4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include <sys/types.h>
25 #include "qemu-common.h"
30 #include "qemu/osdep.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/xen/xen.h"
34 #include "qemu/timer.h"
35 #include "qemu/config-file.h"
36 #include "qemu/error-report.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
52 #include "exec/ram_addr.h"
54 #include "qemu/range.h"
56 //#define DEBUG_SUBPAGE
58 #if !defined(CONFIG_USER_ONLY)
59 static bool in_migration
;
61 RAMList ram_list
= { .blocks
= QTAILQ_HEAD_INITIALIZER(ram_list
.blocks
) };
63 static MemoryRegion
*system_memory
;
64 static MemoryRegion
*system_io
;
66 AddressSpace address_space_io
;
67 AddressSpace address_space_memory
;
69 MemoryRegion io_mem_rom
, io_mem_notdirty
;
70 static MemoryRegion io_mem_unassigned
;
72 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
73 #define RAM_PREALLOC (1 << 0)
75 /* RAM is mmap-ed with MAP_SHARED */
76 #define RAM_SHARED (1 << 1)
80 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
81 /* current CPU in the current thread. It is only valid inside
83 DEFINE_TLS(CPUState
*, current_cpu
);
84 /* 0 = Do not count executed instructions.
85 1 = Precise instruction counting.
86 2 = Adaptive rate instruction counting. */
89 #if !defined(CONFIG_USER_ONLY)
91 typedef struct PhysPageEntry PhysPageEntry
;
93 struct PhysPageEntry
{
94 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
96 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
100 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
102 /* Size of the L2 (and L3, etc) page tables. */
103 #define ADDR_SPACE_BITS 64
106 #define P_L2_SIZE (1 << P_L2_BITS)
108 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
110 typedef PhysPageEntry Node
[P_L2_SIZE
];
112 typedef struct PhysPageMap
{
113 unsigned sections_nb
;
114 unsigned sections_nb_alloc
;
116 unsigned nodes_nb_alloc
;
118 MemoryRegionSection
*sections
;
121 struct AddressSpaceDispatch
{
122 /* This is a multi-level map on the physical address space.
123 * The bottom level has pointers to MemoryRegionSections.
125 PhysPageEntry phys_map
;
130 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
131 typedef struct subpage_t
{
135 uint16_t sub_section
[TARGET_PAGE_SIZE
];
138 #define PHYS_SECTION_UNASSIGNED 0
139 #define PHYS_SECTION_NOTDIRTY 1
140 #define PHYS_SECTION_ROM 2
141 #define PHYS_SECTION_WATCH 3
143 static void io_mem_init(void);
144 static void memory_map_init(void);
145 static void tcg_commit(MemoryListener
*listener
);
147 static MemoryRegion io_mem_watch
;
150 #if !defined(CONFIG_USER_ONLY)
152 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
154 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
155 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
* 2, 16);
156 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
157 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
161 static uint32_t phys_map_node_alloc(PhysPageMap
*map
)
166 ret
= map
->nodes_nb
++;
167 assert(ret
!= PHYS_MAP_NODE_NIL
);
168 assert(ret
!= map
->nodes_nb_alloc
);
169 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
170 map
->nodes
[ret
][i
].skip
= 1;
171 map
->nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
176 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
177 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
182 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
184 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
185 lp
->ptr
= phys_map_node_alloc(map
);
186 p
= map
->nodes
[lp
->ptr
];
188 for (i
= 0; i
< P_L2_SIZE
; i
++) {
190 p
[i
].ptr
= PHYS_SECTION_UNASSIGNED
;
194 p
= map
->nodes
[lp
->ptr
];
196 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
198 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
199 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
205 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
211 static void phys_page_set(AddressSpaceDispatch
*d
,
212 hwaddr index
, hwaddr nb
,
215 /* Wildly overreserve - it doesn't matter much. */
216 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
218 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
221 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
222 * and update our entry so we can skip it and go directly to the destination.
224 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
, unsigned long *compacted
)
226 unsigned valid_ptr
= P_L2_SIZE
;
231 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
236 for (i
= 0; i
< P_L2_SIZE
; i
++) {
237 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
244 phys_page_compact(&p
[i
], nodes
, compacted
);
248 /* We can only compress if there's only one child. */
253 assert(valid_ptr
< P_L2_SIZE
);
255 /* Don't compress if it won't fit in the # of bits we have. */
256 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
260 lp
->ptr
= p
[valid_ptr
].ptr
;
261 if (!p
[valid_ptr
].skip
) {
262 /* If our only child is a leaf, make this a leaf. */
263 /* By design, we should have made this node a leaf to begin with so we
264 * should never reach here.
265 * But since it's so simple to handle this, let's do it just in case we
270 lp
->skip
+= p
[valid_ptr
].skip
;
274 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
276 DECLARE_BITMAP(compacted
, nodes_nb
);
278 if (d
->phys_map
.skip
) {
279 phys_page_compact(&d
->phys_map
, d
->map
.nodes
, compacted
);
283 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
284 Node
*nodes
, MemoryRegionSection
*sections
)
287 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
290 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
291 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
292 return §ions
[PHYS_SECTION_UNASSIGNED
];
295 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
298 if (sections
[lp
.ptr
].size
.hi
||
299 range_covers_byte(sections
[lp
.ptr
].offset_within_address_space
,
300 sections
[lp
.ptr
].size
.lo
, addr
)) {
301 return §ions
[lp
.ptr
];
303 return §ions
[PHYS_SECTION_UNASSIGNED
];
307 bool memory_region_is_unassigned(MemoryRegion
*mr
)
309 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
310 && mr
!= &io_mem_watch
;
313 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
315 bool resolve_subpage
)
317 MemoryRegionSection
*section
;
320 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
, d
->map
.sections
);
321 if (resolve_subpage
&& section
->mr
->subpage
) {
322 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
323 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
328 static MemoryRegionSection
*
329 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
330 hwaddr
*plen
, bool resolve_subpage
)
332 MemoryRegionSection
*section
;
335 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
336 /* Compute offset within MemoryRegionSection */
337 addr
-= section
->offset_within_address_space
;
