tests: Add a simple test of the CMSDK APB dual timer
[qemu/ar7.git] / block / io.c
blobd203435a73d6b7308fda02181ba0a231c9c6c9e6
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/aio-wait.h"
29 #include "block/blockjob.h"
30 #include "block/blockjob_int.h"
31 #include "block/block_int.h"
32 #include "block/coroutines.h"
33 #include "qemu/cutils.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "qemu/main-loop.h"
37 #include "sysemu/replay.h"
39 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
40 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
42 static void bdrv_parent_cb_resize(BlockDriverState *bs);
43 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
44 int64_t offset, int bytes, BdrvRequestFlags flags);
46 static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore,
47 bool ignore_bds_parents)
49 BdrvChild *c, *next;
51 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
52 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
53 continue;
55 bdrv_parent_drained_begin_single(c, false);
59 static void bdrv_parent_drained_end_single_no_poll(BdrvChild *c,
60 int *drained_end_counter)
62 assert(c->parent_quiesce_counter > 0);
63 c->parent_quiesce_counter--;
64 if (c->klass->drained_end) {
65 c->klass->drained_end(c, drained_end_counter);
69 void bdrv_parent_drained_end_single(BdrvChild *c)
71 int drained_end_counter = 0;
72 bdrv_parent_drained_end_single_no_poll(c, &drained_end_counter);
73 BDRV_POLL_WHILE(c->bs, qatomic_read(&drained_end_counter) > 0);
76 static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore,
77 bool ignore_bds_parents,
78 int *drained_end_counter)
80 BdrvChild *c;
82 QLIST_FOREACH(c, &bs->parents, next_parent) {
83 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
84 continue;
86 bdrv_parent_drained_end_single_no_poll(c, drained_end_counter);
90 static bool bdrv_parent_drained_poll_single(BdrvChild *c)
92 if (c->klass->drained_poll) {
93 return c->klass->drained_poll(c);
95 return false;
98 static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
99 bool ignore_bds_parents)
101 BdrvChild *c, *next;
102 bool busy = false;
104 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
105 if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
106 continue;
108 busy |= bdrv_parent_drained_poll_single(c);
111 return busy;
114 void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll)
116 c->parent_quiesce_counter++;
117 if (c->klass->drained_begin) {
118 c->klass->drained_begin(c);
120 if (poll) {
121 BDRV_POLL_WHILE(c->bs, bdrv_parent_drained_poll_single(c));
125 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
127 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
128 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
129 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
130 src->opt_mem_alignment);
131 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
132 src->min_mem_alignment);
133 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
136 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
138 ERRP_GUARD();
139 BlockDriver *drv = bs->drv;
140 BdrvChild *c;
141 bool have_limits;
143 memset(&bs->bl, 0, sizeof(bs->bl));
145 if (!drv) {
146 return;
149 /* Default alignment based on whether driver has byte interface */
150 bs->bl.request_alignment = (drv->bdrv_co_preadv ||
151 drv->bdrv_aio_preadv ||
152 drv->bdrv_co_preadv_part) ? 1 : 512;
154 /* Take some limits from the children as a default */
155 have_limits = false;
156 QLIST_FOREACH(c, &bs->children, next) {
157 if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
159 bdrv_refresh_limits(c->bs, errp);
160 if (*errp) {
161 return;
163 bdrv_merge_limits(&bs->bl, &c->bs->bl);
164 have_limits = true;
168 if (!have_limits) {
169 bs->bl.min_mem_alignment = 512;
170 bs->bl.opt_mem_alignment = qemu_real_host_page_size;
172 /* Safe default since most protocols use readv()/writev()/etc */
173 bs->bl.max_iov = IOV_MAX;
176 /* Then let the driver override it */
177 if (drv->bdrv_refresh_limits) {
178 drv->bdrv_refresh_limits(bs, errp);
179 if (*errp) {
180 return;
184 if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
185 error_setg(errp, "Driver requires too large request alignment");
190 * The copy-on-read flag is actually a reference count so multiple users may
191 * use the feature without worrying about clobbering its previous state.
192 * Copy-on-read stays enabled until all users have called to disable it.
194 void bdrv_enable_copy_on_read(BlockDriverState *bs)
196 qatomic_inc(&bs->copy_on_read);
199 void bdrv_disable_copy_on_read(BlockDriverState *bs)
201 int old = qatomic_fetch_dec(&bs->copy_on_read);
202 assert(old >= 1);
205 typedef struct {
206 Coroutine *co;
207 BlockDriverState *bs;
208 bool done;
209 bool begin;
210 bool recursive;
211 bool poll;
212 BdrvChild *parent;
213 bool ignore_bds_parents;
214 int *drained_end_counter;
215 } BdrvCoDrainData;
217 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
219 BdrvCoDrainData *data = opaque;
220 BlockDriverState *bs = data->bs;
222 if (data->begin) {
223 bs->drv->bdrv_co_drain_begin(bs);
224 } else {
225 bs->drv->bdrv_co_drain_end(bs);
228 /* Set data->done and decrement drained_end_counter before bdrv_wakeup() */
229 qatomic_mb_set(&data->done, true);
230 if (!data->begin) {
231 qatomic_dec(data->drained_end_counter);
233 bdrv_dec_in_flight(bs);
235 g_free(data);
238 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
239 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin,
240 int *drained_end_counter)
242 BdrvCoDrainData *data;
244 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
245 (!begin && !bs->drv->bdrv_co_drain_end)) {
246 return;
249 data = g_new(BdrvCoDrainData, 1);
250 *data = (BdrvCoDrainData) {
251 .bs = bs,
252 .done = false,
253 .begin = begin,
254 .drained_end_counter = drained_end_counter,
257 if (!begin) {
258 qatomic_inc(drained_end_counter);
261 /* Make sure the driver callback completes during the polling phase for
262 * drain_begin. */
263 bdrv_inc_in_flight(bs);
264 data->co = qemu_coroutine_create(bdrv_drain_invoke_entry, data);
265 aio_co_schedule(bdrv_get_aio_context(bs), data->co);
268 /* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
269 bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
270 BdrvChild *ignore_parent, bool ignore_bds_parents)
272 BdrvChild *child, *next;
274 if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
275 return true;
278 if (qatomic_read(&bs->in_flight)) {
279 return true;
282 if (recursive) {
283 assert(!ignore_bds_parents);
284 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
285 if (bdrv_drain_poll(child->bs, recursive, child, false)) {
286 return true;
291 return false;
294 static bool bdrv_drain_poll_top_level(BlockDriverState *bs, bool recursive,
295 BdrvChild *ignore_parent)
297 return bdrv_drain_poll(bs, recursive, ignore_parent, false);
300 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
301 BdrvChild *parent, bool ignore_bds_parents,
302 bool poll);
303 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
304 BdrvChild *parent, bool ignore_bds_parents,
305 int *drained_end_counter);
307 static void bdrv_co_drain_bh_cb(void *opaque)
309 BdrvCoDrainData *data = opaque;
310 Coroutine *co = data->co;
311 BlockDriverState *bs = data->bs;
313 if (bs) {
314 AioContext *ctx = bdrv_get_aio_context(bs);
315 aio_context_acquire(ctx);
316 bdrv_dec_in_flight(bs);
317 if (data->begin) {
318 assert(!data->drained_end_counter);
319 bdrv_do_drained_begin(bs, data->recursive, data->parent,
320 data->ignore_bds_parents, data->poll);
321 } else {
322 assert(!data->poll);
323 bdrv_do_drained_end(bs, data->recursive, data->parent,
324 data->ignore_bds_parents,
325 data->drained_end_counter);
327 aio_context_release(ctx);
328 } else {
329 assert(data->begin);
330 bdrv_drain_all_begin();
333 data->done = true;
334 aio_co_wake(co);
337 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
338 bool begin, bool recursive,
339 BdrvChild *parent,
340 bool ignore_bds_parents,
341 bool poll,
342 int *drained_end_counter)
344 BdrvCoDrainData data;
345 Coroutine *self = qemu_coroutine_self();
346 AioContext *ctx = bdrv_get_aio_context(bs);
347 AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
349 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
350 * other coroutines run if they were queued by aio_co_enter(). */
352 assert(qemu_in_coroutine());
353 data = (BdrvCoDrainData) {
354 .co = self,
355 .bs = bs,
356 .done = false,
357 .begin = begin,
358 .recursive = recursive,
359 .parent = parent,
360 .ignore_bds_parents = ignore_bds_parents,
361 .poll = poll,
362 .drained_end_counter = drained_end_counter,
365 if (bs) {
366 bdrv_inc_in_flight(bs);
370 * Temporarily drop the lock across yield or we would get deadlocks.
371 * bdrv_co_drain_bh_cb() reaquires the lock as needed.
373 * When we yield below, the lock for the current context will be
374 * released, so if this is actually the lock that protects bs, don't drop
375 * it a second time.
377 if (ctx != co_ctx) {
378 aio_context_release(ctx);
380 replay_bh_schedule_oneshot_event(ctx, bdrv_co_drain_bh_cb, &data);
382 qemu_coroutine_yield();
383 /* If we are resumed from some other event (such as an aio completion or a
384 * timer callback), it is a bug in the caller that should be fixed. */
385 assert(data.done);
387 /* Reaquire the AioContext of bs if we dropped it */
388 if (ctx != co_ctx) {
389 aio_context_acquire(ctx);
393 void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
394 BdrvChild *parent, bool ignore_bds_parents)
396 assert(!qemu_in_coroutine());
398 /* Stop things in parent-to-child order */
399 if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
400 aio_disable_external(bdrv_get_aio_context(bs));
403 bdrv_parent_drained_begin(bs, parent, ignore_bds_parents);
404 bdrv_drain_invoke(bs, true, NULL);
407 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
408 BdrvChild *parent, bool ignore_bds_parents,
409 bool poll)
411 BdrvChild *child, *next;
413 if (qemu_in_coroutine()) {
414 bdrv_co_yield_to_drain(bs, true, recursive, parent, ignore_bds_parents,
415 poll, NULL);
416 return;
419 bdrv_do_drained_begin_quiesce(bs, parent, ignore_bds_parents);
421 if (recursive) {
422 assert(!ignore_bds_parents);
423 bs->recursive_quiesce_counter++;
424 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
425 bdrv_do_drained_begin(child->bs, true, child, ignore_bds_parents,
426 false);
431 * Wait for drained requests to finish.
433 * Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
434 * call is needed so things in this AioContext can make progress even
435 * though we don't return to the main AioContext loop - this automatically
436 * includes other nodes in the same AioContext and therefore all child
437 * nodes.
