4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "qemu/error-report.h"
29 #include "hw/pci/msi.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "qemu/bswap.h"
34 #include "exec/memory.h"
35 #include "exec/ram_addr.h"
36 #include "exec/address-spaces.h"
37 #include "qemu/event_notifier.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
45 #include <sys/eventfd.h>
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #define DPRINTF(fmt, ...) \
61 #define KVM_MSI_HASHTAB_SIZE 256
65 AccelState parent_obj
;
71 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
72 bool coalesced_flush_in_progress
;
73 int broken_set_mem_region
;
75 int robust_singlestep
;
77 #ifdef KVM_CAP_SET_GUEST_DEBUG
78 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
84 /* The man page (and posix) say ioctl numbers are signed int, but
85 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
86 * unsigned, and treating them as signed here can break things */
87 unsigned irq_set_ioctl
;
88 unsigned int sigmask_len
;
90 #ifdef KVM_CAP_IRQ_ROUTING
91 struct kvm_irq_routing
*irq_routes
;
92 int nr_allocated_irq_routes
;
93 uint32_t *used_gsi_bitmap
;
94 unsigned int gsi_count
;
95 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
98 KVMMemoryListener memory_listener
;
102 bool kvm_kernel_irqchip
;
103 bool kvm_async_interrupts_allowed
;
104 bool kvm_halt_in_kernel_allowed
;
105 bool kvm_eventfds_allowed
;
106 bool kvm_irqfds_allowed
;
107 bool kvm_resamplefds_allowed
;
108 bool kvm_msi_via_irqfd_allowed
;
109 bool kvm_gsi_routing_allowed
;
110 bool kvm_gsi_direct_mapping
;
112 bool kvm_readonly_mem_allowed
;
113 bool kvm_vm_attributes_allowed
;
115 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
116 KVM_CAP_INFO(USER_MEMORY
),
117 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
121 static KVMSlot
*kvm_get_free_slot(KVMMemoryListener
*kml
)
123 KVMState
*s
= kvm_state
;
126 for (i
= 0; i
< s
->nr_slots
; i
++) {
127 if (kml
->slots
[i
].memory_size
== 0) {
128 return &kml
->slots
[i
];
135 bool kvm_has_free_slot(MachineState
*ms
)
137 KVMState
*s
= KVM_STATE(ms
->accelerator
);
139 return kvm_get_free_slot(&s
->memory_listener
);
142 static KVMSlot
*kvm_alloc_slot(KVMMemoryListener
*kml
)
144 KVMSlot
*slot
= kvm_get_free_slot(kml
);
150 fprintf(stderr
, "%s: no free slot available\n", __func__
);
154 static KVMSlot
*kvm_lookup_matching_slot(KVMMemoryListener
*kml
,
158 KVMState
*s
= kvm_state
;
161 for (i
= 0; i
< s
->nr_slots
; i
++) {
162 KVMSlot
*mem
= &kml
->slots
[i
];
164 if (start_addr
== mem
->start_addr
&&
165 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
174 * Find overlapping slot with lowest start address
176 static KVMSlot
*kvm_lookup_overlapping_slot(KVMMemoryListener
*kml
,
180 KVMState
*s
= kvm_state
;
181 KVMSlot
*found
= NULL
;
184 for (i
= 0; i
< s
->nr_slots
; i
++) {
185 KVMSlot
*mem
= &kml
->slots
[i
];
187 if (mem
->memory_size
== 0 ||
188 (found
&& found
->start_addr
< mem
->start_addr
)) {
192 if (end_addr
> mem
->start_addr
&&
193 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
201 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
204 KVMMemoryListener
*kml
= &s
->memory_listener
;
207 for (i
= 0; i
< s
->nr_slots
; i
++) {
208 KVMSlot
*mem
= &kml
->slots
[i
];
210 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
211 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
219 static int kvm_set_user_memory_region(KVMMemoryListener
*kml
, KVMSlot
*slot
)
221 KVMState
*s
= kvm_state
;
222 struct kvm_userspace_memory_region mem
;
224 mem
.slot
= slot
->slot
| (kml
->as_id
<< 16);
225 mem
.guest_phys_addr
= slot
->start_addr
;
226 mem
.userspace_addr
= (unsigned long)slot
->ram
;
227 mem
.flags
= slot
->flags
;
229 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
230 /* Set the slot size to 0 before setting the slot to the desired
231 * value. This is needed based on KVM commit 75d61fbc. */
233 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
235 mem
.memory_size
= slot
->memory_size
;
236 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
239 int kvm_init_vcpu(CPUState
*cpu
)
241 KVMState
*s
= kvm_state
;
245 DPRINTF("kvm_init_vcpu\n");
247 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
249 DPRINTF("kvm_create_vcpu failed\n");
255 cpu
->kvm_vcpu_dirty
= true;
257 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
260 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
264 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
266 if (cpu
->kvm_run
== MAP_FAILED
) {
268 DPRINTF("mmap'ing vcpu state failed\n");
272 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
273 s
->coalesced_mmio_ring
=
274 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
277 ret
= kvm_arch_init_vcpu(cpu
);
283 * dirty pages logging control
286 static int kvm_mem_flags(MemoryRegion
*mr
)
288 bool readonly
= mr
->readonly
|| memory_region_is_romd(mr
);
291 if (memory_region_get_dirty_log_mask(mr
) != 0) {
292 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
294 if (readonly
&& kvm_readonly_mem_allowed
) {
295 flags
|= KVM_MEM_READONLY
;
300 static int kvm_slot_update_flags(KVMMemoryListener
*kml
, KVMSlot
*mem
,
305 old_flags
= mem
->flags
;
306 mem
->flags
= kvm_mem_flags(mr
);
308 /* If nothing changed effectively, no need to issue ioctl */
309 if (mem
->flags
== old_flags
) {
313 return kvm_set_user_memory_region(kml
, mem
);
316 static int kvm_section_update_flags(KVMMemoryListener
*kml
,
317 MemoryRegionSection
*section
)
319 hwaddr phys_addr
= section
