2 * Physical memory management API
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
17 #ifndef CONFIG_USER_ONLY
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
28 #include "hw/qdev-core.h"
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37 OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41 OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43 OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44 TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46 OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47 TYPE_IOMMU_MEMORY_REGION)
49 typedef struct MemoryRegionOps MemoryRegionOps
;
50 typedef struct MemoryRegionMmio MemoryRegionMmio
;
52 struct MemoryRegionMmio
{
53 CPUReadMemoryFunc
*read
[3];
54 CPUWriteMemoryFunc
*write
[3];
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry
;
59 /* See address_space_translate: bit 0 is read, bit 1 is write. */
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
69 struct IOMMUTLBEntry
{
70 AddressSpace
*target_as
;
72 hwaddr translated_addr
;
73 hwaddr addr_mask
; /* 0xfff = 4k translation */
74 IOMMUAccessFlags perm
;
78 * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79 * register with one or multiple IOMMU Notifier capability bit(s).
82 IOMMU_NOTIFIER_NONE
= 0,
83 /* Notify cache invalidations */
84 IOMMU_NOTIFIER_UNMAP
= 0x1,
85 /* Notify entry changes (newly created entries) */
86 IOMMU_NOTIFIER_MAP
= 0x2,
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
92 typedef void (*IOMMUNotify
)(struct IOMMUNotifier
*notifier
,
95 struct IOMMUNotifier
{
97 IOMMUNotifierFlag notifier_flags
;
98 /* Notify for address space range start <= addr <= end */
101 QLIST_ENTRY(IOMMUNotifier
) node
;
103 typedef struct IOMMUNotifier IOMMUNotifier
;
105 static inline void iommu_notifier_init(IOMMUNotifier
*n
, IOMMUNotify fn
,
106 IOMMUNotifierFlag flags
,
107 hwaddr start
, hwaddr end
)
110 n
->notifier_flags
= flags
;
116 * Memory region callbacks
118 struct MemoryRegionOps
{
119 /* Read from the memory region. @addr is relative to @mr; @size is
121 uint64_t (*read
)(void *opaque
,
124 /* Write to the memory region. @addr is relative to @mr; @size is
126 void (*write
)(void *opaque
,
131 MemTxResult (*read_with_attrs
)(void *opaque
,
136 MemTxResult (*write_with_attrs
)(void *opaque
,
141 /* Instruction execution pre-callback:
142 * @addr is the address of the access relative to the @mr.
143 * @size is the size of the area returned by the callback.
144 * @offset is the location of the pointer inside @mr.
146 * Returns a pointer to a location which contains guest code.
148 void *(*request_ptr
)(void *opaque
, hwaddr addr
, unsigned *size
,
151 enum device_endian endianness
;
152 /* Guest-visible constraints: */
154 /* If nonzero, specify bounds on access sizes beyond which a machine
157 unsigned min_access_size
;
158 unsigned max_access_size
;
159 /* If true, unaligned accesses are supported. Otherwise unaligned
160 * accesses throw machine checks.
164 * If present, and returns #false, the transaction is not accepted
165 * by the device (and results in machine dependent behaviour such
166 * as a machine check exception).
168 bool (*accepts
)(void *opaque
, hwaddr addr
,
169 unsigned size
, bool is_write
);
171 /* Internal implementation constraints: */
173 /* If nonzero, specifies the minimum size implemented. Smaller sizes
174 * will be rounded upwards and a partial result will be returned.
176 unsigned min_access_size
;
177 /* If nonzero, specifies the maximum size implemented. Larger sizes
178 * will be done as a series of accesses with smaller sizes.
180 unsigned max_access_size
;
181 /* If true, unaligned accesses are supported. Otherwise all accesses
182 * are converted to (possibly multiple) naturally aligned accesses.
187 /* If .read and .write are not present, old_mmio may be used for
188 * backwards compatibility with old mmio registration
190 const MemoryRegionMmio old_mmio
;
193 enum IOMMUMemoryRegionAttr
{
194 IOMMU_ATTR_SPAPR_TCE_FD
197 typedef struct IOMMUMemoryRegionClass
{
199 struct DeviceClass parent_class
;
202 * Return a TLB entry that contains a given address. Flag should
203 * be the access permission of this translation operation. We can
204 * set flag to IOMMU_NONE to mean that we don't need any
205 * read/write permission checks, like, when for region replay.
207 IOMMUTLBEntry (*translate
)(IOMMUMemoryRegion
*iommu
, hwaddr addr
,
208 IOMMUAccessFlags flag
);
209 /* Returns minimum supported page size */
210 uint64_t (*get_min_page_size
)(IOMMUMemoryRegion
*iommu
);
211 /* Called when IOMMU Notifier flag changed */
212 void (*notify_flag_changed
)(IOMMUMemoryRegion
*iommu
,
213 IOMMUNotifierFlag old_flags
,
214 IOMMUNotifierFlag new_flags
);
215 /* Set this up to provide customized IOMMU replay function */
216 void (*replay
)(IOMMUMemoryRegion
*iommu
, IOMMUNotifier
*notifier
);
218 /* Get IOMMU misc attributes */
219 int (*get_attr
)(IOMMUMemoryRegion
*iommu
, enum IOMMUMemoryRegionAttr
,
221 } IOMMUMemoryRegionClass
;
223 typedef struct CoalescedMemoryRange CoalescedMemoryRange
;
224 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd
;
226 struct MemoryRegion
{
229 /* All fields are private - violators will be prosecuted */
231 /* The following fields should fit in a cache line */
235 bool readonly
; /* For RAM regions */
237 bool flush_coalesced_mmio
;
239 uint8_t dirty_log_mask
;
244 const MemoryRegionOps
*ops
;
246 MemoryRegion
*container
;
249 void (*destructor
)(MemoryRegion
*mr
);
254 bool warning_printed
; /* For reservations */
255 uint8_t vga_logging_count
;
259 QTAILQ_HEAD(subregions
, MemoryRegion
) subregions
;
260 QTAILQ_ENTRY(MemoryRegion
) subregions_link
;
261 QTAILQ_HEAD(coalesced_ranges
, CoalescedMemoryRange
) coalesced
;
263 unsigned ioeventfd_nb
;
264 MemoryRegionIoeventfd
*ioeventfds
;
267 struct IOMMUMemoryRegion
{
268 MemoryRegion parent_obj
;
270 QLIST_HEAD(, IOMMUNotifier
) iommu_notify
;
271 IOMMUNotifierFlag iommu_notify_flags
;
274 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
275 QLIST_FOREACH((n), &(mr)->iommu_notify, node)
278 * MemoryListener: callbacks structure for updates to the physical memory map
280 * Allows a component to adjust to changes in the guest-visible memory map.
281 * Use with memory_listener_register() and memory_listener_unregister().
