aspeed/timer: use the APB frequency from the SCU
[qemu/ar7.git] / hw / timer / aspeed_timer.c
blob5e3f51b66b430df068f81dec89f1fe2fecceeb32
1 /*
2 * ASPEED AST2400 Timer
4 * Andrew Jeffery <andrew@aj.id.au>
6 * Copyright (C) 2016 IBM Corp.
8 * This code is licensed under the GPL version 2 or later. See
9 * the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include "qapi/error.h"
14 #include "hw/sysbus.h"
15 #include "hw/timer/aspeed_timer.h"
16 #include "hw/misc/aspeed_scu.h"
17 #include "qemu-common.h"
18 #include "qemu/bitops.h"
19 #include "qemu/timer.h"
20 #include "qemu/log.h"
21 #include "trace.h"
23 #define TIMER_NR_REGS 4
25 #define TIMER_CTRL_BITS 4
26 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
28 #define TIMER_CLOCK_USE_EXT true
29 #define TIMER_CLOCK_EXT_HZ 1000000
30 #define TIMER_CLOCK_USE_APB false
32 #define TIMER_REG_STATUS 0
33 #define TIMER_REG_RELOAD 1
34 #define TIMER_REG_MATCH_FIRST 2
35 #define TIMER_REG_MATCH_SECOND 3
37 #define TIMER_FIRST_CAP_PULSE 4
39 enum timer_ctrl_op {
40 op_enable = 0,
41 op_external_clock,
42 op_overflow_interrupt,
43 op_pulse_enable
46 /**
47 * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
48 * structs, as it's a waste of memory. The ptimer BH callback needs to know
49 * whether a specific AspeedTimer is enabled, but this information is held in
50 * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
51 * arbitrary AspeedTimer to AspeedTimerCtrlState.
53 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
55 const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
56 return container_of(timers, AspeedTimerCtrlState, timers);
59 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
61 return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
64 static inline bool timer_enabled(AspeedTimer *t)
66 return timer_ctrl_status(t, op_enable);
69 static inline bool timer_overflow_interrupt(AspeedTimer *t)
71 return timer_ctrl_status(t, op_overflow_interrupt);
74 static inline bool timer_can_pulse(AspeedTimer *t)
76 return t->id >= TIMER_FIRST_CAP_PULSE;
79 static inline bool timer_external_clock(AspeedTimer *t)
81 return timer_ctrl_status(t, op_external_clock);
84 static inline uint32_t calculate_rate(struct AspeedTimer *t)
86 AspeedTimerCtrlState *s = timer_to_ctrl(t);
88 return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ : s->scu->apb_freq;
91 static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns)
93 uint64_t delta_ns = now_ns - MIN(now_ns, t->start);
94 uint32_t rate = calculate_rate(t);
95 uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND);
97 return t->reload - MIN(t->reload, ticks);
100 static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks)
102 uint64_t delta_ns;
103 uint64_t delta_ticks;
105 delta_ticks = t->reload - MIN(t->reload, ticks);
106 delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t));
108 return t->start + delta_ns;
111 static uint64_t calculate_next(struct AspeedTimer *t)
113 uint64_t next = 0;
114 uint32_t rate = calculate_rate(t);
116 while (!next) {
117 /* We don't know the relationship between the values in the match
118 * registers, so sort using MAX/MIN/zero. We sort in that order as the
119 * timer counts down to zero. */
120 uint64_t seq[] = {
121 calculate_time(t, MAX(t->match[0], t->match[1])),
122 calculate_time(t, MIN(t->match[0], t->match[1])),
123 calculate_time(t, 0),
125 uint64_t reload_ns;
126 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
128 if (now < seq[0]) {
129 next = seq[0];
130 } else if (now < seq[1]) {
131 next = seq[1];
132 } else if (now < seq[2]) {
133 next = seq[2];
134 } else if (t->reload) {
135 reload_ns = muldiv64(t->reload, NANOSECONDS_PER_SECOND, rate);
136 t->start = now - ((now - t->start) % reload_ns);
137 } else {
138 /* no reload value, return 0 */
139 break;
143 return next;
146 static void aspeed_timer_mod(AspeedTimer *t)
148 uint64_t next = calculate_next(t);
149 if (next) {
150 timer_mod(&t->timer, next);
154 static void aspeed_timer_expire(void *opaque)
156 AspeedTimer *t = opaque;
157 bool interrupt = false;
158 uint32_t ticks;
160 if (!timer_enabled(t)) {
161 return;
164 ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
166 if (!ticks) {
167 interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1];
168 } else if (ticks <= MIN(t->match[0], t->match[1])) {
169 interrupt = true;
170 } else if (ticks <= MAX(t->match[0], t->match[1])) {
171 interrupt = true;