->offset_within_address_space
;
320 ram_addr_t size
= int128_get64(section
->size
);
321 KVMSlot
*mem
= kvm_lookup_matching_slot(kml
, phys_addr
, phys_addr
+ size
);
326 return kvm_slot_update_flags(kml
, mem
, section
->mr
);
330 static void kvm_log_start(MemoryListener
*listener
,
331 MemoryRegionSection
*section
,
334 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
341 r
= kvm_section_update_flags(kml
, section
);
347 static void kvm_log_stop(MemoryListener
*listener
,
348 MemoryRegionSection
*section
,
351 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
358 r
= kvm_section_update_flags(kml
, section
);
364 /* get kvm's dirty pages bitmap and update qemu's */
365 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
366 unsigned long *bitmap
)
368 ram_addr_t start
= section
->offset_within_region
+ section
->mr
->ram_addr
;
369 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
371 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
375 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
378 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
379 * This function updates qemu's dirty bitmap using
380 * memory_region_set_dirty(). This means all bits are set
383 * @start_add: start of logged region.
384 * @end_addr: end of logged region.
386 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener
*kml
,
387 MemoryRegionSection
*section
)
389 KVMState
*s
= kvm_state
;
390 unsigned long size
, allocated_size
= 0;
391 struct kvm_dirty_log d
= {};
394 hwaddr start_addr
= section
->offset_within_address_space
;
395 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
397 d
.dirty_bitmap
= NULL
;
398 while (start_addr
< end_addr
) {
399 mem
= kvm_lookup_overlapping_slot(kml
, start_addr
, end_addr
);
404 /* XXX bad kernel interface alert
405 * For dirty bitmap, kernel allocates array of size aligned to
406 * bits-per-long. But for case when the kernel is 64bits and
407 * the userspace is 32bits, userspace can't align to the same
408 * bits-per-long, since sizeof(long) is different between kernel
409 * and user space. This way, userspace will provide buffer which
410 * may be 4 bytes less than the kernel will use, resulting in
411 * userspace memory corruption (which is not detectable by valgrind
412 * too, in most cases).
413 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
414 * a hope that sizeof(long) wont become >8 any time soon.
416 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
417 /*HOST_LONG_BITS*/ 64) / 8;
418 if (!d
.dirty_bitmap
) {
419 d
.dirty_bitmap
= g_malloc(size
);
420 } else if (size
> allocated_size
) {
421 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
423 allocated_size
= size
;
424 memset(d
.dirty_bitmap
, 0, allocated_size
);
426 d
.slot
= mem
->slot
| (kml
->as_id
<< 16);
427 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
428 DPRINTF("ioctl failed %d\n", errno
);
433 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
434 start_addr
= mem
->start_addr
+ mem
->memory_size
;
436 g_free(d
.dirty_bitmap
);
441 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
442 MemoryRegionSection
*secion
,
443 hwaddr start
, hwaddr size
)
445 KVMState
*s
= kvm_state
;
447 if (s
->coalesced_mmio
) {
448 struct kvm_coalesced_mmio_zone zone
;
454 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
458 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
459 MemoryRegionSection
*secion
,
460 hwaddr start
, hwaddr size
)
462 KVMState
*s
= kvm_state
;
464 if (s
->coalesced_mmio
) {
465 struct kvm_coalesced_mmio_zone zone
;
471 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
475 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
479 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
487 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
491 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
493 /* VM wide version not implemented, use global one instead */
494 ret
= kvm_check_extension(s
, extension
);
500 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
502 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
503 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
504 * endianness, but the memory core hands them in target endianness.
505 * For example, PPC is always treated as big-endian even if running
506 * on KVM and on PPC64LE. Correct here.
520 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
521 bool assign
, uint32_t size
, bool datamatch
)
524 struct kvm_ioeventfd iofd
= {
525 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
532 if (!kvm_enabled()) {
537 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
540 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
543 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
552 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
553 bool assign
, uint32_t size
, bool datamatch
)
555 struct kvm_ioeventfd kick
= {
556 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
558 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
563 if (!kvm_enabled()) {
567 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
570 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
572 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
580 static int kvm_check_many_ioeventfds(void)
582 /* Userspace can use ioeventfd for io notification. This requires a host
583 * that supports eventfd(2) and an I/O thread; since eventfd does not
584 * support SIGIO it cannot interrupt the vcpu.
586 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
587 * can avoid creating too many ioeventfds.
