2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
30 #include "hw/sysbus.h"
31 #include "hw/pci/pci.h"
32 #include "hw/pci/msi.h"
33 #include "hw/pci/msix.h"
34 #include "hw/pci/pci_host.h"
35 #include "hw/ppc/spapr.h"
36 #include "hw/pci-host/spapr.h"
37 #include "exec/address-spaces.h"
38 #include "exec/ram_addr.h"
41 #include "qemu/error-report.h"
42 #include "qapi/qmp/qerror.h"
44 #include "hw/pci/pci_bridge.h"
45 #include "hw/pci/pci_bus.h"
46 #include "hw/ppc/spapr_drc.h"
47 #include "sysemu/device_tree.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/hostmem.h"
51 #include "hw/vfio/vfio.h"
53 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
54 #define RTAS_QUERY_FN 0
55 #define RTAS_CHANGE_FN 1
56 #define RTAS_RESET_FN 2
57 #define RTAS_CHANGE_MSI_FN 3
58 #define RTAS_CHANGE_MSIX_FN 4
60 /* Interrupt types to return on RTAS_CHANGE_* */
61 #define RTAS_TYPE_MSI 1
62 #define RTAS_TYPE_MSIX 2
64 #define FDT_NAME_MAX 128
74 sPAPRPHBState
*spapr_pci_find_phb(sPAPRMachineState
*spapr
, uint64_t buid
)
78 QLIST_FOREACH(sphb
, &spapr
->phbs
, list
) {
79 if (sphb
->buid
!= buid
) {
88 PCIDevice
*spapr_pci_find_dev(sPAPRMachineState
*spapr
, uint64_t buid
,
91 sPAPRPHBState
*sphb
= spapr_pci_find_phb(spapr
, buid
);
92 PCIHostState
*phb
= PCI_HOST_BRIDGE(sphb
);
93 int bus_num
= (config_addr
>> 16) & 0xFF;
94 int devfn
= (config_addr
>> 8) & 0xFF;
100 return pci_find_device(phb
->bus
, bus_num
, devfn
);
103 static uint32_t rtas_pci_cfgaddr(uint32_t arg
)
105 /* This handles the encoding of extended config space addresses */
106 return ((arg
>> 20) & 0xf00) | (arg
& 0xff);
109 static void finish_read_pci_config(sPAPRMachineState
*spapr
, uint64_t buid
,
110 uint32_t addr
, uint32_t size
,
116 if ((size
!= 1) && (size
!= 2) && (size
!= 4)) {
117 /* access must be 1, 2 or 4 bytes */
118 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
122 pci_dev
= spapr_pci_find_dev(spapr
, buid
, addr
);
123 addr
= rtas_pci_cfgaddr(addr
);
125 if (!pci_dev
|| (addr
% size
) || (addr
>= pci_config_size(pci_dev
))) {
126 /* Access must be to a valid device, within bounds and
127 * naturally aligned */
128 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
132 val
= pci_host_config_read_common(pci_dev
, addr
,
133 pci_config_size(pci_dev
), size
);
135 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
136 rtas_st(rets
, 1, val
);
139 static void rtas_ibm_read_pci_config(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
140 uint32_t token
, uint32_t nargs
,
142 uint32_t nret
, target_ulong rets
)
147 if ((nargs
!= 4) || (nret
!= 2)) {
148 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
152 buid
= rtas_ldq(args
, 1);
153 size
= rtas_ld(args
, 3);
154 addr
= rtas_ld(args
, 0);
156 finish_read_pci_config(spapr
, buid
, addr
, size
, rets
);
159 static void rtas_read_pci_config(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
160 uint32_t token
, uint32_t nargs
,
162 uint32_t nret
, target_ulong rets
)
166 if ((nargs
!= 2) || (nret
!= 2)) {
167 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
171 size
= rtas_ld(args
, 1);
172 addr
= rtas_ld(args
, 0);
174 finish_read_pci_config(spapr
, 0, addr
, size
, rets
);
177 static void finish_write_pci_config(sPAPRMachineState
*spapr
, uint64_t buid
,
178 uint32_t addr
, uint32_t size
,
179 uint32_t val
, target_ulong rets
)
183 if ((size
!= 1) && (size
!= 2) && (size
!= 4)) {
184 /* access must be 1, 2 or 4 bytes */
185 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
189 pci_dev
= spapr_pci_find_dev(spapr
, buid
, addr
);
190 addr
= rtas_pci_cfgaddr(addr
);
192 if (!pci_dev
|| (addr
% size
) || (addr
>= pci_config_size(pci_dev
))) {
193 /* Access must be to a valid device, within bounds and
194 * naturally aligned */
195 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
199 pci_host_config_write_common(pci_dev
, addr
, pci_config_size(pci_dev
),
202 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
205 static void rtas_ibm_write_pci_config(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
206 uint32_t token
, uint32_t nargs
,
208 uint32_t nret
, target_ulong rets
)
211 uint32_t val
, size
, addr
;
213 if ((nargs
!= 5) || (nret
!= 1)) {
214 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
218 buid
= rtas_ldq(args
, 1);
219 val
= rtas_ld(args
, 4);
220 size
= rtas_ld(args
, 3);
221 addr
= rtas_ld(args
, 0);
223 finish_write_pci_config(spapr
, buid
, addr
, size
, val
, rets
);
226 static void rtas_write_pci_config(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
227 uint32_t token
, uint32_t nargs
,
229 uint32_t nret
, target_ulong rets
)
231 uint32_t val
, size
, addr
;
233 if ((nargs
!= 3) || (nret
!= 1)) {
234 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
239 val
= rtas_ld(args
, 2);
240 size
= rtas_ld(args
, 1);
241 addr
= rtas_ld(args
, 0);
243 finish_write_pci_config(spapr
, 0, addr
, size
, val
, rets
);
247 * Set MSI/MSIX message data.
248 * This is required for msi_notify()/msix_notify() which
249 * will write at the addresses via spapr_msi_write().
251 * If hwaddr == 0, all entries will have .data == first_irq i.e.
252 * table will be reset.