339 /* Compute offset within MemoryRegion */
340 *xlat
= addr
+ section
->offset_within_region
;
342 diff
= int128_sub(section
->mr
->size
, int128_make64(addr
));
343 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
347 static inline bool memory_access_is_direct(MemoryRegion
*mr
, bool is_write
)
349 if (memory_region_is_ram(mr
)) {
350 return !(is_write
&& mr
->readonly
);
352 if (memory_region_is_romd(mr
)) {
359 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
360 hwaddr
*xlat
, hwaddr
*plen
,
364 MemoryRegionSection
*section
;
369 section
= address_space_translate_internal(as
->dispatch
, addr
, &addr
, plen
, true);
372 if (!mr
->iommu_ops
) {
376 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
377 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
378 | (addr
& iotlb
.addr_mask
));
379 len
= MIN(len
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
380 if (!(iotlb
.perm
& (1 << is_write
))) {
381 mr
= &io_mem_unassigned
;
385 as
= iotlb
.target_as
;
388 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
389 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
390 len
= MIN(page
, len
);
398 MemoryRegionSection
*
399 address_space_translate_for_iotlb(AddressSpace
*as
, hwaddr addr
, hwaddr
*xlat
,
402 MemoryRegionSection
*section
;
403 section
= address_space_translate_internal(as
->dispatch
, addr
, xlat
, plen
, false);
405 assert(!section
->mr
->iommu_ops
);
410 void cpu_exec_init_all(void)
412 #if !defined(CONFIG_USER_ONLY)
413 qemu_mutex_init(&ram_list
.mutex
);
419 #if !defined(CONFIG_USER_ONLY)
421 static int cpu_common_post_load(void *opaque
, int version_id
)
423 CPUState
*cpu
= opaque
;
425 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
426 version_id is increased. */
427 cpu
->interrupt_request
&= ~0x01;
433 static int cpu_common_pre_load(void *opaque
)
435 CPUState
*cpu
= opaque
;
437 cpu
->exception_index
= 0;
442 static bool cpu_common_exception_index_needed(void *opaque
)
444 CPUState
*cpu
= opaque
;
446 return cpu
->exception_index
!= 0;
449 static const VMStateDescription vmstate_cpu_common_exception_index
= {
450 .name
= "cpu_common/exception_index",
452 .minimum_version_id
= 1,
453 .fields
= (VMStateField
[]) {
454 VMSTATE_INT32(exception_index
, CPUState
),
455 VMSTATE_END_OF_LIST()
459 const VMStateDescription vmstate_cpu_common
= {
460 .name
= "cpu_common",
462 .minimum_version_id
= 1,
463 .pre_load
= cpu_common_pre_load
,
464 .post_load
= cpu_common_post_load
,
465 .fields
= (VMStateField
[]) {
466 VMSTATE_UINT32(halted
, CPUState
),
467 VMSTATE_UINT32(interrupt_request
, CPUState
),
468 VMSTATE_END_OF_LIST()
470 .subsections
= (VMStateSubsection
[]) {
472 .vmsd
= &vmstate_cpu_common_exception_index
,
473 .needed
= cpu_common_exception_index_needed
,
482 CPUState
*qemu_get_cpu(int index
)
487 if (cpu
->cpu_index
== index
) {
495 #if !defined(CONFIG_USER_ONLY)
496 void tcg_cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
)
498 /* We only support one address space per cpu at the moment. */
499 assert(cpu
->as
== as
);
501 if (cpu
->tcg_as_listener
) {
502 memory_listener_unregister(cpu
->tcg_as_listener
);
504 cpu
->tcg_as_listener
= g_new0(MemoryListener
, 1);
506 cpu
->tcg_as_listener
->commit
= tcg_commit
;
507 memory_listener_register(cpu
->tcg_as_listener
, as
);
511 void cpu_exec_init(CPUArchState
*env
)
513 CPUState
*cpu
= ENV_GET_CPU(env
);
514 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
518 #if defined(CONFIG_USER_ONLY)
522 CPU_FOREACH(some_cpu
) {
525 cpu
->cpu_index
= cpu_index
;
527 QTAILQ_INIT(&cpu
->breakpoints
);
528 QTAILQ_INIT(&cpu
->watchpoints
);
529 #ifndef CONFIG_USER_ONLY
530 cpu
->as
= &address_space_memory
;
531 cpu
->thread_id
= qemu_get_thread_id();
533 QTAILQ_INSERT_TAIL(&cpus
, cpu
, node
);
534 #if defined(CONFIG_USER_ONLY)
537 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
538 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
540 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
541 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
542 cpu_save
, cpu_load
, env
);
543 assert(cc
->vmsd
== NULL
);
544 assert(qdev_get_vmsd(DEVICE(cpu
)) == NULL
);
546 if (cc
->vmsd
!= NULL
) {
547 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
551 #if defined(TARGET_HAS_ICE)
552 #if defined(CONFIG_USER_ONLY)
553 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
555 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
558 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
560 hwaddr phys
= cpu_get_phys_page_debug(cpu
, pc
);
562 tb_invalidate_phys_addr(cpu
->as
,
563 phys
| (pc
& ~TARGET_PAGE_MASK
));
567 #endif /* TARGET_HAS_ICE */
569 #if defined(CONFIG_USER_ONLY)
570 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
575 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
581 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
585 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
586 int flags
, CPUWatchpoint
**watchpoint
)
591 /* Add a watchpoint. */
592 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
593 int flags
, CPUWatchpoint
**watchpoint
)
597 /* forbid ranges which are empty or run off the end of the address space */
598 if (len
== 0 || (addr
+ len
- 1) < addr
) {
599 error_report("tried to set invalid watchpoint at %"
600 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
603 wp
= g_malloc(sizeof(*wp
));
609 /* keep all GDB-injected watchpoints in front */
610 if (flags
& BP_GDB
) {
611 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
613 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
616 tlb_flush_page(cpu
, addr
);
623 /* Remove a specific watchpoint. */
624 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
629 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
630 if (addr
== wp
->vaddr
&& len
== wp
->len
631 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
632 cpu_watchpoint_remove_by_ref(cpu
, wp
);
639 /* Remove a specific watchpoint by reference. */
640 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
642 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
644 tlb_flush_page(cpu
, watchpoint
->vaddr
);
649 /* Remove all matching watchpoints. */
650 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
652 CPUWatchpoint
*wp
, *next
;
654 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
655 if (wp
->flags
& mask
) {
656 cpu_watchpoint_remove_by_ref(cpu
, wp
);
661 /* Return true if this watchpoint address matches the specified
662 * access (ie the address range covered by the watchpoint overlaps
663 * partially or completely with the address range covered by the
666 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
670 /* We know the lengths are non-zero, but a little caution is
671 * required to avoid errors in the case where the range ends
672 * exactly at the top of the address space and so addr + len
673 * wraps round to zero.