439 if (poll) {
440 assert(!ignore_bds_parents);
441 BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, recursive, parent));
445 void bdrv_drained_begin(BlockDriverState *bs)
447 bdrv_do_drained_begin(bs, false, NULL, false, true);
450 void bdrv_subtree_drained_begin(BlockDriverState *bs)
452 bdrv_do_drained_begin(bs, true, NULL, false, true);
456 * This function does not poll, nor must any of its recursively called
457 * functions. The *drained_end_counter pointee will be incremented
458 * once for every background operation scheduled, and decremented once
459 * the operation settles. Therefore, the pointer must remain valid
460 * until the pointee reaches 0. That implies that whoever sets up the
461 * pointee has to poll until it is 0.
463 * We use atomic operations to access *drained_end_counter, because
464 * (1) when called from bdrv_set_aio_context_ignore(), the subgraph of
465 * @bs may contain nodes in different AioContexts,
466 * (2) bdrv_drain_all_end() uses the same counter for all nodes,
467 * regardless of which AioContext they are in.
469 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
470 BdrvChild *parent, bool ignore_bds_parents,
471 int *drained_end_counter)
473 BdrvChild *child;
474 int old_quiesce_counter;
476 assert(drained_end_counter != NULL);
478 if (qemu_in_coroutine()) {
479 bdrv_co_yield_to_drain(bs, false, recursive, parent, ignore_bds_parents,
480 false, drained_end_counter);
481 return;
483 assert(bs->quiesce_counter > 0);
485 /* Re-enable things in child-to-parent order */
486 bdrv_drain_invoke(bs, false, drained_end_counter);
487 bdrv_parent_drained_end(bs, parent, ignore_bds_parents,
488 drained_end_counter);
490 old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
491 if (old_quiesce_counter == 1) {
492 aio_enable_external(bdrv_get_aio_context(bs));
495 if (recursive) {
496 assert(!ignore_bds_parents);
497 bs->recursive_quiesce_counter--;
498 QLIST_FOREACH(child, &bs->children, next) {
499 bdrv_do_drained_end(child->bs, true, child, ignore_bds_parents,
500 drained_end_counter);
505 void bdrv_drained_end(BlockDriverState *bs)
507 int drained_end_counter = 0;
508 bdrv_do_drained_end(bs, false, NULL, false, &drained_end_counter);
509 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
512 void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter)
514 bdrv_do_drained_end(bs, false, NULL, false, drained_end_counter);
517 void bdrv_subtree_drained_end(BlockDriverState *bs)
519 int drained_end_counter = 0;
520 bdrv_do_drained_end(bs, true, NULL, false, &drained_end_counter);
521 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
524 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
526 int i;
528 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
529 bdrv_do_drained_begin(child->bs, true, child, false, true);
533 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
535 int drained_end_counter = 0;
536 int i;
538 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
539 bdrv_do_drained_end(child->bs, true, child, false,
540 &drained_end_counter);
543 BDRV_POLL_WHILE(child->bs, qatomic_read(&drained_end_counter) > 0);
547 * Wait for pending requests to complete on a single BlockDriverState subtree,
548 * and suspend block driver's internal I/O until next request arrives.
550 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
551 * AioContext.
553 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
555 assert(qemu_in_coroutine());
556 bdrv_drained_begin(bs);
557 bdrv_drained_end(bs);
560 void bdrv_drain(BlockDriverState *bs)
562 bdrv_drained_begin(bs);
563 bdrv_drained_end(bs);
566 static void bdrv_drain_assert_idle(BlockDriverState *bs)
568 BdrvChild *child, *next;
570 assert(qatomic_read(&bs->in_flight) == 0);
571 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
572 bdrv_drain_assert_idle(child->bs);
576 unsigned int bdrv_drain_all_count = 0;
578 static bool bdrv_drain_all_poll(void)
580 BlockDriverState *bs = NULL;
581 bool result = false;
583 /* bdrv_drain_poll() can't make changes to the graph and we are holding the
584 * main AioContext lock, so iterating bdrv_next_all_states() is safe. */
585 while ((bs = bdrv_next_all_states(bs))) {
586 AioContext *aio_context = bdrv_get_aio_context(bs);
587 aio_context_acquire(aio_context);
588 result |= bdrv_drain_poll(bs, false, NULL, true);
589 aio_context_release(aio_context);
592 return result;
596 * Wait for pending requests to complete across all BlockDriverStates
598 * This function does not flush data to disk, use bdrv_flush_all() for that
599 * after calling this function.
601 * This pauses all block jobs and disables external clients. It must
602 * be paired with bdrv_drain_all_end().
604 * NOTE: no new block jobs or BlockDriverStates can be created between
605 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
607 void bdrv_drain_all_begin(void)
609 BlockDriverState *bs = NULL;
611 if (qemu_in_coroutine()) {
612 bdrv_co_yield_to_drain(NULL, true, false, NULL, true, true, NULL);
613 return;
617 * bdrv queue is managed by record/replay,
618 * waiting for finishing the I/O requests may
619 * be infinite
621 if (replay_events_enabled()) {
622 return;
625 /* AIO_WAIT_WHILE() with a NULL context can only be called from the main
626 * loop AioContext, so make sure we're in the main context. */
627 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
628 assert(bdrv_drain_all_count < INT_MAX);
629 bdrv_drain_all_count++;
631 /* Quiesce all nodes, without polling in-flight requests yet. The graph
632 * cannot change during this loop. */
633 while ((bs = bdrv_next_all_states(bs))) {
634 AioContext *aio_context = bdrv_get_aio_context(bs);
636 aio_context_acquire(aio_context);
637 bdrv_do_drained_begin(bs, false, NULL, true, false);
638 aio_context_release(aio_context);
641 /* Now poll the in-flight requests */
642 AIO_WAIT_WHILE(NULL, bdrv_drain_all_poll());
644 while ((bs = bdrv_next_all_states(bs))) {
645 bdrv_drain_assert_idle(bs);
649 void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
651 int drained_end_counter = 0;
653 g_assert(bs->quiesce_counter > 0);
654 g_assert(!bs->refcnt);
656 while (bs->quiesce_counter) {
657 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
659 BDRV_POLL_WHILE(bs, qatomic_read(&drained_end_counter) > 0);
662 void bdrv_drain_all_end(void)
664 BlockDriverState *bs = NULL;
665 int drained_end_counter = 0;
668 * bdrv queue is managed by record/replay,
669 * waiting for finishing the I/O requests may
670 * be endless
672 if (replay_events_enabled()) {
673 return;
676 while ((bs = bdrv_next_all_states(bs))) {
677 AioContext *aio_context = bdrv_get_aio_context(bs);
679 aio_context_acquire(aio_context);
680 bdrv_do_drained_end(bs, false, NULL, true, &drained_end_counter);
681 aio_context_release(aio_context);
684 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
685 AIO_WAIT_WHILE(NULL, qatomic_read(&drained_end_counter) > 0);
687 assert(bdrv_drain_all_count > 0);
688 bdrv_drain_all_count--;
691 void bdrv_drain_all(void)
693 bdrv_drain_all_begin();
694 bdrv_drain_all_end();
698 * Remove an active request from the tracked requests list
700 * This function should be called when a tracked request is completing.
702 static void tracked_request_end(BdrvTrackedRequest *req)
704 if (req->serialising) {
705 qatomic_dec(&req->bs->serialising_in_flight);
708 qemu_co_mutex_lock(&req->bs->reqs_lock);
709 QLIST_REMOVE(req, list);
710 qemu_co_queue_restart_all(&req->wait_queue);
711 qemu_co_mutex_unlock(&req->bs->reqs_lock);
715 * Add an active request to the tracked requests list
717 static void tracked_request_begin(BdrvTrackedRequest *req,
718 BlockDriverState *bs,
719 int64_t offset,
720 uint64_t bytes,
721 enum BdrvTrackedRequestType type)
723 assert(bytes <= INT64_MAX && offset <= INT64_MAX - bytes);
725 *req = (BdrvTrackedRequest){
726 .bs = bs,
727 .offset = offset,
728 .bytes = bytes,
729 .type = type,
730 .co = qemu_coroutine_self(),
731 .serialising = false,
732 .overlap_offset = offset,
733 .overlap_bytes = bytes,
736 qemu_co_queue_init(&req->wait_queue);
738 qemu_co_mutex_lock(&bs->reqs_lock);
739 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
740 qemu_co_mutex_unlock(&bs->reqs_lock);
743 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
744 int64_t offset, uint64_t bytes)
746 /* aaaa bbbb */
747 if (offset >= req->overlap_offset + req->overlap_bytes) {
748 return false;
750 /* bbbb aaaa */
751 if (req->overlap_offset >= offset + bytes) {
752 return false;
754 return true;
757 /* Called with self->bs->reqs_lock held */
758 static BdrvTrackedRequest *
759 bdrv_find_conflicting_request(BdrvTrackedRequest *self)
761 BdrvTrackedRequest *req;
763 QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
764 if (req == self || (!req->serialising && !self->serialising)) {
765 continue;
767 if (tracked_request_overlaps(req, self->overlap_offset,
768 self->overlap_bytes))
771 * Hitting this means there was a reentrant request, for
772 * example, a block driver issuing nested requests. This must
773 * never happen since it means deadlock.
775 assert(qemu_coroutine_self() != req->co);
778 * If the request is already (indirectly) waiting for us, or
779 * will wait for us as soon as it wakes up, then just go on
780 * (instead of producing a deadlock in the former case).
782 if (!req->waiting_for) {
783 return req;
788 return NULL;
791 /* Called with self->bs->reqs_lock held */
792 static bool coroutine_fn
793 bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
795 BdrvTrackedRequest *req;
796 bool waited = false;
798 while ((req = bdrv_find_conflicting_request(self))) {
799 self->waiting_for = req;
800 qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
801 self->waiting_for = NULL;
802 waited = true;
805 return waited;
808 /* Called with req->bs->reqs_lock held */
809 static void tracked_request_set_serialising(BdrvTrackedRequest *req,
810 uint64_t align)
812 int64_t overlap_offset = req->offset & ~(align - 1);
813 uint64_t overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
814 - overlap_offset;
816 if (!req->serialising) {
817 qatomic_inc(&req->bs->serialising_in_flight);
818 req->serialising = true;
821 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
822 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
826 * Return the tracked request on @bs for the current coroutine, or
827 * NULL if there is none.
