hw/other: spelling fixes
[qemu/ar7.git] / hw / intc / pnv_xive.c
blobda10deceb858748a4171709518f2e520a7a0ff04
1 /*
2 * QEMU PowerPC XIVE interrupt controller model
4 * Copyright (c) 2017-2019, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "sysemu/dma.h"
17 #include "sysemu/reset.h"
18 #include "monitor/monitor.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/pnv.h"
21 #include "hw/ppc/pnv_chip.h"
22 #include "hw/ppc/pnv_core.h"
23 #include "hw/ppc/pnv_xscom.h"
24 #include "hw/ppc/pnv_xive.h"
25 #include "hw/ppc/xive_regs.h"
26 #include "hw/qdev-properties.h"
27 #include "hw/ppc/ppc.h"
28 #include "trace.h"
30 #include <libfdt.h>
32 #include "pnv_xive_regs.h"
34 #undef XIVE_DEBUG
37 * Virtual structures table (VST)
39 #define SBE_PER_BYTE 4
41 typedef struct XiveVstInfo {
42 const char *name;
43 uint32_t size;
44 uint32_t max_blocks;
45 } XiveVstInfo;
47 static const XiveVstInfo vst_infos[] = {
48 [VST_TSEL_IVT] = { "EAT", sizeof(XiveEAS), 16 },
49 [VST_TSEL_SBE] = { "SBE", 1, 16 },
50 [VST_TSEL_EQDT] = { "ENDT", sizeof(XiveEND), 16 },
51 [VST_TSEL_VPDT] = { "VPDT", sizeof(XiveNVT), 32 },
54 * Interrupt fifo backing store table (not modeled) :
56 * 0 - IPI,
57 * 1 - HWD,
58 * 2 - First escalate,
59 * 3 - Second escalate,
60 * 4 - Redistribution,
61 * 5 - IPI cascaded queue ?
63 [VST_TSEL_IRQ] = { "IRQ", 1, 6 },
66 #define xive_error(xive, fmt, ...) \
67 qemu_log_mask(LOG_GUEST_ERROR, "XIVE[%x] - " fmt "\n", \
68 (xive)->chip->chip_id, ## __VA_ARGS__);
71 * When PC_TCTXT_CHIPID_OVERRIDE is configured, the PC_TCTXT_CHIPID
72 * field overrides the hardwired chip ID in the Powerbus operations
73 * and for CAM compares
75 static uint8_t pnv_xive_block_id(PnvXive *xive)
77 uint8_t blk = xive->chip->chip_id;
78 uint64_t cfg_val = xive->regs[PC_TCTXT_CFG >> 3];
80 if (cfg_val & PC_TCTXT_CHIPID_OVERRIDE) {
81 blk = GETFIELD(PC_TCTXT_CHIPID, cfg_val);
84 return blk;
88 * VST accessors for SBE, EAT, ENDT, NVT
90 * Indirect VST tables are arrays of VSDs pointing to a page (of same
91 * size). Each page is a direct VST table.
94 #define XIVE_VSD_SIZE 8
96 /* Indirect page size can be 4K, 64K, 2M, 16M. */
97 static uint64_t pnv_xive_vst_page_size_allowed(uint32_t page_shift)
99 return page_shift == 12 || page_shift == 16 ||
100 page_shift == 21 || page_shift == 24;
103 static uint64_t pnv_xive_vst_addr_direct(PnvXive *xive, uint32_t type,
104 uint64_t vsd, uint32_t idx)
106 const XiveVstInfo *info = &vst_infos[type];
107 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
108 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
109 uint32_t idx_max;
111 idx_max = vst_tsize / info->size - 1;
112 if (idx > idx_max) {
113 #ifdef XIVE_DEBUG
114 xive_error(xive, "VST: %s entry %x out of range [ 0 .. %x ] !?",
115 info->name, idx, idx_max);
116 #endif
117 return 0;
120 return vst_addr + idx * info->size;
123 static uint64_t pnv_xive_vst_addr_indirect(PnvXive *xive, uint32_t type,
124 uint64_t vsd, uint32_t idx)
126 const XiveVstInfo *info = &vst_infos[type];
127 uint64_t vsd_addr;
128 uint32_t vsd_idx;
129 uint32_t page_shift;
130 uint32_t vst_per_page;
132 /* Get the page size of the indirect table. */
133 vsd_addr = vsd & VSD_ADDRESS_MASK;
134 if (ldq_be_dma(&address_space_memory, vsd_addr, &vsd,
135 MEMTXATTRS_UNSPECIFIED)) {
136 xive_error(xive, "VST: failed to access %s entry %x @0x%" PRIx64,
137 info->name, idx, vsd_addr);
138 return 0;
141 if (!(vsd & VSD_ADDRESS_MASK)) {
142 #ifdef XIVE_DEBUG
143 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
144 #endif
145 return 0;
148 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
150 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
151 xive_error(xive, "VST: invalid %s page shift %d", info->name,
152 page_shift);
153 return 0;
156 vst_per_page = (1ull << page_shift) / info->size;
157 vsd_idx = idx / vst_per_page;
159 /* Load the VSD we are looking for, if not already done */
160 if (vsd_idx) {
161 vsd_addr = vsd_addr + vsd_idx * XIVE_VSD_SIZE;
162 if (ldq_be_dma(&address_space_memory, vsd_addr, &vsd,
163 MEMTXATTRS_UNSPECIFIED)) {
164 xive_error(xive, "VST: failed to access %s entry %x @0x%"
165 PRIx64, info->name, vsd_idx, vsd_addr);
166 return 0;
169 if (!(vsd & VSD_ADDRESS_MASK)) {
170 #ifdef XIVE_DEBUG
171 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
172 #endif
173 return 0;
177 * Check that the pages have a consistent size across the
178 * indirect table
180 if (page_shift != GETFIELD(VSD_TSIZE, vsd) + 12) {
181 xive_error(xive, "VST: %s entry %x indirect page size differ !?",
182 info->name, idx);
183 return 0;
187 return pnv_xive_vst_addr_direct(xive, type, vsd, (idx % vst_per_page));
191 * This is a simplified model of operation forwarding on a remote IC.
193 * A PC MMIO address is built to identify the NVT structure. The load
194 * on the remote IC will return the address of the structure in RAM,
195 * which will then be used by pnv_xive_vst_write/read to perform the
196 * RAM operation.
198 static uint64_t pnv_xive_vst_addr_remote(PnvXive *xive, uint32_t type,
199 uint64_t vsd, uint8_t blk,
200 uint32_t idx)
202 const XiveVstInfo *info = &vst_infos[type];
203 uint64_t remote_addr = vsd & VSD_ADDRESS_MASK;
204 uint64_t vst_addr;
205 MemTxResult result;
207 if (type != VST_TSEL_VPDT) {
208 xive_error(xive, "VST: invalid access on remote VST %s %x/%x !?",
209 info->name, blk, idx);
210 return 0;
213 remote_addr |= ((uint64_t)idx) << xive->pc_shift;
215 vst_addr = address_space_ldq_be(&address_space_memory, remote_addr,
216 MEMTXATTRS_UNSPECIFIED, &result);
217 if (result != MEMTX_OK) {
218 xive_error(xive, "VST: read failed at @0x%" HWADDR_PRIx
219 " for NVT %x/%x\n", remote_addr, blk, idx);
220 return 0;
223 return vst_addr;
226 static uint64_t pnv_xive_vst_addr(PnvXive *xive, uint32_t type, uint8_t blk,
227 uint32_t idx)
229 const XiveVstInfo *info = &vst_infos[type];
230 uint64_t vsd;
232 if (blk >= info->max_blocks) {
233 xive_error(xive, "VST: invalid block id %d for VST %s %d !?",
234 blk, info->name, idx);
235 return 0;
238 vsd = xive->vsds[type][blk];
240 /* Remote VST access */
241 if (GETFIELD(VSD_MODE, vsd) == VSD_MODE_FORWARD) {
242 return pnv_xive_vst_addr_remote(xive, type, vsd, blk, idx);
245 if (VSD_INDIRECT & vsd) {
246 return pnv_xive_vst_addr_indirect(xive, type, vsd, idx);
249 return pnv_xive_vst_addr_direct(xive, type, vsd, idx);
252 static int pnv_xive_vst_read(PnvXive *xive, uint32_t type, uint8_t blk,
253 uint32_t idx, void *data)
255 const XiveVstInfo *info = &vst_infos[type];
256 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
257 MemTxResult result;
259 if (!addr) {
260 return -1;
263 result = address_space_read(&address_space_memory, addr,
264 MEMTXATTRS_UNSPECIFIED, data,
265 info->size);
266 if (result != MEMTX_OK) {
267 xive_error(xive, "VST: read failed at @0x%" HWADDR_PRIx
268 " for VST %s %x/%x\n", addr, info->name, blk, idx);
269 return -1;
271 return 0;
274 #define XIVE_VST_WORD_ALL -1
276 static int pnv_xive_vst_write(PnvXive *xive, uint32_t type, uint8_t blk,
277 uint32_t idx, void *data, uint32_t word_number)
279 const XiveVstInfo *info = &vst_infos[type];
280 uint64_t addr = pnv_xive_vst_addr(xive, type, blk, idx);
281 MemTxResult result;
283 if (!addr) {
284 return -1;
287 if (word_number == XIVE_VST_WORD_ALL) {
288 result = address_space_write(&address_space_memory, addr,
289 MEMTXATTRS_UNSPECIFIED, data,
290 info->size);
291 } else {
292 result = address_space_write(&address_space_memory,
293 addr + word_number * 4,
294 MEMTXATTRS_UNSPECIFIED,
295 data + word_number * 4, 4);
298 if (result != MEMTX_OK) {
299 xive_error(xive, "VST: write failed at @0x%" HWADDR_PRIx
300 "for VST %s %x/%x\n", addr, info->name, blk, idx);
301 return -1;
303 return 0;
306 static int pnv_xive_get_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
307 XiveEND *end)
309 PnvXive *xive = PNV_XIVE(xrtr);