589 #if defined(CONFIG_EVENTFD)
592 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
593 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
594 if (ioeventfds
[i
] < 0) {
597 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
599 close(ioeventfds
[i
]);
604 /* Decide whether many devices are supported or not */
605 ret
= i
== ARRAY_SIZE(ioeventfds
);
608 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
609 close(ioeventfds
[i
]);
617 static const KVMCapabilityInfo
*
618 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
621 if (!kvm_check_extension(s
, list
->value
)) {
629 static void kvm_set_phys_mem(KVMMemoryListener
*kml
,
630 MemoryRegionSection
*section
, bool add
)
632 KVMState
*s
= kvm_state
;
635 MemoryRegion
*mr
= section
->mr
;
636 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
637 hwaddr start_addr
= section
->offset_within_address_space
;
638 ram_addr_t size
= int128_get64(section
->size
);
642 /* kvm works in page size chunks, but the function may be called
643 with sub-page size and unaligned start address. Pad the start
644 address to next and truncate size to previous page boundary. */
645 delta
= qemu_real_host_page_size
- (start_addr
& ~qemu_real_host_page_mask
);
646 delta
&= ~qemu_real_host_page_mask
;
652 size
&= qemu_real_host_page_mask
;
653 if (!size
|| (start_addr
& ~qemu_real_host_page_mask
)) {
657 if (!memory_region_is_ram(mr
)) {
658 if (writeable
|| !kvm_readonly_mem_allowed
) {
660 } else if (!mr
->romd_mode
) {
661 /* If the memory device is not in romd_mode, then we actually want
662 * to remove the kvm memory slot so all accesses will trap. */
667 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
670 mem
= kvm_lookup_overlapping_slot(kml
, start_addr
, start_addr
+ size
);
675 if (add
&& start_addr
>= mem
->start_addr
&&
676 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
677 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
678 /* The new slot fits into the existing one and comes with
679 * identical parameters - update flags and done. */
680 kvm_slot_update_flags(kml
, mem
, mr
);
686 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
687 kvm_physical_sync_dirty_bitmap(kml
, section
);
690 /* unregister the overlapping slot */
691 mem
->memory_size
= 0;
692 err
= kvm_set_user_memory_region(kml
, mem
);
694 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
695 __func__
, strerror(-err
));
699 /* Workaround for older KVM versions: we can't join slots, even not by
700 * unregistering the previous ones and then registering the larger
701 * slot. We have to maintain the existing fragmentation. Sigh.
703 * This workaround assumes that the new slot starts at the same
704 * address as the first existing one. If not or if some overlapping
705 * slot comes around later, we will fail (not seen in practice so far)
706 * - and actually require a recent KVM version. */
707 if (s
->broken_set_mem_region
&&
708 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
709 mem
= kvm_alloc_slot(kml
);
710 mem
->memory_size
= old
.memory_size
;
711 mem
->start_addr
= old
.start_addr
;
713 mem
->flags
= kvm_mem_flags(mr
);
715 err
= kvm_set_user_memory_region(kml
, mem
);
717 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
722 start_addr
+= old
.memory_size
;
723 ram
+= old
.memory_size
;
724 size
-= old
.memory_size
;
728 /* register prefix slot */
729 if (old
.start_addr
< start_addr
) {
730 mem
= kvm_alloc_slot(kml
);
731 mem
->memory_size
= start_addr
- old
.start_addr
;
732 mem
->start_addr
= old
.start_addr
;
734 mem
->flags
= kvm_mem_flags(mr
);
736 err
= kvm_set_user_memory_region(kml
, mem
);
738 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
739 __func__
, strerror(-err
));
741 fprintf(stderr
, "%s: This is probably because your kernel's " \
742 "PAGE_SIZE is too big. Please try to use 4k " \
743 "PAGE_SIZE!\n", __func__
);
749 /* register suffix slot */
750 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
751 ram_addr_t size_delta
;
753 mem
= kvm_alloc_slot(kml
);
754 mem
->start_addr
= start_addr
+ size
;
755 size_delta
= mem
->start_addr
- old
.start_addr
;
756 mem
->memory_size
= old
.memory_size
- size_delta
;
757 mem
->ram
= old
.ram
+ size_delta
;
758 mem
->flags
= kvm_mem_flags(mr
);
760 err
= kvm_set_user_memory_region(kml
, mem
);
762 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
763 __func__
, strerror(-err
));
769 /* in case the KVM bug workaround already "consumed" the new slot */
776 mem
= kvm_alloc_slot(kml
);
777 mem
->memory_size
= size
;
778 mem
->start_addr
= start_addr
;
780 mem
->flags
= kvm_mem_flags(mr
);
782 err
= kvm_set_user_memory_region(kml
, mem
);
784 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
790 static void kvm_region_add(MemoryListener
*listener
,
791 MemoryRegionSection
*section
)
793 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
795 memory_region_ref(section
->mr
);
796 kvm_set_phys_mem(kml
, section
, true);
799 static void kvm_region_del(MemoryListener
*listener
,
800 MemoryRegionSection
*section
)
802 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
804 kvm_set_phys_mem(kml
, section
, false);
805 memory_region_unref(section
->mr
);
808 static void kvm_log_sync(MemoryListener
*listener
,
809 MemoryRegionSection
*section
)
811 KVMMemoryListener
*kml
= container_of(listener
, KVMMemoryListener
, listener
);
814 r
= kvm_physical_sync_dirty_bitmap(kml
, section
);
820 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
821 MemoryRegionSection
*section
,
822 bool match_data
, uint64_t data
,
825 int fd
= event_notifier_get_fd(e
);
828 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
829 data
, true, int128_get64(section
->size
),
832 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