829 BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
831 BdrvTrackedRequest *req;
832 Coroutine *self = qemu_coroutine_self();
834 QLIST_FOREACH(req, &bs->tracked_requests, list) {
835 if (req->co == self) {
836 return req;
840 return NULL;
844 * Round a region to cluster boundaries
846 void bdrv_round_to_clusters(BlockDriverState *bs,
847 int64_t offset, int64_t bytes,
848 int64_t *cluster_offset,
849 int64_t *cluster_bytes)
851 BlockDriverInfo bdi;
853 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
854 *cluster_offset = offset;
855 *cluster_bytes = bytes;
856 } else {
857 int64_t c = bdi.cluster_size;
858 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
859 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
863 static int bdrv_get_cluster_size(BlockDriverState *bs)
865 BlockDriverInfo bdi;
866 int ret;
868 ret = bdrv_get_info(bs, &bdi);
869 if (ret < 0 || bdi.cluster_size == 0) {
870 return bs->bl.request_alignment;
871 } else {
872 return bdi.cluster_size;
876 void bdrv_inc_in_flight(BlockDriverState *bs)
878 qatomic_inc(&bs->in_flight);
881 void bdrv_wakeup(BlockDriverState *bs)
883 aio_wait_kick();
886 void bdrv_dec_in_flight(BlockDriverState *bs)
888 qatomic_dec(&bs->in_flight);
889 bdrv_wakeup(bs);
892 static bool coroutine_fn bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
894 BlockDriverState *bs = self->bs;
895 bool waited = false;
897 if (!qatomic_read(&bs->serialising_in_flight)) {
898 return false;
901 qemu_co_mutex_lock(&bs->reqs_lock);
902 waited = bdrv_wait_serialising_requests_locked(self);
903 qemu_co_mutex_unlock(&bs->reqs_lock);
905 return waited;
908 bool coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
909 uint64_t align)
911 bool waited;
913 qemu_co_mutex_lock(&req->bs->reqs_lock);
915 tracked_request_set_serialising(req, align);
916 waited = bdrv_wait_serialising_requests_locked(req);
918 qemu_co_mutex_unlock(&req->bs->reqs_lock);
920 return waited;
923 int bdrv_check_request(int64_t offset, int64_t bytes)
925 if (offset < 0 || bytes < 0) {
926 return -EIO;
929 if (bytes > BDRV_MAX_LENGTH) {
930 return -EIO;
933 if (offset > BDRV_MAX_LENGTH - bytes) {
934 return -EIO;
937 return 0;
940 static int bdrv_check_request32(int64_t offset, int64_t bytes)
942 int ret = bdrv_check_request(offset, bytes);
943 if (ret < 0) {
944 return ret;
947 if (bytes > BDRV_REQUEST_MAX_BYTES) {
948 return -EIO;
951 return 0;
954 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
955 int bytes, BdrvRequestFlags flags)
957 return bdrv_pwritev(child, offset, bytes, NULL,
958 BDRV_REQ_ZERO_WRITE | flags);
962 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
963 * The operation is sped up by checking the block status and only writing
964 * zeroes to the device if they currently do not return zeroes. Optional
965 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
966 * BDRV_REQ_FUA).
968 * Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
970 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
972 int ret;
973 int64_t target_size, bytes, offset = 0;
974 BlockDriverState *bs = child->bs;
976 target_size = bdrv_getlength(bs);
977 if (target_size < 0) {
978 return target_size;
981 for (;;) {
982 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
983 if (bytes <= 0) {
984 return 0;
986 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
987 if (ret < 0) {
988 return ret;
990 if (ret & BDRV_BLOCK_ZERO) {
991 offset += bytes;
992 continue;
994 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
995 if (ret < 0) {
996 return ret;
998 offset += bytes;
1002 /* See bdrv_pwrite() for the return codes */
1003 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
1005 int ret;
1006 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1008 if (bytes < 0) {
1009 return -EINVAL;
1012 ret = bdrv_preadv(child, offset, bytes, &qiov, 0);
1014 return ret < 0 ? ret : bytes;
1017 /* Return no. of bytes on success or < 0 on error. Important errors are:
1018 -EIO generic I/O error (may happen for all errors)
1019 -ENOMEDIUM No media inserted.
1020 -EINVAL Invalid offset or number of bytes
1021 -EACCES Trying to write a read-only device
1023 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
1025 int ret;
1026 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, bytes);
1028 if (bytes < 0) {
1029 return -EINVAL;
1032 ret = bdrv_pwritev(child, offset, bytes, &qiov, 0);
1034 return ret < 0 ? ret : bytes;
1038 * Writes to the file and ensures that no writes are reordered across this
1039 * request (acts as a barrier)
1041 * Returns 0 on success, -errno in error cases.
1043 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
1044 const void *buf, int count)
1046 int ret;
1048 ret = bdrv_pwrite(child, offset, buf, count);
1049 if (ret < 0) {
1050 return ret;
1053 ret = bdrv_flush(child->bs);
1054 if (ret < 0) {
1055 return ret;
1058 return 0;
1061 typedef struct CoroutineIOCompletion {
1062 Coroutine *coroutine;
1063 int ret;
1064 } CoroutineIOCompletion;
1066 static void bdrv_co_io_em_complete(void *opaque, int ret)
1068 CoroutineIOCompletion *co = opaque;
1070 co->ret = ret;
1071 aio_co_wake(co->coroutine);
1074 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
1075 uint64_t offset, uint64_t bytes,
1076 QEMUIOVector *qiov,
1077 size_t qiov_offset, int flags)
1079 BlockDriver *drv = bs->drv;
1080 int64_t sector_num;
1081 unsigned int nb_sectors;
1082 QEMUIOVector local_qiov;
1083 int ret;
1085 assert(!(flags & ~BDRV_REQ_MASK));
1086 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1088 if (!drv) {
1089 return -ENOMEDIUM;
1092 if (drv->bdrv_co_preadv_part) {
1093 return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
1094 flags);
1097 if (qiov_offset > 0 || bytes != qiov->size) {
1098 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1099 qiov = &local_qiov;
1102 if (drv->bdrv_co_preadv) {
1103 ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
1104 goto out;
1107 if (drv->bdrv_aio_preadv) {
1108 BlockAIOCB *acb;
1109 CoroutineIOCompletion co = {
1110 .coroutine = qemu_coroutine_self(),
1113 acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
1114 bdrv_co_io_em_complete, &co);
1115 if (acb == NULL) {
1116 ret = -EIO;
1117 goto out;
1118 } else {
1119 qemu_coroutine_yield();
1120 ret = co.ret;
1121 goto out;
1125 sector_num = offset >> BDRV_SECTOR_BITS;
1126 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1128 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1129 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1130 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1131 assert(drv->bdrv_co_readv);
1133 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
1135 out:
1136 if (qiov == &local_qiov) {
1137 qemu_iovec_destroy(&local_qiov);
1140 return ret;
1143 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
1144 uint64_t offset, uint64_t bytes,
1145 QEMUIOVector *qiov,
1146 size_t qiov_offset, int flags)
1148 BlockDriver *drv = bs->drv;
1149 int64_t sector_num;
1150 unsigned int nb_sectors;
1151 QEMUIOVector local_qiov;
1152 int ret;
1154 assert(!(flags & ~BDRV_REQ_MASK));
1155 assert(!(flags & BDRV_REQ_NO_FALLBACK));
1157 if (!drv) {
1158 return -ENOMEDIUM;
1161 if (drv->bdrv_co_pwritev_part) {
1162 ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
1163 flags & bs->supported_write_flags);
1164 flags &= ~bs->supported_write_flags;
1165 goto emulate_flags;
1168 if (qiov_offset > 0 || bytes != qiov->size) {
1169 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1170 qiov = &local_qiov;
1173 if (drv->bdrv_co_pwritev) {
1174 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
1175 flags & bs->supported_write_flags);
1176 flags &= ~bs->supported_write_flags;
1177 goto emulate_flags;
1180 if (drv->bdrv_aio_pwritev) {
1181 BlockAIOCB *acb;
1182 CoroutineIOCompletion co = {
1183 .coroutine = qemu_coroutine_self(),
1186 acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov,
1187 flags & bs->supported_write_flags,
1188 bdrv_co_io_em_complete, &co);
1189 flags &= ~bs->supported_write_flags;
1190 if (acb == NULL) {
1191 ret = -EIO;
1192 } else {
1193 qemu_coroutine_yield();
1194 ret = co.ret;
1196 goto emulate_flags;
1199 sector_num = offset >> BDRV_SECTOR_BITS;
1200 nb_sectors = bytes >> BDRV_SECTOR_BITS;
1202 assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
1203 assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
1204 assert(bytes <= BDRV_REQUEST_MAX_BYTES);
1206 assert(drv->bdrv_co_writev);
1207 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov,
1208 flags & bs->supported_write_flags);
1209 flags &= ~bs->supported_write_flags;
1211 emulate_flags:
1212 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1213 ret = bdrv_co_flush(bs);
1216 if (qiov == &local_qiov) {
1217 qemu_iovec_destroy(&local_qiov);
1220 return ret;
1223 static int coroutine_fn
1224 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1225 uint64_t bytes, QEMUIOVector *qiov,
1226 size_t qiov_offset)
1228 BlockDriver *drv = bs->drv;
1229 QEMUIOVector local_qiov;
1230 int ret;
1232 if (!drv) {
1233 return -ENOMEDIUM;
1236 if (!block_driver_can_compress(drv)) {
1237 return -ENOTSUP;
1240 if (drv->bdrv_co_pwritev_compressed_part) {
1241 return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
1242 qiov, qiov_offset);
1245 if (qiov_offset == 0) {
1246 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1249 qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
1250 ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
1251 qemu_iovec_destroy(&local_qiov);
1253 return ret;
1256 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1257 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1258 size_t qiov_offset, int flags)
1260 BlockDriverState *bs = child->bs;
1262 /* Perform I/O through a temporary buffer so that users who scribble over
1263 * their read buffer while the operation is in progress do not end up
1264 * modifying the image file. This is critical for zero-copy guest I/O
1265 * where anything might happen inside guest memory.
1267 void *bounce_buffer = NULL;
1269 BlockDriver *drv = bs->drv;
1270 int64_t cluster_offset;
1271 int64_t cluster_bytes;
1272 size_t skip_bytes;
1273 int ret;
1274 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1275 BDRV_REQUEST_MAX_BYTES);
1276 unsigned int progress = 0;
1277 bool skip_write;
1279 if (!drv) {
1280 return -ENOMEDIUM;
1284 * Do not write anything when the BDS is inactive. That is not
1285 * allowed, and it would not help.
1287 skip_write = (bs->open_flags & BDRV_O_INACTIVE);
1289 /* FIXME We cannot require callers to have write permissions when all they
1290 * are doing is a read request. If we did things right, write permissions
1291 * would be obtained anyway, but internally by the copy-on-read code. As
1292 * long as it is implemented here rather than in a separate filter driver,
1293 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1294 * it could request permissions. Therefore we have to bypass the permission
1295 * system for the moment. */
1296 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1298 /* Cover entire cluster so no additional backing file I/O is required when
1299 * allocating cluster in the image file. Note that this value may exceed
1300 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1301 * is one reason we loop rather than doing it all at once.