311 if (pnv_xive_block_id(xive) != blk) {
312 xive_error(xive, "VST: END %x/%x is remote !?", blk, idx);
313 return -1;
316 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end);
319 static int pnv_xive_write_end(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
320 XiveEND *end, uint8_t word_number)
322 PnvXive *xive = PNV_XIVE(xrtr);
324 if (pnv_xive_block_id(xive) != blk) {
325 xive_error(xive, "VST: END %x/%x is remote !?", blk, idx);
326 return -1;
329 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_EQDT, blk, idx, end,
330 word_number);
333 static int pnv_xive_end_update(PnvXive *xive)
335 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
336 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
337 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
338 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
339 int i;
340 uint64_t eqc_watch[4];
342 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
343 eqc_watch[i] = cpu_to_be64(xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i]);
346 return pnv_xive_vst_write(xive, VST_TSEL_EQDT, blk, idx, eqc_watch,
347 XIVE_VST_WORD_ALL);
350 static void pnv_xive_end_cache_load(PnvXive *xive)
352 uint8_t blk = GETFIELD(VC_EQC_CWATCH_BLOCKID,
353 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
354 uint32_t idx = GETFIELD(VC_EQC_CWATCH_OFFSET,
355 xive->regs[(VC_EQC_CWATCH_SPEC >> 3)]);
356 uint64_t eqc_watch[4] = { 0 };
357 int i;
359 if (pnv_xive_vst_read(xive, VST_TSEL_EQDT, blk, idx, eqc_watch)) {
360 xive_error(xive, "VST: no END entry %x/%x !?", blk, idx);
363 for (i = 0; i < ARRAY_SIZE(eqc_watch); i++) {
364 xive->regs[(VC_EQC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(eqc_watch[i]);
368 static int pnv_xive_get_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
369 XiveNVT *nvt)
371 return pnv_xive_vst_read(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt);
374 static int pnv_xive_write_nvt(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
375 XiveNVT *nvt, uint8_t word_number)
377 return pnv_xive_vst_write(PNV_XIVE(xrtr), VST_TSEL_VPDT, blk, idx, nvt,
378 word_number);
381 static int pnv_xive_nvt_update(PnvXive *xive)
383 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
384 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
385 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
386 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
387 int i;
388 uint64_t vpc_watch[8];
390 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
391 vpc_watch[i] = cpu_to_be64(xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i]);
394 return pnv_xive_vst_write(xive, VST_TSEL_VPDT, blk, idx, vpc_watch,
395 XIVE_VST_WORD_ALL);
398 static void pnv_xive_nvt_cache_load(PnvXive *xive)
400 uint8_t blk = GETFIELD(PC_VPC_CWATCH_BLOCKID,
401 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
402 uint32_t idx = GETFIELD(PC_VPC_CWATCH_OFFSET,
403 xive->regs[(PC_VPC_CWATCH_SPEC >> 3)]);
404 uint64_t vpc_watch[8] = { 0 };
405 int i;
407 if (pnv_xive_vst_read(xive, VST_TSEL_VPDT, blk, idx, vpc_watch)) {
408 xive_error(xive, "VST: no NVT entry %x/%x !?", blk, idx);
411 for (i = 0; i < ARRAY_SIZE(vpc_watch); i++) {
412 xive->regs[(PC_VPC_CWATCH_DAT0 >> 3) + i] = be64_to_cpu(vpc_watch[i]);
416 static int pnv_xive_get_eas(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
417 XiveEAS *eas)
419 PnvXive *xive = PNV_XIVE(xrtr);
422 * EAT lookups should be local to the IC
424 if (pnv_xive_block_id(xive) != blk) {
425 xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
426 return -1;
429 return pnv_xive_vst_read(xive, VST_TSEL_IVT, blk, idx, eas);
432 static int pnv_xive_get_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
433 uint8_t *pq)
435 PnvXive *xive = PNV_XIVE(xrtr);
437 if (pnv_xive_block_id(xive) != blk) {
438 xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
439 return -1;
442 *pq = xive_source_esb_get(&xive->ipi_source, idx);
443 return 0;
446 static int pnv_xive_set_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
447 uint8_t *pq)
449 PnvXive *xive = PNV_XIVE(xrtr);
451 if (pnv_xive_block_id(xive) != blk) {
452 xive_error(xive, "VST: EAS %x is remote !?", XIVE_EAS(blk, idx));
453 return -1;
456 *pq = xive_source_esb_set(&xive->ipi_source, idx, *pq);
457 return 0;
461 * One bit per thread id. The first register PC_THREAD_EN_REG0 covers
462 * the first cores 0-15 (normal) of the chip or 0-7 (fused). The
463 * second register covers cores 16-23 (normal) or 8-11 (fused).
465 static bool pnv_xive_is_cpu_enabled(PnvXive *xive, PowerPCCPU *cpu)
467 int pir = ppc_cpu_pir(cpu);
468 uint32_t fc = PNV9_PIR2FUSEDCORE(pir);
469 uint64_t reg = fc < 8 ? PC_THREAD_EN_REG0 : PC_THREAD_EN_REG1;
470 uint32_t bit = pir & 0x3f;
472 return xive->regs[reg >> 3] & PPC_BIT(bit);
475 static int pnv_xive_match_nvt(XivePresenter *xptr, uint8_t format,
476 uint8_t nvt_blk, uint32_t nvt_idx,
477 bool cam_ignore, uint8_t priority,
478 uint32_t logic_serv, XiveTCTXMatch *match)
480 PnvXive *xive = PNV_XIVE(xptr);
481 PnvChip *chip = xive->chip;
482 int count = 0;
483 int i, j;
485 for (i = 0; i < chip->nr_cores; i++) {
486 PnvCore *pc = chip->cores[i];
487 CPUCore *cc = CPU_CORE(pc);
489 for (j = 0; j < cc->nr_threads; j++) {
490 PowerPCCPU *cpu = pc->threads[j];
491 XiveTCTX *tctx;
492 int ring;
494 if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
495 continue;
498 tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
501 * Check the thread context CAM lines and record matches.
503 ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk,
504 nvt_idx, cam_ignore, logic_serv);
506 * Save the context and follow on to catch duplicates, that we
507 * don't support yet.
509 if (ring != -1) {
510 if (match->tctx) {
511 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a "
512 "thread context NVT %x/%x\n",
513 nvt_blk, nvt_idx);
514 return -1;
517 match->ring = ring;
518 match->tctx = tctx;
519 count++;
524 return count;
527 static uint32_t pnv_xive_presenter_get_config(XivePresenter *xptr)
529 uint32_t cfg = 0;
531 /* TIMA GEN1 is all P9 knows */
532 cfg |= XIVE_PRESENTER_GEN1_TIMA_OS;
534 return cfg;
537 static uint8_t pnv_xive_get_block_id(XiveRouter *xrtr)
539 return pnv_xive_block_id(PNV_XIVE(xrtr));
543 * The TIMA MMIO space is shared among the chips and to identify the
544 * chip from which the access is being done, we extract the chip id
545 * from the PIR.
547 static PnvXive *pnv_xive_tm_get_xive(PowerPCCPU *cpu)
549 int pir = ppc_cpu_pir(cpu);
550 XivePresenter *xptr = XIVE_TCTX(pnv_cpu_state(cpu)->intc)->xptr;
551 PnvXive *xive = PNV_XIVE(xptr);
553 if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
554 xive_error(xive, "IC: CPU %x is not enabled", pir);
556 return xive;
560 * The internal sources (IPIs) of the interrupt controller have no
561 * knowledge of the XIVE chip on which they reside. Encode the block
562 * id in the source interrupt number before forwarding the source
563 * event notification to the Router. This is required on a multichip
564 * system.
566 static void pnv_xive_notify(XiveNotifier *xn, uint32_t srcno, bool pq_checked)
568 PnvXive *xive = PNV_XIVE(xn);
569 uint8_t blk = pnv_xive_block_id(xive);
571 xive_router_notify(xn, XIVE_EAS(blk, srcno), pq_checked);
575 * XIVE helpers
578 static uint64_t pnv_xive_vc_size(PnvXive *xive)
580 return (~xive->regs[CQ_VC_BARM >> 3] + 1) & CQ_VC_BARM_MASK;
583 static uint64_t pnv_xive_edt_shift(PnvXive *xive)
585 return ctz64(pnv_xive_vc_size(xive) / XIVE_TABLE_EDT_MAX);
588 static uint64_t pnv_xive_pc_size(PnvXive *xive)
590 return (~xive->regs[CQ_PC_BARM >> 3] + 1) & CQ_PC_BARM_MASK;
593 static uint32_t pnv_xive_nr_ipis(PnvXive *xive, uint8_t blk)
595 uint64_t vsd = xive->vsds[VST_TSEL_SBE][blk];
596 uint64_t vst_tsize = 1ull << (GETFIELD(VSD_TSIZE, vsd) + 12);
598 return VSD_INDIRECT & vsd ? 0 : vst_tsize * SBE_PER_BYTE;
602 * Compute the number of entries per indirect subpage.