283 struct MemoryListener
{
284 void (*begin
)(MemoryListener
*listener
);
285 void (*commit
)(MemoryListener
*listener
);
286 void (*region_add
)(MemoryListener
*listener
, MemoryRegionSection
*section
);
287 void (*region_del
)(MemoryListener
*listener
, MemoryRegionSection
*section
);
288 void (*region_nop
)(MemoryListener
*listener
, MemoryRegionSection
*section
);
289 void (*log_start
)(MemoryListener
*listener
, MemoryRegionSection
*section
,
291 void (*log_stop
)(MemoryListener
*listener
, MemoryRegionSection
*section
,
293 void (*log_sync
)(MemoryListener
*listener
, MemoryRegionSection
*section
);
294 void (*log_global_start
)(MemoryListener
*listener
);
295 void (*log_global_stop
)(MemoryListener
*listener
);
296 void (*eventfd_add
)(MemoryListener
*listener
, MemoryRegionSection
*section
,
297 bool match_data
, uint64_t data
, EventNotifier
*e
);
298 void (*eventfd_del
)(MemoryListener
*listener
, MemoryRegionSection
*section
,
299 bool match_data
, uint64_t data
, EventNotifier
*e
);
300 void (*coalesced_mmio_add
)(MemoryListener
*listener
, MemoryRegionSection
*section
,
301 hwaddr addr
, hwaddr len
);
302 void (*coalesced_mmio_del
)(MemoryListener
*listener
, MemoryRegionSection
*section
,
303 hwaddr addr
, hwaddr len
);
304 /* Lower = earlier (during add), later (during del) */
306 AddressSpace
*address_space
;
307 QTAILQ_ENTRY(MemoryListener
) link
;
308 QTAILQ_ENTRY(MemoryListener
) link_as
;
312 * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
314 struct AddressSpace
{
315 /* All fields are private. */
320 /* Accessed via RCU. */
321 struct FlatView
*current_map
;
324 struct MemoryRegionIoeventfd
*ioeventfds
;
325 QTAILQ_HEAD(memory_listeners_as
, MemoryListener
) listeners
;
326 QTAILQ_ENTRY(AddressSpace
) address_spaces_link
;
329 typedef struct AddressSpaceDispatch AddressSpaceDispatch
;
330 typedef struct FlatRange FlatRange
;
332 /* Flattened global view of current active memory hierarchy. Kept in sorted
340 unsigned nr_allocated
;
341 struct AddressSpaceDispatch
*dispatch
;
345 static inline FlatView
*address_space_to_flatview(AddressSpace
*as
)
347 return atomic_rcu_read(&as
->current_map
);
352 * MemoryRegionSection: describes a fragment of a #MemoryRegion
354 * @mr: the region, or %NULL if empty
355 * @fv: the flat view of the address space the region is mapped in
356 * @offset_within_region: the beginning of the section, relative to @mr's start
357 * @size: the size of the section; will not exceed @mr's boundaries
358 * @offset_within_address_space: the address of the first byte of the section
359 * relative to the region's address space
360 * @readonly: writes to this section are ignored
362 struct MemoryRegionSection
{
365 hwaddr offset_within_region
;
367 hwaddr offset_within_address_space
;
372 * memory_region_init: Initialize a memory region
374 * The region typically acts as a container for other memory regions. Use
375 * memory_region_add_subregion() to add subregions.
377 * @mr: the #MemoryRegion to be initialized
378 * @owner: the object that tracks the region's reference count
379 * @name: used for debugging; not visible to the user or ABI
380 * @size: size of the region; any subregions beyond this size will be clipped
382 void memory_region_init(MemoryRegion
*mr
,
383 struct Object
*owner
,
388 * memory_region_ref: Add 1 to a memory region's reference count
390 * Whenever memory regions are accessed outside the BQL, they need to be
391 * preserved against hot-unplug. MemoryRegions actually do not have their
392 * own reference count; they piggyback on a QOM object, their "owner".
393 * This function adds a reference to the owner.
395 * All MemoryRegions must have an owner if they can disappear, even if the
396 * device they belong to operates exclusively under the BQL. This is because
397 * the region could be returned at any time by memory_region_find, and this
398 * is usually under guest control.
400 * @mr: the #MemoryRegion
402 void memory_region_ref(MemoryRegion
*mr
);
405 * memory_region_unref: Remove 1 to a memory region's reference count
407 * Whenever memory regions are accessed outside the BQL, they need to be
408 * preserved against hot-unplug. MemoryRegions actually do not have their
409 * own reference count; they piggyback on a QOM object, their "owner".
410 * This function removes a reference to the owner and possibly destroys it.
412 * @mr: the #MemoryRegion
414 void memory_region_unref(MemoryRegion
*mr
);
417 * memory_region_init_io: Initialize an I/O memory region.
419 * Accesses into the region will cause the callbacks in @ops to be called.
420 * if @size is nonzero, subregions will be clipped to @size.
422 * @mr: the #MemoryRegion to be initialized.
423 * @owner: the object that tracks the region's reference count
424 * @ops: a structure containing read and write callbacks to be used when
425 * I/O is performed on the region.
426 * @opaque: passed to the read and write callbacks of the @ops structure.
427 * @name: used for debugging; not visible to the user or ABI
428 * @size: size of the region.
430 void memory_region_init_io(MemoryRegion
*mr
,
431 struct Object
*owner
,
432 const MemoryRegionOps
*ops
,
438 * memory_region_init_ram_nomigrate: Initialize RAM memory region. Accesses
439 * into the region will modify memory
442 * @mr: the #MemoryRegion to be initialized.
443 * @owner: the object that tracks the region's reference count
444 * @name: Region name, becomes part of RAMBlock name used in migration stream
445 * must be unique within any device
446 * @size: size of the region.
447 * @errp: pointer to Error*, to store an error if it happens.
449 * Note that this function does not do anything to cause the data in the
450 * RAM memory region to be migrated; that is the responsibility of the caller.
452 void memory_region_init_ram_nomigrate(MemoryRegion
*mr
,
453 struct Object
*owner
,
459 * memory_region_init_ram_shared_nomigrate: Initialize RAM memory region.
460 * Accesses into the region will
461 * modify memory directly.
463 * @mr: the #MemoryRegion to be initialized.
464 * @owner: the object that tracks the region's reference count
465 * @name: Region name, becomes part of RAMBlock name used in migration stream
466 * must be unique within any device
467 * @size: size of the region.
468 * @share: allow remapping RAM to different addresses
469 * @errp: pointer to Error*, to store an error if it happens.
471 * Note that this function is similar to memory_region_init_ram_nomigrate.
472 * The only difference is part of the RAM region can be remapped.