254 static void spapr_msi_setmsg(PCIDevice
*pdev
, hwaddr addr
, bool msix
,
255 unsigned first_irq
, unsigned req_num
)
258 MSIMessage msg
= { .address
= addr
, .data
= first_irq
};
261 msi_set_message(pdev
, msg
);
262 trace_spapr_pci_msi_setup(pdev
->name
, 0, msg
.address
);
266 for (i
= 0; i
< req_num
; ++i
) {
267 msix_set_message(pdev
, i
, msg
);
268 trace_spapr_pci_msi_setup(pdev
->name
, i
, msg
.address
);
275 static void rtas_ibm_change_msi(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
276 uint32_t token
, uint32_t nargs
,
277 target_ulong args
, uint32_t nret
,
280 uint32_t config_addr
= rtas_ld(args
, 0);
281 uint64_t buid
= rtas_ldq(args
, 1);
282 unsigned int func
= rtas_ld(args
, 3);
283 unsigned int req_num
= rtas_ld(args
, 4); /* 0 == remove all */
284 unsigned int seq_num
= rtas_ld(args
, 5);
285 unsigned int ret_intr_type
;
286 unsigned int irq
, max_irqs
= 0;
287 sPAPRPHBState
*phb
= NULL
;
288 PCIDevice
*pdev
= NULL
;
290 int *config_addr_key
;
294 case RTAS_CHANGE_MSI_FN
:
296 ret_intr_type
= RTAS_TYPE_MSI
;
298 case RTAS_CHANGE_MSIX_FN
:
299 ret_intr_type
= RTAS_TYPE_MSIX
;
302 error_report("rtas_ibm_change_msi(%u) is not implemented", func
);
303 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
307 /* Fins sPAPRPHBState */
308 phb
= spapr_pci_find_phb(spapr
, buid
);
310 pdev
= spapr_pci_find_dev(spapr
, buid
, config_addr
);
313 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
317 msi
= (spapr_pci_msi
*) g_hash_table_lookup(phb
->msi
, &config_addr
);
322 trace_spapr_pci_msi("Releasing wrong config", config_addr
);
323 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
327 xics_spapr_free(spapr
->xics
, msi
->first_irq
, msi
->num
);
328 if (msi_present(pdev
)) {
329 spapr_msi_setmsg(pdev
, 0, false, 0, 0);
331 if (msix_present(pdev
)) {
332 spapr_msi_setmsg(pdev
, 0, true, 0, 0);
334 g_hash_table_remove(phb
->msi
, &config_addr
);
336 trace_spapr_pci_msi("Released MSIs", config_addr
);
337 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
344 /* Check if the device supports as many IRQs as requested */
345 if (ret_intr_type
== RTAS_TYPE_MSI
) {
346 max_irqs
= msi_nr_vectors_allocated(pdev
);
347 } else if (ret_intr_type
== RTAS_TYPE_MSIX
) {
348 max_irqs
= pdev
->msix_entries_nr
;
351 error_report("Requested interrupt type %d is not enabled for device %x",
352 ret_intr_type
, config_addr
);
353 rtas_st(rets
, 0, -1); /* Hardware error */
356 /* Correct the number if the guest asked for too many */
357 if (req_num
> max_irqs
) {
358 trace_spapr_pci_msi_retry(config_addr
, req_num
, max_irqs
);
360 irq
= 0; /* to avoid misleading trace */
365 irq
= xics_spapr_alloc_block(spapr
->xics
, 0, req_num
, false,
366 ret_intr_type
== RTAS_TYPE_MSI
, &err
);
368 error_reportf_err(err
, "Can't allocate MSIs for device %x: ",
370 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
374 /* Release previous MSIs */
376 xics_spapr_free(spapr
->xics
, msi
->first_irq
, msi
->num
);
377 g_hash_table_remove(phb
->msi
, &config_addr
);
380 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
381 spapr_msi_setmsg(pdev
, SPAPR_PCI_MSI_WINDOW
, ret_intr_type
== RTAS_TYPE_MSIX
,
384 /* Add MSI device to cache */
385 msi
= g_new(spapr_pci_msi
, 1);
386 msi
->first_irq
= irq
;
388 config_addr_key
= g_new(int, 1);
389 *config_addr_key
= config_addr
;
390 g_hash_table_insert(phb
->msi
, config_addr_key
, msi
);
393 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
394 rtas_st(rets
, 1, req_num
);
395 rtas_st(rets
, 2, ++seq_num
);
397 rtas_st(rets
, 3, ret_intr_type
);
400 trace_spapr_pci_rtas_ibm_change_msi(config_addr
, func
, req_num
, irq
);
403 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU
*cpu
,
404 sPAPRMachineState
*spapr
,
411 uint32_t config_addr
= rtas_ld(args
, 0);
412 uint64_t buid
= rtas_ldq(args
, 1);
413 unsigned int intr_src_num
= -1, ioa_intr_num
= rtas_ld(args
, 3);
414 sPAPRPHBState
*phb
= NULL
;
415 PCIDevice
*pdev
= NULL
;
418 /* Find sPAPRPHBState */
419 phb
= spapr_pci_find_phb(spapr
, buid
);
421 pdev
= spapr_pci_find_dev(spapr
, buid
, config_addr
);
424 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
428 /* Find device descriptor and start IRQ */
429 msi
= (spapr_pci_msi
*) g_hash_table_lookup(phb
->msi
, &config_addr
);
430 if (!msi
|| !msi
->first_irq
|| !msi
->num
|| (ioa_intr_num
>= msi
->num
)) {
431 trace_spapr_pci_msi("Failed to return vector", config_addr
);
432 rtas_st(rets
, 0, RTAS_OUT_HW_ERROR
);
435 intr_src_num
= msi
->first_irq
+ ioa_intr_num
;
436 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num
,
439 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
440 rtas_st(rets
, 1, intr_src_num
);
441 rtas_st(rets
, 2, 1);/* 0 == level; 1 == edge */
444 static void rtas_ibm_set_eeh_option(PowerPCCPU
*cpu
,
445 sPAPRMachineState
*spapr
,
446 uint32_t token
, uint32_t nargs
,
447 target_ulong args
, uint32_t nret
,
451 uint32_t addr
, option
;
455 if ((nargs
!= 4) || (nret
!= 1)) {
456 goto param_error_exit
;
459 buid
= rtas_ldq(args
, 1);
460 addr
= rtas_ld(args
, 0);
461 option
= rtas_ld(args
, 3);
463 sphb
= spapr_pci_find_phb(spapr
, buid
);
465 goto param_error_exit
;
468 if (!spapr_phb_eeh_available(sphb
)) {
469 goto param_error_exit
;
472 ret
= spapr_phb_vfio_eeh_set_option(sphb
, addr
, option
);
473 rtas_st(rets
, 0, ret
);
477 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
480 static void rtas_ibm_get_config_addr_info2(PowerPCCPU
*cpu
,
481 sPAPRMachineState
*spapr
,
482 uint32_t token
, uint32_t nargs
,
483 target_ulong args
, uint32_t nret
,
488 uint32_t addr
, option
;
491 if ((nargs
!= 4) || (nret
!= 2)) {
492 goto param_error_exit
;
495 buid
= rtas_ldq(args
, 1);
496 sphb
= spapr_pci_find_phb(spapr
, buid
);
498 goto param_error_exit
;
501 if (!spapr_phb_eeh_available(sphb
)) {
502 goto param_error_exit
;
506 * We always have PE address of form "00BB0001". "BB"
507 * represents the bus number of PE's primary bus.
509 option
= rtas_ld(args
, 3);
511 case RTAS_GET_PE_ADDR
:
512 addr
= rtas_ld(args
, 0);
513 pdev
= spapr_pci_find_dev(spapr
, buid
, addr
);
515 goto param_error_exit
;
518 rtas_st(rets
, 1, (pci_bus_num(pdev
->bus
) << 16) + 1);
520 case RTAS_GET_PE_MODE
:
521 rtas_st(rets
, 1, RTAS_PE_MODE_SHARED
);
524 goto param_error_exit
;
527 rtas_st(rets
, 0, RTAS_OUT_SUCCESS
);
531 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
534 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU
*cpu
,
535 sPAPRMachineState
*spapr
,
536 uint32_t token
, uint32_t nargs
,
537 target_ulong args
, uint32_t nret
,
544 if ((nargs
!= 3) || (nret
!= 4 && nret
!= 5)) {
545 goto param_error_exit
;
548 buid
= rtas_ldq(args
, 1);
549 sphb
= spapr_pci_find_phb(spapr
, buid
);
551 goto param_error_exit
;
554 if (!spapr_phb_eeh_available(sphb
)) {
555 goto param_error_exit
;
558 ret
= spapr_phb_vfio_eeh_get_state(sphb
, &state
);
559 rtas_st(rets
, 0, ret
);
560 if (ret
!= RTAS_OUT_SUCCESS
) {
564 rtas_st(rets
, 1, state
);
565 rtas_st(rets
, 2, RTAS_EEH_SUPPORT
);
566 rtas_st(rets
, 3, RTAS_EEH_PE_UNAVAIL_INFO
);
568 rtas_st(rets
, 4, RTAS_EEH_PE_RECOVER_INFO
);
573 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
576 static void rtas_ibm_set_slot_reset(PowerPCCPU
*cpu
,
577 sPAPRMachineState
*spapr
,
578 uint32_t token
, uint32_t nargs
,
579 target_ulong args
, uint32_t nret
,
587 if ((nargs
!= 4) || (nret
!= 1)) {
588 goto param_error_exit
;
591 buid
= rtas_ldq(args
, 1);
592 option
= rtas_ld(args
, 3);
593 sphb
= spapr_pci_find_phb(spapr
, buid
);
595 goto param_error_exit
;
598 if (!spapr_phb_eeh_available(sphb
)) {
599 goto param_error_exit
;
602 ret
= spapr_phb_vfio_eeh_reset(sphb
, option
);
603 rtas_st(rets
, 0, ret
);
607 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
610 static void rtas_ibm_configure_pe(PowerPCCPU
*cpu
,
611 sPAPRMachineState
*spapr
,
612 uint32_t token
, uint32_t nargs
,
613 target_ulong args
, uint32_t nret
,
620 if ((nargs
!= 3) || (nret
!= 1)) {
621 goto param_error_exit
;
624 buid
= rtas_ldq(args
, 1);
625 sphb
= spapr_pci_find_phb(spapr
, buid
);
627 goto param_error_exit
;
630 if (!spapr_phb_eeh_available(sphb
)) {
631 goto param_error_exit
;
634 ret
= spapr_phb_vfio_eeh_configure(sphb
);
635 rtas_st(rets
, 0, ret
);
639 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
642 /* To support it later */
643 static void rtas_ibm_slot_error_detail(PowerPCCPU
*cpu
,
644 sPAPRMachineState
*spapr
,
645 uint32_t token
, uint32_t nargs
,
646 target_ulong args
, uint32_t nret
,
653 if ((nargs
!= 8) || (nret
!= 1)) {
654 goto param_error_exit
;
657 buid
= rtas_ldq(args
, 1);
658 sphb
= spapr_pci_find_phb(spapr
, buid
);
660 goto param_error_exit
;
663 if (!spapr_phb_eeh_available(sphb
)) {
664 goto param_error_exit
;
667 option
= rtas_ld(args
, 7);
669 case RTAS_SLOT_TEMP_ERR_LOG
:
670 case RTAS_SLOT_PERM_ERR_LOG
:
673 goto param_error_exit
;
676 /* We don't have error log yet */
677 rtas_st(rets
, 0, RTAS_OUT_NO_ERRORS_FOUND
);
681 rtas_st(rets
, 0, RTAS_OUT_PARAM_ERROR
);
684 static int pci_spapr_swizzle(int slot
, int pin
)
686 return (slot
+ pin
) % PCI_NUM_PINS
;
689 static int pci_spapr_map_irq(PCIDevice
*pci_dev
, int irq_num
)
692 * Here we need to convert pci_dev + irq_num to some unique value
693 * which is less than number of IRQs on the specific bus (4). We
694 * use standard PCI swizzling, that is (slot number + pin number)
697 return pci_spapr_swizzle(PCI_SLOT(pci_dev
->devfn
), irq_num
);
700 static void pci_spapr_set_irq(void *opaque
, int irq_num
, int level
)
703 * Here we use the number returned by pci_spapr_map_irq to find a
704 * corresponding qemu_irq.