604 static uint64_t pnv_xive_vst_per_subpage(PnvXive *xive, uint32_t type)
606 uint8_t blk = pnv_xive_block_id(xive);
607 uint64_t vsd = xive->vsds[type][blk];
608 const XiveVstInfo *info = &vst_infos[type];
609 uint64_t vsd_addr;
610 uint32_t page_shift;
612 /* For direct tables, fake a valid value */
613 if (!(VSD_INDIRECT & vsd)) {
614 return 1;
617 /* Get the page size of the indirect table. */
618 vsd_addr = vsd & VSD_ADDRESS_MASK;
619 if (ldq_be_dma(&address_space_memory, vsd_addr, &vsd,
620 MEMTXATTRS_UNSPECIFIED)) {
621 xive_error(xive, "VST: failed to access %s entry @0x%" PRIx64,
622 info->name, vsd_addr);
623 return 0;
626 if (!(vsd & VSD_ADDRESS_MASK)) {
627 #ifdef XIVE_DEBUG
628 xive_error(xive, "VST: invalid %s entry %x !?", info->name, idx);
629 #endif
630 return 0;
633 page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
635 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
636 xive_error(xive, "VST: invalid %s page shift %d", info->name,
637 page_shift);
638 return 0;
641 return (1ull << page_shift) / info->size;
645 * EDT Table
647 * The Virtualization Controller MMIO region containing the IPI ESB
648 * pages and END ESB pages is sub-divided into "sets" which map
649 * portions of the VC region to the different ESB pages. It is
650 * configured at runtime through the EDT "Domain Table" to let the
651 * firmware decide how to split the VC address space between IPI ESB
652 * pages and END ESB pages.
656 * Computes the overall size of the IPI or the END ESB pages
658 static uint64_t pnv_xive_edt_size(PnvXive *xive, uint64_t type)
660 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
661 uint64_t size = 0;
662 int i;
664 for (i = 0; i < XIVE_TABLE_EDT_MAX; i++) {
665 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
667 if (edt_type == type) {
668 size += edt_size;
672 return size;
676 * Maps an offset of the VC region in the IPI or END region using the
677 * layout defined by the EDT "Domaine Table"
679 static uint64_t pnv_xive_edt_offset(PnvXive *xive, uint64_t vc_offset,
680 uint64_t type)
682 int i;
683 uint64_t edt_size = 1ull << pnv_xive_edt_shift(xive);
684 uint64_t edt_offset = vc_offset;
686 for (i = 0; i < XIVE_TABLE_EDT_MAX && (i * edt_size) < vc_offset; i++) {
687 uint64_t edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[i]);
689 if (edt_type != type) {
690 edt_offset -= edt_size;
694 return edt_offset;
697 static void pnv_xive_edt_resize(PnvXive *xive)
699 uint64_t ipi_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_IPI);
700 uint64_t end_edt_size = pnv_xive_edt_size(xive, CQ_TDR_EDT_EQ);
702 memory_region_set_size(&xive->ipi_edt_mmio, ipi_edt_size);
703 memory_region_add_subregion(&xive->ipi_mmio, 0, &xive->ipi_edt_mmio);
705 memory_region_set_size(&xive->end_edt_mmio, end_edt_size);
706 memory_region_add_subregion(&xive->end_mmio, 0, &xive->end_edt_mmio);
710 * XIVE Table configuration. Only EDT is supported.
712 static int pnv_xive_table_set_data(PnvXive *xive, uint64_t val)
714 uint64_t tsel = xive->regs[CQ_TAR >> 3] & CQ_TAR_TSEL;
715 uint8_t tsel_index = GETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3]);
716 uint64_t *xive_table;
717 uint8_t max_index;
719 switch (tsel) {
720 case CQ_TAR_TSEL_BLK:
721 max_index = ARRAY_SIZE(xive->blk);
722 xive_table = xive->blk;
723 break;
724 case CQ_TAR_TSEL_MIG:
725 max_index = ARRAY_SIZE(xive->mig);
726 xive_table = xive->mig;
727 break;
728 case CQ_TAR_TSEL_EDT:
729 max_index = ARRAY_SIZE(xive->edt);
730 xive_table = xive->edt;
731 break;
732 case CQ_TAR_TSEL_VDT:
733 max_index = ARRAY_SIZE(xive->vdt);
734 xive_table = xive->vdt;
735 break;
736 default:
737 xive_error(xive, "IC: invalid table %d", (int) tsel);
738 return -1;
741 if (tsel_index >= max_index) {
742 xive_error(xive, "IC: invalid index %d", (int) tsel_index);
743 return -1;
746 xive_table[tsel_index] = val;
748 if (xive->regs[CQ_TAR >> 3] & CQ_TAR_TBL_AUTOINC) {
749 xive->regs[CQ_TAR >> 3] =
750 SETFIELD(CQ_TAR_TSEL_INDEX, xive->regs[CQ_TAR >> 3], ++tsel_index);
754 * EDT configuration is complete. Resize the MMIO windows exposing
755 * the IPI and the END ESBs in the VC region.
757 if (tsel == CQ_TAR_TSEL_EDT && tsel_index == ARRAY_SIZE(xive->edt)) {
758 pnv_xive_edt_resize(xive);
761 return 0;
765 * Virtual Structure Tables (VST) configuration
767 static void pnv_xive_vst_set_exclusive(PnvXive *xive, uint8_t type,
768 uint8_t blk, uint64_t vsd)
770 XiveENDSource *end_xsrc = &xive->end_source;
771 XiveSource *xsrc = &xive->ipi_source;
772 const XiveVstInfo *info = &vst_infos[type];
773 uint32_t page_shift = GETFIELD(VSD_TSIZE, vsd) + 12;
774 uint64_t vst_tsize = 1ull << page_shift;
775 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
777 /* Basic checks */
779 if (VSD_INDIRECT & vsd) {
780 if (!(xive->regs[VC_GLOBAL_CONFIG >> 3] & VC_GCONF_INDIRECT)) {
781 xive_error(xive, "VST: %s indirect tables are not enabled",
782 info->name);
783 return;
786 if (!pnv_xive_vst_page_size_allowed(page_shift)) {
787 xive_error(xive, "VST: invalid %s page shift %d", info->name,
788 page_shift);
789 return;
793 if (!QEMU_IS_ALIGNED(vst_addr, 1ull << page_shift)) {
794 xive_error(xive, "VST: %s table address 0x%"PRIx64" is not aligned with"
795 " page shift %d", info->name, vst_addr, page_shift);
796 return;
799 /* Record the table configuration (in SRAM on HW) */
800 xive->vsds[type][blk] = vsd;
802 /* Now tune the models with the configuration provided by the FW */
804 switch (type) {
805 case VST_TSEL_IVT: /* Nothing to be done */
806 break;
808 case VST_TSEL_EQDT:
810 * Backing store pages for the END.
812 * If the table is direct, we can compute the number of PQ
813 * entries provisioned by FW (such as skiboot) and resize the
814 * END ESB window accordingly.
816 if (!(VSD_INDIRECT & vsd)) {
817 memory_region_set_size(&end_xsrc->esb_mmio, (vst_tsize / info->size)
818 * (1ull << xsrc->esb_shift));
820 memory_region_add_subregion(&xive->end_edt_mmio, 0,
821 &end_xsrc->esb_mmio);
822 break;
824 case VST_TSEL_SBE:
826 * Backing store pages for the source PQ bits. The model does
827 * not use these PQ bits backed in RAM because the XiveSource
828 * model has its own.
830 * If the table is direct, we can compute the number of PQ
831 * entries provisioned by FW (such as skiboot) and resize the
832 * ESB window accordingly.
834 if (!(VSD_INDIRECT & vsd)) {
835 memory_region_set_size(&xsrc->esb_mmio, vst_tsize * SBE_PER_BYTE
836 * (1ull << xsrc->esb_shift));
838 memory_region_add_subregion(&xive->ipi_edt_mmio, 0, &xsrc->esb_mmio);
839 break;
841 case VST_TSEL_VPDT: /* Not modeled */
842 case VST_TSEL_IRQ: /* Not modeled */
844 * These tables contains the backing store pages for the
845 * interrupt fifos of the VC sub-engine in case of overflow.
847 break;
849 default:
850 g_assert_not_reached();
855 * Both PC and VC sub-engines are configured as each use the Virtual
856 * Structure Tables : SBE, EAS, END and NVT.