833 __func__
, strerror(-r
));
838 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
839 MemoryRegionSection
*section
,
840 bool match_data
, uint64_t data
,
843 int fd
= event_notifier_get_fd(e
);
846 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
847 data
, false, int128_get64(section
->size
),
854 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
855 MemoryRegionSection
*section
,
856 bool match_data
, uint64_t data
,
859 int fd
= event_notifier_get_fd(e
);
862 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
863 data
, true, int128_get64(section
->size
),
866 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
867 __func__
, strerror(-r
));
872 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
873 MemoryRegionSection
*section
,
874 bool match_data
, uint64_t data
,
878 int fd
= event_notifier_get_fd(e
);
881 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
882 data
, false, int128_get64(section
->size
),
889 void kvm_memory_listener_register(KVMState
*s
, KVMMemoryListener
*kml
,
890 AddressSpace
*as
, int as_id
)
894 kml
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
897 for (i
= 0; i
< s
->nr_slots
; i
++) {
898 kml
->slots
[i
].slot
= i
;
901 kml
->listener
.region_add
= kvm_region_add
;
902 kml
->listener
.region_del
= kvm_region_del
;
903 kml
->listener
.log_start
= kvm_log_start
;
904 kml
->listener
.log_stop
= kvm_log_stop
;
905 kml
->listener
.log_sync
= kvm_log_sync
;
906 kml
->listener
.priority
= 10;
908 memory_listener_register(&kml
->listener
, as
);
911 static MemoryListener kvm_io_listener
= {
912 .eventfd_add
= kvm_io_ioeventfd_add
,
913 .eventfd_del
= kvm_io_ioeventfd_del
,
917 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
919 cpu
->interrupt_request
|= mask
;
921 if (!qemu_cpu_is_self(cpu
)) {
926 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
928 struct kvm_irq_level event
;
931 assert(kvm_async_interrupts_enabled());
935 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
937 perror("kvm_set_irq");
941 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
944 #ifdef KVM_CAP_IRQ_ROUTING
945 typedef struct KVMMSIRoute
{
946 struct kvm_irq_routing_entry kroute
;
947 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
950 static void set_gsi(KVMState
*s
, unsigned int gsi
)
952 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
955 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
957 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
960 void kvm_init_irq_routing(KVMState
*s
)
964 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
966 unsigned int gsi_bits
, i
;
968 /* Round up so we can search ints using ffs */
969 gsi_bits
= ALIGN(gsi_count
, 32);
970 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
971 s
->gsi_count
= gsi_count
;
973 /* Mark any over-allocated bits as already in use */
974 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
979 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
980 s
->nr_allocated_irq_routes
= 0;
982 if (!s
->direct_msi
) {
983 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
984 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
988 kvm_arch_init_irq_routing(s
);
991 void kvm_irqchip_commit_routes(KVMState
*s
)
995 s
->irq_routes
->flags
= 0;
996 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1000 static void kvm_add_routing_entry(KVMState
*s
,
1001 struct kvm_irq_routing_entry
*entry
)
1003 struct kvm_irq_routing_entry
*new;
1006 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1007 n
= s
->nr_allocated_irq_routes
* 2;
1011 size
= sizeof(struct kvm_irq_routing
);
1012 size
+= n
* sizeof(*new);
1013 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1014 s
->nr_allocated_irq_routes
= n
;
1016 n
= s
->irq_routes
->nr
++;
1017 new = &s
->irq_routes
->entries
[n
];
1021 set_gsi(s
, entry
->gsi
);
1024 static int kvm_update_routing_entry(KVMState
*s
,
1025 struct kvm_irq_routing_entry
*new_entry
)
1027 struct kvm_irq_routing_entry
*entry
;
1030 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1031 entry
= &s
->irq_routes
->entries
[n
];
1032 if (entry
->gsi
!= new_entry
->gsi
) {
1036 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1040 *entry
= *new_entry
;
1042 kvm_irqchip_commit_routes(s
);
1050 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1052 struct kvm_irq_routing_entry e
= {};
1054 assert(pin
< s
->gsi_count
);
1057 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1059 e
.u
.irqchip
.irqchip
= irqchip
;
1060 e
.u
.irqchip
.pin
= pin
;
1061 kvm_add_routing_entry(s
, &e
);
1064 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1066 struct kvm_irq_routing_entry
*e
;
1069 if (kvm_gsi_direct_mapping()) {
1073 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1074 e
= &s
->irq_routes
->entries
[i
];
1075 if (e
->gsi
== virq
) {
1076 s
->irq_routes
->nr
--;
1077 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1083 static unsigned int kvm_hash_msi(uint32_t data
)
1085 /* This is optimized for IA32 MSI layout. However, no other arch shall
1086 * repeat the mistake of not providing a direct MSI injection API. */
1090 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1092 KVMMSIRoute
*route
, *next
;
1095 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1096 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1097 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1098 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1104 static int kvm_irqchip_get_virq(KVMState
*s
)
1106 uint32_t *word
= s
->used_gsi_bitmap
;
1107 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1111 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1112 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1113 * number can succeed even though a new route entry cannot be added.