675 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
676 vaddr addrend
= addr
+ len
- 1;
678 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
683 /* Add a breakpoint. */
684 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
685 CPUBreakpoint
**breakpoint
)
687 #if defined(TARGET_HAS_ICE)
690 bp
= g_malloc(sizeof(*bp
));
695 /* keep all GDB-injected breakpoints in front */
696 if (flags
& BP_GDB
) {
697 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
699 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
702 breakpoint_invalidate(cpu
, pc
);
713 /* Remove a specific breakpoint. */
714 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
716 #if defined(TARGET_HAS_ICE)
719 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
720 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
721 cpu_breakpoint_remove_by_ref(cpu
, bp
);
731 /* Remove a specific breakpoint by reference. */
732 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
734 #if defined(TARGET_HAS_ICE)
735 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
737 breakpoint_invalidate(cpu
, breakpoint
->pc
);
743 /* Remove all matching breakpoints. */
744 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
746 #if defined(TARGET_HAS_ICE)
747 CPUBreakpoint
*bp
, *next
;
749 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
750 if (bp
->flags
& mask
) {
751 cpu_breakpoint_remove_by_ref(cpu
, bp
);
757 /* enable or disable single step mode. EXCP_DEBUG is returned by the
758 CPU loop after each instruction */
759 void cpu_single_step(CPUState
*cpu
, int enabled
)
761 #if defined(TARGET_HAS_ICE)
762 if (cpu
->singlestep_enabled
!= enabled
) {
763 cpu
->singlestep_enabled
= enabled
;
765 kvm_update_guest_debug(cpu
, 0);
767 /* must flush all the translated code to avoid inconsistencies */
768 /* XXX: only flush what is necessary */
769 CPUArchState
*env
= cpu
->env_ptr
;
776 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
783 fprintf(stderr
, "qemu: fatal: ");
784 vfprintf(stderr
, fmt
, ap
);
785 fprintf(stderr
, "\n");
786 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
787 if (qemu_log_enabled()) {
788 qemu_log("qemu: fatal: ");
789 qemu_log_vprintf(fmt
, ap2
);
791 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
797 #if defined(CONFIG_USER_ONLY)
799 struct sigaction act
;
800 sigfillset(&act
.sa_mask
);
801 act
.sa_handler
= SIG_DFL
;
802 sigaction(SIGABRT
, &act
, NULL
);
808 #if !defined(CONFIG_USER_ONLY)
809 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
813 /* The list is protected by the iothread lock here. */
814 block
= ram_list
.mru_block
;
815 if (block
&& addr
- block
->offset
< block
->max_length
) {
818 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
819 if (addr
- block
->offset
< block
->max_length
) {
824 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
828 ram_list
.mru_block
= block
;
832 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
838 end
= TARGET_PAGE_ALIGN(start
+ length
);
839 start
&= TARGET_PAGE_MASK
;
841 block
= qemu_get_ram_block(start
);
842 assert(block
== qemu_get_ram_block(end
- 1));
843 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
844 cpu_tlb_reset_dirty_all(start1
, length
);
847 /* Note: start and end must be within the same ram block. */
848 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t length
,
853 cpu_physical_memory_clear_dirty_range_type(start
, length
, client
);
856 tlb_reset_dirty_range_all(start
, length
);
860 static void cpu_physical_memory_set_dirty_tracking(bool enable
)
862 in_migration
= enable
;
865 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
866 MemoryRegionSection
*section
,
868 hwaddr paddr
, hwaddr xlat
,
870 target_ulong
*address
)
875 if (memory_region_is_ram(section
->mr
)) {
877 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
879 if (!section
->readonly
) {
880 iotlb
|= PHYS_SECTION_NOTDIRTY
;
882 iotlb
|= PHYS_SECTION_ROM
;
885 iotlb
= section
- section
->address_space
->dispatch
->map
.sections
;
889 /* Make accesses to pages with watchpoints go via the
890 watchpoint trap routines. */
891 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
892 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
893 /* Avoid trapping reads of pages with a write breakpoint. */
894 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
895 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
896 *address
|= TLB_MMIO
;
904 #endif /* defined(CONFIG_USER_ONLY) */
906 #if !defined(CONFIG_USER_ONLY)
908 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
910 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
912 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
916 * Set a custom physical guest memory alloator.
917 * Accelerators with unusual needs may need this. Hopefully, we can
918 * get rid of it eventually.
920 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
922 phys_mem_alloc
= alloc
;
925 static uint16_t phys_section_add(PhysPageMap
*map
,
926 MemoryRegionSection
*section
)
928 /* The physical section number is ORed with a page-aligned
929 * pointer to produce the iotlb entries. Thus it should
930 * never overflow into the page-aligned value.
932 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
934 if (map
->sections_nb
== map
->sections_nb_alloc
) {
935 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
936 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
937 map
->sections_nb_alloc
);
939 map
->sections
[map
->sections_nb
] = *section
;
940 memory_region_ref(section
->mr
);
941 return map
->sections_nb
++;
944 static void phys_section_destroy(MemoryRegion
*mr
)
946 memory_region_unref(mr
);
949 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
950 object_unref(OBJECT(&subpage
->iomem
));
955 static void phys_sections_free(PhysPageMap
*map
)
957 while (map
->sections_nb
> 0) {
958 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
959 phys_section_destroy(section
->mr
);
961 g_free(map
->sections
);
965 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
968 hwaddr base
= section
->offset_within_address_space
970 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
971 d
->map
.nodes
, d
->map
.sections
);
972 MemoryRegionSection subsection
= {
973 .offset_within_address_space
= base
,
974 .size
= int128_make64(TARGET_PAGE_SIZE
),
978 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
980 if (!(existing
->mr
->subpage
)) {
981 subpage
= subpage_init(d
->as
, base
);
982 subsection
.address_space
= d
->as
;
983 subsection
.mr
= &subpage
->iomem
;
984 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
985 phys_section_add(&d
->map
, &subsection
));
987 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
989 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
990 end
= start
+ int128_get64(section
->size
) - 1;
991 subpage_register(subpage
, start
, end
,
992 phys_section_add(&d
->map
, section
));
996 static void register_multipage(AddressSpaceDispatch
*d
,
997 MemoryRegionSection
*section
)
999 hwaddr start_addr
= section
->offset_within_address_space
;
1000 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1001 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1005 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1008 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1010 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1011 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1012 MemoryRegionSection now
= *section
, remain
= *section
;
1013 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1015 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1016 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1017 - now
.offset_within_address_space
;
1019 now
.size
= int128_min(int128_make64(left
), now
.size
);
1020 register_subpage(d
, &now
);
1022 now
.size
= int128_zero();
1024 while (int128_ne(remain
.size
, now
.size
)) {
1025 remain
.size
= int128_sub(remain
.size
, now
.size
);
1026 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1027 remain
.offset_within_region
+= int128_get64(now
.size
);
1029 if (int128_lt(remain
.size
, page_size
)) {
1030 register_subpage(d
, &now
);
1031 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1032 now
.size
= page_size
;
1033 register_subpage(d
, &now
);
1035 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1036 register_multipage(d
, &now
);
1041 void qemu_flush_coalesced_mmio_buffer(void)
1044 kvm_flush_coalesced_mmio_buffer();
1047 void qemu_mutex_lock_ramlist(void)
1049 qemu_mutex_lock(&ram_list
.mutex
);
1052 void qemu_mutex_unlock_ramlist(void)
1054 qemu_mutex_unlock(&ram_list
.mutex
);
1059 #include <sys/vfs.h>
1061 #define HUGETLBFS_MAGIC 0x958458f6
1063 static long gethugepagesize(const char *path
, Error
**errp
)
1069 ret
= statfs(path
, &fs
);
1070 } while (ret
!= 0 && errno
== EINTR
);
1073 error_setg_errno(errp
, errno
, "failed to get page size of file %s",
1078 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
1079 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
1084 static void *file_ram_alloc(RAMBlock
*block
,
1090 char *sanitized_name
;
1095 Error
*local_err
= NULL
;
1097 hpagesize
= gethugepagesize(path
, &local_err
);
1099 error_propagate(errp
, local_err
);
1102 block
->mr
->align
= hpagesize
;
1104 if (memory
< hpagesize
) {
1105 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1106 "or larger than huge page size 0x%" PRIx64
,
1111 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1113 "host lacks kvm mmu notifiers, -mem-path unsupported");
1117 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1118 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1119 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1124 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1126 g_free(sanitized_name
);
1128 fd
= mkstemp(filename
);
1130 error_setg_errno(errp
, errno
,
1131 "unable to create backing store for hugepages");
1138 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
1141 * ftruncate is not supported by hugetlbfs in older
1142 * hosts, so don't bother bailing out on errors.