858 static void pnv_xive_vst_set_data(PnvXive *xive, uint64_t vsd, bool pc_engine)
860 uint8_t mode = GETFIELD(VSD_MODE, vsd);
861 uint8_t type = GETFIELD(VST_TABLE_SELECT,
862 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
863 uint8_t blk = GETFIELD(VST_TABLE_BLOCK,
864 xive->regs[VC_VSD_TABLE_ADDR >> 3]);
865 uint64_t vst_addr = vsd & VSD_ADDRESS_MASK;
867 if (type > VST_TSEL_IRQ) {
868 xive_error(xive, "VST: invalid table type %d", type);
869 return;
872 if (blk >= vst_infos[type].max_blocks) {
873 xive_error(xive, "VST: invalid block id %d for"
874 " %s table", blk, vst_infos[type].name);
875 return;
879 * Only take the VC sub-engine configuration into account because
880 * the XiveRouter model combines both VC and PC sub-engines
882 if (pc_engine) {
883 return;
886 if (!vst_addr) {
887 xive_error(xive, "VST: invalid %s table address", vst_infos[type].name);
888 return;
891 switch (mode) {
892 case VSD_MODE_FORWARD:
893 xive->vsds[type][blk] = vsd;
894 break;
896 case VSD_MODE_EXCLUSIVE:
897 pnv_xive_vst_set_exclusive(xive, type, blk, vsd);
898 break;
900 default:
901 xive_error(xive, "VST: unsupported table mode %d", mode);
902 return;
907 * Interrupt controller MMIO region. The layout is compatible between
908 * 4K and 64K pages :
910 * Page 0 sub-engine BARs
911 * 0x000 - 0x3FF IC registers
912 * 0x400 - 0x7FF PC registers
913 * 0x800 - 0xFFF VC registers
915 * Page 1 Notify page (writes only)
916 * 0x000 - 0x7FF HW interrupt triggers (PSI, PHB)
917 * 0x800 - 0xFFF forwards and syncs
919 * Page 2 LSI Trigger page (writes only) (not modeled)
920 * Page 3 LSI SB EOI page (reads only) (not modeled)
922 * Page 4-7 indirect TIMA
926 * IC - registers MMIO
928 static void pnv_xive_ic_reg_write(void *opaque, hwaddr offset,
929 uint64_t val, unsigned size)
931 PnvXive *xive = PNV_XIVE(opaque);
932 MemoryRegion *sysmem = get_system_memory();
933 uint32_t reg = offset >> 3;
934 bool is_chip0 = xive->chip->chip_id == 0;
936 switch (offset) {
939 * XIVE CQ (PowerBus bridge) settings
941 case CQ_MSGSND: /* msgsnd for doorbells */
942 case CQ_FIRMASK_OR: /* FIR error reporting */
943 break;
944 case CQ_PBI_CTL:
945 if (val & CQ_PBI_PC_64K) {
946 xive->pc_shift = 16;
948 if (val & CQ_PBI_VC_64K) {
949 xive->vc_shift = 16;
951 break;
952 case CQ_CFG_PB_GEN: /* PowerBus General Configuration */
954 * TODO: CQ_INT_ADDR_OPT for 1-block-per-chip mode
956 break;
959 * XIVE Virtualization Controller settings
961 case VC_GLOBAL_CONFIG:
962 break;
965 * XIVE Presenter Controller settings
967 case PC_GLOBAL_CONFIG:
969 * PC_GCONF_CHIPID_OVR
970 * Overrides Int command Chip ID with the Chip ID field (DEBUG)
972 break;
973 case PC_TCTXT_CFG:
975 * TODO: block group support
977 break;
978 case PC_TCTXT_TRACK:
980 * PC_TCTXT_TRACK_EN:
981 * enable block tracking and exchange of block ownership
982 * information between Interrupt controllers
984 break;
987 * Misc settings
989 case VC_SBC_CONFIG: /* Store EOI configuration */
991 * Configure store EOI if required by firmware (skiboot has removed
992 * support recently though)
994 if (val & (VC_SBC_CONF_CPLX_CIST | VC_SBC_CONF_CIST_BOTH)) {
995 xive->ipi_source.esb_flags |= XIVE_SRC_STORE_EOI;
997 break;
999 case VC_EQC_CONFIG: /* TODO: silent escalation */
1000 case VC_AIB_TX_ORDER_TAG2: /* relax ordering */
1001 break;
1004 * XIVE BAR settings (XSCOM only)
1006 case CQ_RST_CTL:
1007 /* bit4: resets all BAR registers */
1008 break;
1010 case CQ_IC_BAR: /* IC BAR. 8 pages */
1011 xive->ic_shift = val & CQ_IC_BAR_64K ? 16 : 12;
1012 if (!(val & CQ_IC_BAR_VALID)) {
1013 xive->ic_base = 0;
1014 if (xive->regs[reg] & CQ_IC_BAR_VALID) {
1015 memory_region_del_subregion(&xive->ic_mmio,
1016 &xive->ic_reg_mmio);
1017 memory_region_del_subregion(&xive->ic_mmio,
1018 &xive->ic_notify_mmio);
1019 memory_region_del_subregion(&xive->ic_mmio,
1020 &xive->ic_lsi_mmio);
1021 memory_region_del_subregion(&xive->ic_mmio,
1022 &xive->tm_indirect_mmio);
1024 memory_region_del_subregion(sysmem, &xive->ic_mmio);
1026 } else {
1027 xive->ic_base = val & ~(CQ_IC_BAR_VALID | CQ_IC_BAR_64K);
1028 if (!(xive->regs[reg] & CQ_IC_BAR_VALID)) {
1029 memory_region_add_subregion(sysmem, xive->ic_base,
1030 &xive->ic_mmio);
1032 memory_region_add_subregion(&xive->ic_mmio, 0,
1033 &xive->ic_reg_mmio);
1034 memory_region_add_subregion(&xive->ic_mmio,
1035 1ul << xive->ic_shift,
1036 &xive->ic_notify_mmio);
1037 memory_region_add_subregion(&xive->ic_mmio,
1038 2ul << xive->ic_shift,
1039 &xive->ic_lsi_mmio);
1040 memory_region_add_subregion(&xive->ic_mmio,
1041 4ull << xive->ic_shift,
1042 &xive->tm_indirect_mmio);
1045 break;
1047 case CQ_TM1_BAR: /* TM BAR. 4 pages. Map only once */
1048 case CQ_TM2_BAR: /* second TM BAR. for hotplug. Not modeled */
1049 xive->tm_shift = val & CQ_TM_BAR_64K ? 16 : 12;
1050 if (!(val & CQ_TM_BAR_VALID)) {
1051 xive->tm_base = 0;
1052 if (xive->regs[reg] & CQ_TM_BAR_VALID && is_chip0) {
1053 memory_region_del_subregion(sysmem, &xive->tm_mmio);
1055 } else {
1056 xive->tm_base = val & ~(CQ_TM_BAR_VALID | CQ_TM_BAR_64K);
1057 if (!(xive->regs[reg] & CQ_TM_BAR_VALID) && is_chip0) {
1058 memory_region_add_subregion(sysmem, xive->tm_base,
1059 &xive->tm_mmio);
1062 break;
1064 case CQ_PC_BARM:
1065 xive->regs[reg] = val;
1066 memory_region_set_size(&xive->pc_mmio, pnv_xive_pc_size(xive));
1067 break;
1068 case CQ_PC_BAR: /* From 32M to 512G */
1069 if (!(val & CQ_PC_BAR_VALID)) {
1070 xive->pc_base = 0;
1071 if (xive->regs[reg] & CQ_PC_BAR_VALID) {
1072 memory_region_del_subregion(sysmem, &xive->pc_mmio);
1074 } else {
1075 xive->pc_base = val & ~(CQ_PC_BAR_VALID);
1076 if (!(xive->regs[reg] & CQ_PC_BAR_VALID)) {
1077 memory_region_add_subregion(sysmem, xive->pc_base,
1078 &xive->pc_mmio);
1081 break;
1083 case CQ_VC_BARM:
1084 xive->regs[reg] = val;
1085 memory_region_set_size(&xive->vc_mmio, pnv_xive_vc_size(xive));
1086 break;
1087 case CQ_VC_BAR: /* From 64M to 4TB */
1088 if (!(val & CQ_VC_BAR_VALID)) {
1089 xive->vc_base = 0;
1090 if (xive->regs[reg] & CQ_VC_BAR_VALID) {
1091 memory_region_del_subregion(sysmem, &xive->vc_mmio);
1093 } else {
1094 xive->vc_base = val & ~(CQ_VC_BAR_VALID);
1095 if (!(xive->regs[reg] & CQ_VC_BAR_VALID)) {
1096 memory_region_add_subregion(sysmem, xive->vc_base,
1097 &xive->vc_mmio);
1100 break;
1103 * XIVE Table settings.
1105 case CQ_TAR: /* Table Address */
1106 break;
1107 case CQ_TDR: /* Table Data */
1108 pnv_xive_table_set_data(xive, val);
1109 break;
1112 * XIVE VC & PC Virtual Structure Table settings
1114 case VC_VSD_TABLE_ADDR:
1115 case PC_VSD_TABLE_ADDR: /* Virtual table selector */
1116 break;
1117 case VC_VSD_TABLE_DATA: /* Virtual table setting */
1118 case PC_VSD_TABLE_DATA:
1119 pnv_xive_vst_set_data(xive, val, offset == PC_VSD_TABLE_DATA);
1120 break;
1123 * Interrupt fifo overflow in memory backing store (Not modeled)
1125 case VC_IRQ_CONFIG_IPI:
1126 case VC_IRQ_CONFIG_HW:
1127 case VC_IRQ_CONFIG_CASCADE1:
1128 case VC_IRQ_CONFIG_CASCADE2:
1129 case VC_IRQ_CONFIG_REDIST:
1130 case VC_IRQ_CONFIG_IPI_CASC:
1131 break;
1134 * XIVE hardware thread enablement
1136 case PC_THREAD_EN_REG0: /* Physical Thread Enable */
1137 case PC_THREAD_EN_REG1: /* Physical Thread Enable (fused core) */
1138 break;
1140 case PC_THREAD_EN_REG0_SET:
1141 xive->regs[PC_THREAD_EN_REG0 >> 3] |= val;
1142 break;
1143 case PC_THREAD_EN_REG1_SET:
1144 xive->regs[PC_THREAD_EN_REG1 >> 3] |= val;
1145 break;
1146 case PC_THREAD_EN_REG0_CLR:
1147 xive->regs[PC_THREAD_EN_REG0 >> 3] &= ~val;
1148 break;
1149 case PC_THREAD_EN_REG1_CLR:
1150 xive->regs[PC_THREAD_EN_REG1 >> 3] &= ~val;
1151 break;
1154 * Indirect TIMA access set up. Defines the PIR of the HW thread
1155 * to use.