706 sPAPRPHBState
*phb
= opaque
;
708 trace_spapr_pci_lsi_set(phb
->dtbusname
, irq_num
, phb
->lsi_table
[irq_num
].irq
);
709 qemu_set_irq(spapr_phb_lsi_qirq(phb
, irq_num
), level
);
712 static PCIINTxRoute
spapr_route_intx_pin_to_irq(void *opaque
, int pin
)
714 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(opaque
);
717 route
.mode
= PCI_INTX_ENABLED
;
718 route
.irq
= sphb
->lsi_table
[pin
].irq
;
724 * MSI/MSIX memory region implementation.
725 * The handler handles both MSI and MSIX.
726 * For MSI-X, the vector number is encoded as a part of the address,
728 * For MSI, the vector number is encoded in least bits in data.
730 static void spapr_msi_write(void *opaque
, hwaddr addr
,
731 uint64_t data
, unsigned size
)
733 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
736 trace_spapr_pci_msi_write(addr
, data
, irq
);
738 qemu_irq_pulse(xics_get_qirq(spapr
->xics
, irq
));
741 static const MemoryRegionOps spapr_msi_ops
= {
742 /* There is no .read as the read result is undefined by PCI spec */
744 .write
= spapr_msi_write
,
745 .endianness
= DEVICE_LITTLE_ENDIAN
751 static AddressSpace
*spapr_pci_dma_iommu(PCIBus
*bus
, void *opaque
, int devfn
)
753 sPAPRPHBState
*phb
= opaque
;
755 return &phb
->iommu_as
;
758 static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState
*sphb
, PCIDevice
*pdev
)
760 char *path
= NULL
, *buf
= NULL
, *host
= NULL
;
762 /* Get the PCI VFIO host id */
763 host
= object_property_get_str(OBJECT(pdev
), "host", NULL
);
768 /* Construct the path of the file that will give us the DT location */
769 path
= g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host
);
771 if (!path
|| !g_file_get_contents(path
, &buf
, NULL
, NULL
)) {
776 /* Construct and read from host device tree the loc-code */
777 path
= g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf
);
779 if (!path
|| !g_file_get_contents(path
, &buf
, NULL
, NULL
)) {
789 static char *spapr_phb_get_loc_code(sPAPRPHBState
*sphb
, PCIDevice
*pdev
)
792 const char *devtype
= "qemu";
793 uint32_t busnr
= pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev
))));
795 if (object_dynamic_cast(OBJECT(pdev
), "vfio-pci")) {
796 buf
= spapr_phb_vfio_get_loc_code(sphb
, pdev
);
803 * For emulated devices and VFIO-failure case, make up
806 buf
= g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
807 devtype
, pdev
->name
, sphb
->index
, busnr
,
808 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
812 /* Macros to operate with address in OF binding to PCI */
813 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
814 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
815 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
816 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
817 #define b_ss(x) b_x((x), 24, 2) /* the space code */
818 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
819 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
820 #define b_fff(x) b_x((x), 8, 3) /* function number */
821 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
823 /* for 'reg'/'assigned-addresses' OF properties */
824 #define RESOURCE_CELLS_SIZE 2
825 #define RESOURCE_CELLS_ADDRESS 3
827 typedef struct ResourceFields
{
833 } QEMU_PACKED ResourceFields
;
835 typedef struct ResourceProps
{
836 ResourceFields reg
[8];
837 ResourceFields assigned
[7];
839 uint32_t assigned_len
;
842 /* fill in the 'reg'/'assigned-resources' OF properties for
843 * a PCI device. 'reg' describes resource requirements for a
844 * device's IO/MEM regions, 'assigned-addresses' describes the
845 * actual resource assignments.
847 * the properties are arrays of ('phys-addr', 'size') pairs describing
848 * the addressable regions of the PCI device, where 'phys-addr' is a
849 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
850 * (phys.hi, phys.mid, phys.lo), and 'size' is a
851 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
853 * phys.hi = 0xYYXXXXZZ, where:
858 * ||| + 00 if configuration space
859 * ||| + 01 if IO region,
860 * ||| + 10 if 32-bit MEM region
861 * ||| + 11 if 64-bit MEM region
863 * ||+------ for non-relocatable IO: 1 if aliased
864 * || for relocatable IO: 1 if below 64KB
865 * || for MEM: 1 if below 1MB
866 * |+------- 1 if region is prefetchable
867 * +-------- 1 if region is non-relocatable
868 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
870 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
873 * phys.mid and phys.lo correspond respectively to the hi/lo portions
874 * of the actual address of the region.
876 * how the phys-addr/size values are used differ slightly between
877 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
878 * an additional description for the config space region of the
879 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
880 * to describe the region as relocatable, with an address-mapping
881 * that corresponds directly to the PHB's address space for the
882 * resource. 'assigned-addresses' always has n=1 set with an absolute
883 * address assigned for the resource. in general, 'assigned-addresses'
884 * won't be populated, since addresses for PCI devices are generally
885 * unmapped initially and left to the guest to assign.
887 * note also that addresses defined in these properties are, at least
888 * for PAPR guests, relative to the PHBs IO/MEM windows, and
889 * correspond directly to the addresses in the BARs.