474 void memory_region_init_ram_shared_nomigrate(MemoryRegion
*mr
,
475 struct Object
*owner
,
482 * memory_region_init_resizeable_ram: Initialize memory region with resizeable
483 * RAM. Accesses into the region will
484 * modify memory directly. Only an initial
485 * portion of this RAM is actually used.
486 * The used size can change across reboots.
488 * @mr: the #MemoryRegion to be initialized.
489 * @owner: the object that tracks the region's reference count
490 * @name: Region name, becomes part of RAMBlock name used in migration stream
491 * must be unique within any device
492 * @size: used size of the region.
493 * @max_size: max size of the region.
494 * @resized: callback to notify owner about used size change.
495 * @errp: pointer to Error*, to store an error if it happens.
497 * Note that this function does not do anything to cause the data in the
498 * RAM memory region to be migrated; that is the responsibility of the caller.
500 void memory_region_init_resizeable_ram(MemoryRegion
*mr
,
501 struct Object
*owner
,
505 void (*resized
)(const char*,
511 * memory_region_init_ram_from_file: Initialize RAM memory region with a
514 * @mr: the #MemoryRegion to be initialized.
515 * @owner: the object that tracks the region's reference count
516 * @name: Region name, becomes part of RAMBlock name used in migration stream
517 * must be unique within any device
518 * @size: size of the region.
519 * @align: alignment of the region base address; if 0, the default alignment
520 * (getpagesize()) will be used.
521 * @share: %true if memory must be mmaped with the MAP_SHARED flag
522 * @path: the path in which to allocate the RAM.
523 * @errp: pointer to Error*, to store an error if it happens.
525 * Note that this function does not do anything to cause the data in the
526 * RAM memory region to be migrated; that is the responsibility of the caller.
528 void memory_region_init_ram_from_file(MemoryRegion
*mr
,
529 struct Object
*owner
,
538 * memory_region_init_ram_from_fd: Initialize RAM memory region with a
541 * @mr: the #MemoryRegion to be initialized.
542 * @owner: the object that tracks the region's reference count
543 * @name: the name of the region.
544 * @size: size of the region.
545 * @share: %true if memory must be mmaped with the MAP_SHARED flag
546 * @fd: the fd to mmap.
547 * @errp: pointer to Error*, to store an error if it happens.
549 * Note that this function does not do anything to cause the data in the
550 * RAM memory region to be migrated; that is the responsibility of the caller.
552 void memory_region_init_ram_from_fd(MemoryRegion
*mr
,
553 struct Object
*owner
,
562 * memory_region_init_ram_ptr: Initialize RAM memory region from a
563 * user-provided pointer. Accesses into the
564 * region will modify memory directly.
566 * @mr: the #MemoryRegion to be initialized.
567 * @owner: the object that tracks the region's reference count
568 * @name: Region name, becomes part of RAMBlock name used in migration stream
569 * must be unique within any device
570 * @size: size of the region.
571 * @ptr: memory to be mapped; must contain at least @size bytes.
573 * Note that this function does not do anything to cause the data in the
574 * RAM memory region to be migrated; that is the responsibility of the caller.
576 void memory_region_init_ram_ptr(MemoryRegion
*mr
,
577 struct Object
*owner
,
583 * memory_region_init_ram_device_ptr: Initialize RAM device memory region from
584 * a user-provided pointer.
586 * A RAM device represents a mapping to a physical device, such as to a PCI
587 * MMIO BAR of an vfio-pci assigned device. The memory region may be mapped
588 * into the VM address space and access to the region will modify memory
589 * directly. However, the memory region should not be included in a memory
590 * dump (device may not be enabled/mapped at the time of the dump), and
591 * operations incompatible with manipulating MMIO should be avoided. Replaces
594 * @mr: the #MemoryRegion to be initialized.
595 * @owner: the object that tracks the region's reference count
596 * @name: the name of the region.
597 * @size: size of the region.
598 * @ptr: memory to be mapped; must contain at least @size bytes.
600 * Note that this function does not do anything to cause the data in the
601 * RAM memory region to be migrated; that is the responsibility of the caller.
602 * (For RAM device memory regions, migrating the contents rarely makes sense.)
604 void memory_region_init_ram_device_ptr(MemoryRegion
*mr
,
605 struct Object
*owner
,
611 * memory_region_init_alias: Initialize a memory region that aliases all or a
612 * part of another memory region.
614 * @mr: the #MemoryRegion to be initialized.
615 * @owner: the object that tracks the region's reference count
616 * @name: used for debugging; not visible to the user or ABI
617 * @orig: the region to be referenced; @mr will be equivalent to
618 * @orig between @offset and @offset + @size - 1.
619 * @offset: start of the section in @orig to be referenced.
620 * @size: size of the region.
622 void memory_region_init_alias(MemoryRegion
*mr
,
623 struct Object
*owner
,
630 * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
632 * This has the same effect as calling memory_region_init_ram_nomigrate()
633 * and then marking the resulting region read-only with
634 * memory_region_set_readonly().
636 * Note that this function does not do anything to cause the data in the
637 * RAM side of the memory region to be migrated; that is the responsibility
640 * @mr: the #MemoryRegion to be initialized.
641 * @owner: the object that tracks the region's reference count
642 * @name: Region name, becomes part of RAMBlock name used in migration stream
643 * must be unique within any device
644 * @size: size of the region.
645 * @errp: pointer to Error*, to store an error if it happens.
647 void memory_region_init_rom_nomigrate(MemoryRegion
*mr
,
648 struct Object
*owner
,
654 * memory_region_init_rom_device_nomigrate: Initialize a ROM memory region.
655 * Writes are handled via callbacks.
657 * Note that this function does not do anything to cause the data in the
658 * RAM side of the memory region to be migrated; that is the responsibility
661 * @mr: the #MemoryRegion to be initialized.
662 * @owner: the object that tracks the region's reference count
663 * @ops: callbacks for write access handling (must not be NULL).
664 * @opaque: passed to the read and write callbacks of the @ops structure.
665 * @name: Region name, becomes part of RAMBlock name used in migration stream
666 * must be unique within any device
667 * @size: size of the region.
668 * @errp: pointer to Error*, to store an error if it happens.
670 void memory_region_init_rom_device_nomigrate(MemoryRegion
*mr
,
671 struct Object
*owner
,
672 const MemoryRegionOps
*ops
,
679 * memory_region_init_reservation: Initialize a memory region that reserves
682 * A reservation region primariy serves debugging purposes. It claims I/O
683 * space that is not supposed to be handled by QEMU itself. Any access via
684 * the memory API will cause an abort().
685 * This function is deprecated. Use memory_region_init_io() with NULL
688 * @mr: the #MemoryRegion to be initialized
689 * @owner: the object that tracks the region's reference count
690 * @name: used for debugging; not visible to the user or ABI
691 * @size: size of the region.