1157 case PC_TCTXT_INDIR0 ... PC_TCTXT_INDIR3:
1158 break;
1161 * XIVE PC & VC cache updates for EAS, NVT and END
1163 case VC_IVC_SCRUB_MASK:
1164 case VC_IVC_SCRUB_TRIG:
1165 break;
1167 case VC_EQC_CWATCH_SPEC:
1168 val &= ~VC_EQC_CWATCH_CONFLICT; /* HW resets this bit */
1169 break;
1170 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1171 break;
1172 case VC_EQC_CWATCH_DAT0:
1173 /* writing to DATA0 triggers the cache write */
1174 xive->regs[reg] = val;
1175 pnv_xive_end_update(xive);
1176 break;
1177 case VC_EQC_SCRUB_MASK:
1178 case VC_EQC_SCRUB_TRIG:
1180 * The scrubbing registers flush the cache in RAM and can also
1181 * invalidate.
1183 break;
1185 case PC_VPC_CWATCH_SPEC:
1186 val &= ~PC_VPC_CWATCH_CONFLICT; /* HW resets this bit */
1187 break;
1188 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1189 break;
1190 case PC_VPC_CWATCH_DAT0:
1191 /* writing to DATA0 triggers the cache write */
1192 xive->regs[reg] = val;
1193 pnv_xive_nvt_update(xive);
1194 break;
1195 case PC_VPC_SCRUB_MASK:
1196 case PC_VPC_SCRUB_TRIG:
1198 * The scrubbing registers flush the cache in RAM and can also
1199 * invalidate.
1201 break;
1205 * XIVE PC & VC cache invalidation
1207 case PC_AT_KILL:
1208 break;
1209 case VC_AT_MACRO_KILL:
1210 break;
1211 case PC_AT_KILL_MASK:
1212 case VC_AT_MACRO_KILL_MASK:
1213 break;
1215 default:
1216 xive_error(xive, "IC: invalid write to reg=0x%"HWADDR_PRIx, offset);
1217 return;
1220 xive->regs[reg] = val;
1223 static uint64_t pnv_xive_ic_reg_read(void *opaque, hwaddr offset, unsigned size)
1225 PnvXive *xive = PNV_XIVE(opaque);
1226 uint64_t val = 0;
1227 uint32_t reg = offset >> 3;
1229 switch (offset) {
1230 case CQ_CFG_PB_GEN:
1231 case CQ_IC_BAR:
1232 case CQ_TM1_BAR:
1233 case CQ_TM2_BAR:
1234 case CQ_PC_BAR:
1235 case CQ_PC_BARM:
1236 case CQ_VC_BAR:
1237 case CQ_VC_BARM:
1238 case CQ_TAR:
1239 case CQ_TDR:
1240 case CQ_PBI_CTL:
1242 case PC_TCTXT_CFG:
1243 case PC_TCTXT_TRACK:
1244 case PC_TCTXT_INDIR0:
1245 case PC_TCTXT_INDIR1:
1246 case PC_TCTXT_INDIR2:
1247 case PC_TCTXT_INDIR3:
1248 case PC_GLOBAL_CONFIG:
1250 case PC_VPC_SCRUB_MASK:
1252 case VC_GLOBAL_CONFIG:
1253 case VC_AIB_TX_ORDER_TAG2:
1255 case VC_IRQ_CONFIG_IPI:
1256 case VC_IRQ_CONFIG_HW:
1257 case VC_IRQ_CONFIG_CASCADE1:
1258 case VC_IRQ_CONFIG_CASCADE2:
1259 case VC_IRQ_CONFIG_REDIST:
1260 case VC_IRQ_CONFIG_IPI_CASC:
1262 case VC_EQC_SCRUB_MASK:
1263 case VC_IVC_SCRUB_MASK:
1264 case VC_SBC_CONFIG:
1265 case VC_AT_MACRO_KILL_MASK:
1266 case VC_VSD_TABLE_ADDR:
1267 case PC_VSD_TABLE_ADDR:
1268 case VC_VSD_TABLE_DATA:
1269 case PC_VSD_TABLE_DATA:
1270 case PC_THREAD_EN_REG0:
1271 case PC_THREAD_EN_REG1:
1272 val = xive->regs[reg];
1273 break;
1276 * XIVE hardware thread enablement
1278 case PC_THREAD_EN_REG0_SET:
1279 case PC_THREAD_EN_REG0_CLR:
1280 val = xive->regs[PC_THREAD_EN_REG0 >> 3];
1281 break;
1282 case PC_THREAD_EN_REG1_SET:
1283 case PC_THREAD_EN_REG1_CLR:
1284 val = xive->regs[PC_THREAD_EN_REG1 >> 3];
1285 break;
1287 case CQ_MSGSND: /* Identifies which cores have msgsnd enabled. */
1288 val = 0xffffff0000000000;
1289 break;
1292 * XIVE PC & VC cache updates for EAS, NVT and END
1294 case VC_EQC_CWATCH_SPEC:
1295 xive->regs[reg] = ~(VC_EQC_CWATCH_FULL | VC_EQC_CWATCH_CONFLICT);
1296 val = xive->regs[reg];
1297 break;
1298 case VC_EQC_CWATCH_DAT0:
1300 * Load DATA registers from cache with data requested by the
1301 * SPEC register
1303 pnv_xive_end_cache_load(xive);
1304 val = xive->regs[reg];
1305 break;
1306 case VC_EQC_CWATCH_DAT1 ... VC_EQC_CWATCH_DAT3:
1307 val = xive->regs[reg];
1308 break;
1310 case PC_VPC_CWATCH_SPEC:
1311 xive->regs[reg] = ~(PC_VPC_CWATCH_FULL | PC_VPC_CWATCH_CONFLICT);
1312 val = xive->regs[reg];
1313 break;
1314 case PC_VPC_CWATCH_DAT0:
1316 * Load DATA registers from cache with data requested by the
1317 * SPEC register
1319 pnv_xive_nvt_cache_load(xive);
1320 val = xive->regs[reg];
1321 break;
1322 case PC_VPC_CWATCH_DAT1 ... PC_VPC_CWATCH_DAT7:
1323 val = xive->regs[reg];
1324 break;
1326 case PC_VPC_SCRUB_TRIG:
1327 case VC_IVC_SCRUB_TRIG:
1328 case VC_EQC_SCRUB_TRIG:
1329 xive->regs[reg] &= ~VC_SCRUB_VALID;
1330 val = xive->regs[reg];
1331 break;
1334 * XIVE PC & VC cache invalidation
1336 case PC_AT_KILL:
1337 xive->regs[reg] &= ~PC_AT_KILL_VALID;
1338 val = xive->regs[reg];
1339 break;
1340 case VC_AT_MACRO_KILL:
1341 xive->regs[reg] &= ~VC_KILL_VALID;
1342 val = xive->regs[reg];
1343 break;
1346 * XIVE synchronisation
1348 case VC_EQC_CONFIG:
1349 val = VC_EQC_SYNC_MASK;
1350 break;
1352 default:
1353 xive_error(xive, "IC: invalid read reg=0x%"HWADDR_PRIx, offset);
1356 return val;
1359 static const MemoryRegionOps pnv_xive_ic_reg_ops = {
1360 .read = pnv_xive_ic_reg_read,
1361 .write = pnv_xive_ic_reg_write,
1362 .endianness = DEVICE_BIG_ENDIAN,
1363 .valid = {
1364 .min_access_size = 8,
1365 .max_access_size = 8,
1367 .impl = {
1368 .min_access_size = 8,
1369 .max_access_size = 8,
1374 * IC - Notify MMIO port page (write only)
1376 #define PNV_XIVE_FORWARD_IPI 0x800 /* Forward IPI */
1377 #define PNV_XIVE_FORWARD_HW 0x880 /* Forward HW */
1378 #define PNV_XIVE_FORWARD_OS_ESC 0x900 /* Forward OS escalation */
1379 #define PNV_XIVE_FORWARD_HW_ESC 0x980 /* Forward Hyp escalation */
1380 #define PNV_XIVE_FORWARD_REDIS 0xa00 /* Forward Redistribution */
1381 #define PNV_XIVE_RESERVED5 0xa80 /* Cache line 5 PowerBUS operation */
1382 #define PNV_XIVE_RESERVED6 0xb00 /* Cache line 6 PowerBUS operation */
1383 #define PNV_XIVE_RESERVED7 0xb80 /* Cache line 7 PowerBUS operation */
1385 /* VC synchronisation */
1386 #define PNV_XIVE_SYNC_IPI 0xc00 /* Sync IPI */
1387 #define PNV_XIVE_SYNC_HW 0xc80 /* Sync HW */
1388 #define PNV_XIVE_SYNC_OS_ESC 0xd00 /* Sync OS escalation */
1389 #define PNV_XIVE_SYNC_HW_ESC 0xd80 /* Sync Hyp escalation */
1390 #define PNV_XIVE_SYNC_REDIS 0xe00 /* Sync Redistribution */
1392 /* PC synchronisation */
1393 #define PNV_XIVE_SYNC_PULL 0xe80 /* Sync pull context */
1394 #define PNV_XIVE_SYNC_PUSH 0xf00 /* Sync push context */
1395 #define PNV_XIVE_SYNC_VPC 0xf80 /* Sync remove VPC store */
1397 static void pnv_xive_end_notify(XiveRouter *xrtr, XiveEAS *eas)
1399 PnvXive *xive = PNV_XIVE(xrtr);
1400 uint8_t end_blk = xive_get_field64(EAS_END_BLOCK, eas->w);
1401 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
1402 uint32_t end_data = xive_get_field64(EAS_END_DATA, eas->w);
1403 uint64_t end_vsd = xive->vsds[VST_TSEL_EQDT][end_blk];
1405 switch (GETFIELD(VSD_MODE, end_vsd)) {
1406 case VSD_MODE_EXCLUSIVE:
1407 /* Perform the END notification on the local IC. */
1408 xive_router_end_notify(xrtr, eas);
1409 break;
1411 case VSD_MODE_FORWARD: {
1412 MemTxResult result;
1413 uint64_t notif_port = end_vsd & VSD_ADDRESS_MASK;
1414 uint64_t data = XIVE_TRIGGER_END | XIVE_TRIGGER_PQ |
1415 be64_to_cpu(eas->w);
1417 /* Forward the store on the remote IC notify page. */
1418 address_space_stq_be(&address_space_memory, notif_port, data,
1419 MEMTXATTRS_UNSPECIFIED, &result);
1420 if (result != MEMTX_OK) {
1421 xive_error(xive, "IC: Forward notif END %x/%x [%x] failed @%"
1422 HWADDR_PRIx, end_blk, end_idx, end_data, notif_port);
1423 return;
1425 break;
1428 case VSD_MODE_INVALID:
1429 default:
1430 /* Set FIR */
1431 xive_error(xive, "IC: Invalid END VSD for block %x", end_blk);
1432 return;
1437 * The notify page can either be used to receive trigger events from
1438 * the HW controllers (PHB, PSI) or to reroute interrupts between
1439 * Interrupt controllers.