1143 * If anything goes wrong with it under other filesystems,
1146 if (ftruncate(fd
, memory
)) {
1147 perror("ftruncate");
1150 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
,
1151 (block
->flags
& RAM_SHARED
? MAP_SHARED
: MAP_PRIVATE
),
1153 if (area
== MAP_FAILED
) {
1154 error_setg_errno(errp
, errno
,
1155 "unable to map backing store for hugepages");
1161 os_mem_prealloc(fd
, area
, memory
);
1169 error_report("%s\n", error_get_pretty(*errp
));
1176 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1178 RAMBlock
*block
, *next_block
;
1179 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1181 assert(size
!= 0); /* it would hand out same offset multiple times */
1183 if (QTAILQ_EMPTY(&ram_list
.blocks
))
1186 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1187 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1189 end
= block
->offset
+ block
->length
;
1191 QTAILQ_FOREACH(next_block
, &ram_list
.blocks
, next
) {
1192 if (next_block
->offset
>= end
) {
1193 next
= MIN(next
, next_block
->offset
);
1196 if (next
- end
>= size
&& next
- end
< mingap
) {
1198 mingap
= next
- end
;
1202 if (offset
== RAM_ADDR_MAX
) {
1203 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1211 ram_addr_t
last_ram_offset(void)
1214 ram_addr_t last
= 0;
1216 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
)
1217 last
= MAX(last
, block
->offset
+ block
->length
);
1222 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1226 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1227 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1228 "dump-guest-core", true)) {
1229 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1231 perror("qemu_madvise");
1232 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1233 "but dump_guest_core=off specified\n");
1238 static RAMBlock
*find_ram_block(ram_addr_t addr
)
1242 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1243 if (block
->offset
== addr
) {
1251 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1253 RAMBlock
*new_block
= find_ram_block(addr
);
1257 assert(!new_block
->idstr
[0]);
1260 char *id
= qdev_get_dev_path(dev
);
1262 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1266 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1268 /* This assumes the iothread lock is taken here too. */
1269 qemu_mutex_lock_ramlist();
1270 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1271 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1272 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1277 qemu_mutex_unlock_ramlist();
1280 void qemu_ram_unset_idstr(ram_addr_t addr
)
1282 RAMBlock
*block
= find_ram_block(addr
);
1285 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1289 static int memory_try_enable_merging(void *addr
, size_t len
)
1291 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1292 /* disabled by the user */
1296 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1299 static ram_addr_t
ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1302 ram_addr_t old_ram_size
, new_ram_size
;
1304 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1306 /* This assumes the iothread lock is taken here too. */
1307 qemu_mutex_lock_ramlist();
1308 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1310 if (!new_block
->host
) {
1311 if (xen_enabled()) {
1312 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1315 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1316 &new_block
->mr
->align
);
1317 if (!new_block
->host
) {
1318 error_setg_errno(errp
, errno
,
1319 "cannot set up guest memory '%s'",
1320 memory_region_name(new_block
->mr
));
1321 qemu_mutex_unlock_ramlist();
1324 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1328 /* Keep the list sorted from biggest to smallest block. */
1329 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1330 if (block
->max_length
< new_block
->max_length
) {
1335 QTAILQ_INSERT_BEFORE(block
, new_block
, next
);
1337 QTAILQ_INSERT_TAIL(&ram_list
.blocks
, new_block
, next
);
1339 ram_list
.mru_block
= NULL
;
1342 qemu_mutex_unlock_ramlist();
1344 new_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1346 if (new_ram_size
> old_ram_size
) {
1348 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1349 ram_list
.dirty_memory
[i
] =
1350 bitmap_zero_extend(ram_list
.dirty_memory
[i
],
1351 old_ram_size
, new_ram_size
);
1354 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1355 new_block
->used_length
);
1357 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1358 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1359 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1361 if (kvm_enabled()) {
1362 kvm_setup_guest_memory(new_block
->host
, new_block
->max_length
);
1365 return new_block
->offset
;
1369 ram_addr_t
qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1370 bool share
, const char *mem_path
,
1373 RAMBlock
*new_block
;
1375 Error
*local_err
= NULL
;
1377 if (xen_enabled()) {
1378 error_setg(errp
, "-mem-path not supported with Xen");
1382 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1384 * file_ram_alloc() needs to allocate just like
1385 * phys_mem_alloc, but we haven't bothered to provide
1389 "-mem-path not supported with this accelerator");
1393 size
= TARGET_PAGE_ALIGN(size
);
1394 new_block
= g_malloc0(sizeof(*new_block
));
1396 new_block
->used_length
= size
;
1397 new_block
->max_length
= size
;
1398 new_block
->flags
= share
? RAM_SHARED
: 0;
1399 new_block
->host
= file_ram_alloc(new_block
, size
,
1401 if (!new_block
->host
) {
1406 addr
= ram_block_add(new_block
, &local_err
);
1409 error_propagate(errp
, local_err
);
1416 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1417 MemoryRegion
*mr
, Error
**errp
)
1419 RAMBlock
*new_block
;
1421 Error
*local_err
= NULL
;
1423 size
= TARGET_PAGE_ALIGN(size
);
1424 new_block
= g_malloc0(sizeof(*new_block
));
1426 new_block
->used_length
= size
;
1427 new_block
->max_length
= max_size
;
1429 new_block
->host
= host
;
1431 new_block
->flags
|= RAM_PREALLOC
;
1433 addr
= ram_block_add(new_block
, &local_err
);
1436 error_propagate(errp
, local_err
);
1442 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1444 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
, errp
);
1447 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1451 /* This assumes the iothread lock is taken here too. */
1452 qemu_mutex_lock_ramlist();
1453 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1454 if (addr
== block
->offset
) {
1455 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1456 ram_list
.mru_block
= NULL
;
1462 qemu_mutex_unlock_ramlist();
1465 void qemu_ram_free(ram_addr_t addr
)
1469 /* This assumes the iothread lock is taken here too. */
1470 qemu_mutex_lock_ramlist();
1471 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1472 if (addr
== block
->offset
) {
1473 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1474 ram_list
.mru_block
= NULL
;
1476 if (block
->flags
& RAM_PREALLOC
) {
1478 } else if (xen_enabled()) {
1479 xen_invalidate_map_cache_entry(block
->host
);
1481 } else if (block
->fd
>= 0) {
1482 munmap(block
->host
, block
->max_length
);
1486 qemu_anon_ram_free(block
->host
, block
->max_length
);
1492 qemu_mutex_unlock_ramlist();
1497 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1504 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1505 offset
= addr
- block
->offset
;
1506 if (offset
< block
->max_length
) {
1507 vaddr
= ramblock_ptr(block
, offset
);
1508 if (block
->flags
& RAM_PREALLOC
) {
1510 } else if (xen_enabled()) {
1514 munmap(vaddr
, length
);
1515 if (block
->fd
>= 0) {
1516 flags
|= (block
->flags
& RAM_SHARED
?