1114 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1116 if (!s
->direct_msi
&& s
->irq_routes
->nr
== s
->gsi_count
) {
1117 kvm_flush_dynamic_msi_routes(s
);
1120 /* Return the lowest unused GSI in the bitmap */
1121 for (i
= 0; i
< max_words
; i
++) {
1122 zeroes
= ctz32(~word
[i
]);
1127 return zeroes
+ i
* 32;
1133 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1135 unsigned int hash
= kvm_hash_msi(msg
.data
);
1138 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1139 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1140 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1141 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1148 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1153 if (s
->direct_msi
) {
1154 msi
.address_lo
= (uint32_t)msg
.address
;
1155 msi
.address_hi
= msg
.address
>> 32;
1156 msi
.data
= le32_to_cpu(msg
.data
);
1158 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1160 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1163 route
= kvm_lookup_msi_route(s
, msg
);
1167 virq
= kvm_irqchip_get_virq(s
);
1172 route
= g_malloc0(sizeof(KVMMSIRoute
));
1173 route
->kroute
.gsi
= virq
;
1174 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1175 route
->kroute
.flags
= 0;
1176 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1177 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1178 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1180 kvm_add_routing_entry(s
, &route
->kroute
);
1181 kvm_irqchip_commit_routes(s
);
1183 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1187 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1189 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1192 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1194 struct kvm_irq_routing_entry kroute
= {};
1197 if (kvm_gsi_direct_mapping()) {
1198 return kvm_arch_msi_data_to_gsi(msg
.data
);
1201 if (!kvm_gsi_routing_enabled()) {
1205 virq
= kvm_irqchip_get_virq(s
);
1211 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1213 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1214 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1215 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1216 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
)) {
1217 kvm_irqchip_release_virq(s
, virq
);
1221 kvm_add_routing_entry(s
, &kroute
);
1222 kvm_irqchip_commit_routes(s
);
1227 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1229 struct kvm_irq_routing_entry kroute
= {};
1231 if (kvm_gsi_direct_mapping()) {
1235 if (!kvm_irqchip_in_kernel()) {
1240 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1242 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1243 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1244 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1245 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
)) {
1249 return kvm_update_routing_entry(s
, &kroute
);
1252 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1255 struct kvm_irqfd irqfd
= {
1258 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1262 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1263 irqfd
.resamplefd
= rfd
;
1266 if (!kvm_irqfds_enabled()) {
1270 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1273 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1275 struct kvm_irq_routing_entry kroute
= {};
1278 if (!kvm_gsi_routing_enabled()) {
1282 virq
= kvm_irqchip_get_virq(s
);
1288 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1290 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1291 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1292 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1293 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1294 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1296 kvm_add_routing_entry(s
, &kroute
);
1301 #else /* !KVM_CAP_IRQ_ROUTING */
1303 void kvm_init_irq_routing(KVMState
*s
)
1307 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1311 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1316 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1321 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1326 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1331 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1335 #endif /* !KVM_CAP_IRQ_ROUTING */
1337 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1338 EventNotifier
*rn
, int virq
)
1340 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1341 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1344 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState
*s
, EventNotifier
*n
,
1347 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1351 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1352 EventNotifier
*rn
, qemu_irq irq
)
1355 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1360 return kvm_irqchip_add_irqfd_notifier_gsi(s
, n
, rn
, GPOINTER_TO_INT(gsi
));
1363 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1367 gboolean found
= g_hash_table_lookup_extended(s
->gsimap
, irq
, &key
, &gsi
);
1372 return kvm_irqchip_remove_irqfd_notifier_gsi(s
, n
, GPOINTER_TO_INT(gsi
));
1375 void kvm_irqchip_set_qemuirq_gsi(KVMState
*s
, qemu_irq irq
, int gsi
)
1377 g_hash_table_insert(s
->gsimap
, irq
, GINT_TO_POINTER(gsi
));
1380 static void kvm_irqchip_create(MachineState
*machine
, KVMState
*s
)
1384 if (kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1386 } else if (kvm_check_extension(s
, KVM_CAP_S390_IRQCHIP
)) {
1387 ret
= kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0);
1389 fprintf(stderr
, "Enable kernel irqchip failed: %s\n", strerror(-ret
));
1396 /* First probe and see if there's a arch-specific hook to create the
1397 * in-kernel irqchip for us */
1398 ret
= kvm_arch_irqchip_create(s
);
1400 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1403 fprintf(stderr
, "Create kernel irqchip failed: %s\n", strerror(-ret
));
1407 kvm_kernel_irqchip
= true;
1408 /* If we have an in-kernel IRQ chip then we must have asynchronous
1409 * interrupt delivery (though the reverse is not necessarily true)
1411 kvm_async_interrupts_allowed
= true;
1412 kvm_halt_in_kernel_allowed
= true;
1414 kvm_init_irq_routing(s
);
1416 s
->gsimap
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
1419 /* Find number of supported CPUs using the recommended
1420 * procedure from the kernel API documentation to cope with
1421 * older kernels that may be missing capabilities.
1423 static int kvm_recommended_vcpus(KVMState
*s
)
1425 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1426 return (ret
) ? ret
: 4;
1429 static int kvm_max_vcpus(KVMState
*s
)
1431 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1432 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1435 static int kvm_init(MachineState
*ms
)
1437 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1438 static const char upgrade_note
[] =
1439 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1440 "(see http://sourceforge.net/projects/kvm).\n";
1445 { "SMP", smp_cpus
},
1446 { "hotpluggable", max_cpus
},
1449 int soft_vcpus_limit
, hard_vcpus_limit
;
1451 const KVMCapabilityInfo
*missing_cap
;
1454 const char *kvm_type
;
1456 s
= KVM_STATE(ms
->accelerator
);
1459 * On systems where the kernel can support different base page
1460 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1461 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1462 * page size for the system though.