174 if (interrupt) {
175 t->level = !t->level;
176 qemu_set_irq(t->irq, t->level);
179 aspeed_timer_mod(t);
182 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
184 uint64_t value;
186 switch (reg) {
187 case TIMER_REG_STATUS:
188 value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
189 break;
190 case TIMER_REG_RELOAD:
191 value = t->reload;
192 break;
193 case TIMER_REG_MATCH_FIRST:
194 case TIMER_REG_MATCH_SECOND:
195 value = t->match[reg - 2];
196 break;
197 default:
198 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
199 __func__, reg);
200 value = 0;
201 break;
203 return value;
206 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
208 AspeedTimerCtrlState *s = opaque;
209 const int reg = (offset & 0xf) / 4;
210 uint64_t value;
212 switch (offset) {
213 case 0x30: /* Control Register */
214 value = s->ctrl;
215 break;
216 case 0x34: /* Control Register 2 */
217 value = s->ctrl2;
218 break;
219 case 0x00 ... 0x2c: /* Timers 1 - 4 */
220 value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
221 break;
222 case 0x40 ... 0x8c: /* Timers 5 - 8 */
223 value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
224 break;
225 /* Illegal */
226 case 0x38:
227 case 0x3C:
228 default:
229 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
230 __func__, offset);
231 value = 0;
232 break;
234 trace_aspeed_timer_read(offset, size, value);
235 return value;
238 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
239 uint32_t value)
241 AspeedTimer *t;
242 uint32_t old_reload;
244 trace_aspeed_timer_set_value(timer, reg, value);
245 t = &s->timers[timer];
246 switch (reg) {
247 case TIMER_REG_RELOAD:
248 old_reload = t->reload;
249 t->reload = value;
251 /* If the reload value was not previously set, or zero, and
252 * the current value is valid, try to start the timer if it is
253 * enabled.
255 if (old_reload || !t->reload) {
256 break;
259 case TIMER_REG_STATUS:
260 if (timer_enabled(t)) {
261 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
262 int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now);
263 uint32_t rate = calculate_rate(t);
265 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate);
266 aspeed_timer_mod(t);
268 break;
269 case TIMER_REG_MATCH_FIRST:
270 case TIMER_REG_MATCH_SECOND:
271 t->match[reg - 2] = value;
272 if (timer_enabled(t)) {
273 aspeed_timer_mod(t);
275 break;
276 default:
277 qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
278 __func__, reg);
279 break;
283 /* Control register operations are broken out into helpers that can be
284 * explicitly called on aspeed_timer_reset(), but also from
285 * aspeed_timer_ctrl_op().
288 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
290 trace_aspeed_timer_ctrl_enable(t->id, enable);
291 if (enable) {
292 t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
293 aspeed_timer_mod(t);
294 } else {
295 timer_del(&t->timer);
299 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
301 trace_aspeed_timer_ctrl_external_clock(t->id, enable);
304 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
306 trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
309 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
311 if (timer_can_pulse(t)) {
312 trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
313 } else {
314 qemu_log_mask(LOG_GUEST_ERROR,
315 "%s: Timer does not support pulse mode\n", __func__);
320 * Given the actions are fixed in number and completely described in helper
321 * functions, dispatch with a lookup table rather than manage control flow with
322 * a switch statement.
324 static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
325 [op_enable] = aspeed_timer_ctrl_enable,
326 [op_external_clock] = aspeed_timer_ctrl_external_clock,
327 [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
328 [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
332 * Conditionally affect changes chosen by a timer's control bit.
334 * The aspeed_timer_ctrl_op() interface is convenient for the
335 * aspeed_timer_set_ctrl() function as the "no change" early exit can be
336 * calculated for all operations, which cleans up the caller code. However the
337 * interface isn't convenient for the reset function where we want to enter a
338 * specific state without artificially constructing old and new values that
339 * will fall through the change guard (and motivates extracting the actions
340 * out to helper functions).