1517 MAP_SHARED
: MAP_PRIVATE
);
1518 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1519 flags
, block
->fd
, offset
);
1522 * Remap needs to match alloc. Accelerators that
1523 * set phys_mem_alloc never remap. If they did,
1524 * we'd need a remap hook here.
1526 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1528 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1529 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1532 if (area
!= vaddr
) {
1533 fprintf(stderr
, "Could not remap addr: "
1534 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1538 memory_try_enable_merging(vaddr
, length
);
1539 qemu_ram_setup_dump(vaddr
, length
);
1545 #endif /* !_WIN32 */
1547 int qemu_get_ram_fd(ram_addr_t addr
)
1549 RAMBlock
*block
= qemu_get_ram_block(addr
);
1554 void *qemu_get_ram_block_host_ptr(ram_addr_t addr
)
1556 RAMBlock
*block
= qemu_get_ram_block(addr
);
1558 return ramblock_ptr(block
, 0);
1561 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1562 With the exception of the softmmu code in this file, this should
1563 only be used for local memory (e.g. video ram) that the device owns,
1564 and knows it isn't going to access beyond the end of the block.
1566 It should not be used for general purpose DMA.
1567 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1569 void *qemu_get_ram_ptr(ram_addr_t addr
)
1571 RAMBlock
*block
= qemu_get_ram_block(addr
);
1573 if (xen_enabled()) {
1574 /* We need to check if the requested address is in the RAM
1575 * because we don't want to map the entire memory in QEMU.
1576 * In that case just map until the end of the page.
1578 if (block
->offset
== 0) {
1579 return xen_map_cache(addr
, 0, 0);
1580 } else if (block
->host
== NULL
) {
1582 xen_map_cache(block
->offset
, block
->max_length
, 1);
1585 return ramblock_ptr(block
, addr
- block
->offset
);
1588 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1589 * but takes a size argument */
1590 static void *qemu_ram_ptr_length(ram_addr_t addr
, hwaddr
*size
)
1595 if (xen_enabled()) {
1596 return xen_map_cache(addr
, *size
, 1);
1600 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1601 if (addr
- block
->offset
< block
->max_length
) {
1602 if (addr
- block
->offset
+ *size
> block
->max_length
)
1603 *size
= block
->max_length
- addr
+ block
->offset
;
1604 return ramblock_ptr(block
, addr
- block
->offset
);
1608 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1613 /* Some of the softmmu routines need to translate from a host pointer
1614 (typically a TLB entry) back to a ram offset. */
1615 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1618 uint8_t *host
= ptr
;
1620 if (xen_enabled()) {
1621 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1622 return qemu_get_ram_block(*ram_addr
)->mr
;
1625 block
= ram_list
.mru_block
;
1626 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
1630 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1631 /* This case append when the block is not mapped. */
1632 if (block
->host
== NULL
) {
1635 if (host
- block
->host
< block
->max_length
) {
1643 *ram_addr
= block
->offset
+ (host
- block
->host
);
1647 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1648 uint64_t val
, unsigned size
)
1650 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
1651 tb_invalidate_phys_page_fast(ram_addr
, size
);
1655 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1658 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1661 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
1666 cpu_physical_memory_set_dirty_range_nocode(ram_addr
, size
);
1667 /* we remove the notdirty callback only if the code has been
1669 if (!cpu_physical_memory_is_clean(ram_addr
)) {
1670 CPUArchState
*env
= current_cpu
->env_ptr
;
1671 tlb_set_dirty(env
, current_cpu
->mem_io_vaddr
);
1675 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
1676 unsigned size
, bool is_write
)
1681 static const MemoryRegionOps notdirty_mem_ops
= {
1682 .write
= notdirty_mem_write
,
1683 .valid
.accepts
= notdirty_mem_accepts
,
1684 .endianness
= DEVICE_NATIVE_ENDIAN
,
1687 /* Generate a debug exception if a watchpoint has been hit. */
1688 static void check_watchpoint(int offset
, int len
, int flags
)
1690 CPUState
*cpu
= current_cpu
;
1691 CPUArchState
*env
= cpu
->env_ptr
;
1692 target_ulong pc
, cs_base
;
1697 if (cpu
->watchpoint_hit
) {
1698 /* We re-entered the check after replacing the TB. Now raise
1699 * the debug interrupt so that is will trigger after the
1700 * current instruction. */
1701 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
1704 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
1705 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1706 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
1707 && (wp
->flags
& flags
)) {
1708 if (flags
== BP_MEM_READ
) {
1709 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
1711 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
1713 wp
->hitaddr
= vaddr
;
1714 if (!cpu
->watchpoint_hit
) {
1715 cpu
->watchpoint_hit
= wp
;
1716 tb_check_watchpoint(cpu
);
1717 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
1718 cpu
->exception_index
= EXCP_DEBUG
;
1721 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
1722 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
1723 cpu_resume_from_signal(cpu
, NULL
);
1727 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
1732 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1733 so these check for a hit then pass through to the normal out-of-line
1735 static uint64_t watch_mem_read(void *opaque
, hwaddr addr
,
1738 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, BP_MEM_READ
);
1740 case 1: return ldub_phys(&address_space_memory
, addr
);
1741 case 2: return lduw_phys(&address_space_memory
, addr
);
1742 case 4: return ldl_phys(&address_space_memory
, addr
);
1747 static void watch_mem_write(void *opaque
, hwaddr addr
,
1748 uint64_t val
, unsigned size
)
1750 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, BP_MEM_WRITE
);
1753 stb_phys(&address_space_memory
, addr
, val
);
1756 stw_phys(&address_space_memory
, addr
, val
);
1759 stl_phys(&address_space_memory
, addr
, val
);
1765 static const MemoryRegionOps watch_mem_ops
= {
1766 .read
= watch_mem_read
,
1767 .write
= watch_mem_write
,
1768 .endianness
= DEVICE_NATIVE_ENDIAN
,