693 static inline void memory_region_init_reservation(MemoryRegion
*mr
,
698 memory_region_init_io(mr
, owner
, NULL
, mr
, name
, size
);
702 * memory_region_init_iommu: Initialize a memory region of a custom type
703 * that translates addresses
705 * An IOMMU region translates addresses and forwards accesses to a target
708 * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
709 * @instance_size: the IOMMUMemoryRegion subclass instance size
710 * @mrtypename: the type name of the #IOMMUMemoryRegion
711 * @owner: the object that tracks the region's reference count
712 * @name: used for debugging; not visible to the user or ABI
713 * @size: size of the region.
715 void memory_region_init_iommu(void *_iommu_mr
,
716 size_t instance_size
,
717 const char *mrtypename
,
723 * memory_region_init_ram - Initialize RAM memory region. Accesses into the
724 * region will modify memory directly.
726 * @mr: the #MemoryRegion to be initialized
727 * @owner: the object that tracks the region's reference count (must be
728 * TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
729 * @name: name of the memory region
730 * @size: size of the region in bytes
731 * @errp: pointer to Error*, to store an error if it happens.
733 * This function allocates RAM for a board model or device, and
734 * arranges for it to be migrated (by calling vmstate_register_ram()
735 * if @owner is a DeviceState, or vmstate_register_ram_global() if
738 * TODO: Currently we restrict @owner to being either NULL (for
739 * global RAM regions with no owner) or devices, so that we can
740 * give the RAM block a unique name for migration purposes.
741 * We should lift this restriction and allow arbitrary Objects.
742 * If you pass a non-NULL non-device @owner then we will assert.
744 void memory_region_init_ram(MemoryRegion
*mr
,
745 struct Object
*owner
,
751 * memory_region_init_rom: Initialize a ROM memory region.
753 * This has the same effect as calling memory_region_init_ram()
754 * and then marking the resulting region read-only with
755 * memory_region_set_readonly(). This includes arranging for the
756 * contents to be migrated.
758 * TODO: Currently we restrict @owner to being either NULL (for
759 * global RAM regions with no owner) or devices, so that we can
760 * give the RAM block a unique name for migration purposes.
761 * We should lift this restriction and allow arbitrary Objects.
762 * If you pass a non-NULL non-device @owner then we will assert.
764 * @mr: the #MemoryRegion to be initialized.
765 * @owner: the object that tracks the region's reference count
766 * @name: Region name, becomes part of RAMBlock name used in migration stream
767 * must be unique within any device
768 * @size: size of the region.
769 * @errp: pointer to Error*, to store an error if it happens.
771 void memory_region_init_rom(MemoryRegion
*mr
,
772 struct Object
*owner
,
778 * memory_region_init_rom_device: Initialize a ROM memory region.
779 * Writes are handled via callbacks.
781 * This function initializes a memory region backed by RAM for reads
782 * and callbacks for writes, and arranges for the RAM backing to
783 * be migrated (by calling vmstate_register_ram()
784 * if @owner is a DeviceState, or vmstate_register_ram_global() if
787 * TODO: Currently we restrict @owner to being either NULL (for
788 * global RAM regions with no owner) or devices, so that we can
789 * give the RAM block a unique name for migration purposes.
790 * We should lift this restriction and allow arbitrary Objects.
791 * If you pass a non-NULL non-device @owner then we will assert.
793 * @mr: the #MemoryRegion to be initialized.
794 * @owner: the object that tracks the region's reference count
795 * @ops: callbacks for write access handling (must not be NULL).
796 * @name: Region name, becomes part of RAMBlock name used in migration stream
797 * must be unique within any device
798 * @size: size of the region.
799 * @errp: pointer to Error*, to store an error if it happens.
801 void memory_region_init_rom_device(MemoryRegion
*mr
,
802 struct Object
*owner
,
803 const MemoryRegionOps
*ops
,
811 * memory_region_owner: get a memory region's owner.
813 * @mr: the memory region being queried.
815 struct Object
*memory_region_owner(MemoryRegion
*mr
);
818 * memory_region_size: get a memory region's size.
820 * @mr: the memory region being queried.
822 uint64_t memory_region_size(MemoryRegion
*mr
);
825 * memory_region_is_ram: check whether a memory region is random access
827 * Returns %true is a memory region is random access.
829 * @mr: the memory region being queried
831 static inline bool memory_region_is_ram(MemoryRegion
*mr
)
837 * memory_region_is_ram_device: check whether a memory region is a ram device
839 * Returns %true is a memory region is a device backed ram region
841 * @mr: the memory region being queried
843 bool memory_region_is_ram_device(MemoryRegion
*mr
);
846 * memory_region_is_romd: check whether a memory region is in ROMD mode
848 * Returns %true if a memory region is a ROM device and currently set to allow
851 * @mr: the memory region being queried
853 static inline bool memory_region_is_romd(MemoryRegion
*mr
)
855 return mr
->rom_device
&& mr
->romd_mode
;
859 * memory_region_get_iommu: check whether a memory region is an iommu
861 * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
864 * @mr: the memory region being queried
866 static inline IOMMUMemoryRegion
*memory_region_get_iommu(MemoryRegion
*mr
)
869 return memory_region_get_iommu(mr
->alias
);
872 return (IOMMUMemoryRegion
*) mr
;
878 * memory_region_get_iommu_class_nocheck: returns iommu memory region class
879 * if an iommu or NULL if not
881 * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
882 * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
884 * @mr: the memory region being queried
886 static inline IOMMUMemoryRegionClass
*memory_region_get_iommu_class_nocheck(
887 IOMMUMemoryRegion
*iommu_mr
)
889 return (IOMMUMemoryRegionClass
*) (((Object
*)iommu_mr
)->class);
892 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
895 * memory_region_iommu_get_min_page_size: get minimum supported page size
898 * Returns minimum supported page size for an iommu.
900 * @iommu_mr: the memory region being queried
902 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion
*iommu_mr
);
905 * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
907 * The notification type will be decided by entry.perm bits:
909 * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
910 * - For MAP (newly added entry) notifies: set entry.perm to the
911 * permission of the page (which is definitely !IOMMU_NONE).
913 * Note: for any IOMMU implementation, an in-place mapping change
914 * should be notified with an UNMAP followed by a MAP.
916 * @iommu_mr: the memory region that was changed
917 * @entry: the new entry in the IOMMU translation table. The entry
918 * replaces all old entries for the same virtual I/O address range.
919 * Deleted entries have .@perm == 0.
921 void memory_region_notify_iommu(IOMMUMemoryRegion
*iommu_mr
,
922 IOMMUTLBEntry entry
);
925 * memory_region_notify_one: notify a change in an IOMMU translation
926 * entry to a single notifier
928 * This works just like memory_region_notify_iommu(), but it only
929 * notifies a specific notifier, not all of them.