1464 assert(TARGET_PAGE_SIZE
<= getpagesize());
1469 #ifdef KVM_CAP_SET_GUEST_DEBUG
1470 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1473 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1475 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1480 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1481 if (ret
< KVM_API_VERSION
) {
1485 fprintf(stderr
, "kvm version too old\n");
1489 if (ret
> KVM_API_VERSION
) {
1491 fprintf(stderr
, "kvm version not supported\n");
1495 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1497 /* If unspecified, use the default value */
1502 /* check the vcpu limits */
1503 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1504 hard_vcpus_limit
= kvm_max_vcpus(s
);
1507 if (nc
->num
> soft_vcpus_limit
) {
1509 "Warning: Number of %s cpus requested (%d) exceeds "
1510 "the recommended cpus supported by KVM (%d)\n",
1511 nc
->name
, nc
->num
, soft_vcpus_limit
);
1513 if (nc
->num
> hard_vcpus_limit
) {
1514 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1515 "the maximum cpus supported by KVM (%d)\n",
1516 nc
->name
, nc
->num
, hard_vcpus_limit
);
1523 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1525 type
= mc
->kvm_type(kvm_type
);
1526 } else if (kvm_type
) {
1528 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1533 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1534 } while (ret
== -EINTR
);
1537 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1541 if (ret
== -EINVAL
) {
1543 "Host kernel setup problem detected. Please verify:\n");
1544 fprintf(stderr
, "- for kernels supporting the switch_amode or"
1545 " user_mode parameters, whether\n");
1547 " user space is running in primary address space\n");
1549 "- for kernels supporting the vm.allocate_pgste sysctl, "
1550 "whether it is enabled\n");
1557 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1560 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1564 fprintf(stderr
, "kvm does not support %s\n%s",
1565 missing_cap
->name
, upgrade_note
);
1569 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1571 s
->broken_set_mem_region
= 1;
1572 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1574 s
->broken_set_mem_region
= 0;
1577 #ifdef KVM_CAP_VCPU_EVENTS
1578 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1581 s
->robust_singlestep
=
1582 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1584 #ifdef KVM_CAP_DEBUGREGS
1585 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1588 #ifdef KVM_CAP_XSAVE
1589 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1593 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1596 #ifdef KVM_CAP_PIT_STATE2
1597 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1600 #ifdef KVM_CAP_IRQ_ROUTING
1601 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1604 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1606 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1607 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1608 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1611 #ifdef KVM_CAP_READONLY_MEM
1612 kvm_readonly_mem_allowed
=
1613 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1616 kvm_eventfds_allowed
=
1617 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1619 kvm_irqfds_allowed
=
1620 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
1622 kvm_resamplefds_allowed
=
1623 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
1625 kvm_vm_attributes_allowed
=
1626 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
1628 ret
= kvm_arch_init(ms
, s
);
1633 if (machine_kernel_irqchip_allowed(ms
)) {
1634 kvm_irqchip_create(ms
, s
);
1639 s
->memory_listener
.listener
.eventfd_add
= kvm_mem_ioeventfd_add
;
1640 s
->memory_listener
.listener
.eventfd_del
= kvm_mem_ioeventfd_del
;
1641 s
->memory_listener
.listener
.coalesced_mmio_add
= kvm_coalesce_mmio_region
;
1642 s
->memory_listener
.listener
.coalesced_mmio_del
= kvm_uncoalesce_mmio_region
;
1644 kvm_memory_listener_register(s
, &s
->memory_listener
,
1645 &address_space_memory
, 0);
1646 memory_listener_register(&kvm_io_listener
,
1649 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1651 cpu_interrupt_handler
= kvm_handle_interrupt
;
1663 g_free(s
->memory_listener
.slots
);
1668 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1670 s
->sigmask_len
= sigmask_len
;
1673 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
1674 int size
, uint32_t count
)
1677 uint8_t *ptr
= data
;
1679 for (i
= 0; i
< count
; i
++) {
1680 address_space_rw(&address_space_io
, port
, attrs
,
1682 direction
== KVM_EXIT_IO_OUT
);
1687 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1689 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1690 run
->internal
.suberror
);
1692 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1695 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1696 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1697 i
, (uint64_t)run
->internal
.data
[i
]);
1700 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1701 fprintf(stderr
, "emulation failure\n");
1702 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1703 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1704 return EXCP_INTERRUPT
;
1707 /* FIXME: Should trigger a qmp message to let management know
1708 * something went wrong.