1771 static uint64_t subpage_read(void *opaque
, hwaddr addr
,
1774 subpage_t
*subpage
= opaque
;
1777 #if defined(DEBUG_SUBPAGE)
1778 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
1779 subpage
, len
, addr
);
1781 address_space_read(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1794 static void subpage_write(void *opaque
, hwaddr addr
,
1795 uint64_t value
, unsigned len
)
1797 subpage_t
*subpage
= opaque
;
1800 #if defined(DEBUG_SUBPAGE)
1801 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
1802 " value %"PRIx64
"\n",
1803 __func__
, subpage
, len
, addr
, value
);
1818 address_space_write(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1821 static bool subpage_accepts(void *opaque
, hwaddr addr
,
1822 unsigned len
, bool is_write
)
1824 subpage_t
*subpage
= opaque
;
1825 #if defined(DEBUG_SUBPAGE)
1826 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
1827 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
1830 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
1834 static const MemoryRegionOps subpage_ops
= {
1835 .read
= subpage_read
,
1836 .write
= subpage_write
,
1837 .valid
.accepts
= subpage_accepts
,
1838 .endianness
= DEVICE_NATIVE_ENDIAN
,
1841 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1846 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
1848 idx
= SUBPAGE_IDX(start
);
1849 eidx
= SUBPAGE_IDX(end
);
1850 #if defined(DEBUG_SUBPAGE)
1851 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1852 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
1854 for (; idx
<= eidx
; idx
++) {
1855 mmio
->sub_section
[idx
] = section
;
1861 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
1865 mmio
= g_malloc0(sizeof(subpage_t
));
1869 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
1870 NULL
, TARGET_PAGE_SIZE
);
1871 mmio
->iomem
.subpage
= true;
1872 #if defined(DEBUG_SUBPAGE)
1873 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
1874 mmio
, base
, TARGET_PAGE_SIZE
);
1876 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
1881 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
1885 MemoryRegionSection section
= {
1886 .address_space
= as
,
1888 .offset_within_address_space
= 0,
1889 .offset_within_region
= 0,
1890 .size
= int128_2_64(),
1893 return phys_section_add(map
, §ion
);
1896 MemoryRegion
*iotlb_to_region(AddressSpace
*as
, hwaddr index
)
1898 return as
->dispatch
->map
.sections
[index
& ~TARGET_PAGE_MASK
].mr
;
1901 static void io_mem_init(void)
1903 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
1904 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
1906 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
1908 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
1912 static void mem_begin(MemoryListener
*listener
)
1914 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1915 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
1918 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
1919 assert(n
== PHYS_SECTION_UNASSIGNED
);
1920 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
1921 assert(n
== PHYS_SECTION_NOTDIRTY
);
1922 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
1923 assert(n
== PHYS_SECTION_ROM
);
1924 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
1925 assert(n
== PHYS_SECTION_WATCH
);
1927 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
1929 as
->next_dispatch
= d
;
1932 static void mem_commit(MemoryListener
*listener
)
1934 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1935 AddressSpaceDispatch
*cur
= as
->dispatch
;
1936 AddressSpaceDispatch
*next
= as
->next_dispatch
;
1938 phys_page_compact_all(next
, next
->map
.nodes_nb
);
1940 as
->dispatch
= next
;
1943 phys_sections_free(&cur
->map
);
1948 static void tcg_commit(MemoryListener
*listener
)
1952 /* since each CPU stores ram addresses in its TLB cache, we must
1953 reset the modified entries */
1956 /* FIXME: Disentangle the cpu.h circular files deps so we can
1957 directly get the right CPU from listener. */
1958 if (cpu
->tcg_as_listener
!= listener
) {
1965 static void core_log_global_start(MemoryListener
*listener
)
1967 cpu_physical_memory_set_dirty_tracking(true);
1970 static void core_log_global_stop(MemoryListener
*listener
)
1972 cpu_physical_memory_set_dirty_tracking(false);
1975 static MemoryListener core_memory_listener
= {
1976 .log_global_start
= core_log_global_start
,
1977 .log_global_stop
= core_log_global_stop
,
1981 void address_space_init_dispatch(AddressSpace
*as
)
1983 as
->dispatch
= NULL
;
1984 as
->dispatch_listener
= (MemoryListener
) {
1986 .commit
= mem_commit
,
1987 .region_add
= mem_add
,
1988 .region_nop
= mem_add
,
1991 memory_listener_register(&as
->dispatch_listener
, as
);
1994 void address_space_destroy_dispatch(AddressSpace
*as
)
1996 AddressSpaceDispatch
*d
= as
->dispatch
;
1998 memory_listener_unregister(&as
->dispatch_listener
);
2000 as
->dispatch
= NULL
;
2003 static void memory_map_init(void)
2005 system_memory
= g_malloc(sizeof(*system_memory
));
2007 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2008 address_space_init(&address_space_memory
, system_memory
, "memory");
2010 system_io
= g_malloc(sizeof(*system_io
));
2011 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2013 address_space_init(&address_space_io
, system_io
, "I/O");
2015 memory_listener_register(&core_memory_listener
, &address_space_memory
);
2018 MemoryRegion
*get_system_memory(void)
2020 return system_memory
;
2023 MemoryRegion
*get_system_io(void)
2028 #endif /* !defined(CONFIG_USER_ONLY) */
2030 /* physical memory access (slow version, mainly for debug) */
2031 #if defined(CONFIG_USER_ONLY)
2032 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2033 uint8_t *buf
, int len
, int is_write
)
2040 page
= addr
& TARGET_PAGE_MASK
;
2041 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2044 flags
= page_get_flags(page
);
2045 if (!(flags
& PAGE_VALID
))
2048 if (!(flags
& PAGE_WRITE
))
2050 /* XXX: this code should not depend on lock_user */
2051 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2054 unlock_user(p
, addr
, l
);
2056 if (!(flags
& PAGE_READ
))
2058 /* XXX: this code should not depend on lock_user */
2059 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2062 unlock_user(p
, addr
, 0);
2073 static void invalidate_and_set_dirty(hwaddr addr
,
2076 if (cpu_physical_memory_range_includes_clean(addr