931 * @notifier: the notifier to be notified
932 * @entry: the new entry in the IOMMU translation table. The entry
933 * replaces all old entries for the same virtual I/O address range.
934 * Deleted entries have .@perm == 0.
936 void memory_region_notify_one(IOMMUNotifier
*notifier
,
937 IOMMUTLBEntry
*entry
);
940 * memory_region_register_iommu_notifier: register a notifier for changes to
941 * IOMMU translation entries.
943 * @mr: the memory region to observe
944 * @n: the IOMMUNotifier to be added; the notify callback receives a
945 * pointer to an #IOMMUTLBEntry as the opaque value; the pointer
946 * ceases to be valid on exit from the notifier.
948 void memory_region_register_iommu_notifier(MemoryRegion
*mr
,
952 * memory_region_iommu_replay: replay existing IOMMU translations to
953 * a notifier with the minimum page granularity returned by
954 * mr->iommu_ops->get_page_size().
956 * @iommu_mr: the memory region to observe
957 * @n: the notifier to which to replay iommu mappings
959 void memory_region_iommu_replay(IOMMUMemoryRegion
*iommu_mr
, IOMMUNotifier
*n
);
962 * memory_region_iommu_replay_all: replay existing IOMMU translations
963 * to all the notifiers registered.
965 * @iommu_mr: the memory region to observe
967 void memory_region_iommu_replay_all(IOMMUMemoryRegion
*iommu_mr
);
970 * memory_region_unregister_iommu_notifier: unregister a notifier for
971 * changes to IOMMU translation entries.
973 * @mr: the memory region which was observed and for which notity_stopped()
975 * @n: the notifier to be removed.
977 void memory_region_unregister_iommu_notifier(MemoryRegion
*mr
,
981 * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
982 * defined on the IOMMU.
984 * Returns 0 if succeded, error code otherwise.
986 * @iommu_mr: the memory region
987 * @attr: the requested attribute
988 * @data: a pointer to the requested attribute data
990 int memory_region_iommu_get_attr(IOMMUMemoryRegion
*iommu_mr
,
991 enum IOMMUMemoryRegionAttr attr
,
995 * memory_region_name: get a memory region's name
997 * Returns the string that was used to initialize the memory region.
999 * @mr: the memory region being queried
1001 const char *memory_region_name(const MemoryRegion
*mr
);
1004 * memory_region_is_logging: return whether a memory region is logging writes
1006 * Returns %true if the memory region is logging writes for the given client
1008 * @mr: the memory region being queried
1009 * @client: the client being queried
1011 bool memory_region_is_logging(MemoryRegion
*mr
, uint8_t client
);
1014 * memory_region_get_dirty_log_mask: return the clients for which a
1015 * memory region is logging writes.
1017 * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1018 * are the bit indices.
1020 * @mr: the memory region being queried
1022 uint8_t memory_region_get_dirty_log_mask(MemoryRegion
*mr
);
1025 * memory_region_is_rom: check whether a memory region is ROM
1027 * Returns %true is a memory region is read-only memory.
1029 * @mr: the memory region being queried
1031 static inline bool memory_region_is_rom(MemoryRegion
*mr
)
1033 return mr
->ram
&& mr
->readonly
;
1038 * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1040 * Returns a file descriptor backing a file-based RAM memory region,
1041 * or -1 if the region is not a file-based RAM memory region.
1043 * @mr: the RAM or alias memory region being queried.
1045 int memory_region_get_fd(MemoryRegion
*mr
);
1048 * memory_region_from_host: Convert a pointer into a RAM memory region
1049 * and an offset within it.
1051 * Given a host pointer inside a RAM memory region (created with
1052 * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1053 * the MemoryRegion and the offset within it.
1055 * Use with care; by the time this function returns, the returned pointer is
1056 * not protected by RCU anymore. If the caller is not within an RCU critical
1057 * section and does not hold the iothread lock, it must have other means of
1058 * protecting the pointer, such as a reference to the region that includes
1059 * the incoming ram_addr_t.
1061 * @ptr: the host pointer to be converted
1062 * @offset: the offset within memory region
1064 MemoryRegion
*memory_region_from_host(void *ptr
, ram_addr_t
*offset
);
1067 * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1069 * Returns a host pointer to a RAM memory region (created with
1070 * memory_region_init_ram() or memory_region_init_ram_ptr()).
1072 * Use with care; by the time this function returns, the returned pointer is
1073 * not protected by RCU anymore. If the caller is not within an RCU critical
1074 * section and does not hold the iothread lock, it must have other means of
1075 * protecting the pointer, such as a reference to the region that includes
1076 * the incoming ram_addr_t.
1078 * @mr: the memory region being queried.
1080 void *memory_region_get_ram_ptr(MemoryRegion
*mr
);
1082 /* memory_region_ram_resize: Resize a RAM region.
1084 * Only legal before guest might have detected the memory size: e.g. on
1085 * incoming migration, or right after reset.
1087 * @mr: a memory region created with @memory_region_init_resizeable_ram.
1088 * @newsize: the new size the region
1089 * @errp: pointer to Error*, to store an error if it happens.
1091 void memory_region_ram_resize(MemoryRegion
*mr
, ram_addr_t newsize
,
1095 * memory_region_set_log: Turn dirty logging on or off for a region.
1097 * Turns dirty logging on or off for a specified client (display, migration).
1098 * Only meaningful for RAM regions.
1100 * @mr: the memory region being updated.
1101 * @log: whether dirty logging is to be enabled or disabled.
1102 * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1104 void memory_region_set_log(MemoryRegion
*mr
, bool log
, unsigned client
);
1107 * memory_region_get_dirty: Check whether a range of bytes is dirty
1108 * for a specified client.
1110 * Checks whether a range of bytes has been written to since the last
1111 * call to memory_region_reset_dirty() with the same @client. Dirty logging
1114 * @mr: the memory region being queried.
1115 * @addr: the address (relative to the start of the region) being queried.
1116 * @size: the size of the range being queried.
1117 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1118 * %DIRTY_MEMORY_VGA.
1120 bool memory_region_get_dirty(MemoryRegion
*mr
, hwaddr addr
,
1121 hwaddr size
, unsigned client
);
1124 * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1126 * Marks a range of bytes as dirty, after it has been dirtied outside
1129 * @mr: the memory region being dirtied.
1130 * @addr: the address (relative to the start of the region) being dirtied.
1131 * @size: size of the range being dirtied.
1133 void memory_region_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
1137 * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1138 * bitmap and clear it.
1140 * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1141 * returns the snapshot. The snapshot can then be used to query dirty
1142 * status, using memory_region_snapshot_get_dirty. Snapshotting allows
1143 * querying the same page multiple times, which is especially useful for
1144 * display updates where the scanlines often are not page aligned.