342 * @t: The timer to manipulate
343 * @op: The type of operation to be performed
344 * @old: The old state of the timer's control bits
345 * @new: The incoming state for the timer's control bits
347 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
348 uint8_t old, uint8_t new)
350 const uint8_t mask = BIT(op);
351 const bool enable = !!(new & mask);
352 const bool changed = ((old ^ new) & mask);
353 if (!changed) {
354 return;
356 ctrl_ops[op](t, enable);
359 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
361 int i;
362 int shift;
363 uint8_t t_old, t_new;
364 AspeedTimer *t;
365 const uint8_t enable_mask = BIT(op_enable);
367 /* Handle a dependency between the 'enable' and remaining three
368 * configuration bits - i.e. if more than one bit in the control set has
369 * changed, including the 'enable' bit, then we want either disable the
370 * timer and perform configuration, or perform configuration and then
371 * enable the timer
373 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
374 t = &s->timers[i];
375 shift = (i * TIMER_CTRL_BITS);
376 t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
377 t_new = (reg >> shift) & TIMER_CTRL_MASK;
379 /* If we are disabling, do so first */
380 if ((t_old & enable_mask) && !(t_new & enable_mask)) {
381 aspeed_timer_ctrl_enable(t, false);
383 aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
384 aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
385 aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
386 /* If we are enabling, do so last */
387 if (!(t_old & enable_mask) && (t_new & enable_mask)) {
388 aspeed_timer_ctrl_enable(t, true);
391 s->ctrl = reg;
394 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
396 trace_aspeed_timer_set_ctrl2(value);
399 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
400 unsigned size)
402 const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
403 const int reg = (offset & 0xf) / 4;
404 AspeedTimerCtrlState *s = opaque;
406 switch (offset) {
407 /* Control Registers */
408 case 0x30:
409 aspeed_timer_set_ctrl(s, tv);
410 break;
411 case 0x34:
412 aspeed_timer_set_ctrl2(s, tv);
413 break;
414 /* Timer Registers */
415 case 0x00 ... 0x2c:
416 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
417 break;
418 case 0x40 ... 0x8c:
419 aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
420 break;
421 /* Illegal */
422 case 0x38:
423 case 0x3C:
424 default:
425 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
426 __func__, offset);
427 break;
431 static const MemoryRegionOps aspeed_timer_ops = {
432 .read = aspeed_timer_read,
433 .write = aspeed_timer_write,
434 .endianness = DEVICE_LITTLE_ENDIAN,
435 .valid.min_access_size = 4,
436 .valid.max_access_size = 4,
437 .valid.unaligned = false,
440 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
442 AspeedTimer *t = &s->timers[id];
444 t->id = id;
445 timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t);
448 static void aspeed_timer_realize(DeviceState *dev, Error **errp)
450 int i;
451 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
452 AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
453 Object *obj;
454 Error *err = NULL;
456 obj = object_property_get_link(OBJECT(dev), "scu", &err);
457 if (!obj) {
458 error_propagate(errp, err);
459 error_prepend(errp, "required link 'scu' not found: ");
460 return;
462 s->scu = ASPEED_SCU(obj);
464 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
465 aspeed_init_one_timer(s, i);
466 sysbus_init_irq(sbd, &s->timers[i].irq);
468 memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
469 TYPE_ASPEED_TIMER, 0x1000);
470 sysbus_init_mmio(sbd, &s->iomem);
473 static void aspeed_timer_reset(DeviceState *dev)
475 int i;
476 AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
478 for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
479 AspeedTimer *t = &s->timers[i];
480 /* Explicitly call helpers to avoid any conditional behaviour through
481 * aspeed_timer_set_ctrl().
483 aspeed_timer_ctrl_enable(t, false);
484 aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
485 aspeed_timer_ctrl_overflow_interrupt(t, false);
486 aspeed_timer_ctrl_pulse_enable(t, false);
487 t->level = 0;
488 t->reload = 0;
489 t->match[0] = 0;
490 t->match[1] = 0;
492 s->ctrl = 0;
493 s->ctrl2 = 0;
496 static const VMStateDescription vmstate_aspeed_timer = {
497 .name = "aspeed.timer",
498 .version_id = 2,
499 .minimum_version_id = 2,
500 .fields = (VMStateField[]) {
501 VMSTATE_UINT8(id, AspeedTimer),
502 VMSTATE_INT32(level, AspeedTimer),
503 VMSTATE_TIMER(timer, AspeedTimer),
504 VMSTATE_UINT32(reload, AspeedTimer),
505 VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
506 VMSTATE_END_OF_LIST()
510 static const VMStateDescription vmstate_aspeed_timer_state = {
511 .name = "aspeed.timerctrl",
512 .version_id = 1,
513 .minimum_version_id = 1,
514 .fields = (VMStateField[]) {
515 VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
516 VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
517 VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
518 ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer,
519 AspeedTimer),
520 VMSTATE_END_OF_LIST()
524 static void timer_class_init(ObjectClass *klass, void *data)
526 DeviceClass *dc = DEVICE_CLASS(klass);
528 dc->realize = aspeed_timer_realize;
529 dc->reset = aspeed_timer_reset;
530 dc->desc = "ASPEED Timer";
531 dc->vmsd = &vmstate_aspeed_timer_state;
534 static const TypeInfo aspeed_timer_info = {
535 .name = TYPE_ASPEED_TIMER,
536 .parent = TYPE_SYS_BUS_DEVICE,
537 .instance_size = sizeof(AspeedTimerCtrlState),
538 .class_init = timer_class_init,
541 static void aspeed_timer_register_types(void)
543 type_register_static(&aspeed_timer_info);
546 type_init(aspeed_timer_register_types)