891 * in accordance with PCI Bus Binding to Open Firmware,
892 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
895 static void populate_resource_props(PCIDevice
*d
, ResourceProps
*rp
)
897 int bus_num
= pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d
))));
898 uint32_t dev_id
= (b_bbbbbbbb(bus_num
) |
899 b_ddddd(PCI_SLOT(d
->devfn
)) |
900 b_fff(PCI_FUNC(d
->devfn
)));
901 ResourceFields
*reg
, *assigned
;
902 int i
, reg_idx
= 0, assigned_idx
= 0;
904 /* config space region */
905 reg
= &rp
->reg
[reg_idx
++];
906 reg
->phys_hi
= cpu_to_be32(dev_id
);
912 for (i
= 0; i
< PCI_NUM_REGIONS
; i
++) {
913 if (!d
->io_regions
[i
].size
) {
917 reg
= &rp
->reg
[reg_idx
++];
919 reg
->phys_hi
= cpu_to_be32(dev_id
| b_rrrrrrrr(pci_bar(d
, i
)));
920 if (d
->io_regions
[i
].type
& PCI_BASE_ADDRESS_SPACE_IO
) {
921 reg
->phys_hi
|= cpu_to_be32(b_ss(1));
922 } else if (d
->io_regions
[i
].type
& PCI_BASE_ADDRESS_MEM_TYPE_64
) {
923 reg
->phys_hi
|= cpu_to_be32(b_ss(3));
925 reg
->phys_hi
|= cpu_to_be32(b_ss(2));
929 reg
->size_hi
= cpu_to_be32(d
->io_regions
[i
].size
>> 32);
930 reg
->size_lo
= cpu_to_be32(d
->io_regions
[i
].size
);
932 if (d
->io_regions
[i
].addr
== PCI_BAR_UNMAPPED
) {
936 assigned
= &rp
->assigned
[assigned_idx
++];
937 assigned
->phys_hi
= cpu_to_be32(reg
->phys_hi
| b_n(1));
938 assigned
->phys_mid
= cpu_to_be32(d
->io_regions
[i
].addr
>> 32);
939 assigned
->phys_lo
= cpu_to_be32(d
->io_regions
[i
].addr
);
940 assigned
->size_hi
= reg
->size_hi
;
941 assigned
->size_lo
= reg
->size_lo
;
944 rp
->reg_len
= reg_idx
* sizeof(ResourceFields
);
945 rp
->assigned_len
= assigned_idx
* sizeof(ResourceFields
);
948 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState
*phb
,
951 static int spapr_populate_pci_child_dt(PCIDevice
*dev
, void *fdt
, int offset
,
955 bool is_bridge
= false;
958 uint32_t drc_index
= spapr_phb_get_pci_drc_index(sphb
, dev
);
959 uint32_t max_msi
, max_msix
;
961 if (pci_default_read_config(dev
, PCI_HEADER_TYPE
, 1) ==
962 PCI_HEADER_TYPE_BRIDGE
) {
966 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
967 _FDT(fdt_setprop_cell(fdt
, offset
, "vendor-id",
968 pci_default_read_config(dev
, PCI_VENDOR_ID
, 2)));
969 _FDT(fdt_setprop_cell(fdt
, offset
, "device-id",
970 pci_default_read_config(dev
, PCI_DEVICE_ID
, 2)));
971 _FDT(fdt_setprop_cell(fdt
, offset
, "revision-id",
972 pci_default_read_config(dev
, PCI_REVISION_ID
, 1)));
973 _FDT(fdt_setprop_cell(fdt
, offset
, "class-code",
974 pci_default_read_config(dev
, PCI_CLASS_PROG
, 3)));
975 if (pci_default_read_config(dev
, PCI_INTERRUPT_PIN
, 1)) {
976 _FDT(fdt_setprop_cell(fdt
, offset
, "interrupts",
977 pci_default_read_config(dev
, PCI_INTERRUPT_PIN
, 1)));
981 _FDT(fdt_setprop_cell(fdt
, offset
, "min-grant",
982 pci_default_read_config(dev
, PCI_MIN_GNT
, 1)));
983 _FDT(fdt_setprop_cell(fdt
, offset
, "max-latency",
984 pci_default_read_config(dev
, PCI_MAX_LAT
, 1)));
987 if (pci_default_read_config(dev
, PCI_SUBSYSTEM_ID
, 2)) {
988 _FDT(fdt_setprop_cell(fdt
, offset
, "subsystem-id",
989 pci_default_read_config(dev
, PCI_SUBSYSTEM_ID
, 2)));
992 if (pci_default_read_config(dev
, PCI_SUBSYSTEM_VENDOR_ID
, 2)) {
993 _FDT(fdt_setprop_cell(fdt
, offset
, "subsystem-vendor-id",
994 pci_default_read_config(dev
, PCI_SUBSYSTEM_VENDOR_ID
, 2)));
997 _FDT(fdt_setprop_cell(fdt
, offset
, "cache-line-size",
998 pci_default_read_config(dev
, PCI_CACHE_LINE_SIZE
, 1)));
1000 /* the following fdt cells are masked off the pci status register */
1001 pci_status
= pci_default_read_config(dev
, PCI_STATUS
, 2);
1002 _FDT(fdt_setprop_cell(fdt
, offset
, "devsel-speed",
1003 PCI_STATUS_DEVSEL_MASK
& pci_status
));
1005 if (pci_status
& PCI_STATUS_FAST_BACK
) {
1006 _FDT(fdt_setprop(fdt
, offset
, "fast-back-to-back", NULL
, 0));
1008 if (pci_status
& PCI_STATUS_66MHZ
) {
1009 _FDT(fdt_setprop(fdt
, offset
, "66mhz-capable", NULL
, 0));
1011 if (pci_status
& PCI_STATUS_UDF
) {
1012 _FDT(fdt_setprop(fdt
, offset
, "udf-supported", NULL
, 0));
1015 /* NOTE: this is normally generated by firmware via path/unit name,
1016 * but in our case we must set it manually since it does not get
1017 * processed by OF beforehand
1019 _FDT(fdt_setprop_string(fdt
, offset
, "name", "pci"));
1020 buf
= spapr_phb_get_loc_code(sphb
, dev
);
1022 error_report("Failed setting the ibm,loc-code");
1026 err
= fdt_setprop_string(fdt
, offset
, "ibm,loc-code", buf
);
1033 _FDT(fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
));
1036 _FDT(fdt_setprop_cell(fdt
, offset
, "#address-cells",
1037 RESOURCE_CELLS_ADDRESS
));
1038 _FDT(fdt_setprop_cell(fdt
, offset
, "#size-cells",
1039 RESOURCE_CELLS_SIZE
));
1041 max_msi
= msi_nr_vectors_allocated(dev
);
1043 _FDT(fdt_setprop_cell(fdt
, offset
, "ibm,req#msi", max_msi
));
1045 max_msix
= dev
->msix_entries_nr
;
1047 _FDT(fdt_setprop_cell(fdt
, offset
, "ibm,req#msi-x", max_msix
));
1050 populate_resource_props(dev
, &rp
);
1051 _FDT(fdt_setprop(fdt
, offset
, "reg", (uint8_t *)rp
.reg
, rp
.reg_len
));
1052 _FDT(fdt_setprop(fdt
, offset
, "assigned-addresses",
1053 (uint8_t *)rp
.assigned
, rp
.assigned_len
));
1058 /* create OF node for pci device and required OF DT properties */
1059 static int spapr_create_pci_child_dt(sPAPRPHBState
*phb
, PCIDevice
*dev
,
1060 void *fdt
, int node_offset
)
1063 int slot
= PCI_SLOT(dev
->devfn
);
1064 int func
= PCI_FUNC(dev
->devfn
);
1065 char nodename
[FDT_NAME_MAX
];
1068 snprintf(nodename
, FDT_NAME_MAX
, "pci@%x,%x", slot
, func
);
1070 snprintf(nodename
, FDT_NAME_MAX
, "pci@%x", slot
);
1072 offset
= fdt_add_subnode(fdt
, node_offset
, nodename
);
1073 ret
= spapr_populate_pci_child_dt(dev
, fdt
, offset
, phb
);
1082 static void spapr_phb_add_pci_device(sPAPRDRConnector
*drc
,
1087 sPAPRDRConnectorClass
*drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
1088 DeviceState
*dev
= DEVICE(pdev
);
1090 int fdt_start_offset
= 0, fdt_size
;
1092 fdt
= create_device_tree(&fdt_size
);
1093 fdt_start_offset
= spapr_create_pci_child_dt(phb
, pdev
, fdt
, 0);
1094 if (!fdt_start_offset
) {
1095 error_setg(errp
, "Failed to create pci child device tree node");
1099 drck
->attach(drc
, DEVICE(pdev
),
1100 fdt
, fdt_start_offset
, !dev
->hotplugged
, errp
);
1107 static void spapr_phb_remove_pci_device_cb(DeviceState
*dev
, void *opaque
)
1109 /* some version guests do not wait for completion of a device
1110 * cleanup (generally done asynchronously by the kernel) before
1111 * signaling to QEMU that the device is safe, but instead sleep
1112 * for some 'safe' period of time. unfortunately on a busy host
1113 * this sleep isn't guaranteed to be long enough, resulting in
1114 * bad things like IRQ lines being left asserted during final
1115 * device removal. to deal with this we call reset just prior
1116 * to finalizing the device, which will put the device back into
1117 * an 'idle' state, as the device cleanup code expects.