, length
)) {
2077 tb_invalidate_phys_range(addr
, addr
+ length
, 0);
2078 cpu_physical_memory_set_dirty_range_nocode(addr
, length
);
2080 xen_modified_memory(addr
, length
);
2083 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2085 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2087 /* Regions are assumed to support 1-4 byte accesses unless
2088 otherwise specified. */
2089 if (access_size_max
== 0) {
2090 access_size_max
= 4;
2093 /* Bound the maximum access by the alignment of the address. */
2094 if (!mr
->ops
->impl
.unaligned
) {
2095 unsigned align_size_max
= addr
& -addr
;
2096 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2097 access_size_max
= align_size_max
;
2101 /* Don't attempt accesses larger than the maximum. */
2102 if (l
> access_size_max
) {
2103 l
= access_size_max
;
2106 l
= 1 << (qemu_fls(l
) - 1);
2112 bool address_space_rw(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
,
2113 int len
, bool is_write
)
2124 mr
= address_space_translate(as
, addr
, &addr1
, &l
, is_write
);
2127 if (!memory_access_is_direct(mr
, is_write
)) {
2128 l
= memory_access_size(mr
, l
, addr1
);
2129 /* XXX: could force current_cpu to NULL to avoid
2133 /* 64 bit write access */
2135 error
|= io_mem_write(mr
, addr1
, val
, 8);
2138 /* 32 bit write access */
2140 error
|= io_mem_write(mr
, addr1
, val
, 4);
2143 /* 16 bit write access */
2145 error
|= io_mem_write(mr
, addr1
, val
, 2);
2148 /* 8 bit write access */
2150 error
|= io_mem_write(mr
, addr1
, val
, 1);
2156 addr1
+= memory_region_get_ram_addr(mr
);
2158 ptr
= qemu_get_ram_ptr(addr1
);
2159 memcpy(ptr
, buf
, l
);
2160 invalidate_and_set_dirty(addr1
, l
);
2163 if (!memory_access_is_direct(mr
, is_write
)) {
2165 l
= memory_access_size(mr
, l
, addr1
);
2168 /* 64 bit read access */
2169 error
|= io_mem_read(mr
, addr1
, &val
, 8);
2173 /* 32 bit read access */
2174 error
|= io_mem_read(mr
, addr1
, &val
, 4);
2178 /* 16 bit read access */
2179 error
|= io_mem_read(mr
, addr1
, &val
, 2);
2183 /* 8 bit read access */
2184 error
|= io_mem_read(mr
, addr1
, &val
, 1);
2192 ptr
= qemu_get_ram_ptr(mr
->ram_addr
+ addr1
);
2193 memcpy(buf
, ptr
, l
);
2204 bool address_space_write(AddressSpace
*as
, hwaddr addr
,
2205 const uint8_t *buf
, int len
)
2207 return address_space_rw(as
, addr
, (uint8_t *)buf
, len
, true);
2210 bool address_space_read(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
, int len
)
2212 return address_space_rw(as
, addr
, buf
, len
, false);
2216 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2217 int len
, int is_write
)
2219 address_space_rw(&address_space_memory
, addr
, buf
, len
, is_write
);
2222 enum write_rom_type
{
2227 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2228 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2237 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2239 if (!(memory_region_is_ram(mr
) ||
2240 memory_region_is_romd(mr
))) {
2243 addr1
+= memory_region_get_ram_addr(mr
);
2245 ptr
= qemu_get_ram_ptr(addr1
);
2248 memcpy(ptr
, buf
, l
);
2249 invalidate_and_set_dirty(addr1
, l
);
2252 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2262 /* used for ROM loading : can write in RAM and ROM */
2263 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2264 const uint8_t *buf
, int len
)
2266 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2269 void cpu_flush_icache_range(hwaddr start
, int len
)
2272 * This function should do the same thing as an icache flush that was
2273 * triggered from within the guest. For TCG we are always cache coherent,
2274 * so there is no need to flush anything. For KVM / Xen we need to flush
2275 * the host's instruction cache at least.
2277 if (tcg_enabled()) {
2281 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2282 start
, NULL
, len
, FLUSH_CACHE
);
2292 static BounceBuffer bounce
;
2294 typedef struct MapClient
{
2296 void (*callback
)(void *opaque
);
2297 QLIST_ENTRY(MapClient
) link
;
2300 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2301 = QLIST_HEAD_INITIALIZER(map_client_list
);
2303 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
2305 MapClient
*client
= g_malloc(sizeof(*client
));
2307 client
->opaque
= opaque
;
2308 client
->callback
= callback
;
2309 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2313 static void cpu_unregister_map_client(void *_client
)
2315 MapClient
*client
= (MapClient
*)_client
;
2317 QLIST_REMOVE(client
, link
);
2321 static void cpu_notify_map_clients(void)
2325 while (!QLIST_EMPTY(&map_client_list
)) {
2326 client
= QLIST_FIRST(&map_client_list
);
2327 client
->callback(client
->opaque
);
2328 cpu_unregister_map_client(client
);
2332 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2339 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2340 if (!memory_access_is_direct(mr
, is_write
)) {
2341 l
= memory_access_size(mr
, l
, addr
);
2342 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2353 /* Map a physical memory region into a host virtual address.
2354 * May map a subset of the requested range, given by and returned in *plen.
2355 * May return NULL if resources needed to perform the mapping are exhausted.
2356 * Use only for reads OR writes - not for read-modify-write operations.
2357 * Use cpu_register_map_client() to know when retrying the map operation is
2358 * likely to succeed.
2360 void *address_space_map(AddressSpace
*as
,
2367 hwaddr l
, xlat
, base
;
2368 MemoryRegion
*mr
, *this_mr
;
2376 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2377 if (!memory_access_is_direct(mr
, is_write
)) {
2378 if (bounce
.buffer
) {
2381 /* Avoid unbounded allocations */
2382 l
= MIN(l
, TARGET_PAGE_SIZE
);
2383 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2387 memory_region_ref(mr
);
2390 address_space_read(as
, addr
, bounce
.buffer
, l
);
2394 return bounce
.buffer
;
2398 raddr
= memory_region_get_ram_addr(mr
);
2409 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2410 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2415 memory_region_ref(mr
);
2417 return qemu_ram_ptr_length(raddr
+ base
, plen
);
2420 /* Unmaps a memory region previously mapped by address_space_map().
2421 * Will also mark the memory as dirty if is_write == 1. access_len gives
2422 * the amount of memory that was actually read or written by the caller.