1303 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1304 skip_bytes = offset - cluster_offset;
1306 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1307 cluster_offset, cluster_bytes);
1309 while (cluster_bytes) {
1310 int64_t pnum;
1312 if (skip_write) {
1313 ret = 1; /* "already allocated", so nothing will be copied */
1314 pnum = MIN(cluster_bytes, max_transfer);
1315 } else {
1316 ret = bdrv_is_allocated(bs, cluster_offset,
1317 MIN(cluster_bytes, max_transfer), &pnum);
1318 if (ret < 0) {
1320 * Safe to treat errors in querying allocation as if
1321 * unallocated; we'll probably fail again soon on the
1322 * read, but at least that will set a decent errno.
1324 pnum = MIN(cluster_bytes, max_transfer);
1327 /* Stop at EOF if the image ends in the middle of the cluster */
1328 if (ret == 0 && pnum == 0) {
1329 assert(progress >= bytes);
1330 break;
1333 assert(skip_bytes < pnum);
1336 if (ret <= 0) {
1337 QEMUIOVector local_qiov;
1339 /* Must copy-on-read; use the bounce buffer */
1340 pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1341 if (!bounce_buffer) {
1342 int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
1343 int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
1344 int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
1346 bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
1347 if (!bounce_buffer) {
1348 ret = -ENOMEM;
1349 goto err;
1352 qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
1354 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1355 &local_qiov, 0, 0);
1356 if (ret < 0) {
1357 goto err;
1360 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1361 if (drv->bdrv_co_pwrite_zeroes &&
1362 buffer_is_zero(bounce_buffer, pnum)) {
1363 /* FIXME: Should we (perhaps conditionally) be setting
1364 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1365 * that still correctly reads as zero? */
1366 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
1367 BDRV_REQ_WRITE_UNCHANGED);
1368 } else {
1369 /* This does not change the data on the disk, it is not
1370 * necessary to flush even in cache=writethrough mode.
1372 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1373 &local_qiov, 0,
1374 BDRV_REQ_WRITE_UNCHANGED);
1377 if (ret < 0) {
1378 /* It might be okay to ignore write errors for guest
1379 * requests. If this is a deliberate copy-on-read
1380 * then we don't want to ignore the error. Simply
1381 * report it in all cases.
1383 goto err;
1386 if (!(flags & BDRV_REQ_PREFETCH)) {
1387 qemu_iovec_from_buf(qiov, qiov_offset + progress,
1388 bounce_buffer + skip_bytes,
1389 MIN(pnum - skip_bytes, bytes - progress));
1391 } else if (!(flags & BDRV_REQ_PREFETCH)) {
1392 /* Read directly into the destination */
1393 ret = bdrv_driver_preadv(bs, offset + progress,
1394 MIN(pnum - skip_bytes, bytes - progress),
1395 qiov, qiov_offset + progress, 0);
1396 if (ret < 0) {
1397 goto err;
1401 cluster_offset += pnum;
1402 cluster_bytes -= pnum;
1403 progress += pnum - skip_bytes;
1404 skip_bytes = 0;
1406 ret = 0;
1408 err:
1409 qemu_vfree(bounce_buffer);
1410 return ret;
1414 * Forwards an already correctly aligned request to the BlockDriver. This
1415 * handles copy on read, zeroing after EOF, and fragmentation of large
1416 * reads; any other features must be implemented by the caller.
1418 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1419 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1420 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1422 BlockDriverState *bs = child->bs;
1423 int64_t total_bytes, max_bytes;
1424 int ret = 0;
1425 uint64_t bytes_remaining = bytes;
1426 int max_transfer;
1428 assert(is_power_of_2(align));
1429 assert((offset & (align - 1)) == 0);
1430 assert((bytes & (align - 1)) == 0);
1431 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1432 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1433 align);
1435 /* TODO: We would need a per-BDS .supported_read_flags and
1436 * potential fallback support, if we ever implement any read flags
1437 * to pass through to drivers. For now, there aren't any
1438 * passthrough flags. */
1439 assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH)));
1441 /* Handle Copy on Read and associated serialisation */
1442 if (flags & BDRV_REQ_COPY_ON_READ) {
1443 /* If we touch the same cluster it counts as an overlap. This
1444 * guarantees that allocating writes will be serialized and not race
1445 * with each other for the same cluster. For example, in copy-on-read
1446 * it ensures that the CoR read and write operations are atomic and
1447 * guest writes cannot interleave between them. */
1448 bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
1449 } else {
1450 bdrv_wait_serialising_requests(req);
1453 if (flags & BDRV_REQ_COPY_ON_READ) {
1454 int64_t pnum;
1456 /* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
1457 flags &= ~BDRV_REQ_COPY_ON_READ;
1459 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1460 if (ret < 0) {
1461 goto out;
1464 if (!ret || pnum != bytes) {
1465 ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
1466 qiov, qiov_offset, flags);
1467 goto out;
1468 } else if (flags & BDRV_REQ_PREFETCH) {
1469 goto out;
1473 /* Forward the request to the BlockDriver, possibly fragmenting it */
1474 total_bytes = bdrv_getlength(bs);
1475 if (total_bytes < 0) {
1476 ret = total_bytes;
1477 goto out;
1480 assert(!(flags & ~bs->supported_read_flags));
1482 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1483 if (bytes <= max_bytes && bytes <= max_transfer) {
1484 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
1485 goto out;
1488 while (bytes_remaining) {
1489 int num;
1491 if (max_bytes) {
1492 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1493 assert(num);
1495 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1496 num, qiov,
1497 qiov_offset + bytes - bytes_remaining,
1498 flags);
1499 max_bytes -= num;
1500 } else {
1501 num = bytes_remaining;
1502 ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
1503 0, bytes_remaining);
1505 if (ret < 0) {
1506 goto out;
1508 bytes_remaining -= num;
1511 out:
1512 return ret < 0 ? ret : 0;
1516 * Request padding
1518 * |<---- align ----->| |<----- align ---->|
1519 * |<- head ->|<------------- bytes ------------->|<-- tail -->|
1520 * | | | | | |
1521 * -*----------$-------*-------- ... --------*-----$------------*---
1522 * | | | | | |
1523 * | offset | | end |
1524 * ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
1525 * [buf ... ) [tail_buf )
1527 * @buf is an aligned allocation needed to store @head and @tail paddings. @head
1528 * is placed at the beginning of @buf and @tail at the @end.
1530 * @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
1531 * around tail, if tail exists.
1533 * @merge_reads is true for small requests,
1534 * if @buf_len == @head + bytes + @tail. In this case it is possible that both
1535 * head and tail exist but @buf_len == align and @tail_buf == @buf.
1537 typedef struct BdrvRequestPadding {
1538 uint8_t *buf;
1539 size_t buf_len;
1540 uint8_t *tail_buf;
1541 size_t head;
1542 size_t tail;
1543 bool merge_reads;
1544 QEMUIOVector local_qiov;
1545 } BdrvRequestPadding;
1547 static bool bdrv_init_padding(BlockDriverState *bs,
1548 int64_t offset, int64_t bytes,
1549 BdrvRequestPadding *pad)
1551 uint64_t align = bs->bl.request_alignment;
1552 size_t sum;
1554 memset(pad, 0, sizeof(*pad));
1556 pad->head = offset & (align - 1);
1557 pad->tail = ((offset + bytes) & (align - 1));
1558 if (pad->tail) {
1559 pad->tail = align - pad->tail;
1562 if (!pad->head && !pad->tail) {
1563 return false;
1566 assert(bytes); /* Nothing good in aligning zero-length requests */
1568 sum = pad->head + bytes + pad->tail;
1569 pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
1570 pad->buf = qemu_blockalign(bs, pad->buf_len);
1571 pad->merge_reads = sum == pad->buf_len;
1572 if (pad->tail) {
1573 pad->tail_buf = pad->buf + pad->buf_len - align;
1576 return true;
1579 static int bdrv_padding_rmw_read(BdrvChild *child,
1580 BdrvTrackedRequest *req,
1581 BdrvRequestPadding *pad,
1582 bool zero_middle)
1584 QEMUIOVector local_qiov;
1585 BlockDriverState *bs = child->bs;
1586 uint64_t align = bs->bl.request_alignment;
1587 int ret;
1589 assert(req->serialising && pad->buf);
1591 if (pad->head || pad->merge_reads) {
1592 uint64_t bytes = pad->merge_reads ? pad->buf_len : align;
1594 qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
1596 if (pad->head) {
1597 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1599 if (pad->merge_reads && pad->tail) {
1600 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1602 ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
1603 align, &local_qiov, 0, 0);
1604 if (ret < 0) {
1605 return ret;
1607 if (pad->head) {
1608 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1610 if (pad->merge_reads && pad->tail) {
1611 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1614 if (pad->merge_reads) {
1615 goto zero_mem;
1619 if (pad->tail) {
1620 qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
1622 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1623 ret = bdrv_aligned_preadv(
1624 child, req,
1625 req->overlap_offset + req->overlap_bytes - align,
1626 align, align, &local_qiov, 0, 0);
1627 if (ret < 0) {
1628 return ret;
1630 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1633 zero_mem:
1634 if (zero_middle) {
1635 memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
1638 return 0;
1641 static void bdrv_padding_destroy(BdrvRequestPadding *pad)
1643 if (pad->buf) {
1644 qemu_vfree(pad->buf);
1645 qemu_iovec_destroy(&pad->local_qiov);
1650 * bdrv_pad_request
1652 * Exchange request parameters with padded request if needed. Don't include RMW
1653 * read of padding, bdrv_padding_rmw_read() should be called separately if
1654 * needed.
1656 * All parameters except @bs are in-out: they represent original request at
1657 * function call and padded (if padding needed) at function finish.
1659 * Function always succeeds.
1661 static bool bdrv_pad_request(BlockDriverState *bs,
1662 QEMUIOVector **qiov, size_t *qiov_offset,
1663 int64_t *offset, unsigned int *bytes,
1664 BdrvRequestPadding *pad)
1666 if (!bdrv_init_padding(bs, *offset, *bytes, pad)) {
1667 return false;
1670 qemu_iovec_init_extended(&pad->local_qiov, pad->buf, pad->head,
1671 *qiov, *qiov_offset, *bytes,
1672 pad->buf + pad->buf_len - pad->tail, pad->tail);
1673 *bytes += pad->head + pad->tail;
1674 *offset -= pad->head;
1675 *qiov = &pad->local_qiov;
1676 *qiov_offset = 0;
1678 return true;
1681 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1682 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1683 BdrvRequestFlags flags)
1685 return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
1688 int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
1689 int64_t offset, unsigned int bytes,
1690 QEMUIOVector *qiov, size_t qiov_offset,
1691 BdrvRequestFlags flags)
1693 BlockDriverState *bs = child->bs;
1694 BdrvTrackedRequest req;
1695 BdrvRequestPadding pad;
1696 int ret;
1698 trace_bdrv_co_preadv(bs, offset, bytes, flags);
1700 if (!bdrv_is_inserted(bs)) {
1701 return -ENOMEDIUM;
1704 ret = bdrv_check_request32(offset, bytes);
1705 if (ret < 0) {
1706 return ret;
1709 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
1711 * Aligning zero request is nonsense. Even if driver has special meaning
1712 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
1713 * it to driver due to request_alignment.