1119 pci_device_reset(PCI_DEVICE(dev
));
1120 object_unparent(OBJECT(dev
));
1123 static void spapr_phb_remove_pci_device(sPAPRDRConnector
*drc
,
1128 sPAPRDRConnectorClass
*drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
1130 drck
->detach(drc
, DEVICE(pdev
), spapr_phb_remove_pci_device_cb
, phb
, errp
);
1133 static sPAPRDRConnector
*spapr_phb_get_pci_func_drc(sPAPRPHBState
*phb
,
1137 return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI
,
1138 (phb
->index
<< 16) |
1143 static sPAPRDRConnector
*spapr_phb_get_pci_drc(sPAPRPHBState
*phb
,
1146 uint32_t busnr
= pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev
))));
1147 return spapr_phb_get_pci_func_drc(phb
, busnr
, pdev
->devfn
);
1150 static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState
*phb
,
1153 sPAPRDRConnector
*drc
= spapr_phb_get_pci_drc(phb
, pdev
);
1154 sPAPRDRConnectorClass
*drck
;
1160 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
1161 return drck
->get_index(drc
);
1164 static void spapr_phb_hot_plug_child(HotplugHandler
*plug_handler
,
1165 DeviceState
*plugged_dev
, Error
**errp
)
1167 sPAPRPHBState
*phb
= SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler
));
1168 PCIDevice
*pdev
= PCI_DEVICE(plugged_dev
);
1169 sPAPRDRConnector
*drc
= spapr_phb_get_pci_drc(phb
, pdev
);
1170 Error
*local_err
= NULL
;
1171 PCIBus
*bus
= PCI_BUS(qdev_get_parent_bus(DEVICE(pdev
)));
1172 uint32_t slotnr
= PCI_SLOT(pdev
->devfn
);
1174 /* if DR is disabled we don't need to do anything in the case of
1175 * hotplug or coldplug callbacks
1177 if (!phb
->dr_enabled
) {
1178 /* if this is a hotplug operation initiated by the user
1179 * we need to let them know it's not enabled
1181 if (plugged_dev
->hotplugged
) {
1182 error_setg(errp
, QERR_BUS_NO_HOTPLUG
,
1183 object_get_typename(OBJECT(phb
)));
1190 /* Following the QEMU convention used for PCIe multifunction
1191 * hotplug, we do not allow functions to be hotplugged to a
1192 * slot that already has function 0 present
1194 if (plugged_dev
->hotplugged
&& bus
->devices
[PCI_DEVFN(slotnr
, 0)] &&
1195 PCI_FUNC(pdev
->devfn
) != 0) {
1196 error_setg(errp
, "PCI: slot %d function 0 already ocuppied by %s,"
1197 " additional functions can no longer be exposed to guest.",
1198 slotnr
, bus
->devices
[PCI_DEVFN(slotnr
, 0)]->name
);
1202 spapr_phb_add_pci_device(drc
, phb
, pdev
, &local_err
);
1204 error_propagate(errp
, local_err
);
1208 /* If this is function 0, signal hotplug for all the device functions.
1209 * Otherwise defer sending the hotplug event.
1211 if (plugged_dev
->hotplugged
&& PCI_FUNC(pdev
->devfn
) == 0) {
1214 for (i
= 0; i
< 8; i
++) {
1215 sPAPRDRConnector
*func_drc
;
1216 sPAPRDRConnectorClass
*func_drck
;
1217 sPAPRDREntitySense state
;
1219 func_drc
= spapr_phb_get_pci_func_drc(phb
, pci_bus_num(bus
),
1220 PCI_DEVFN(slotnr
, i
));
1221 func_drck
= SPAPR_DR_CONNECTOR_GET_CLASS(func_drc
);
1222 func_drck
->entity_sense(func_drc
, &state
);
1224 if (state
== SPAPR_DR_ENTITY_SENSE_PRESENT
) {
1225 spapr_hotplug_req_add_by_index(func_drc
);
1231 static void spapr_phb_hot_unplug_child(HotplugHandler
*plug_handler
,
1232 DeviceState
*plugged_dev
, Error
**errp
)
1234 sPAPRPHBState
*phb
= SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler
));
1235 PCIDevice
*pdev
= PCI_DEVICE(plugged_dev
);
1236 sPAPRDRConnectorClass
*drck
;
1237 sPAPRDRConnector
*drc
= spapr_phb_get_pci_drc(phb
, pdev
);
1238 Error
*local_err
= NULL
;
1240 if (!phb
->dr_enabled
) {
1241 error_setg(errp
, QERR_BUS_NO_HOTPLUG
,
1242 object_get_typename(OBJECT(phb
)));
1248 drck
= SPAPR_DR_CONNECTOR_GET_CLASS(drc
);
1249 if (!drck
->release_pending(drc
)) {
1250 PCIBus
*bus
= PCI_BUS(qdev_get_parent_bus(DEVICE(pdev
)));
1251 uint32_t slotnr
= PCI_SLOT(pdev
->devfn
);
1252 sPAPRDRConnector
*func_drc
;
1253 sPAPRDRConnectorClass
*func_drck
;
1254 sPAPRDREntitySense state
;
1257 /* ensure any other present functions are pending unplug */
1258 if (PCI_FUNC(pdev
->devfn
) == 0) {
1259 for (i
= 1; i
< 8; i
++) {
1260 func_drc
= spapr_phb_get_pci_func_drc(phb
, pci_bus_num(bus
),
1261 PCI_DEVFN(slotnr
, i
));
1262 func_drck
= SPAPR_DR_CONNECTOR_GET_CLASS(func_drc
);
1263 func_drck
->entity_sense(func_drc
, &state
);
1264 if (state
== SPAPR_DR_ENTITY_SENSE_PRESENT
1265 && !func_drck
->release_pending(func_drc
)) {
1267 "PCI: slot %d, function %d still present. "
1268 "Must unplug all non-0 functions first.",
1275 spapr_phb_remove_pci_device(drc
, phb
, pdev
, &local_err
);
1277 error_propagate(errp
, local_err
);
1281 /* if this isn't func 0, defer unplug event. otherwise signal removal
1282 * for all present functions
1284 if (PCI_FUNC(pdev
->devfn
) == 0) {
1285 for (i
= 7; i
>= 0; i
--) {
1286 func_drc
= spapr_phb_get_pci_func_drc(phb
, pci_bus_num(bus
),
1287 PCI_DEVFN(slotnr
, i
));
1288 func_drck
= SPAPR_DR_CONNECTOR_GET_CLASS(func_drc
);
1289 func_drck
->entity_sense(func_drc
, &state
);
1290 if (state
== SPAPR_DR_ENTITY_SENSE_PRESENT
) {
1291 spapr_hotplug_req_remove_by_index(func_drc
);
1298 static void spapr_phb_realize(DeviceState
*dev
, Error
**errp
)
1300 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1301 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
1302 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(s
);
1303 PCIHostState
*phb
= PCI_HOST_BRIDGE(s
);
1307 uint64_t msi_window_size
= 4096;
1308 sPAPRTCETable
*tcet
;
1309 const unsigned windows_supported
=
1310 sphb
->ddw_enabled
? SPAPR_PCI_DMA_MAX_WINDOWS
: 1;
1312 if (sphb
->index
!= (uint32_t)-1) {
1313 hwaddr windows_base
;
1315 if ((sphb
->buid
!= (uint64_t)-1) || (sphb
->dma_liobn
[0] != (uint32_t)-1)
1316 || (sphb
->dma_liobn
[1] != (uint32_t)-1 && windows_supported
== 2)
1317 || (sphb
->mem_win_addr
!= (hwaddr
)-1)
1318 || (sphb
->io_win_addr
!= (hwaddr
)-1)) {
1319 error_setg(errp
, "Either \"index\" or other parameters must"
1320 " be specified for PAPR PHB, not both");
1324 if (sphb
->index
> SPAPR_PCI_MAX_INDEX
) {
1325 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
1326 SPAPR_PCI_MAX_INDEX
);
1330 sphb
->buid
= SPAPR_PCI_BASE_BUID
+ sphb
->index
;
1331 for (i
= 0; i
< windows_supported
; ++i
) {
1332 sphb
->dma_liobn
[i
] = SPAPR_PCI_LIOBN(sphb
->index
, i
);
1335 windows_base
= SPAPR_PCI_WINDOW_BASE
1336 + sphb
->index
* SPAPR_PCI_WINDOW_SPACING
;
1337 sphb
->mem_win_addr
= windows_base