2424 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2425 int is_write
, hwaddr access_len
)
2427 if (buffer
!= bounce
.buffer
) {
2431 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
2434 invalidate_and_set_dirty(addr1
, access_len
);
2436 if (xen_enabled()) {
2437 xen_invalidate_map_cache_entry(buffer
);
2439 memory_region_unref(mr
);
2443 address_space_write(as
, bounce
.addr
, bounce
.buffer
, access_len
);
2445 qemu_vfree(bounce
.buffer
);
2446 bounce
.buffer
= NULL
;
2447 memory_region_unref(bounce
.mr
);
2448 cpu_notify_map_clients();
2451 void *cpu_physical_memory_map(hwaddr addr
,
2455 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2458 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2459 int is_write
, hwaddr access_len
)
2461 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2464 /* warning: addr must be aligned */
2465 static inline uint32_t ldl_phys_internal(AddressSpace
*as
, hwaddr addr
,
2466 enum device_endian endian
)
2474 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2475 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
2477 io_mem_read(mr
, addr1
, &val
, 4);
2478 #if defined(TARGET_WORDS_BIGENDIAN)
2479 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2483 if (endian
== DEVICE_BIG_ENDIAN
) {
2489 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2493 case DEVICE_LITTLE_ENDIAN
:
2494 val
= ldl_le_p(ptr
);
2496 case DEVICE_BIG_ENDIAN
:
2497 val
= ldl_be_p(ptr
);
2507 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
2509 return ldl_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2512 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
2514 return ldl_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2517 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
2519 return ldl_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2522 /* warning: addr must be aligned */
2523 static inline uint64_t ldq_phys_internal(AddressSpace
*as
, hwaddr addr
,
2524 enum device_endian endian
)
2532 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2534 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
2536 io_mem_read(mr
, addr1
, &val
, 8);
2537 #if defined(TARGET_WORDS_BIGENDIAN)
2538 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2542 if (endian
== DEVICE_BIG_ENDIAN
) {
2548 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2552 case DEVICE_LITTLE_ENDIAN
:
2553 val
= ldq_le_p(ptr
);
2555 case DEVICE_BIG_ENDIAN
:
2556 val
= ldq_be_p(ptr
);
2566 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
2568 return ldq_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2571 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
2573 return ldq_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2576 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
2578 return ldq_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2582 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
2585 address_space_rw(as
, addr
, &val
, 1, 0);
2589 /* warning: addr must be aligned */
2590 static inline uint32_t lduw_phys_internal(AddressSpace
*as
, hwaddr addr
,
2591 enum device_endian endian
)
2599 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2601 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
2603 io_mem_read(mr
, addr1
, &val
, 2);
2604 #if defined(TARGET_WORDS_BIGENDIAN)
2605 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2609 if (endian
== DEVICE_BIG_ENDIAN
) {
2615 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2619 case DEVICE_LITTLE_ENDIAN
:
2620 val
= lduw_le_p(ptr
);
2622 case DEVICE_BIG_ENDIAN
:
2623 val
= lduw_be_p(ptr
);
2633 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
2635 return lduw_phys_internal(as
, addr
, DEVICE_NATIVE_ENDIAN
);
2638 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
2640 return lduw_phys_internal(as
, addr
, DEVICE_LITTLE_ENDIAN
);
2643 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
2645 return lduw_phys_internal(as
, addr
, DEVICE_BIG_ENDIAN
);
2648 /* warning: addr must be aligned. The ram page is not masked as dirty
2649 and the code inside is not invalidated. It is useful if the dirty
2650 bits are used to track modified PTEs */
2651 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2658 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2660 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2661 io_mem_write(mr
, addr1
, val
, 4);
2663 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2664 ptr
= qemu_get_ram_ptr(addr1
);
2667 if (unlikely(in_migration
)) {
2668 if (cpu_physical_memory_is_clean(addr1
)) {
2669 /* invalidate code */
2670 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
2672 cpu_physical_memory_set_dirty_range_nocode(addr1
, 4);
2678 /* warning: addr must be aligned */
2679 static inline void stl_phys_internal(AddressSpace
*as
,
2680 hwaddr addr
, uint32_t val
,
2681 enum device_endian endian
)
2688 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
2690 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2691 #if defined(TARGET_WORDS_BIGENDIAN)
2692 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2696 if (endian
== DEVICE_BIG_ENDIAN
) {
2700 io_mem_write(mr
, addr1
, val
, 4);
2703 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2704 ptr
= qemu_get_ram_ptr(addr1
);
2706 case DEVICE_LITTLE_ENDIAN
:
2709 case DEVICE_BIG_ENDIAN
:
2716 invalidate_and_set_dirty(addr1
, 4);
2720 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2722 stl_phys_internal(as
, addr
, val
, DEVICE_NATIVE_ENDIAN
);
2725 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2727 stl_phys_internal(as
, addr
, val
, DEVICE_LITTLE_ENDIAN
);
2730 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2732 stl_phys_internal(as
, addr
, val
, DEVICE_BIG_ENDIAN
);
2736 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2739 address_space_rw(as
, addr
, &v
, 1, 1);
2742 /* warning: addr must be aligned */
2743 static inline void stw_phys_internal(AddressSpace
*as
,
2744 hwaddr addr
, uint32_t val
,
2745 enum device_endian endian
)
2752 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2753 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
2754 #if defined(TARGET_WORDS_BIGENDIAN)
2755 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2759 if (endian
== DEVICE_BIG_ENDIAN
) {
2763 io_mem_write(mr
, addr1
, val
, 2);
2766 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2767 ptr
= qemu_get_ram_ptr(addr1
);
2769 case DEVICE_LITTLE_ENDIAN
:
2772 case DEVICE_BIG_ENDIAN
:
2779 invalidate_and_set_dirty(addr1
, 2);
2783 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2785 stw_phys_internal(as
, addr
, val
, DEVICE_NATIVE_ENDIAN
);
2788 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2790 stw_phys_internal(as
, addr
, val
, DEVICE_LITTLE_ENDIAN
);
2793 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
2795 stw_phys_internal(as
, addr
, val
, DEVICE_BIG_ENDIAN
);
2799 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2802 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2805 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2807 val
= cpu_to_le64(val
);
2808 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2811 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
2813 val
= cpu_to_be64(val
);
2814 address_space_rw(as
, addr
, (void *) &val
, 8, 1);
2817 /* virtual memory access for debug (includes writing to ROM) */
2818 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2819 uint8_t *buf
, int len
, int is_write
)
2826 page
= addr
& TARGET_PAGE_MASK
;
2827 phys_addr
= cpu_get_phys_page_debug(cpu
, page
);
2828 /* if no physical page mapped, return an error */
2829 if (phys_addr
== -1)
2831 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2834 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
2836 cpu_physical_memory_write_rom(cpu
->as
, phys_addr
, buf
, l
);
2838 address_space_rw(cpu
->as
, phys_addr
, buf
, l
, 0);
2849 * A helper function for the _utterly broken_ virtio device model to find out if
2850 * it's running on a big endian machine. Don't do this at home kids!
2852 bool target_words_bigendian(void);
2853 bool target_words_bigendian(void)
2855 #if defined(TARGET_WORDS_BIGENDIAN)
2862 #ifndef CONFIG_USER_ONLY
2863 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
2868 mr
= address_space_translate(&address_space_memory
,
2869 phys_addr
, &phys_addr
, &l
, false);
2871 return !(memory_region_is_ram(mr
) ||
2872 memory_region_is_romd(mr
));
2875 void qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
2879 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
2880 func(block
->host
, block
->offset
, block
->used_length
, opaque
);