1715 * Still, no reason to return an error if someone do unaligned
1716 * zero-length read occasionally.
1718 return 0;
1721 bdrv_inc_in_flight(bs);
1723 /* Don't do copy-on-read if we read data before write operation */
1724 if (qatomic_read(&bs->copy_on_read)) {
1725 flags |= BDRV_REQ_COPY_ON_READ;
1728 bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad);
1730 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1731 ret = bdrv_aligned_preadv(child, &req, offset, bytes,
1732 bs->bl.request_alignment,
1733 qiov, qiov_offset, flags);
1734 tracked_request_end(&req);
1735 bdrv_dec_in_flight(bs);
1737 bdrv_padding_destroy(&pad);
1739 return ret;
1742 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1743 int64_t offset, int bytes, BdrvRequestFlags flags)
1745 BlockDriver *drv = bs->drv;
1746 QEMUIOVector qiov;
1747 void *buf = NULL;
1748 int ret = 0;
1749 bool need_flush = false;
1750 int head = 0;
1751 int tail = 0;
1753 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1754 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1755 bs->bl.request_alignment);
1756 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1758 if (!drv) {
1759 return -ENOMEDIUM;
1762 if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
1763 return -ENOTSUP;
1766 assert(alignment % bs->bl.request_alignment == 0);
1767 head = offset % alignment;
1768 tail = (offset + bytes) % alignment;
1769 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1770 assert(max_write_zeroes >= bs->bl.request_alignment);
1772 while (bytes > 0 && !ret) {
1773 int num = bytes;
1775 /* Align request. Block drivers can expect the "bulk" of the request
1776 * to be aligned, and that unaligned requests do not cross cluster
1777 * boundaries.
1779 if (head) {
1780 /* Make a small request up to the first aligned sector. For
1781 * convenience, limit this request to max_transfer even if
1782 * we don't need to fall back to writes. */
1783 num = MIN(MIN(bytes, max_transfer), alignment - head);
1784 head = (head + num) % alignment;
1785 assert(num < max_write_zeroes);
1786 } else if (tail && num > alignment) {
1787 /* Shorten the request to the last aligned sector. */
1788 num -= tail;
1791 /* limit request size */
1792 if (num > max_write_zeroes) {
1793 num = max_write_zeroes;
1796 ret = -ENOTSUP;
1797 /* First try the efficient write zeroes operation */
1798 if (drv->bdrv_co_pwrite_zeroes) {
1799 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1800 flags & bs->supported_zero_flags);
1801 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1802 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1803 need_flush = true;
1805 } else {
1806 assert(!bs->supported_zero_flags);
1809 if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
1810 /* Fall back to bounce buffer if write zeroes is unsupported */
1811 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1813 if ((flags & BDRV_REQ_FUA) &&
1814 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1815 /* No need for bdrv_driver_pwrite() to do a fallback
1816 * flush on each chunk; use just one at the end */
1817 write_flags &= ~BDRV_REQ_FUA;
1818 need_flush = true;
1820 num = MIN(num, max_transfer);
1821 if (buf == NULL) {
1822 buf = qemu_try_blockalign0(bs, num);
1823 if (buf == NULL) {
1824 ret = -ENOMEM;
1825 goto fail;
1828 qemu_iovec_init_buf(&qiov, buf, num);
1830 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
1832 /* Keep bounce buffer around if it is big enough for all
1833 * all future requests.
1835 if (num < max_transfer) {
1836 qemu_vfree(buf);
1837 buf = NULL;
1841 offset += num;
1842 bytes -= num;
1845 fail:
1846 if (ret == 0 && need_flush) {
1847 ret = bdrv_co_flush(bs);
1849 qemu_vfree(buf);
1850 return ret;
1853 static inline int coroutine_fn
1854 bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, uint64_t bytes,
1855 BdrvTrackedRequest *req, int flags)
1857 BlockDriverState *bs = child->bs;
1858 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1860 if (bs->read_only) {
1861 return -EPERM;
1864 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1865 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1866 assert(!(flags & ~BDRV_REQ_MASK));
1867 assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
1869 if (flags & BDRV_REQ_SERIALISING) {
1870 QEMU_LOCK_GUARD(&bs->reqs_lock);
1872 tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
1874 if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
1875 return -EBUSY;
1878 bdrv_wait_serialising_requests_locked(req);
1879 } else {
1880 bdrv_wait_serialising_requests(req);
1883 assert(req->overlap_offset <= offset);
1884 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1885 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1887 switch (req->type) {
1888 case BDRV_TRACKED_WRITE:
1889 case BDRV_TRACKED_DISCARD:
1890 if (flags & BDRV_REQ_WRITE_UNCHANGED) {
1891 assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1892 } else {
1893 assert(child->perm & BLK_PERM_WRITE);
1895 return notifier_with_return_list_notify(&bs->before_write_notifiers,
1896 req);
1897 case BDRV_TRACKED_TRUNCATE:
1898 assert(child->perm & BLK_PERM_RESIZE);
1899 return 0;
1900 default:
1901 abort();
1905 static inline void coroutine_fn
1906 bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, uint64_t bytes,
1907 BdrvTrackedRequest *req, int ret)
1909 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1910 BlockDriverState *bs = child->bs;
1912 qatomic_inc(&bs->write_gen);
1915 * Discard cannot extend the image, but in error handling cases, such as
1916 * when reverting a qcow2 cluster allocation, the discarded range can pass
1917 * the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
1918 * here. Instead, just skip it, since semantically a discard request
1919 * beyond EOF cannot expand the image anyway.
1921 if (ret == 0 &&
1922 (req->type == BDRV_TRACKED_TRUNCATE ||
1923 end_sector > bs->total_sectors) &&
1924 req->type != BDRV_TRACKED_DISCARD) {
1925 bs->total_sectors = end_sector;
1926 bdrv_parent_cb_resize(bs);
1927 bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
1929 if (req->bytes) {
1930 switch (req->type) {
1931 case BDRV_TRACKED_WRITE:
1932 stat64_max(&bs->wr_highest_offset, offset + bytes);
1933 /* fall through, to set dirty bits */
1934 case BDRV_TRACKED_DISCARD:
1935 bdrv_set_dirty(bs, offset, bytes);
1936 break;
1937 default:
1938 break;
1944 * Forwards an already correctly aligned write request to the BlockDriver,
1945 * after possibly fragmenting it.
1947 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1948 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1949 int64_t align, QEMUIOVector *qiov, size_t qiov_offset, int flags)
1951 BlockDriverState *bs = child->bs;
1952 BlockDriver *drv = bs->drv;
1953 int ret;
1955 uint64_t bytes_remaining = bytes;
1956 int max_transfer;
1958 if (!drv) {
1959 return -ENOMEDIUM;
1962 if (bdrv_has_readonly_bitmaps(bs)) {
1963 return -EPERM;
1966 assert(is_power_of_2(align));
1967 assert((offset & (align - 1)) == 0);
1968 assert((bytes & (align - 1)) == 0);
1969 assert(!qiov || qiov_offset + bytes <= qiov->size);
1970 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1971 align);
1973 ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
1975 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1976 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1977 qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
1978 flags |= BDRV_REQ_ZERO_WRITE;
1979 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1980 flags |= BDRV_REQ_MAY_UNMAP;
1984 if (ret < 0) {
1985 /* Do nothing, write notifier decided to fail this request */
1986 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1987 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1988 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1989 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1990 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
1991 qiov, qiov_offset);
1992 } else if (bytes <= max_transfer) {
1993 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1994 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
1995 } else {
1996 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1997 while (bytes_remaining) {
1998 int num = MIN(bytes_remaining, max_transfer);
1999 int local_flags = flags;
2001 assert(num);
2002 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
2003 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
2004 /* If FUA is going to be emulated by flush, we only
2005 * need to flush on the last iteration */
2006 local_flags &= ~BDRV_REQ_FUA;
2009 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
2010 num, qiov,
2011 qiov_offset + bytes - bytes_remaining,
2012 local_flags);
2013 if (ret < 0) {
2014 break;
2016 bytes_remaining -= num;
2019 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
2021 if (ret >= 0) {
2022 ret = 0;
2024 bdrv_co_write_req_finish(child, offset, bytes, req, ret);
2026 return ret;
2029 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
2030 int64_t offset,
2031 unsigned int bytes,
2032 BdrvRequestFlags flags,
2033 BdrvTrackedRequest *req)
2035 BlockDriverState *bs = child->bs;
2036 QEMUIOVector local_qiov;
2037 uint64_t align = bs->bl.request_alignment;
2038 int ret = 0;
2039 bool padding;
2040 BdrvRequestPadding pad;
2042 padding = bdrv_init_padding(bs, offset, bytes, &pad);
2043 if (padding) {
2044 bdrv_make_request_serialising(req, align);
2046 bdrv_padding_rmw_read(child, req, &pad, true);
2048 if (pad.head || pad.merge_reads) {
2049 int64_t aligned_offset = offset & ~(align - 1);
2050 int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
2052 qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
2053 ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
2054 align, &local_qiov, 0,
2055 flags & ~BDRV_REQ_ZERO_WRITE);
2056 if (ret < 0 || pad.merge_reads) {
2057 /* Error or all work is done */
2058 goto out;
2060 offset += write_bytes - pad.head;
2061 bytes -= write_bytes - pad.head;
2065 assert(!bytes || (offset & (align - 1)) == 0);
2066 if (bytes >= align) {
2067 /* Write the aligned part in the middle. */
2068 uint64_t aligned_bytes = bytes & ~(align - 1);
2069 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
2070 NULL, 0, flags);
2071 if (ret < 0) {
2072 goto out;
2074 bytes -= aligned_bytes;
2075 offset += aligned_bytes;
2078 assert(!bytes || (offset & (align - 1)) == 0);
2079 if (bytes) {
2080 assert(align == pad.tail + bytes);
2082 qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
2083 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
2084 &local_qiov, 0,
2085 flags & ~BDRV_REQ_ZERO_WRITE);
2088 out:
2089 bdrv_padding_destroy(&pad);
2091 return ret;
2095 * Handle a write request in coroutine context
2097 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
2098 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
2099 BdrvRequestFlags flags)
2101 return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
2104 int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
2105 int64_t offset, unsigned int bytes, QEMUIOVector *qiov, size_t qiov_offset,
2106 BdrvRequestFlags flags)
2108 BlockDriverState *bs = child->bs;
2109 BdrvTrackedRequest req;
2110 uint64_t align = bs->bl.request_alignment;
2111 BdrvRequestPadding pad;
2112 int ret;
2114 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
2116 if (!bdrv_is_inserted(bs)) {
2117 return -ENOMEDIUM;
2120 ret = bdrv_check_request32(offset, bytes);
2121 if (ret < 0) {
2122 return ret;
2125 /* If the request is misaligned then we can't make it efficient */
2126 if ((flags & BDRV_REQ_NO_FALLBACK) &&
2127 !QEMU_IS_ALIGNED(offset | bytes, align))
2129 return -ENOTSUP;
2132 if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
2134 * Aligning zero request is nonsense. Even if driver has special meaning
2135 * of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
2136 * it to driver due to request_alignment.