+ SPAPR_PCI_MMIO_WIN_OFF
;
1338 sphb
->io_win_addr
= windows_base
+ SPAPR_PCI_IO_WIN_OFF
;
1341 if (sphb
->buid
== (uint64_t)-1) {
1342 error_setg(errp
, "BUID not specified for PHB");
1346 if ((sphb
->dma_liobn
[0] == (uint32_t)-1) ||
1347 ((sphb
->dma_liobn
[1] == (uint32_t)-1) && (windows_supported
> 1))) {
1348 error_setg(errp
, "LIOBN(s) not specified for PHB");
1352 if (sphb
->mem_win_addr
== (hwaddr
)-1) {
1353 error_setg(errp
, "Memory window address not specified for PHB");
1357 if (sphb
->io_win_addr
== (hwaddr
)-1) {
1358 error_setg(errp
, "IO window address not specified for PHB");
1362 if (spapr_pci_find_phb(spapr
, sphb
->buid
)) {
1363 error_setg(errp
, "PCI host bridges must have unique BUIDs");
1367 sphb
->dtbusname
= g_strdup_printf("pci@%" PRIx64
, sphb
->buid
);
1369 namebuf
= alloca(strlen(sphb
->dtbusname
) + 32);
1371 /* Initialize memory regions */
1372 sprintf(namebuf
, "%s.mmio", sphb
->dtbusname
);
1373 memory_region_init(&sphb
->memspace
, OBJECT(sphb
), namebuf
, UINT64_MAX
);
1375 sprintf(namebuf
, "%s.mmio-alias", sphb
->dtbusname
);
1376 memory_region_init_alias(&sphb
->memwindow
, OBJECT(sphb
),
1377 namebuf
, &sphb
->memspace
,
1378 SPAPR_PCI_MEM_WIN_BUS_OFFSET
, sphb
->mem_win_size
);
1379 memory_region_add_subregion(get_system_memory(), sphb
->mem_win_addr
,
1382 /* Initialize IO regions */
1383 sprintf(namebuf
, "%s.io", sphb
->dtbusname
);
1384 memory_region_init(&sphb
->iospace
, OBJECT(sphb
),
1385 namebuf
, SPAPR_PCI_IO_WIN_SIZE
);
1387 sprintf(namebuf
, "%s.io-alias", sphb
->dtbusname
);
1388 memory_region_init_alias(&sphb
->iowindow
, OBJECT(sphb
), namebuf
,
1389 &sphb
->iospace
, 0, SPAPR_PCI_IO_WIN_SIZE
);
1390 memory_region_add_subregion(get_system_memory(), sphb
->io_win_addr
,
1393 bus
= pci_register_bus(dev
, NULL
,
1394 pci_spapr_set_irq
, pci_spapr_map_irq
, sphb
,
1395 &sphb
->memspace
, &sphb
->iospace
,
1396 PCI_DEVFN(0, 0), PCI_NUM_PINS
, TYPE_PCI_BUS
);
1398 qbus_set_hotplug_handler(BUS(phb
->bus
), DEVICE(sphb
), NULL
);
1401 * Initialize PHB address space.
1402 * By default there will be at least one subregion for default
1404 * Later the guest might want to create another DMA window
1405 * which will become another memory subregion.
1407 sprintf(namebuf
, "%s.iommu-root", sphb
->dtbusname
);
1409 memory_region_init(&sphb
->iommu_root
, OBJECT(sphb
),
1410 namebuf
, UINT64_MAX
);
1411 address_space_init(&sphb
->iommu_as
, &sphb
->iommu_root
,
1415 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1416 * we need to allocate some memory to catch those writes coming
1417 * from msi_notify()/msix_notify().
1418 * As MSIMessage:addr is going to be the same and MSIMessage:data
1419 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1422 * For KVM we want to ensure that this memory is a full page so that
1423 * our memory slot is of page size granularity.
1426 if (kvm_enabled()) {
1427 msi_window_size
= getpagesize();
1431 memory_region_init_io(&sphb
->msiwindow
, NULL
, &spapr_msi_ops
, spapr
,
1432 "msi", msi_window_size
);
1433 memory_region_add_subregion(&sphb
->iommu_root
, SPAPR_PCI_MSI_WINDOW
,
1436 pci_setup_iommu(bus
, spapr_pci_dma_iommu
, sphb
);
1438 pci_bus_set_route_irq_fn(bus
, spapr_route_intx_pin_to_irq
);
1440 QLIST_INSERT_HEAD(&spapr
->phbs
, sphb
, list
);
1442 /* Initialize the LSI table */
1443 for (i
= 0; i
< PCI_NUM_PINS
; i
++) {
1445 Error
*local_err
= NULL
;
1447 irq
= xics_spapr_alloc_block(spapr
->xics
, 0, 1, true, false,
1450 error_propagate(errp
, local_err
);
1451 error_prepend(errp
, "can't allocate LSIs: ");
1455 sphb
->lsi_table
[i
].irq
= irq
;
1458 /* allocate connectors for child PCI devices */
1459 if (sphb
->dr_enabled
) {
1460 for (i
= 0; i
< PCI_SLOT_MAX
* 8; i
++) {
1461 spapr_dr_connector_new(OBJECT(phb
),
1462 SPAPR_DR_CONNECTOR_TYPE_PCI
,
1463 (sphb
->index
<< 16) | i
);
1468 for (i
= 0; i
< windows_supported
; ++i
) {
1469 tcet
= spapr_tce_new_table(DEVICE(sphb
), sphb
->dma_liobn
[i
]);
1471 error_setg(errp
, "Creating window#%d failed for %s",
1472 i
, sphb
->dtbusname
);
1475 memory_region_add_subregion_overlap(&sphb
->iommu_root
, 0,
1476 spapr_tce_get_iommu(tcet
), 0);
1479 sphb
->msi
= g_hash_table_new_full(g_int_hash
, g_int_equal
, g_free
, g_free
);
1482 static int spapr_phb_children_reset(Object
*child
, void *opaque
)
1484 DeviceState
*dev
= (DeviceState
*) object_dynamic_cast(child
, TYPE_DEVICE
);
1493 void spapr_phb_dma_reset(sPAPRPHBState
*sphb
)
1496 sPAPRTCETable
*tcet
;
1498 for (i
= 0; i
< SPAPR_PCI_DMA_MAX_WINDOWS
; ++i
) {
1499 tcet
= spapr_tce_find_by_liobn(sphb
->dma_liobn
[i
]);
1501 if (tcet
&& tcet
->nb_table
) {
1502 spapr_tce_table_disable(tcet
);
1506 /* Register default 32bit DMA window */
1507 tcet
= spapr_tce_find_by_liobn(sphb
->dma_liobn
[0]);
1508 spapr_tce_table_enable(tcet
, SPAPR_TCE_PAGE_SHIFT
, sphb
->dma_win_addr
,
1509 sphb
->dma_win_size
>> SPAPR_TCE_PAGE_SHIFT
);
1512 static void spapr_phb_reset(DeviceState
*qdev
)
1514 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(qdev
);
1516 spapr_phb_dma_reset(sphb
);
1518 /* Reset the IOMMU state */
1519 object_child_foreach(OBJECT(qdev
), spapr_phb_children_reset
, NULL
);
1521 if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev
))) {
1522 spapr_phb_vfio_reset(qdev
);
1526 static Property spapr_phb_properties
[] = {
1527 DEFINE_PROP_UINT32("index", sPAPRPHBState
, index
, -1),
1528 DEFINE_PROP_UINT64("buid", sPAPRPHBState
, buid
, -1),
1529 DEFINE_PROP_UINT32("liobn", sPAPRPHBState
, dma_liobn
[0], -1),
1530 DEFINE_PROP_UINT32("liobn64", sPAPRPHBState
, dma_liobn
[1], -1),
1531 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState
, mem_win_addr
, -1),
1532 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState
, mem_win_size
,
1533 SPAPR_PCI_MMIO_WIN_SIZE
),
1534 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState
, io_win_addr
, -1),
1535 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState
, io_win_size
,
1536 SPAPR_PCI_IO_WIN_SIZE
),
1537 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState
, dr_enabled
,
1539 /* Default DMA window is 0..1GB */
1540 DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState
, dma_win_addr
, 0),
1541 DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState
, dma_win_size
, 0x40000000),
1542 DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState
, dma64_win_addr
,
1543 0x800000000000000ULL
),
1544 DEFINE_PROP_BOOL("ddw", sPAPRPHBState
, ddw_enabled
, true),
1545 DEFINE_PROP_UINT64("pgsz", sPAPRPHBState
, page_size_mask
,
1546 (1ULL << 12) | (1ULL << 16)),
1547 DEFINE_PROP_END_OF_LIST(),
1550 static const VMStateDescription vmstate_spapr_pci_lsi
= {
1551 .name
= "spapr_pci/lsi",
1553 .minimum_version_id
= 1,
1554 .fields
= (VMStateField
[]) {
1555 VMSTATE_UINT32_EQUAL(irq
, struct spapr_pci_lsi
),
1557 VMSTATE_END_OF_LIST()
1561 static const VMStateDescription vmstate_spapr_pci_msi
= {
1562 .name
= "spapr_pci/msi",
1564 .minimum_version_id
= 1,
1565 .fields
= (VMStateField
[]) {
1566 VMSTATE_UINT32(key
, spapr_pci_msi_mig
),
1567 VMSTATE_UINT32(value
.first_irq
, spapr_pci_msi_mig
),
1568 VMSTATE_UINT32(value
.num
, spapr_pci_msi_mig
),
1569 VMSTATE_END_OF_LIST()
1573 static void spapr_pci_pre_save(void *opaque
)
1575 sPAPRPHBState
*sphb
= opaque
;
1576 GHashTableIter iter
;
1577 gpointer key
, value
;
1580 g_free(sphb
->msi_devs
);
1581 sphb
->msi_devs
= NULL
;
1582 sphb
->msi_devs_num
= g_hash_table_size(sphb
->msi
);
1583 if (!sphb
->msi_devs_num
) {
1586 sphb
->msi_devs
= g_malloc(sphb
->msi_devs_num
* sizeof(spapr_pci_msi_mig
));
1588 g_hash_table_iter_init(&iter
, sphb
->msi
);
1589 for (i
= 0; g_hash_table_iter_next(&iter
, &key
, &value
); ++i
) {
1590 sphb
->msi_devs
[i
].key
= *(uint32_t *) key
;
1591 sphb
->msi_devs
[i
].value
= *(spapr_pci_msi
*) value
;
1595 static int spapr_pci_post_load(void *opaque
, int version_id
)
1597 sPAPRPHBState
*sphb
= opaque
;
1598 gpointer key
, value
;
1601 for (i
= 0; i
< sphb
->msi_devs_num
; ++i
) {
1602 key
= g_memdup(&sphb
->msi_devs
[i
].key
,
1603 sizeof(sphb
->msi_devs
[i
].key
));
1604 value
= g_memdup(&sphb
->msi_devs
[i
].value
,
1605 sizeof(sphb
->msi_devs
[i
].value
));
1606 g_hash_table_insert(sphb
->msi
, key
, value
);
1608 g_free(sphb
->msi_devs
);
1609 sphb
->msi_devs
= NULL
;
1610 sphb
->msi_devs_num
= 0;
1615 static const VMStateDescription vmstate_spapr_pci
= {
1616 .name
= "spapr_pci",
1618 .minimum_version_id
= 2,
1619 .pre_save
= spapr_pci_pre_save
,
1620 .post_load
= spapr_pci_post_load
,
1621 .fields
= (VMStateField
[]) {
1622 VMSTATE_UINT64_EQUAL(buid
, sPAPRPHBState
),
1623 VMSTATE_UINT32_EQUAL(dma_liobn
[0], sPAPRPHBState
),
1624 VMSTATE_UINT64_EQUAL(mem_win_addr
, sPAPRPHBState
),
1625 VMSTATE_UINT64_EQUAL(mem_win_size
, sPAPRPHBState
),
1626 VMSTATE_UINT64_EQUAL(io_win_addr
, sPAPRPHBState
),
1627 VMSTATE_UINT64_EQUAL(io_win_size
, sPAPRPHBState
),
1628 VMSTATE_STRUCT_ARRAY(lsi_table
, sPAPRPHBState
, PCI_NUM_PINS
, 0,
1629 vmstate_spapr_pci_lsi
, struct spapr_pci_lsi
),
1630 VMSTATE_INT32(msi_devs_num
, sPAPRPHBState
),
1631 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs
, sPAPRPHBState
, msi_devs_num
, 0,
1632 vmstate_spapr_pci_msi
, spapr_pci_msi_mig
),
1633 VMSTATE_END_OF_LIST()
1637 static const char *spapr_phb_root_bus_path(PCIHostState
*host_bridge
,
1640 sPAPRPHBState
*sphb
= SPAPR_PCI_HOST_BRIDGE(host_bridge
);
1642 return sphb
->dtbusname
;
1645 static void spapr_phb_class_init(ObjectClass
*klass
, void *data
)
1647 PCIHostBridgeClass
*hc
= PCI_HOST_BRIDGE_CLASS(klass
);
1648 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1649 HotplugHandlerClass
*hp
= HOTPLUG_HANDLER_CLASS(klass
);
1651 hc
->root_bus_path
= spapr_phb_root_bus_path
;
1652 dc
->realize
= spapr_phb_realize
;
1653 dc
->props
= spapr_phb_properties
;
1654 dc
->reset
= spapr_phb_reset
;
1655 dc
->vmsd
= &vmstate_spapr_pci
;
1656 set_bit(DEVICE_CATEGORY_BRIDGE
, dc
->categories
);
1657 hp
->plug
= spapr_phb_hot_plug_child
;
1658 hp
->unplug
= spapr_phb_hot_unplug_child
;
1661 static const TypeInfo spapr_phb_info
= {
1662 .name
= TYPE_SPAPR_PCI_HOST_BRIDGE
,
1663 .parent
= TYPE_PCI_HOST_BRIDGE
,
1664 .instance_size
= sizeof(sPAPRPHBState
),
1665 .class_init
= spapr_phb_class_init
,
1666 .interfaces
= (InterfaceInfo
[]) {
1667 { TYPE_HOTPLUG_HANDLER
},
1672 PCIHostState
*spapr_create_phb(sPAPRMachineState
*spapr
, int index
)
1676 dev
= qdev_create(NULL
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
1677 qdev_prop_set_uint32(dev
, "index", index
);
1678 qdev_init_nofail(dev
);
1680 return PCI_HOST_BRIDGE(dev
);
1683 typedef struct sPAPRFDT
{
1686 sPAPRPHBState
*sphb
;
1689 static void spapr_populate_pci_devices_dt(PCIBus
*bus
, PCIDevice
*pdev
,
1693 sPAPRFDT
*p
= opaque
;
1697 offset
= spapr_create_pci_child_dt(p
->sphb
, pdev
, p
->fdt
, p
->node_off
);
1699 error_report("Failed to create pci child device tree node");
1703 if ((pci_default_read_config(pdev
, PCI_HEADER_TYPE
, 1) !=
1704 PCI_HEADER_TYPE_BRIDGE
)) {
1708 sec_bus
= pci_bridge_get_sec_bus(PCI_BRIDGE(pdev
));
1714 s_fdt
.node_off
= offset
;
1715 s_fdt
.sphb
= p
->sphb
;
1716 pci_for_each_device(sec_bus
, pci_bus_num(sec_bus
),
1717 spapr_populate_pci_devices_dt
,
1721 static void spapr_phb_pci_enumerate_bridge(PCIBus
*bus
, PCIDevice
*pdev
,
1724 unsigned int *bus_no
= opaque
;
1725 unsigned int primary
= *bus_no
;
1726 unsigned int subordinate
= 0xff;
1727 PCIBus
*sec_bus
= NULL
;
1729 if ((pci_default_read_config(pdev
, PCI_HEADER_TYPE
, 1) !=
1730 PCI_HEADER_TYPE_BRIDGE
)) {
1735 pci_default_write_config(pdev
, PCI_PRIMARY_BUS
, primary
, 1);
1736 pci_default_write_config(pdev
, PCI_SECONDARY_BUS
, *bus_no
, 1);
1737 pci_default_write_config(pdev
, PCI_SUBORDINATE_BUS
, *bus_no
, 1);
1739 sec_bus
= pci_bridge_get_sec_bus(PCI_BRIDGE(pdev
));
1744 pci_default_write_config(pdev
, PCI_SUBORDINATE_BUS
, subordinate
, 1);
1745 pci_for_each_device(sec_bus
, pci_bus_num(sec_bus
),
1746 spapr_phb_pci_enumerate_bridge
, bus_no
);
1747 pci_default_write_config(pdev
, PCI_SUBORDINATE_BUS
, *bus_no
, 1);
1750 static void spapr_phb_pci_enumerate(sPAPRPHBState
*phb
)
1752 PCIBus
*bus
= PCI_HOST_BRIDGE(phb
)->bus
;
1753 unsigned int bus_no
= 0;
1755 pci_for_each_device(bus
, pci_bus_num(bus
),
1756 spapr_phb_pci_enumerate_bridge
,
1761 int spapr_populate_pci_dt(sPAPRPHBState
*phb
,
1762 uint32_t xics_phandle
,
1765 int bus_off
, i
, j
, ret
;
1766 char nodename
[FDT_NAME_MAX
];
1767 uint32_t bus_range
[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1768 const uint64_t mmiosize
= memory_region_size(&phb
->memwindow
);
1769 const uint64_t w32max
= (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET
;
1770 const uint64_t w32size
= MIN(w32max