1713 void kvm_flush_coalesced_mmio_buffer(void)
1715 KVMState
*s
= kvm_state
;
1717 if (s
->coalesced_flush_in_progress
) {
1721 s
->coalesced_flush_in_progress
= true;
1723 if (s
->coalesced_mmio_ring
) {
1724 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1725 while (ring
->first
!= ring
->last
) {
1726 struct kvm_coalesced_mmio
*ent
;
1728 ent
= &ring
->coalesced_mmio
[ring
->first
];
1730 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1732 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1736 s
->coalesced_flush_in_progress
= false;
1739 static void do_kvm_cpu_synchronize_state(void *arg
)
1741 CPUState
*cpu
= arg
;
1743 if (!cpu
->kvm_vcpu_dirty
) {
1744 kvm_arch_get_registers(cpu
);
1745 cpu
->kvm_vcpu_dirty
= true;
1749 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1751 if (!cpu
->kvm_vcpu_dirty
) {
1752 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1756 static void do_kvm_cpu_synchronize_post_reset(void *arg
)
1758 CPUState
*cpu
= arg
;
1760 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1761 cpu
->kvm_vcpu_dirty
= false;
1764 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1766 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, cpu
);
1769 static void do_kvm_cpu_synchronize_post_init(void *arg
)
1771 CPUState
*cpu
= arg
;
1773 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1774 cpu
->kvm_vcpu_dirty
= false;
1777 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1779 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, cpu
);
1782 void kvm_cpu_clean_state(CPUState
*cpu
)
1784 cpu
->kvm_vcpu_dirty
= false;
1787 int kvm_cpu_exec(CPUState
*cpu
)
1789 struct kvm_run
*run
= cpu
->kvm_run
;
1792 DPRINTF("kvm_cpu_exec()\n");
1794 if (kvm_arch_process_async_events(cpu
)) {
1795 cpu
->exit_request
= 0;
1799 qemu_mutex_unlock_iothread();
1804 if (cpu
->kvm_vcpu_dirty
) {
1805 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1806 cpu
->kvm_vcpu_dirty
= false;
1809 kvm_arch_pre_run(cpu
, run
);
1810 if (cpu
->exit_request
) {
1811 DPRINTF("interrupt exit requested\n");
1813 * KVM requires us to reenter the kernel after IO exits to complete
1814 * instruction emulation. This self-signal will ensure that we
1817 qemu_cpu_kick_self();
1820 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1822 attrs
= kvm_arch_post_run(cpu
, run
);
1825 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1826 DPRINTF("io window exit\n");
1827 ret
= EXCP_INTERRUPT
;
1830 fprintf(stderr
, "error: kvm run failed %s\n",
1831 strerror(-run_ret
));
1833 if (run_ret
== -EBUSY
) {
1835 "This is probably because your SMT is enabled.\n"
1836 "VCPU can only run on primary threads with all "
1837 "secondary threads offline.\n");
1844 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1845 switch (run
->exit_reason
) {
1847 DPRINTF("handle_io\n");
1848 /* Called outside BQL */
1849 kvm_handle_io(run
->io
.port
, attrs
,
1850 (uint8_t *)run
+ run
->io
.data_offset
,
1857 DPRINTF("handle_mmio\n");
1858 /* Called outside BQL */
1859 address_space_rw(&address_space_memory
,
1860 run
->mmio
.phys_addr
, attrs
,
1863 run
->mmio
.is_write
);
1866 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1867 DPRINTF("irq_window_open\n");
1868 ret
= EXCP_INTERRUPT
;
1870 case KVM_EXIT_SHUTDOWN
:
1871 DPRINTF("shutdown\n");
1872 qemu_system_reset_request();
1873 ret
= EXCP_INTERRUPT
;
1875 case KVM_EXIT_UNKNOWN
:
1876 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1877 (uint64_t)run
->hw
.hardware_exit_reason
);
1880 case KVM_EXIT_INTERNAL_ERROR
:
1881 ret
= kvm_handle_internal_error(cpu
, run
);
1883 case KVM_EXIT_SYSTEM_EVENT
:
1884 switch (run
->system_event
.type
) {
1885 case KVM_SYSTEM_EVENT_SHUTDOWN
:
1886 qemu_system_shutdown_request();
1887 ret
= EXCP_INTERRUPT
;
1889 case KVM_SYSTEM_EVENT_RESET
:
1890 qemu_system_reset_request();
1891 ret
= EXCP_INTERRUPT
;
1893 case KVM_SYSTEM_EVENT_CRASH
:
1894 qemu_mutex_lock_iothread();
1895 qemu_system_guest_panicked();
1896 qemu_mutex_unlock_iothread();
1900 DPRINTF("kvm_arch_handle_exit\n");
1901 ret
= kvm_arch_handle_exit(cpu
, run
);
1906 DPRINTF("kvm_arch_handle_exit\n");
1907 ret
= kvm_arch_handle_exit(cpu
, run
);
1912 qemu_mutex_lock_iothread();
1915 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1916 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1919 cpu
->exit_request
= 0;
1923 int kvm_ioctl(KVMState
*s
, int type
, ...)
1930 arg
= va_arg(ap
, void *);
1933 trace_kvm_ioctl(type
, arg
);
1934 ret
= ioctl(s
->fd
, type
, arg
);
1941 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1948 arg
= va_arg(ap
, void *);
1951 trace_kvm_vm_ioctl(type
, arg
);
1952 ret
= ioctl(s
->vmfd
, type
, arg
);
1959 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1966 arg
= va_arg(ap
, void *);
1969 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1970 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1977 int kvm_device_ioctl(int fd
, int type
, ...)