2138 * Still, no reason to return an error if someone do unaligned
2139 * zero-length write occasionally.
2141 return 0;
2144 bdrv_inc_in_flight(bs);
2146 * Align write if necessary by performing a read-modify-write cycle.
2147 * Pad qiov with the read parts and be sure to have a tracked request not
2148 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
2150 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
2152 if (flags & BDRV_REQ_ZERO_WRITE) {
2153 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
2154 goto out;
2157 if (bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, &pad)) {
2158 bdrv_make_request_serialising(&req, align);
2159 bdrv_padding_rmw_read(child, &req, &pad, false);
2162 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
2163 qiov, qiov_offset, flags);
2165 bdrv_padding_destroy(&pad);
2167 out:
2168 tracked_request_end(&req);
2169 bdrv_dec_in_flight(bs);
2171 return ret;
2174 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
2175 int bytes, BdrvRequestFlags flags)
2177 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
2179 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
2180 flags &= ~BDRV_REQ_MAY_UNMAP;
2183 return bdrv_co_pwritev(child, offset, bytes, NULL,
2184 BDRV_REQ_ZERO_WRITE | flags);
2188 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
2190 int bdrv_flush_all(void)
2192 BdrvNextIterator it;
2193 BlockDriverState *bs = NULL;
2194 int result = 0;
2197 * bdrv queue is managed by record/replay,
2198 * creating new flush request for stopping
2199 * the VM may break the determinism
2201 if (replay_events_enabled()) {
2202 return result;
2205 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
2206 AioContext *aio_context = bdrv_get_aio_context(bs);
2207 int ret;
2209 aio_context_acquire(aio_context);
2210 ret = bdrv_flush(bs);
2211 if (ret < 0 && !result) {
2212 result = ret;
2214 aio_context_release(aio_context);
2217 return result;
2221 * Returns the allocation status of the specified sectors.
2222 * Drivers not implementing the functionality are assumed to not support
2223 * backing files, hence all their sectors are reported as allocated.
2225 * If 'want_zero' is true, the caller is querying for mapping
2226 * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
2227 * _ZERO where possible; otherwise, the result favors larger 'pnum',
2228 * with a focus on accurate BDRV_BLOCK_ALLOCATED.
2230 * If 'offset' is beyond the end of the disk image the return value is
2231 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
2233 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
2234 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
2235 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
2237 * 'pnum' is set to the number of bytes (including and immediately
2238 * following the specified offset) that are easily known to be in the
2239 * same allocated/unallocated state. Note that a second call starting
2240 * at the original offset plus returned pnum may have the same status.
2241 * The returned value is non-zero on success except at end-of-file.
2243 * Returns negative errno on failure. Otherwise, if the
2244 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
2245 * set to the host mapping and BDS corresponding to the guest offset.
2247 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
2248 bool want_zero,
2249 int64_t offset, int64_t bytes,
2250 int64_t *pnum, int64_t *map,
2251 BlockDriverState **file)
2253 int64_t total_size;
2254 int64_t n; /* bytes */
2255 int ret;
2256 int64_t local_map = 0;
2257 BlockDriverState *local_file = NULL;
2258 int64_t aligned_offset, aligned_bytes;
2259 uint32_t align;
2260 bool has_filtered_child;
2262 assert(pnum);
2263 *pnum = 0;
2264 total_size = bdrv_getlength(bs);
2265 if (total_size < 0) {
2266 ret = total_size;
2267 goto early_out;
2270 if (offset >= total_size) {
2271 ret = BDRV_BLOCK_EOF;
2272 goto early_out;
2274 if (!bytes) {
2275 ret = 0;
2276 goto early_out;
2279 n = total_size - offset;
2280 if (n < bytes) {
2281 bytes = n;
2284 /* Must be non-NULL or bdrv_getlength() would have failed */
2285 assert(bs->drv);
2286 has_filtered_child = bdrv_filter_child(bs);
2287 if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
2288 *pnum = bytes;
2289 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
2290 if (offset + bytes == total_size) {
2291 ret |= BDRV_BLOCK_EOF;
2293 if (bs->drv->protocol_name) {
2294 ret |= BDRV_BLOCK_OFFSET_VALID;
2295 local_map = offset;
2296 local_file = bs;
2298 goto early_out;
2301 bdrv_inc_in_flight(bs);
2303 /* Round out to request_alignment boundaries */
2304 align = bs->bl.request_alignment;
2305 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
2306 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
2308 if (bs->drv->bdrv_co_block_status) {
2309 ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
2310 aligned_bytes, pnum, &local_map,
2311 &local_file);
2312 } else {
2313 /* Default code for filters */
2315 local_file = bdrv_filter_bs(bs);
2316 assert(local_file);
2318 *pnum = aligned_bytes;
2319 local_map = aligned_offset;
2320 ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
2322 if (ret < 0) {
2323 *pnum = 0;
2324 goto out;
2328 * The driver's result must be a non-zero multiple of request_alignment.
2329 * Clamp pnum and adjust map to original request.
2331 assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
2332 align > offset - aligned_offset);
2333 if (ret & BDRV_BLOCK_RECURSE) {
2334 assert(ret & BDRV_BLOCK_DATA);
2335 assert(ret & BDRV_BLOCK_OFFSET_VALID);
2336 assert(!(ret & BDRV_BLOCK_ZERO));
2339 *pnum -= offset - aligned_offset;
2340 if (*pnum > bytes) {
2341 *pnum = bytes;
2343 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2344 local_map += offset - aligned_offset;
2347 if (ret & BDRV_BLOCK_RAW) {
2348 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2349 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2350 *pnum, pnum, &local_map, &local_file);
2351 goto out;
2354 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2355 ret |= BDRV_BLOCK_ALLOCATED;
2356 } else if (bs->drv->supports_backing) {
2357 BlockDriverState *cow_bs = bdrv_cow_bs(bs);
2359 if (!cow_bs) {
2360 ret |= BDRV_BLOCK_ZERO;
2361 } else if (want_zero) {
2362 int64_t size2 = bdrv_getlength(cow_bs);
2364 if (size2 >= 0 && offset >= size2) {
2365 ret |= BDRV_BLOCK_ZERO;
2370 if (want_zero && ret & BDRV_BLOCK_RECURSE &&
2371 local_file && local_file != bs &&
2372 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2373 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2374 int64_t file_pnum;
2375 int ret2;
2377 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2378 *pnum, &file_pnum, NULL, NULL);
2379 if (ret2 >= 0) {
2380 /* Ignore errors. This is just providing extra information, it
2381 * is useful but not necessary.
2383 if (ret2 & BDRV_BLOCK_EOF &&
2384 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2386 * It is valid for the format block driver to read
2387 * beyond the end of the underlying file's current
2388 * size; such areas read as zero.
2390 ret |= BDRV_BLOCK_ZERO;
2391 } else {
2392 /* Limit request to the range reported by the protocol driver */
2393 *pnum = file_pnum;
2394 ret |= (ret2 & BDRV_BLOCK_ZERO);
2399 out:
2400 bdrv_dec_in_flight(bs);
2401 if (ret >= 0 && offset + *pnum == total_size) {
2402 ret |= BDRV_BLOCK_EOF;
2404 early_out:
2405 if (file) {
2406 *file = local_file;
2408 if (map) {
2409 *map = local_map;
2411 return ret;
2414 int coroutine_fn
2415 bdrv_co_common_block_status_above(BlockDriverState *bs,
2416 BlockDriverState *base,
2417 bool include_base,
2418 bool want_zero,
2419 int64_t offset,
2420 int64_t bytes,
2421 int64_t *pnum,
2422 int64_t *map,
2423 BlockDriverState **file,
2424 int *depth)
2426 int ret;
2427 BlockDriverState *p;
2428 int64_t eof = 0;
2429 int dummy;
2431 assert(!include_base || base); /* Can't include NULL base */
2433 if (!depth) {
2434 depth = &dummy;
2436 *depth = 0;
2438 if (!include_base && bs == base) {
2439 *pnum = bytes;
2440 return 0;
2443 ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
2444 ++*depth;
2445 if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
2446 return ret;
2449 if (ret & BDRV_BLOCK_EOF) {
2450 eof = offset + *pnum;
2453 assert(*pnum <= bytes);
2454 bytes = *pnum;
2456 for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
2457 p = bdrv_filter_or_cow_bs(p))
2459 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2460 file);
2461 ++*depth;
2462 if (ret < 0) {
2463 return ret;
2465 if (*pnum == 0) {
2467 * The top layer deferred to this layer, and because this layer is
2468 * short, any zeroes that we synthesize beyond EOF behave as if they
2469 * were allocated at this layer.
2471 * We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
2472 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2473 * below.
2475 assert(ret & BDRV_BLOCK_EOF);
2476 *pnum = bytes;
2477 if (file) {
2478 *file = p;
2480 ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
2481 break;
2483 if (ret & BDRV_BLOCK_ALLOCATED) {
2485 * We've found the node and the status, we must break.
2487 * Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
2488 * larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
2489 * below.
2491 ret &= ~BDRV_BLOCK_EOF;
2492 break;
2495 if (p == base) {
2496 assert(include_base);
2497 break;
2501 * OK, [offset, offset + *pnum) region is unallocated on this layer,
2502 * let's continue the diving.
2504 assert(*pnum <= bytes);
2505 bytes = *pnum;
2508 if (offset + *pnum == eof) {
2509 ret |= BDRV_BLOCK_EOF;
2512 return ret;
2515 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2516 int64_t offset, int64_t bytes, int64_t *pnum,
2517 int64_t *map, BlockDriverState **file)
2519 return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
2520 pnum, map, file, NULL);
2523 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2524 int64_t *pnum, int64_t *map, BlockDriverState **file)
2526 return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
2527 offset, bytes, pnum, map, file);
2531 * Check @bs (and its backing chain) to see if the range defined
2532 * by @offset and @bytes is known to read as zeroes.
2533 * Return 1 if that is the case, 0 otherwise and -errno on error.
2534 * This test is meant to be fast rather than accurate so returning 0
2535 * does not guarantee non-zero data.