1441 static void pnv_xive_ic_hw_trigger(PnvXive *xive, hwaddr addr, uint64_t val)
1443 uint8_t blk;
1444 uint32_t idx;
1446 trace_pnv_xive_ic_hw_trigger(addr, val);
1448 if (val & XIVE_TRIGGER_END) {
1449 val = cpu_to_be64(val);
1450 pnv_xive_end_notify(XIVE_ROUTER(xive), (XiveEAS *) &val);
1451 return;
1455 * Forward the source event notification directly to the Router.
1456 * The source interrupt number should already be correctly encoded
1457 * with the chip block id by the sending device (PHB, PSI).
1459 blk = XIVE_EAS_BLOCK(val);
1460 idx = XIVE_EAS_INDEX(val);
1462 xive_router_notify(XIVE_NOTIFIER(xive), XIVE_EAS(blk, idx),
1463 !!(val & XIVE_TRIGGER_PQ));
1466 static void pnv_xive_ic_notify_write(void *opaque, hwaddr addr, uint64_t val,
1467 unsigned size)
1469 PnvXive *xive = PNV_XIVE(opaque);
1471 /* VC: HW triggers */
1472 switch (addr) {
1473 case 0x000 ... 0x7FF:
1474 pnv_xive_ic_hw_trigger(opaque, addr, val);
1475 break;
1477 /* VC: Forwarded IRQs */
1478 case PNV_XIVE_FORWARD_IPI:
1479 case PNV_XIVE_FORWARD_HW:
1480 case PNV_XIVE_FORWARD_OS_ESC:
1481 case PNV_XIVE_FORWARD_HW_ESC:
1482 case PNV_XIVE_FORWARD_REDIS:
1483 /* TODO: forwarded IRQs. Should be like HW triggers */
1484 xive_error(xive, "IC: forwarded at @0x%"HWADDR_PRIx" IRQ 0x%"PRIx64,
1485 addr, val);
1486 break;
1488 /* VC syncs */
1489 case PNV_XIVE_SYNC_IPI:
1490 case PNV_XIVE_SYNC_HW:
1491 case PNV_XIVE_SYNC_OS_ESC:
1492 case PNV_XIVE_SYNC_HW_ESC:
1493 case PNV_XIVE_SYNC_REDIS:
1494 break;
1496 /* PC syncs */
1497 case PNV_XIVE_SYNC_PULL:
1498 case PNV_XIVE_SYNC_PUSH:
1499 case PNV_XIVE_SYNC_VPC:
1500 break;
1502 default:
1503 xive_error(xive, "IC: invalid notify write @%"HWADDR_PRIx, addr);
1507 static uint64_t pnv_xive_ic_notify_read(void *opaque, hwaddr addr,
1508 unsigned size)
1510 PnvXive *xive = PNV_XIVE(opaque);
1512 /* loads are invalid */
1513 xive_error(xive, "IC: invalid notify read @%"HWADDR_PRIx, addr);
1514 return -1;
1517 static const MemoryRegionOps pnv_xive_ic_notify_ops = {
1518 .read = pnv_xive_ic_notify_read,
1519 .write = pnv_xive_ic_notify_write,
1520 .endianness = DEVICE_BIG_ENDIAN,
1521 .valid = {
1522 .min_access_size = 8,
1523 .max_access_size = 8,
1525 .impl = {
1526 .min_access_size = 8,
1527 .max_access_size = 8,
1532 * IC - LSI MMIO handlers (not modeled)
1535 static void pnv_xive_ic_lsi_write(void *opaque, hwaddr addr,
1536 uint64_t val, unsigned size)
1538 PnvXive *xive = PNV_XIVE(opaque);
1540 xive_error(xive, "IC: LSI invalid write @%"HWADDR_PRIx, addr);
1543 static uint64_t pnv_xive_ic_lsi_read(void *opaque, hwaddr addr, unsigned size)
1545 PnvXive *xive = PNV_XIVE(opaque);
1547 xive_error(xive, "IC: LSI invalid read @%"HWADDR_PRIx, addr);
1548 return -1;
1551 static const MemoryRegionOps pnv_xive_ic_lsi_ops = {
1552 .read = pnv_xive_ic_lsi_read,
1553 .write = pnv_xive_ic_lsi_write,
1554 .endianness = DEVICE_BIG_ENDIAN,
1555 .valid = {
1556 .min_access_size = 8,
1557 .max_access_size = 8,
1559 .impl = {
1560 .min_access_size = 8,
1561 .max_access_size = 8,
1566 * IC - Indirect TIMA MMIO handlers
1570 * When the TIMA is accessed from the indirect page, the thread id of
1571 * the target CPU is configured in the PC_TCTXT_INDIR0 register before
1572 * use. This is used for resets and for debug purpose also.
1574 static XiveTCTX *pnv_xive_get_indirect_tctx(PnvXive *xive)
1576 PnvChip *chip = xive->chip;
1577 uint64_t tctxt_indir = xive->regs[PC_TCTXT_INDIR0 >> 3];
1578 PowerPCCPU *cpu = NULL;
1579 int pir;
1581 if (!(tctxt_indir & PC_TCTXT_INDIR_VALID)) {
1582 xive_error(xive, "IC: no indirect TIMA access in progress");
1583 return NULL;
1586 pir = (chip->chip_id << 8) | GETFIELD(PC_TCTXT_INDIR_THRDID, tctxt_indir);
1587 cpu = pnv_chip_find_cpu(chip, pir);
1588 if (!cpu) {
1589 xive_error(xive, "IC: invalid PIR %x for indirect access", pir);
1590 return NULL;
1593 /* Check that HW thread is XIVE enabled */
1594 if (!pnv_xive_is_cpu_enabled(xive, cpu)) {
1595 xive_error(xive, "IC: CPU %x is not enabled", pir);
1598 return XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1601 static void xive_tm_indirect_write(void *opaque, hwaddr offset,
1602 uint64_t value, unsigned size)
1604 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1606 xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
1609 static uint64_t xive_tm_indirect_read(void *opaque, hwaddr offset,
1610 unsigned size)
1612 XiveTCTX *tctx = pnv_xive_get_indirect_tctx(PNV_XIVE(opaque));
1614 return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
1617 static const MemoryRegionOps xive_tm_indirect_ops = {
1618 .read = xive_tm_indirect_read,
1619 .write = xive_tm_indirect_write,
1620 .endianness = DEVICE_BIG_ENDIAN,
1621 .valid = {
1622 .min_access_size = 1,
1623 .max_access_size = 8,
1625 .impl = {
1626 .min_access_size = 1,
1627 .max_access_size = 8,
1631 static void pnv_xive_tm_write(void *opaque, hwaddr offset,
1632 uint64_t value, unsigned size)
1634 PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1635 PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1636 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1638 xive_tctx_tm_write(XIVE_PRESENTER(xive), tctx, offset, value, size);
1641 static uint64_t pnv_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
1643 PowerPCCPU *cpu = POWERPC_CPU(current_cpu);
1644 PnvXive *xive = pnv_xive_tm_get_xive(cpu);
1645 XiveTCTX *tctx = XIVE_TCTX(pnv_cpu_state(cpu)->intc);
1647 return xive_tctx_tm_read(XIVE_PRESENTER(xive), tctx, offset, size);
1650 const MemoryRegionOps pnv_xive_tm_ops = {
1651 .read = pnv_xive_tm_read,
1652 .write = pnv_xive_tm_write,
1653 .endianness = DEVICE_BIG_ENDIAN,
1654 .valid = {
1655 .min_access_size = 1,
1656 .max_access_size = 8,
1658 .impl = {
1659 .min_access_size = 1,
1660 .max_access_size = 8,
1665 * Interrupt controller XSCOM region.
