14925 break;
14926 case 0x2:
14927 if (!disas_sve(s, insn)) {
14928 unallocated_encoding(s);
14930 break;
14931 case 0x8: case 0x9: /* Data processing - immediate */
14932 disas_data_proc_imm(s, insn);
14933 break;
14934 case 0xa: case 0xb: /* Branch, exception generation and system insns */
14935 disas_b_exc_sys(s, insn);
14936 break;
14937 case 0x4:
14938 case 0x6:
14939 case 0xc:
14940 case 0xe: /* Loads and stores */
14941 disas_ldst(s, insn);
14942 break;
14943 case 0x5:
14944 case 0xd: /* Data processing - register */
14945 disas_data_proc_reg(s, insn);
14946 break;
14947 case 0x7:
14948 case 0xf: /* Data processing - SIMD and floating point */
14949 disas_data_proc_simd_fp(s, insn);
14950 break;
14951 default:
14952 assert(FALSE); /* all 15 cases should be handled above */
14953 break;
14956 /* if we allocated any temporaries, free them here */
14957 free_tmp_a64(s);
14960 * After execution of most insns, btype is reset to 0.
14961 * Note that we set btype == -1 when the insn sets btype.
14963 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14964 reset_btype(s);
14967 translator_loop_temp_check(&s->base);
14970 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14972 DisasContext *dc = container_of(dcbase, DisasContext, base);
14974 if (unlikely(dc->ss_active)) {
14975 /* Note that this means single stepping WFI doesn't halt the CPU.
14976 * For conditional branch insns this is harmless unreachable code as
14977 * gen_goto_tb() has already handled emitting the debug exception
14978 * (and thus a tb-jump is not possible when singlestepping).
14980 switch (dc->base.is_jmp) {
14981 default:
14982 gen_a64_update_pc(dc, 4);
14983 /* fall through */
14984 case DISAS_EXIT:
14985 case DISAS_JUMP:
14986 gen_step_complete_exception(dc);
14987 break;
14988 case DISAS_NORETURN:
14989 break;
14991 } else {
14992 switch (dc->base.is_jmp) {
14993 case DISAS_NEXT:
14994 case DISAS_TOO_MANY:
14995 gen_goto_tb(dc, 1, 4);
14996 break;
14997 default:
14998 case DISAS_UPDATE_EXIT:
14999 gen_a64_update_pc(dc, 4);
15000 /* fall through */
15001 case DISAS_EXIT:
15002 tcg_gen_exit_tb(NULL, 0);
15003 break;
15004 case DISAS_UPDATE_NOCHAIN:
15005 gen_a64_update_pc(dc, 4);
15006 /* fall through */
15007 case DISAS_JUMP:
15008 tcg_gen_lookup_and_goto_ptr();
15009 break;
15010 case DISAS_NORETURN:
15011 case DISAS_SWI:
15012 break;
15013 case DISAS_WFE:
15014 gen_a64_update_pc(dc, 4);
15015 gen_helper_wfe(cpu_env);
15016 break;
15017 case DISAS_YIELD:
15018 gen_a64_update_pc(dc, 4);
15019 gen_helper_yield(cpu_env);
15020 break;
15021 case DISAS_WFI:
15023 * This is a special case because we don't want to just halt
15024 * the CPU if trying to debug across a WFI.
15026 gen_a64_update_pc(dc, 4);
15027 gen_helper_wfi(cpu_env, tcg_constant_i32(4));
15029 * The helper doesn't necessarily throw an exception, but we
15030 * must go back to the main loop to check for interrupts anyway.
15032 tcg_gen_exit_tb(NULL, 0);
15033 break;
15038 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
15039 CPUState *cpu, FILE *logfile)
15041 DisasContext *dc = container_of(dcbase, DisasContext, base);
15043 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
15044 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
15047 const TranslatorOps aarch64_translator_ops = {
15048 .init_disas_context = aarch64_tr_init_disas_context,
15049 .tb_start = aarch64_tr_tb_start,
15050 .insn_start = aarch64_tr_insn_start,
15051 .translate_insn = aarch64_tr_translate_insn,
15052 .tb_stop = aarch64_tr_tb_stop,
15053 .disas_log = aarch64_tr_disas_log,