2537 int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
2538 int64_t bytes)
2540 int ret;
2541 int64_t pnum = bytes;
2543 if (!bytes) {
2544 return 1;
2547 ret = bdrv_common_block_status_above(bs, NULL, false, false, offset,
2548 bytes, &pnum, NULL, NULL, NULL);
2550 if (ret < 0) {
2551 return ret;
2554 return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
2557 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2558 int64_t bytes, int64_t *pnum)
2560 int ret;
2561 int64_t dummy;
2563 ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
2564 bytes, pnum ? pnum : &dummy, NULL,
2565 NULL, NULL);
2566 if (ret < 0) {
2567 return ret;
2569 return !!(ret & BDRV_BLOCK_ALLOCATED);
2573 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2575 * Return a positive depth if (a prefix of) the given range is allocated
2576 * in any image between BASE and TOP (BASE is only included if include_base
2577 * is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
2578 * BASE can be NULL to check if the given offset is allocated in any
2579 * image of the chain. Return 0 otherwise, or negative errno on
2580 * failure.
2582 * 'pnum' is set to the number of bytes (including and immediately
2583 * following the specified offset) that are known to be in the same
2584 * allocated/unallocated state. Note that a subsequent call starting
2585 * at 'offset + *pnum' may return the same allocation status (in other
2586 * words, the result is not necessarily the maximum possible range);
2587 * but 'pnum' will only be 0 when end of file is reached.
2589 int bdrv_is_allocated_above(BlockDriverState *top,
2590 BlockDriverState *base,
2591 bool include_base, int64_t offset,
2592 int64_t bytes, int64_t *pnum)
2594 int depth;
2595 int ret = bdrv_common_block_status_above(top, base, include_base, false,
2596 offset, bytes, pnum, NULL, NULL,
2597 &depth);
2598 if (ret < 0) {
2599 return ret;
2602 if (ret & BDRV_BLOCK_ALLOCATED) {
2603 return depth;
2605 return 0;
2608 int coroutine_fn
2609 bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2611 BlockDriver *drv = bs->drv;
2612 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2613 int ret = -ENOTSUP;
2615 if (!drv) {
2616 return -ENOMEDIUM;
2619 bdrv_inc_in_flight(bs);
2621 if (drv->bdrv_load_vmstate) {
2622 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2623 } else if (child_bs) {
2624 ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
2627 bdrv_dec_in_flight(bs);
2629 return ret;
2632 int coroutine_fn
2633 bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2635 BlockDriver *drv = bs->drv;
2636 BlockDriverState *child_bs = bdrv_primary_bs(bs);
2637 int ret = -ENOTSUP;
2639 if (!drv) {
2640 return -ENOMEDIUM;
2643 bdrv_inc_in_flight(bs);
2645 if (drv->bdrv_save_vmstate) {
2646 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2647 } else if (child_bs) {
2648 ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
2651 bdrv_dec_in_flight(bs);
2653 return ret;
2656 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2657 int64_t pos, int size)
2659 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2660 int ret = bdrv_writev_vmstate(bs, &qiov, pos);
2662 return ret < 0 ? ret : size;
2665 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2666 int64_t pos, int size)
2668 QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
2669 int ret = bdrv_readv_vmstate(bs, &qiov, pos);
2671 return ret < 0 ? ret : size;
2674 /**************************************************************/
2675 /* async I/Os */
2677 void bdrv_aio_cancel(BlockAIOCB *acb)
2679 qemu_aio_ref(acb);
2680 bdrv_aio_cancel_async(acb);
2681 while (acb->refcnt > 1) {
2682 if (acb->aiocb_info->get_aio_context) {
2683 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2684 } else if (acb->bs) {
2685 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2686 * assert that we're not using an I/O thread. Thread-safe
2687 * code should use bdrv_aio_cancel_async exclusively.
2689 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2690 aio_poll(bdrv_get_aio_context(acb->bs), true);
2691 } else {
2692 abort();
2695 qemu_aio_unref(acb);
2698 /* Async version of aio cancel. The caller is not blocked if the acb implements
2699 * cancel_async, otherwise we do nothing and let the request normally complete.
2700 * In either case the completion callback must be called. */
2701 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2703 if (acb->aiocb_info->cancel_async) {
2704 acb->aiocb_info->cancel_async(acb);
2708 /**************************************************************/
2709 /* Coroutine block device emulation */
2711 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2713 BdrvChild *primary_child = bdrv_primary_child(bs);
2714 BdrvChild *child;
2715 int current_gen;
2716 int ret = 0;
2718 bdrv_inc_in_flight(bs);
2720 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2721 bdrv_is_sg(bs)) {
2722 goto early_exit;
2725 qemu_co_mutex_lock(&bs->reqs_lock);
2726 current_gen = qatomic_read(&bs->write_gen);
2728 /* Wait until any previous flushes are completed */
2729 while (bs->active_flush_req) {
2730 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2733 /* Flushes reach this point in nondecreasing current_gen order. */
2734 bs->active_flush_req = true;
2735 qemu_co_mutex_unlock(&bs->reqs_lock);
2737 /* Write back all layers by calling one driver function */
2738 if (bs->drv->bdrv_co_flush) {
2739 ret = bs->drv->bdrv_co_flush(bs);
2740 goto out;
2743 /* Write back cached data to the OS even with cache=unsafe */
2744 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
2745 if (bs->drv->bdrv_co_flush_to_os) {
2746 ret = bs->drv->bdrv_co_flush_to_os(bs);
2747 if (ret < 0) {
2748 goto out;
2752 /* But don't actually force it to the disk with cache=unsafe */
2753 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2754 goto flush_children;
2757 /* Check if we really need to flush anything */
2758 if (bs->flushed_gen == current_gen) {
2759 goto flush_children;
2762 BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
2763 if (!bs->drv) {
2764 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2765 * (even in case of apparent success) */
2766 ret = -ENOMEDIUM;
2767 goto out;
2769 if (bs->drv->bdrv_co_flush_to_disk) {
2770 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2771 } else if (bs->drv->bdrv_aio_flush) {
2772 BlockAIOCB *acb;
2773 CoroutineIOCompletion co = {
2774 .coroutine = qemu_coroutine_self(),
2777 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2778 if (acb == NULL) {
2779 ret = -EIO;
2780 } else {
2781 qemu_coroutine_yield();
2782 ret = co.ret;
2784 } else {
2786 * Some block drivers always operate in either writethrough or unsafe
2787 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2788 * know how the server works (because the behaviour is hardcoded or
2789 * depends on server-side configuration), so we can't ensure that
2790 * everything is safe on disk. Returning an error doesn't work because
2791 * that would break guests even if the server operates in writethrough
2792 * mode.
2794 * Let's hope the user knows what he's doing.
2796 ret = 0;
2799 if (ret < 0) {
2800 goto out;
2803 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2804 * in the case of cache=unsafe, so there are no useless flushes.
2806 flush_children:
2807 ret = 0;
2808 QLIST_FOREACH(child, &bs->children, next) {
2809 if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
2810 int this_child_ret = bdrv_co_flush(child->bs);
2811 if (!ret) {
2812 ret = this_child_ret;
2817 out:
2818 /* Notify any pending flushes that we have completed */
2819 if (ret == 0) {
2820 bs->flushed_gen = current_gen;
2823 qemu_co_mutex_lock(&bs->reqs_lock);
2824 bs->active_flush_req = false;
2825 /* Return value is ignored - it's ok if wait queue is empty */
2826 qemu_co_queue_next(&bs->flush_queue);
2827 qemu_co_mutex_unlock(&bs->reqs_lock);
2829 early_exit:
2830 bdrv_dec_in_flight(bs);
2831 return ret;
2834 int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
2835 int64_t bytes)
2837 BdrvTrackedRequest req;
2838 int max_pdiscard, ret;
2839 int head, tail, align;
2840 BlockDriverState *bs = child->bs;
2842 if (!bs || !bs->drv || !bdrv_is_inserted(bs)) {
2843 return -ENOMEDIUM;
2846 if (bdrv_has_readonly_bitmaps(bs)) {
2847 return -EPERM;
2850 ret = bdrv_check_request(offset, bytes);
2851 if (ret < 0) {
2852 return ret;
2855 /* Do nothing if disabled. */
2856 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2857 return 0;
2860 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2861 return 0;
2864 /* Discard is advisory, but some devices track and coalesce
2865 * unaligned requests, so we must pass everything down rather than
2866 * round here. Still, most devices will just silently ignore
2867 * unaligned requests (by returning -ENOTSUP), so we must fragment
2868 * the request accordingly. */
2869 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2870 assert(align % bs->bl.request_alignment == 0);
2871 head = offset % align;
2872 tail = (offset + bytes) % align;
2874 bdrv_inc_in_flight(bs);
2875 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2877 ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
2878 if (ret < 0) {
2879 goto out;
2882 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2883 align);
2884 assert(max_pdiscard >= bs->bl.request_alignment);
2886 while (bytes > 0) {
2887 int64_t num = bytes;
2889 if (head) {
2890 /* Make small requests to get to alignment boundaries. */
2891 num = MIN(bytes, align - head);
2892 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2893 num %= bs->bl.request_alignment;
2895 head = (head + num) % align;
2896 assert(num < max_pdiscard);
2897 } else if (tail) {
2898 if (num > align) {
2899 /* Shorten the request to the last aligned cluster. */
2900 num -= tail;
2901 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2902 tail > bs->bl.request_alignment) {
2903 tail %= bs->bl.request_alignment;
2904 num -= tail;
2907 /* limit request size */
2908 if (num > max_pdiscard) {
2909 num = max_pdiscard;
2912 if (!bs->drv) {
2913 ret = -ENOMEDIUM;
2914 goto out;
2916 if (bs->drv->bdrv_co_pdiscard) {
2917 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2918 } else {
2919 BlockAIOCB *acb;
2920 CoroutineIOCompletion co = {
2921 .coroutine = qemu_coroutine_self(),
2924 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2925 bdrv_co_io_em_complete, &co);
2926 if (acb == NULL) {
2927 ret = -EIO;
2928 goto out;
2929 } else {
2930 qemu_coroutine_yield();
2931 ret = co.ret;
2934 if (ret && ret != -ENOTSUP) {
2935 goto out;
2938 offset += num;
2939 bytes -= num;
2941 ret = 0;
2942 out:
2943 bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
2944 tracked_request_end(&req);
2945 bdrv_dec_in_flight(bs);
2946 return ret;
2949 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2951 BlockDriver *drv = bs->drv;
2952 CoroutineIOCompletion co = {
2953 .coroutine = qemu_coroutine_self(),
2955 BlockAIOCB *acb;
2957 bdrv_inc_in_flight(bs);
2958 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2959 co.ret = -ENOTSUP;
2960 goto out;
2963 if (drv->bdrv_co_ioctl) {
2964 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2965 } else {
2966 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2967 if (!acb) {
2968 co.ret = -ENOTSUP;
2969 goto out;
2971 qemu_coroutine_yield();
2973 out:
2974 bdrv_dec_in_flight(bs);
2975 return co.ret;
2978 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2980 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2983 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2985 return memset(qemu_blockalign(bs, size), 0, size);
2988 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2990 size_t align = bdrv_opt_mem_align(bs);
2992 /* Ensure that NULL is never returned on success */
2993 assert(align > 0);
2994 if (size == 0) {
2995 size = align;
2998 return qemu_try_memalign(align, size);
3001 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
3003 void *mem = qemu_try_blockalign(bs, size);
3005 if (mem) {
3006 memset(mem, 0, size);
3009 return mem;
3013 * Check if all memory in this vector is sector aligned.