1984 arg
= va_arg(ap
, void *);
1987 trace_kvm_device_ioctl(fd
, type
, arg
);
1988 ret
= ioctl(fd
, type
, arg
);
1995 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
1998 struct kvm_device_attr attribute
= {
2003 if (!kvm_vm_attributes_allowed
) {
2007 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
2008 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2012 int kvm_device_check_attr(int dev_fd
, uint32_t group
, uint64_t attr
)
2014 struct kvm_device_attr attribute
= {
2020 return kvm_device_ioctl(dev_fd
, KVM_HAS_DEVICE_ATTR
, &attribute
) ? 0 : 1;
2023 void kvm_device_access(int fd
, int group
, uint64_t attr
,
2024 void *val
, bool write
)
2026 struct kvm_device_attr kvmattr
;
2030 kvmattr
.group
= group
;
2031 kvmattr
.attr
= attr
;
2032 kvmattr
.addr
= (uintptr_t)val
;
2034 err
= kvm_device_ioctl(fd
,
2035 write
? KVM_SET_DEVICE_ATTR
: KVM_GET_DEVICE_ATTR
,
2038 error_report("KVM_%s_DEVICE_ATTR failed: %s\n"
2039 "Group %d attr 0x%016" PRIx64
, write
? "SET" : "GET",
2040 strerror(-err
), group
, attr
);
2045 int kvm_has_sync_mmu(void)
2047 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
2050 int kvm_has_vcpu_events(void)
2052 return kvm_state
->vcpu_events
;
2055 int kvm_has_robust_singlestep(void)
2057 return kvm_state
->robust_singlestep
;
2060 int kvm_has_debugregs(void)
2062 return kvm_state
->debugregs
;
2065 int kvm_has_xsave(void)
2067 return kvm_state
->xsave
;
2070 int kvm_has_xcrs(void)
2072 return kvm_state
->xcrs
;
2075 int kvm_has_pit_state2(void)
2077 return kvm_state
->pit_state2
;
2080 int kvm_has_many_ioeventfds(void)
2082 if (!kvm_enabled()) {
2085 return kvm_state
->many_ioeventfds
;
2088 int kvm_has_gsi_routing(void)
2090 #ifdef KVM_CAP_IRQ_ROUTING
2091 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
2097 int kvm_has_intx_set_mask(void)
2099 return kvm_state
->intx_set_mask
;
2102 void kvm_setup_guest_memory(void *start
, size_t size
)
2104 if (!kvm_has_sync_mmu()) {
2105 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
2108 perror("qemu_madvise");
2110 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2116 #ifdef KVM_CAP_SET_GUEST_DEBUG
2117 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
2120 struct kvm_sw_breakpoint
*bp
;
2122 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
2130 int kvm_sw_breakpoints_active(CPUState
*cpu
)
2132 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
2135 struct kvm_set_guest_debug_data
{
2136 struct kvm_guest_debug dbg
;
2141 static void kvm_invoke_set_guest_debug(void *data
)
2143 struct kvm_set_guest_debug_data
*dbg_data
= data
;
2145 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
2149 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2151 struct kvm_set_guest_debug_data data
;
2153 data
.dbg
.control
= reinject_trap
;
2155 if (cpu
->singlestep_enabled
) {
2156 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2158 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2161 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
2165 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2166 target_ulong len
, int type
)
2168 struct kvm_sw_breakpoint
*bp
;
2171 if (type
== GDB_BREAKPOINT_SW
) {
2172 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2178 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2181 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2187 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2189 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2196 err
= kvm_update_guest_debug(cpu
, 0);
2204 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2205 target_ulong len
, int type
)
2207 struct kvm_sw_breakpoint
*bp
;
2210 if (type
== GDB_BREAKPOINT_SW
) {
2211 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2216 if (bp
->use_count
> 1) {
2221 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2226 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2229 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2236 err
= kvm_update_guest_debug(cpu
, 0);
2244 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2246 struct kvm_sw_breakpoint
*bp
, *next
;
2247 KVMState
*s
= cpu
->kvm_state
;
2250 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2251 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2252 /* Try harder to find a CPU that currently sees the breakpoint. */
2253 CPU_FOREACH(tmpcpu
) {
2254 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2259 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2262 kvm_arch_remove_all_hw_breakpoints();
2265 kvm_update_guest_debug(cpu
, 0);
2269 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2271 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2276 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2277 target_ulong len
, int type
)
2282 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2283 target_ulong len
, int type
)
2288 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2291 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2293 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2295 KVMState
*s
= kvm_state
;
2296 struct kvm_signal_mask
*sigmask
;
2300 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2303 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2305 sigmask
->len
= s
->sigmask_len
;
2306 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2307 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2312 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2314 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2317 int kvm_on_sigbus(int code
, void *addr
)
2319 return kvm_arch_on_sigbus(code
, addr
);
2322 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2325 struct kvm_create_device create_dev
;
2327 create_dev
.type
= type
;
2329 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2331 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2335 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2340 return test
? 0 : create_dev
.fd
;
2343 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2345 struct kvm_one_reg reg
;
2349 reg
.addr
= (uintptr_t) source
;
2350 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2352 trace_kvm_failed_reg_set(id
, strerror(r
));
2357 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2359 struct kvm_one_reg reg
;
2363 reg
.addr
= (uintptr_t) target
;
2364 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2366 trace_kvm_failed_reg_get(id
, strerror(r
));
2371 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
2373 AccelClass
*ac
= ACCEL_CLASS(oc
);
2375 ac
->init_machine
= kvm_init
;
2376 ac
->allowed
= &kvm_allowed
;
2379 static const TypeInfo kvm_accel_type
= {
2380 .name
= TYPE_KVM_ACCEL
,
2381 .parent
= TYPE_ACCEL
,
2382 .class_init
= kvm_accel_class_init
,
2383 .instance_size
= sizeof(KVMState
),
2386 static void kvm_type_init(void)
2388 type_register_static(&kvm_accel_type
);
2391 type_init(kvm_type_init
);