1667 static uint64_t pnv_xive_xscom_read(void *opaque, hwaddr addr, unsigned size)
1669 switch (addr >> 3) {
1670 case X_VC_EQC_CONFIG:
1671 /* FIXME (skiboot): This is the only XSCOM load. Bizarre. */
1672 return VC_EQC_SYNC_MASK;
1673 default:
1674 return pnv_xive_ic_reg_read(opaque, addr, size);
1678 static void pnv_xive_xscom_write(void *opaque, hwaddr addr,
1679 uint64_t val, unsigned size)
1681 pnv_xive_ic_reg_write(opaque, addr, val, size);
1684 static const MemoryRegionOps pnv_xive_xscom_ops = {
1685 .read = pnv_xive_xscom_read,
1686 .write = pnv_xive_xscom_write,
1687 .endianness = DEVICE_BIG_ENDIAN,
1688 .valid = {
1689 .min_access_size = 8,
1690 .max_access_size = 8,
1692 .impl = {
1693 .min_access_size = 8,
1694 .max_access_size = 8,
1699 * Virtualization Controller MMIO region containing the IPI and END ESB pages
1701 static uint64_t pnv_xive_vc_read(void *opaque, hwaddr offset,
1702 unsigned size)
1704 PnvXive *xive = PNV_XIVE(opaque);
1705 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1706 uint64_t edt_type = 0;
1707 uint64_t edt_offset;
1708 MemTxResult result;
1709 AddressSpace *edt_as = NULL;
1710 uint64_t ret = -1;
1712 if (edt_index < XIVE_TABLE_EDT_MAX) {
1713 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1716 switch (edt_type) {
1717 case CQ_TDR_EDT_IPI:
1718 edt_as = &xive->ipi_as;
1719 break;
1720 case CQ_TDR_EDT_EQ:
1721 edt_as = &xive->end_as;
1722 break;
1723 default:
1724 xive_error(xive, "VC: invalid EDT type for read @%"HWADDR_PRIx, offset);
1725 return -1;
1728 /* Remap the offset for the targeted address space */
1729 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1731 ret = address_space_ldq(edt_as, edt_offset, MEMTXATTRS_UNSPECIFIED,
1732 &result);
1734 if (result != MEMTX_OK) {
1735 xive_error(xive, "VC: %s read failed at @0x%"HWADDR_PRIx " -> @0x%"
1736 HWADDR_PRIx, edt_type == CQ_TDR_EDT_IPI ? "IPI" : "END",
1737 offset, edt_offset);
1738 return -1;
1741 return ret;
1744 static void pnv_xive_vc_write(void *opaque, hwaddr offset,
1745 uint64_t val, unsigned size)
1747 PnvXive *xive = PNV_XIVE(opaque);
1748 uint64_t edt_index = offset >> pnv_xive_edt_shift(xive);
1749 uint64_t edt_type = 0;
1750 uint64_t edt_offset;
1751 MemTxResult result;
1752 AddressSpace *edt_as = NULL;
1754 if (edt_index < XIVE_TABLE_EDT_MAX) {
1755 edt_type = GETFIELD(CQ_TDR_EDT_TYPE, xive->edt[edt_index]);
1758 switch (edt_type) {
1759 case CQ_TDR_EDT_IPI:
1760 edt_as = &xive->ipi_as;
1761 break;
1762 case CQ_TDR_EDT_EQ:
1763 edt_as = &xive->end_as;
1764 break;
1765 default:
1766 xive_error(xive, "VC: invalid EDT type for write @%"HWADDR_PRIx,
1767 offset);
1768 return;
1771 /* Remap the offset for the targeted address space */
1772 edt_offset = pnv_xive_edt_offset(xive, offset, edt_type);
1774 address_space_stq(edt_as, edt_offset, val, MEMTXATTRS_UNSPECIFIED, &result);
1775 if (result != MEMTX_OK) {
1776 xive_error(xive, "VC: write failed at @0x%"HWADDR_PRIx, edt_offset);
1780 static const MemoryRegionOps pnv_xive_vc_ops = {
1781 .read = pnv_xive_vc_read,
1782 .write = pnv_xive_vc_write,
1783 .endianness = DEVICE_BIG_ENDIAN,
1784 .valid = {
1785 .min_access_size = 8,
1786 .max_access_size = 8,
1788 .impl = {
1789 .min_access_size = 8,
1790 .max_access_size = 8,
1795 * Presenter Controller MMIO region. Points to the NVT sets.
1797 * HW implements all possible mem ops to the underlying NVT structure
1798 * but QEMU does not need to be so precise. The model implementation
1799 * simply returns the RAM address of the NVT structure which is then
1800 * used by pnv_xive_vst_write/read to perform the RAM operation.
1802 static uint64_t pnv_xive_pc_read(void *opaque, hwaddr offset, unsigned size)
1804 PnvXive *xive = PNV_XIVE(opaque);
1805 uint32_t nvt_idx = offset >> xive->pc_shift;
1806 uint8_t blk = pnv_xive_block_id(xive); /* TODO: VDT -> block xlate */
1808 return pnv_xive_vst_addr(xive, VST_TSEL_VPDT, blk, nvt_idx);
1811 static void pnv_xive_pc_write(void *opaque, hwaddr addr,
1812 uint64_t value, unsigned size)
1814 PnvXive *xive = PNV_XIVE(opaque);
1816 xive_error(xive, "PC: invalid write to VC @%"HWADDR_PRIx, addr);
1819 static const MemoryRegionOps pnv_xive_pc_ops = {
1820 .read = pnv_xive_pc_read,
1821 .write = pnv_xive_pc_write,
1822 .endianness = DEVICE_BIG_ENDIAN,
1823 .valid = {
1824 .min_access_size = 8,
1825 .max_access_size = 8,
1827 .impl = {
1828 .min_access_size = 8,
1829 .max_access_size = 8,
1833 static void xive_nvt_pic_print_info(XiveNVT *nvt, uint32_t nvt_idx,
1834 Monitor *mon)
1836 uint8_t eq_blk = xive_get_field32(NVT_W1_EQ_BLOCK, nvt->w1);
1837 uint32_t eq_idx = xive_get_field32(NVT_W1_EQ_INDEX, nvt->w1);
1839 if (!xive_nvt_is_valid(nvt)) {
1840 return;
1843 monitor_printf(mon, " %08x end:%02x/%04x IPB:%02x\n", nvt_idx,
1844 eq_blk, eq_idx,
1845 xive_get_field32(NVT_W4_IPB, nvt->w4));
1848 void pnv_xive_pic_print_info(PnvXive *xive, Monitor *mon)
1850 XiveRouter *xrtr = XIVE_ROUTER(xive);
1851 uint8_t blk = pnv_xive_block_id(xive);
1852 uint8_t chip_id = xive->chip->chip_id;
1853 uint32_t srcno0 = XIVE_EAS(blk, 0);
1854 uint32_t nr_ipis = pnv_xive_nr_ipis(xive, blk);
1855 XiveEAS eas;
1856 XiveEND end;
1857 XiveNVT nvt;
1858 int i;
1859 uint64_t xive_nvt_per_subpage;
1861 monitor_printf(mon, "XIVE[%x] #%d Source %08x .. %08x\n", chip_id, blk,
1862 srcno0, srcno0 + nr_ipis - 1);
1863 xive_source_pic_print_info(&xive->ipi_source, srcno0, mon);
1865 monitor_printf(mon, "XIVE[%x] #%d EAT %08x .. %08x\n", chip_id, blk,
1866 srcno0, srcno0 + nr_ipis - 1);
1867 for (i = 0; i < nr_ipis; i++) {
1868 if (xive_router_get_eas(xrtr, blk, i, &eas)) {
1869 break;
1871 if (!xive_eas_is_masked(&eas)) {
1872 xive_eas_pic_print_info(&eas, i, mon);
1876 monitor_printf(mon, "XIVE[%x] #%d ENDT\n", chip_id, blk);
1877 i = 0;
1878 while (!xive_router_get_end(xrtr, blk, i, &end)) {
1879 xive_end_pic_print_info(&end, i++, mon);
1882 monitor_printf(mon, "XIVE[%x] #%d END Escalation EAT\n", chip_id, blk);
1883 i = 0;
1884 while (!xive_router_get_end(xrtr, blk, i, &end)) {
1885 xive_end_eas_pic_print_info(&end, i++, mon);
1888 monitor_printf(mon, "XIVE[%x] #%d NVTT %08x .. %08x\n", chip_id, blk,
1889 0, XIVE_NVT_COUNT - 1);
1890 xive_nvt_per_subpage = pnv_xive_vst_per_subpage(xive, VST_TSEL_VPDT);
1891 for (i = 0; i < XIVE_NVT_COUNT; i += xive_nvt_per_subpage) {
1892 while (!xive_router_get_nvt(xrtr, blk, i, &nvt)) {
1893 xive_nvt_pic_print_info(&nvt, i++, mon);
1898 static void pnv_xive_reset(void *dev)
1900 PnvXive *xive = PNV_XIVE(dev);
1901 XiveSource *xsrc = &xive->ipi_source;
1902 XiveENDSource *end_xsrc = &xive->end_source;
1904 /* Default page size (Should be changed at runtime to 64k) */
1905 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1907 /* Clear subregions */
1908 if (memory_region_is_mapped(&xsrc->esb_mmio)) {
1909 memory_region_del_subregion(&xive->ipi_edt_mmio, &xsrc->esb_mmio);
1912 if (memory_region_is_mapped(&xive->ipi_edt_mmio)) {
1913 memory_region_del_subregion(&xive->ipi_mmio, &xive->ipi_edt_mmio);
1916 if (memory_region_is_mapped(&end_xsrc->esb_mmio)) {
1917 memory_region_del_subregion(&xive->end_edt_mmio, &end_xsrc->esb_mmio);
1920 if (memory_region_is_mapped(&xive->end_edt_mmio)) {
1921 memory_region_del_subregion(&xive->end_mmio, &xive->end_edt_mmio);
1925 static void pnv_xive_init(Object *obj)
1927 PnvXive *xive = PNV_XIVE(obj);
1929 object_initialize_child(obj, "ipi_source", &xive->ipi_source,
1930 TYPE_XIVE_SOURCE);
1931 object_initialize_child(obj, "end_source", &xive->end_source,
1932 TYPE_XIVE_END_SOURCE);
1936 * Maximum number of IRQs and ENDs supported by HW
1938 #define PNV_XIVE_NR_IRQS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1939 #define PNV_XIVE_NR_ENDS (PNV9_XIVE_VC_SIZE / (1ull << XIVE_ESB_64K_2PAGE))
1941 static void pnv_xive_realize(DeviceState *dev, Error **errp)
1943 PnvXive *xive = PNV_XIVE(dev);
1944 PnvXiveClass *pxc = PNV_XIVE_GET_CLASS(dev);
1945 XiveSource *xsrc = &xive->ipi_source;
1946 XiveENDSource *end_xsrc = &xive->end_source;
1947 Error *local_err = NULL;
1949 pxc->parent_realize(dev, &local_err);
1950 if (local_err) {
1951 error_propagate(errp, local_err);
1952 return;
1955 assert(xive->chip);
1958 * The XiveSource and XiveENDSource objects are realized with the
1959 * maximum allowed HW configuration. The ESB MMIO regions will be
1960 * resized dynamically when the controller is configured by the FW
1961 * to limit accesses to resources not provisioned.