1146 * The dirty bitmap region which gets copyed into the snapshot (and
1147 * cleared afterwards) can be larger than requested. The boundaries
1148 * are rounded up/down so complete bitmap longs (covering 64 pages on
1149 * 64bit hosts) can be copied over into the bitmap snapshot. Which
1150 * isn't a problem for display updates as the extra pages are outside
1151 * the visible area, and in case the visible area changes a full
1152 * display redraw is due anyway. Should other use cases for this
1153 * function emerge we might have to revisit this implementation
1156 * Use g_free to release DirtyBitmapSnapshot.
1158 * @mr: the memory region being queried.
1159 * @addr: the address (relative to the start of the region) being queried.
1160 * @size: the size of the range being queried.
1161 * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1163 DirtyBitmapSnapshot
*memory_region_snapshot_and_clear_dirty(MemoryRegion
*mr
,
1169 * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1170 * in the specified dirty bitmap snapshot.
1172 * @mr: the memory region being queried.
1173 * @snap: the dirty bitmap snapshot
1174 * @addr: the address (relative to the start of the region) being queried.
1175 * @size: the size of the range being queried.
1177 bool memory_region_snapshot_get_dirty(MemoryRegion
*mr
,
1178 DirtyBitmapSnapshot
*snap
,
1179 hwaddr addr
, hwaddr size
);
1182 * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1185 * Marks a range of pages as no longer dirty.
1187 * @mr: the region being updated.
1188 * @addr: the start of the subrange being cleaned.
1189 * @size: the size of the subrange being cleaned.
1190 * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1191 * %DIRTY_MEMORY_VGA.
1193 void memory_region_reset_dirty(MemoryRegion
*mr
, hwaddr addr
,
1194 hwaddr size
, unsigned client
);
1197 * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1199 * Allows a memory region to be marked as read-only (turning it into a ROM).
1200 * only useful on RAM regions.
1202 * @mr: the region being updated.
1203 * @readonly: whether rhe region is to be ROM or RAM.
1205 void memory_region_set_readonly(MemoryRegion
*mr
, bool readonly
);
1208 * memory_region_rom_device_set_romd: enable/disable ROMD mode
1210 * Allows a ROM device (initialized with memory_region_init_rom_device() to
1211 * set to ROMD mode (default) or MMIO mode. When it is in ROMD mode, the
1212 * device is mapped to guest memory and satisfies read access directly.
1213 * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1214 * Writes are always handled by the #MemoryRegion.write function.
1216 * @mr: the memory region to be updated
1217 * @romd_mode: %true to put the region into ROMD mode
1219 void memory_region_rom_device_set_romd(MemoryRegion
*mr
, bool romd_mode
);
1222 * memory_region_set_coalescing: Enable memory coalescing for the region.
1224 * Enabled writes to a region to be queued for later processing. MMIO ->write
1225 * callbacks may be delayed until a non-coalesced MMIO is issued.
1226 * Only useful for IO regions. Roughly similar to write-combining hardware.
1228 * @mr: the memory region to be write coalesced
1230 void memory_region_set_coalescing(MemoryRegion
*mr
);
1233 * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1236 * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1237 * Multiple calls can be issued coalesced disjoint ranges.
1239 * @mr: the memory region to be updated.
1240 * @offset: the start of the range within the region to be coalesced.
1241 * @size: the size of the subrange to be coalesced.
1243 void memory_region_add_coalescing(MemoryRegion
*mr
,
1248 * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1250 * Disables any coalescing caused by memory_region_set_coalescing() or
1251 * memory_region_add_coalescing(). Roughly equivalent to uncacheble memory
1254 * @mr: the memory region to be updated.
1256 void memory_region_clear_coalescing(MemoryRegion
*mr
);
1259 * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1262 * Ensure that pending coalesced MMIO request are flushed before the memory
1263 * region is accessed. This property is automatically enabled for all regions
1264 * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1266 * @mr: the memory region to be updated.
1268 void memory_region_set_flush_coalesced(MemoryRegion
*mr
);
1271 * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1274 * Clear the automatic coalesced MMIO flushing enabled via
1275 * memory_region_set_flush_coalesced. Note that this service has no effect on
1276 * memory regions that have MMIO coalescing enabled for themselves. For them,
1277 * automatic flushing will stop once coalescing is disabled.
1279 * @mr: the memory region to be updated.
1281 void memory_region_clear_flush_coalesced(MemoryRegion
*mr
);
1284 * memory_region_clear_global_locking: Declares that access processing does
1285 * not depend on the QEMU global lock.
1287 * By clearing this property, accesses to the memory region will be processed
1288 * outside of QEMU's global lock (unless the lock is held on when issuing the
1289 * access request). In this case, the device model implementing the access
1290 * handlers is responsible for synchronization of concurrency.
1292 * @mr: the memory region to be updated.
1294 void memory_region_clear_global_locking(MemoryRegion
*mr
);
1297 * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1298 * is written to a location.
1300 * Marks a word in an IO region (initialized with memory_region_init_io())
1301 * as a trigger for an eventfd event. The I/O callback will not be called.
1302 * The caller must be prepared to handle failure (that is, take the required
1303 * action if the callback _is_ called).
1305 * @mr: the memory region being updated.
1306 * @addr: the address within @mr that is to be monitored
1307 * @size: the size of the access to trigger the eventfd
1308 * @match_data: whether to match against @data, instead of just @addr
1309 * @data: the data to match against the guest write
1310 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1312 void memory_region_add_eventfd(MemoryRegion
*mr
,
1320 * memory_region_del_eventfd: Cancel an eventfd.
1322 * Cancels an eventfd trigger requested by a previous
1323 * memory_region_add_eventfd() call.
1325 * @mr: the memory region being updated.
1326 * @addr: the address within @mr that is to be monitored
1327 * @size: the size of the access to trigger the eventfd
1328 * @match_data: whether to match against @data, instead of just @addr
1329 * @data: the data to match against the guest write
1330 * @e: event notifier to be triggered when @addr, @size, and @data all match.
1332 void memory_region_del_eventfd(MemoryRegion
*mr
,
1340 * memory_region_add_subregion: Add a subregion to a container.
1342 * Adds a subregion at @offset. The subregion may not overlap with other
1343 * subregions (except for those explicitly marked as overlapping). A region
1344 * may only be added once as a subregion (unless removed with
1345 * memory_region_del_subregion()); use memory_region_init_alias() if you
1346 * want a region to be a subregion in multiple locations.
1348 * @mr: the region to contain the new subregion; must be a container
1349 * initialized with memory_region_init().
1350 * @offset: the offset relative to @mr where @subregion is added.
1351 * @subregion: the subregion to be added.