3015 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
3017 int i;
3018 size_t alignment = bdrv_min_mem_align(bs);
3020 for (i = 0; i < qiov->niov; i++) {
3021 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
3022 return false;
3024 if (qiov->iov[i].iov_len % alignment) {
3025 return false;
3029 return true;
3032 void bdrv_add_before_write_notifier(BlockDriverState *bs,
3033 NotifierWithReturn *notifier)
3035 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
3038 void bdrv_io_plug(BlockDriverState *bs)
3040 BdrvChild *child;
3042 QLIST_FOREACH(child, &bs->children, next) {
3043 bdrv_io_plug(child->bs);
3046 if (qatomic_fetch_inc(&bs->io_plugged) == 0) {
3047 BlockDriver *drv = bs->drv;
3048 if (drv && drv->bdrv_io_plug) {
3049 drv->bdrv_io_plug(bs);
3054 void bdrv_io_unplug(BlockDriverState *bs)
3056 BdrvChild *child;
3058 assert(bs->io_plugged);
3059 if (qatomic_fetch_dec(&bs->io_plugged) == 1) {
3060 BlockDriver *drv = bs->drv;
3061 if (drv && drv->bdrv_io_unplug) {
3062 drv->bdrv_io_unplug(bs);
3066 QLIST_FOREACH(child, &bs->children, next) {
3067 bdrv_io_unplug(child->bs);
3071 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
3073 BdrvChild *child;
3075 if (bs->drv && bs->drv->bdrv_register_buf) {
3076 bs->drv->bdrv_register_buf(bs, host, size);
3078 QLIST_FOREACH(child, &bs->children, next) {
3079 bdrv_register_buf(child->bs, host, size);
3083 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
3085 BdrvChild *child;
3087 if (bs->drv && bs->drv->bdrv_unregister_buf) {
3088 bs->drv->bdrv_unregister_buf(bs, host);
3090 QLIST_FOREACH(child, &bs->children, next) {
3091 bdrv_unregister_buf(child->bs, host);
3095 static int coroutine_fn bdrv_co_copy_range_internal(
3096 BdrvChild *src, uint64_t src_offset, BdrvChild *dst,
3097 uint64_t dst_offset, uint64_t bytes,
3098 BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
3099 bool recurse_src)
3101 BdrvTrackedRequest req;
3102 int ret;
3104 /* TODO We can support BDRV_REQ_NO_FALLBACK here */
3105 assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
3106 assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
3108 if (!dst || !dst->bs || !bdrv_is_inserted(dst->bs)) {
3109 return -ENOMEDIUM;
3111 ret = bdrv_check_request32(dst_offset, bytes);
3112 if (ret) {
3113 return ret;
3115 if (write_flags & BDRV_REQ_ZERO_WRITE) {
3116 return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
3119 if (!src || !src->bs || !bdrv_is_inserted(src->bs)) {
3120 return -ENOMEDIUM;
3122 ret = bdrv_check_request32(src_offset, bytes);
3123 if (ret) {
3124 return ret;
3127 if (!src->bs->drv->bdrv_co_copy_range_from
3128 || !dst->bs->drv->bdrv_co_copy_range_to
3129 || src->bs->encrypted || dst->bs->encrypted) {
3130 return -ENOTSUP;
3133 if (recurse_src) {
3134 bdrv_inc_in_flight(src->bs);
3135 tracked_request_begin(&req, src->bs, src_offset, bytes,
3136 BDRV_TRACKED_READ);
3138 /* BDRV_REQ_SERIALISING is only for write operation */
3139 assert(!(read_flags & BDRV_REQ_SERIALISING));
3140 bdrv_wait_serialising_requests(&req);
3142 ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
3143 src, src_offset,
3144 dst, dst_offset,
3145 bytes,
3146 read_flags, write_flags);
3148 tracked_request_end(&req);
3149 bdrv_dec_in_flight(src->bs);
3150 } else {
3151 bdrv_inc_in_flight(dst->bs);
3152 tracked_request_begin(&req, dst->bs, dst_offset, bytes,
3153 BDRV_TRACKED_WRITE);
3154 ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
3155 write_flags);
3156 if (!ret) {
3157 ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
3158 src, src_offset,
3159 dst, dst_offset,
3160 bytes,
3161 read_flags, write_flags);
3163 bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
3164 tracked_request_end(&req);
3165 bdrv_dec_in_flight(dst->bs);
3168 return ret;
3171 /* Copy range from @src to @dst.
3173 * See the comment of bdrv_co_copy_range for the parameter and return value
3174 * semantics. */
3175 int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, uint64_t src_offset,
3176 BdrvChild *dst, uint64_t dst_offset,
3177 uint64_t bytes,
3178 BdrvRequestFlags read_flags,
3179 BdrvRequestFlags write_flags)
3181 trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
3182 read_flags, write_flags);
3183 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3184 bytes, read_flags, write_flags, true);
3187 /* Copy range from @src to @dst.
3189 * See the comment of bdrv_co_copy_range for the parameter and return value
3190 * semantics. */
3191 int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, uint64_t src_offset,
3192 BdrvChild *dst, uint64_t dst_offset,
3193 uint64_t bytes,
3194 BdrvRequestFlags read_flags,
3195 BdrvRequestFlags write_flags)
3197 trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
3198 read_flags, write_flags);
3199 return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
3200 bytes, read_flags, write_flags, false);
3203 int coroutine_fn bdrv_co_copy_range(BdrvChild *src, uint64_t src_offset,
3204 BdrvChild *dst, uint64_t dst_offset,
3205 uint64_t bytes, BdrvRequestFlags read_flags,
3206 BdrvRequestFlags write_flags)
3208 return bdrv_co_copy_range_from(src, src_offset,
3209 dst, dst_offset,
3210 bytes, read_flags, write_flags);
3213 static void bdrv_parent_cb_resize(BlockDriverState *bs)
3215 BdrvChild *c;
3216 QLIST_FOREACH(c, &bs->parents, next_parent) {
3217 if (c->klass->resize) {
3218 c->klass->resize(c);
3224 * Truncate file to 'offset' bytes (needed only for file protocols)
3226 * If 'exact' is true, the file must be resized to exactly the given
3227 * 'offset'. Otherwise, it is sufficient for the node to be at least
3228 * 'offset' bytes in length.
3230 int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
3231 PreallocMode prealloc, BdrvRequestFlags flags,
3232 Error **errp)
3234 BlockDriverState *bs = child->bs;
3235 BdrvChild *filtered, *backing;
3236 BlockDriver *drv = bs->drv;
3237 BdrvTrackedRequest req;
3238 int64_t old_size, new_bytes;
3239 int ret;
3242 /* if bs->drv == NULL, bs is closed, so there's nothing to do here */
3243 if (!drv) {
3244 error_setg(errp, "No medium inserted");
3245 return -ENOMEDIUM;
3247 if (offset < 0) {
3248 error_setg(errp, "Image size cannot be negative");
3249 return -EINVAL;
3252 ret = bdrv_check_request(offset, 0);
3253 if (ret < 0) {
3254 error_setg(errp, "Required too big image size, it must be not greater "
3255 "than %" PRId64, BDRV_MAX_LENGTH);
3256 return ret;
3259 old_size = bdrv_getlength(bs);
3260 if (old_size < 0) {
3261 error_setg_errno(errp, -old_size, "Failed to get old image size");
3262 return old_size;
3265 if (offset > old_size) {
3266 new_bytes = offset - old_size;
3267 } else {
3268 new_bytes = 0;
3271 bdrv_inc_in_flight(bs);
3272 tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
3273 BDRV_TRACKED_TRUNCATE);
3275 /* If we are growing the image and potentially using preallocation for the
3276 * new area, we need to make sure that no write requests are made to it
3277 * concurrently or they might be overwritten by preallocation. */
3278 if (new_bytes) {
3279 bdrv_make_request_serialising(&req, 1);
3281 if (bs->read_only) {
3282 error_setg(errp, "Image is read-only");
3283 ret = -EACCES;
3284 goto out;
3286 ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
3288 if (ret < 0) {
3289 error_setg_errno(errp, -ret,
3290 "Failed to prepare request for truncation");
3291 goto out;
3294 filtered = bdrv_filter_child(bs);
3295 backing = bdrv_cow_child(bs);
3298 * If the image has a backing file that is large enough that it would
3299 * provide data for the new area, we cannot leave it unallocated because
3300 * then the backing file content would become visible. Instead, zero-fill
3301 * the new area.
3303 * Note that if the image has a backing file, but was opened without the
3304 * backing file, taking care of keeping things consistent with that backing
3305 * file is the user's responsibility.
3307 if (new_bytes && backing) {
3308 int64_t backing_len;
3310 backing_len = bdrv_getlength(backing->bs);
3311 if (backing_len < 0) {
3312 ret = backing_len;
3313 error_setg_errno(errp, -ret, "Could not get backing file size");
3314 goto out;
3317 if (backing_len > old_size) {
3318 flags |= BDRV_REQ_ZERO_WRITE;
3322 if (drv->bdrv_co_truncate) {
3323 if (flags & ~bs->supported_truncate_flags) {
3324 error_setg(errp, "Block driver does not support requested flags");
3325 ret = -ENOTSUP;
3326 goto out;
3328 ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
3329 } else if (filtered) {
3330 ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
3331 } else {
3332 error_setg(errp, "Image format driver does not support resize");
3333 ret = -ENOTSUP;
3334 goto out;
3336 if (ret < 0) {
3337 goto out;
3340 ret = refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
3341 if (ret < 0) {
3342 error_setg_errno(errp, -ret, "Could not refresh total sector count");
3343 } else {
3344 offset = bs->total_sectors * BDRV_SECTOR_SIZE;
3346 /* It's possible that truncation succeeded but refresh_total_sectors
3347 * failed, but the latter doesn't affect how we should finish the request.
3348 * Pass 0 as the last parameter so that dirty bitmaps etc. are handled. */
3349 bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
3351 out:
3352 tracked_request_end(&req);
3353 bdrv_dec_in_flight(bs);
3355 return ret;