1963 object_property_set_int(OBJECT(xsrc), "nr-irqs", PNV_XIVE_NR_IRQS,
1964 &error_fatal);
1965 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
1966 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
1967 return;
1970 object_property_set_int(OBJECT(end_xsrc), "nr-ends", PNV_XIVE_NR_ENDS,
1971 &error_fatal);
1972 object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
1973 &error_abort);
1974 if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
1975 return;
1978 /* Default page size. Generally changed at runtime to 64k */
1979 xive->ic_shift = xive->vc_shift = xive->pc_shift = 12;
1981 /* XSCOM region, used for initial configuration of the BARs */
1982 memory_region_init_io(&xive->xscom_regs, OBJECT(dev), &pnv_xive_xscom_ops,
1983 xive, "xscom-xive", PNV9_XSCOM_XIVE_SIZE << 3);
1985 /* Interrupt controller MMIO regions */
1986 memory_region_init(&xive->ic_mmio, OBJECT(dev), "xive-ic",
1987 PNV9_XIVE_IC_SIZE);
1989 memory_region_init_io(&xive->ic_reg_mmio, OBJECT(dev), &pnv_xive_ic_reg_ops,
1990 xive, "xive-ic-reg", 1 << xive->ic_shift);
1991 memory_region_init_io(&xive->ic_notify_mmio, OBJECT(dev),
1992 &pnv_xive_ic_notify_ops,
1993 xive, "xive-ic-notify", 1 << xive->ic_shift);
1994 xive->ic_notify_mmio.disable_reentrancy_guard = true;
1996 /* The Pervasive LSI trigger and EOI pages (not modeled) */
1997 memory_region_init_io(&xive->ic_lsi_mmio, OBJECT(dev), &pnv_xive_ic_lsi_ops,
1998 xive, "xive-ic-lsi", 2 << xive->ic_shift);
2000 /* Thread Interrupt Management Area (Indirect) */
2001 memory_region_init_io(&xive->tm_indirect_mmio, OBJECT(dev),
2002 &xive_tm_indirect_ops,
2003 xive, "xive-tima-indirect", PNV9_XIVE_TM_SIZE);
2005 * Overall Virtualization Controller MMIO region containing the
2006 * IPI ESB pages and END ESB pages. The layout is defined by the
2007 * EDT "Domain table" and the accesses are dispatched using
2008 * address spaces for each.
2010 memory_region_init_io(&xive->vc_mmio, OBJECT(xive), &pnv_xive_vc_ops, xive,
2011 "xive-vc", PNV9_XIVE_VC_SIZE);
2013 memory_region_init(&xive->ipi_mmio, OBJECT(xive), "xive-vc-ipi",
2014 PNV9_XIVE_VC_SIZE);
2015 address_space_init(&xive->ipi_as, &xive->ipi_mmio, "xive-vc-ipi");
2016 memory_region_init(&xive->end_mmio, OBJECT(xive), "xive-vc-end",
2017 PNV9_XIVE_VC_SIZE);
2018 address_space_init(&xive->end_as, &xive->end_mmio, "xive-vc-end");
2021 * The MMIO windows exposing the IPI ESBs and the END ESBs in the
2022 * VC region. Their size is configured by the FW in the EDT table.
2024 memory_region_init(&xive->ipi_edt_mmio, OBJECT(xive), "xive-vc-ipi-edt", 0);
2025 memory_region_init(&xive->end_edt_mmio, OBJECT(xive), "xive-vc-end-edt", 0);
2027 /* Presenter Controller MMIO region (not modeled) */
2028 memory_region_init_io(&xive->pc_mmio, OBJECT(xive), &pnv_xive_pc_ops, xive,
2029 "xive-pc", PNV9_XIVE_PC_SIZE);
2030 xive->pc_mmio.disable_reentrancy_guard = true;
2032 /* Thread Interrupt Management Area (Direct) */
2033 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &pnv_xive_tm_ops,
2034 xive, "xive-tima", PNV9_XIVE_TM_SIZE);
2036 qemu_register_reset(pnv_xive_reset, dev);
2039 static int pnv_xive_dt_xscom(PnvXScomInterface *dev, void *fdt,
2040 int xscom_offset)
2042 const char compat[] = "ibm,power9-xive-x";
2043 char *name;
2044 int offset;
2045 uint32_t lpc_pcba = PNV9_XSCOM_XIVE_BASE;
2046 uint32_t reg[] = {
2047 cpu_to_be32(lpc_pcba),
2048 cpu_to_be32(PNV9_XSCOM_XIVE_SIZE)
2051 name = g_strdup_printf("xive@%x", lpc_pcba);
2052 offset = fdt_add_subnode(fdt, xscom_offset, name);
2053 _FDT(offset);
2054 g_free(name);
2056 _FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
2057 _FDT((fdt_setprop(fdt, offset, "compatible", compat,
2058 sizeof(compat))));
2059 return 0;
2062 static Property pnv_xive_properties[] = {
2063 DEFINE_PROP_UINT64("ic-bar", PnvXive, ic_base, 0),
2064 DEFINE_PROP_UINT64("vc-bar", PnvXive, vc_base, 0),
2065 DEFINE_PROP_UINT64("pc-bar", PnvXive, pc_base, 0),
2066 DEFINE_PROP_UINT64("tm-bar", PnvXive, tm_base, 0),
2067 /* The PnvChip id identifies the XIVE interrupt controller. */
2068 DEFINE_PROP_LINK("chip", PnvXive, chip, TYPE_PNV_CHIP, PnvChip *),
2069 DEFINE_PROP_END_OF_LIST(),
2072 static void pnv_xive_class_init(ObjectClass *klass, void *data)
2074 DeviceClass *dc = DEVICE_CLASS(klass);
2075 PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
2076 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
2077 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
2078 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
2079 PnvXiveClass *pxc = PNV_XIVE_CLASS(klass);
2081 xdc->dt_xscom = pnv_xive_dt_xscom;
2083 dc->desc = "PowerNV XIVE Interrupt Controller";
2084 device_class_set_parent_realize(dc, pnv_xive_realize, &pxc->parent_realize);
2085 dc->realize = pnv_xive_realize;
2086 device_class_set_props(dc, pnv_xive_properties);
2088 xrc->get_eas = pnv_xive_get_eas;
2089 xrc->get_pq = pnv_xive_get_pq;
2090 xrc->set_pq = pnv_xive_set_pq;
2091 xrc->get_end = pnv_xive_get_end;
2092 xrc->write_end = pnv_xive_write_end;
2093 xrc->get_nvt = pnv_xive_get_nvt;
2094 xrc->write_nvt = pnv_xive_write_nvt;
2095 xrc->get_block_id = pnv_xive_get_block_id;
2096 xrc->end_notify = pnv_xive_end_notify;
2098 xnc->notify = pnv_xive_notify;
2099 xpc->match_nvt = pnv_xive_match_nvt;
2100 xpc->get_config = pnv_xive_presenter_get_config;
2103 static const TypeInfo pnv_xive_info = {
2104 .name = TYPE_PNV_XIVE,
2105 .parent = TYPE_XIVE_ROUTER,
2106 .instance_init = pnv_xive_init,
2107 .instance_size = sizeof(PnvXive),
2108 .class_init = pnv_xive_class_init,
2109 .class_size = sizeof(PnvXiveClass),
2110 .interfaces = (InterfaceInfo[]) {
2111 { TYPE_PNV_XSCOM_INTERFACE },
2116 static void pnv_xive_register_types(void)
2118 type_register_static(&pnv_xive_info);
2121 type_init(pnv_xive_register_types)