1353 void memory_region_add_subregion(MemoryRegion
*mr
,
1355 MemoryRegion
*subregion
);
1357 * memory_region_add_subregion_overlap: Add a subregion to a container
1360 * Adds a subregion at @offset. The subregion may overlap with other
1361 * subregions. Conflicts are resolved by having a higher @priority hide a
1362 * lower @priority. Subregions without priority are taken as @priority 0.
1363 * A region may only be added once as a subregion (unless removed with
1364 * memory_region_del_subregion()); use memory_region_init_alias() if you
1365 * want a region to be a subregion in multiple locations.
1367 * @mr: the region to contain the new subregion; must be a container
1368 * initialized with memory_region_init().
1369 * @offset: the offset relative to @mr where @subregion is added.
1370 * @subregion: the subregion to be added.
1371 * @priority: used for resolving overlaps; highest priority wins.
1373 void memory_region_add_subregion_overlap(MemoryRegion
*mr
,
1375 MemoryRegion
*subregion
,
1379 * memory_region_get_ram_addr: Get the ram address associated with a memory
1382 ram_addr_t
memory_region_get_ram_addr(MemoryRegion
*mr
);
1384 uint64_t memory_region_get_alignment(const MemoryRegion
*mr
);
1386 * memory_region_del_subregion: Remove a subregion.
1388 * Removes a subregion from its container.
1390 * @mr: the container to be updated.
1391 * @subregion: the region being removed; must be a current subregion of @mr.
1393 void memory_region_del_subregion(MemoryRegion
*mr
,
1394 MemoryRegion
*subregion
);
1397 * memory_region_set_enabled: dynamically enable or disable a region
1399 * Enables or disables a memory region. A disabled memory region
1400 * ignores all accesses to itself and its subregions. It does not
1401 * obscure sibling subregions with lower priority - it simply behaves as
1402 * if it was removed from the hierarchy.
1404 * Regions default to being enabled.
1406 * @mr: the region to be updated
1407 * @enabled: whether to enable or disable the region
1409 void memory_region_set_enabled(MemoryRegion
*mr
, bool enabled
);
1412 * memory_region_set_address: dynamically update the address of a region
1414 * Dynamically updates the address of a region, relative to its container.
1415 * May be used on regions are currently part of a memory hierarchy.
1417 * @mr: the region to be updated
1418 * @addr: new address, relative to container region
1420 void memory_region_set_address(MemoryRegion
*mr
, hwaddr addr
);
1423 * memory_region_set_size: dynamically update the size of a region.
1425 * Dynamically updates the size of a region.
1427 * @mr: the region to be updated
1428 * @size: used size of the region.
1430 void memory_region_set_size(MemoryRegion
*mr
, uint64_t size
);
1433 * memory_region_set_alias_offset: dynamically update a memory alias's offset
1435 * Dynamically updates the offset into the target region that an alias points
1436 * to, as if the fourth argument to memory_region_init_alias() has changed.
1438 * @mr: the #MemoryRegion to be updated; should be an alias.
1439 * @offset: the new offset into the target memory region
1441 void memory_region_set_alias_offset(MemoryRegion
*mr
,
1445 * memory_region_present: checks if an address relative to a @container
1446 * translates into #MemoryRegion within @container
1448 * Answer whether a #MemoryRegion within @container covers the address
1451 * @container: a #MemoryRegion within which @addr is a relative address
1452 * @addr: the area within @container to be searched
1454 bool memory_region_present(MemoryRegion
*container
, hwaddr addr
);
1457 * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1458 * into any address space.
1460 * @mr: a #MemoryRegion which should be checked if it's mapped
1462 bool memory_region_is_mapped(MemoryRegion
*mr
);
1465 * memory_region_find: translate an address/size relative to a
1466 * MemoryRegion into a #MemoryRegionSection.
1468 * Locates the first #MemoryRegion within @mr that overlaps the range
1469 * given by @addr and @size.
1471 * Returns a #MemoryRegionSection that describes a contiguous overlap.
1472 * It will have the following characteristics:
1473 * .@size = 0 iff no overlap was found
1474 * .@mr is non-%NULL iff an overlap was found
1476 * Remember that in the return value the @offset_within_region is
1477 * relative to the returned region (in the .@mr field), not to the
1480 * Similarly, the .@offset_within_address_space is relative to the
1481 * address space that contains both regions, the passed and the
1482 * returned one. However, in the special case where the @mr argument
1483 * has no container (and thus is the root of the address space), the
1484 * following will hold:
1485 * .@offset_within_address_space >= @addr
1486 * .@offset_within_address_space + .@size <= @addr + @size
1488 * @mr: a MemoryRegion within which @addr is a relative address
1489 * @addr: start of the area within @as to be searched
1490 * @size: size of the area to be searched
1492 MemoryRegionSection
memory_region_find(MemoryRegion
*mr
,
1493 hwaddr addr
, uint64_t size
);
1496 * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1498 * Synchronizes the dirty page log for all address spaces.
1500 void memory_global_dirty_log_sync(void);
1503 * memory_region_transaction_begin: Start a transaction.
1505 * During a transaction, changes will be accumulated and made visible
1506 * only when the transaction ends (is committed).
1508 void memory_region_transaction_begin(void);
1511 * memory_region_transaction_commit: Commit a transaction and make changes
1512 * visible to the guest.
1514 void memory_region_transaction_commit(void);
1517 * memory_listener_register: register callbacks to be called when memory
1518 * sections are mapped or unmapped into an address
1521 * @listener: an object containing the callbacks to be called
1522 * @filter: if non-%NULL, only regions in this address space will be observed
1524 void memory_listener_register(MemoryListener
*listener
, AddressSpace
*filter
);
1527 * memory_listener_unregister: undo the effect of memory_listener_register()
1529 * @listener: an object containing the callbacks to be removed
1531 void memory_listener_unregister(MemoryListener
*listener
);
1534 * memory_global_dirty_log_start: begin dirty logging for all regions
1536 void memory_global_dirty_log_start(void);
1539 * memory_global_dirty_log_stop: end dirty logging for all regions
1541 void memory_global_dirty_log_stop(void);
1543 void mtree_info(fprintf_function mon_printf
, void *f
, bool flatview
,
1544 bool dispatch_tree
);
1547 * memory_region_request_mmio_ptr: request a pointer to an mmio
1548 * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1549 * When the device wants to invalidate the pointer it will call
1550 * memory_region_invalidate_mmio_ptr.
1552 * @mr: #MemoryRegion to check
1553 * @addr: address within that region
1555 * Returns true on success, false otherwise.
1557 bool memory_region_request_mmio_ptr(MemoryRegion
*mr
, hwaddr addr
);
1560 * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1561 * previously requested.
1562 * In the end that means that if something wants to execute from this area it
1563 * will need to request the pointer again.