, mmiosize
);
1771 const uint64_t w64size
= (mmiosize
> w32size
) ? (mmiosize
- w32size
) : 0;
1777 } QEMU_PACKED ranges
[] = {
1779 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1780 cpu_to_be64(phb
->io_win_addr
),
1781 cpu_to_be64(memory_region_size(&phb
->iospace
)),
1784 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET
),
1785 cpu_to_be64(phb
->mem_win_addr
),
1786 cpu_to_be64(w32size
),
1789 cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
1790 cpu_to_be64(phb
->mem_win_addr
+ w32size
),
1791 cpu_to_be64(w64size
)
1794 const unsigned sizeof_ranges
= (w64size
? 3 : 2) * sizeof(ranges
[0]);
1795 uint64_t bus_reg
[] = { cpu_to_be64(phb
->buid
), 0 };
1796 uint32_t interrupt_map_mask
[] = {
1797 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1798 uint32_t interrupt_map
[PCI_SLOT_MAX
* PCI_NUM_PINS
][7];
1799 uint32_t ddw_applicable
[] = {
1800 cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW
),
1801 cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW
),
1802 cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW
)
1804 uint32_t ddw_extensions
[] = {
1806 cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW
)
1808 sPAPRTCETable
*tcet
;
1809 PCIBus
*bus
= PCI_HOST_BRIDGE(phb
)->bus
;
1812 /* Start populating the FDT */
1813 snprintf(nodename
, FDT_NAME_MAX
, "pci@%" PRIx64
, phb
->buid
);
1814 bus_off
= fdt_add_subnode(fdt
, 0, nodename
);
1819 /* Write PHB properties */
1820 _FDT(fdt_setprop_string(fdt
, bus_off
, "device_type", "pci"));
1821 _FDT(fdt_setprop_string(fdt
, bus_off
, "compatible", "IBM,Logical_PHB"));
1822 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#address-cells", 0x3));
1823 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#size-cells", 0x2));
1824 _FDT(fdt_setprop_cell(fdt
, bus_off
, "#interrupt-cells", 0x1));
1825 _FDT(fdt_setprop(fdt
, bus_off
, "used-by-rtas", NULL
, 0));
1826 _FDT(fdt_setprop(fdt
, bus_off
, "bus-range", &bus_range
, sizeof(bus_range
)));
1827 _FDT(fdt_setprop(fdt
, bus_off
, "ranges", &ranges
, sizeof_ranges
));
1828 _FDT(fdt_setprop(fdt
, bus_off
, "reg", &bus_reg
, sizeof(bus_reg
)));
1829 _FDT(fdt_setprop_cell(fdt
, bus_off
, "ibm,pci-config-space-type", 0x1));
1830 _FDT(fdt_setprop_cell(fdt
, bus_off
, "ibm,pe-total-#msi", XICS_IRQS_SPAPR
));
1832 /* Dynamic DMA window */
1833 if (phb
->ddw_enabled
) {
1834 _FDT(fdt_setprop(fdt
, bus_off
, "ibm,ddw-applicable", &ddw_applicable
,
1835 sizeof(ddw_applicable
)));
1836 _FDT(fdt_setprop(fdt
, bus_off
, "ibm,ddw-extensions",
1837 &ddw_extensions
, sizeof(ddw_extensions
)));
1840 /* Build the interrupt-map, this must matches what is done
1841 * in pci_spapr_map_irq
1843 _FDT(fdt_setprop(fdt
, bus_off
, "interrupt-map-mask",
1844 &interrupt_map_mask
, sizeof(interrupt_map_mask
)));
1845 for (i
= 0; i
< PCI_SLOT_MAX
; i
++) {
1846 for (j
= 0; j
< PCI_NUM_PINS
; j
++) {
1847 uint32_t *irqmap
= interrupt_map
[i
*PCI_NUM_PINS
+ j
];
1848 int lsi_num
= pci_spapr_swizzle(i
, j
);
1850 irqmap
[0] = cpu_to_be32(b_ddddd(i
)|b_fff(0));
1853 irqmap
[3] = cpu_to_be32(j
+1);
1854 irqmap
[4] = cpu_to_be32(xics_phandle
);
1855 irqmap
[5] = cpu_to_be32(phb
->lsi_table
[lsi_num
].irq
);
1856 irqmap
[6] = cpu_to_be32(0x8);
1859 /* Write interrupt map */
1860 _FDT(fdt_setprop(fdt
, bus_off
, "interrupt-map", &interrupt_map
,
1861 sizeof(interrupt_map
)));
1863 tcet
= spapr_tce_find_by_liobn(phb
->dma_liobn
[0]);
1867 spapr_dma_dt(fdt
, bus_off
, "ibm,dma-window",
1868 tcet
->liobn
, tcet
->bus_offset
,
1869 tcet
->nb_table
<< tcet
->page_shift
);
1871 /* Walk the bridges and program the bus numbers*/
1872 spapr_phb_pci_enumerate(phb
);
1873 _FDT(fdt_setprop_cell(fdt
, bus_off
, "qemu,phb-enumerated", 0x1));
1875 /* Populate tree nodes with PCI devices attached */
1877 s_fdt
.node_off
= bus_off
;
1879 pci_for_each_device(bus
, pci_bus_num(bus
),
1880 spapr_populate_pci_devices_dt
,
1883 ret
= spapr_drc_populate_dt(fdt
, bus_off
, OBJECT(phb
),
1884 SPAPR_DR_CONNECTOR_TYPE_PCI
);
1892 void spapr_pci_rtas_init(void)
1894 spapr_rtas_register(RTAS_READ_PCI_CONFIG
, "read-pci-config",
1895 rtas_read_pci_config
);
1896 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG
, "write-pci-config",
1897 rtas_write_pci_config
);
1898 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG
, "ibm,read-pci-config",
1899 rtas_ibm_read_pci_config
);
1900 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG
, "ibm,write-pci-config",
1901 rtas_ibm_write_pci_config
);
1902 if (msi_nonbroken
) {
1903 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER
,
1904 "ibm,query-interrupt-source-number",
1905 rtas_ibm_query_interrupt_source_number
);
1906 spapr_rtas_register(RTAS_IBM_CHANGE_MSI
, "ibm,change-msi",
1907 rtas_ibm_change_msi
);
1910 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION
,
1911 "ibm,set-eeh-option",
1912 rtas_ibm_set_eeh_option
);
1913 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2
,
1914 "ibm,get-config-addr-info2",
1915 rtas_ibm_get_config_addr_info2
);
1916 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2
,
1917 "ibm,read-slot-reset-state2",
1918 rtas_ibm_read_slot_reset_state2
);
1919 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET
,
1920 "ibm,set-slot-reset",
1921 rtas_ibm_set_slot_reset
);
1922 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE
,
1924 rtas_ibm_configure_pe
);
1925 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL
,
1926 "ibm,slot-error-detail",
1927 rtas_ibm_slot_error_detail
);
1930 static void spapr_pci_register_types(void)
1932 type_register_static(&spapr_phb_info
);
1935 type_init(spapr_pci_register_types
)
1937 static int spapr_switch_one_vga(DeviceState
*dev
, void *opaque
)
1939 bool be
= *(bool *)opaque
;
1941 if (object_dynamic_cast(OBJECT(dev
), "VGA")
1942 || object_dynamic_cast(OBJECT(dev
), "secondary-vga")) {
1943 object_property_set_bool(OBJECT(dev
), be
, "big-endian-framebuffer",
1949 void spapr_pci_switch_vga(bool big_endian
)
1951 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1952 sPAPRPHBState
*sphb
;
1955 * For backward compatibility with existing guests, we switch
1956 * the endianness of the VGA controller when changing the guest
1959 QLIST_FOREACH(sphb
, &spapr
->phbs
, list
) {
1960 BusState
*bus
= &PCI_HOST_BRIDGE(sphb
)->bus
->qbus
;
1961 qbus_walk_children(bus
, spapr_switch_one_vga
, NULL
, NULL
, NULL
,