1565 * @mr: #MemoryRegion associated to the pointer.
1566 * @offset: offset within the memory region
1567 * @size: size of that area.
1569 void memory_region_invalidate_mmio_ptr(MemoryRegion
*mr
, hwaddr offset
,
1573 * memory_region_dispatch_read: perform a read directly to the specified
1576 * @mr: #MemoryRegion to access
1577 * @addr: address within that region
1578 * @pval: pointer to uint64_t which the data is written to
1579 * @size: size of the access in bytes
1580 * @attrs: memory transaction attributes to use for the access
1582 MemTxResult
memory_region_dispatch_read(MemoryRegion
*mr
,
1588 * memory_region_dispatch_write: perform a write directly to the specified
1591 * @mr: #MemoryRegion to access
1592 * @addr: address within that region
1593 * @data: data to write
1594 * @size: size of the access in bytes
1595 * @attrs: memory transaction attributes to use for the access
1597 MemTxResult
memory_region_dispatch_write(MemoryRegion
*mr
,
1604 * address_space_init: initializes an address space
1606 * @as: an uninitialized #AddressSpace
1607 * @root: a #MemoryRegion that routes addresses for the address space
1608 * @name: an address space name. The name is only used for debugging
1611 void address_space_init(AddressSpace
*as
, MemoryRegion
*root
, const char *name
);
1614 * address_space_destroy: destroy an address space
1616 * Releases all resources associated with an address space. After an address space
1617 * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1620 * @as: address space to be destroyed
1622 void address_space_destroy(AddressSpace
*as
);
1625 * address_space_rw: read from or write to an address space.
1627 * Return a MemTxResult indicating whether the operation succeeded
1628 * or failed (eg unassigned memory, device rejected the transaction,
1631 * @as: #AddressSpace to be accessed
1632 * @addr: address within that address space
1633 * @attrs: memory transaction attributes
1634 * @buf: buffer with the data transferred
1635 * @len: the number of bytes to read or write
1636 * @is_write: indicates the transfer direction
1638 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
,
1639 MemTxAttrs attrs
, uint8_t *buf
,
1640 int len
, bool is_write
);
1643 * address_space_write: write to address space.
1645 * Return a MemTxResult indicating whether the operation succeeded
1646 * or failed (eg unassigned memory, device rejected the transaction,
1649 * @as: #AddressSpace to be accessed
1650 * @addr: address within that address space
1651 * @attrs: memory transaction attributes
1652 * @buf: buffer with the data transferred
1653 * @len: the number of bytes to write
1655 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
,
1657 const uint8_t *buf
, int len
);
1659 /* address_space_ld*: load from an address space
1660 * address_space_st*: store to an address space
1662 * These functions perform a load or store of the byte, word,
1663 * longword or quad to the specified address within the AddressSpace.
1664 * The _le suffixed functions treat the data as little endian;
1665 * _be indicates big endian; no suffix indicates "same endianness
1668 * The "guest CPU endianness" accessors are deprecated for use outside
1669 * target-* code; devices should be CPU-agnostic and use either the LE
1670 * or the BE accessors.
1672 * @as #AddressSpace to be accessed
1673 * @addr: address within that address space
1674 * @val: data value, for stores
1675 * @attrs: memory transaction attributes
1676 * @result: location to write the success/failure of the transaction;
1677 * if NULL, this information is discarded
1679 uint32_t address_space_ldub(AddressSpace
*as
, hwaddr addr
,
1680 MemTxAttrs attrs
, MemTxResult
*result
);
1681 uint32_t address_space_lduw_le(AddressSpace
*as
, hwaddr addr
,
1682 MemTxAttrs attrs
, MemTxResult
*result
);
1683 uint32_t address_space_lduw_be(AddressSpace
*as
, hwaddr addr
,
1684 MemTxAttrs attrs
, MemTxResult
*result
);
1685 uint32_t address_space_ldl_le(AddressSpace
*as
, hwaddr addr
,
1686 MemTxAttrs attrs
, MemTxResult
*result
);
1687 uint32_t address_space_ldl_be(AddressSpace
*as
, hwaddr addr
,
1688 MemTxAttrs attrs
, MemTxResult
*result
);
1689 uint64_t address_space_ldq_le(AddressSpace
*as
, hwaddr addr
,
1690 MemTxAttrs attrs
, MemTxResult
*result
);
1691 uint64_t address_space_ldq_be(AddressSpace
*as
, hwaddr addr
,
1692 MemTxAttrs attrs
, MemTxResult
*result
);
1693 void address_space_stb(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
1694 MemTxAttrs attrs
, MemTxResult
*result
);
1695 void address_space_stw_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
1696 MemTxAttrs attrs
, MemTxResult
*result
);
1697 void address_space_stw_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
1698 MemTxAttrs attrs
, MemTxResult
*result
);
1699 void address_space_stl_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
1700 MemTxAttrs attrs
, MemTxResult
*result
);
1701 void address_space_stl_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
1702 MemTxAttrs attrs
, MemTxResult
*result
);
1703 void address_space_stq_le(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
1704 MemTxAttrs attrs
, MemTxResult
*result
);
1705 void address_space_stq_be(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
1706 MemTxAttrs attrs
, MemTxResult
*result
);
1708 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
);
1709 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
);
1710 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
);
1711 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
);
1712 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
);
1713 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
);
1714 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
);
1715 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
);
1716 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
);
1717 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
);
1718 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
);
1719 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
);
1720 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
);
1721 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
);
1723 struct MemoryRegionCache
{
1729 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .as = NULL })
1731 /* address_space_cache_init: prepare for repeated access to a physical
1734 * @cache: #MemoryRegionCache to be filled
1735 * @as: #AddressSpace to be accessed
1736 * @addr: address within that address space
1737 * @len: length of buffer
1738 * @is_write: indicates the transfer direction
1740 * Will only work with RAM, and may map a subset of the requested range by
1741 * returning a value that is less than @len. On failure, return a negative
1744 * Because it only works with RAM, this function can be used for
1745 * read-modify-write operations. In this case, is_write should be %true.
1747 * Note that addresses passed to the address_space_*_cached functions
1748 * are relative to @addr.
1750 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
1757 * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1759 * @cache: The #MemoryRegionCache to operate on.
1760 * @addr: The first physical address that was written, relative to the
1761 * address that was passed to @address_space_cache_init.
1762 * @access_len: The number of bytes that were written starting at @addr.
1764 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
1769 * address_space_cache_destroy: free a #MemoryRegionCache
1771 * @cache: The #MemoryRegionCache whose memory should be released.
1773 void address_space_cache_destroy(MemoryRegionCache
*cache
);
1775 /* address_space_ld*_cached: load from a cached #MemoryRegion
1776 * address_space_st*_cached: store into a cached #MemoryRegion
1778 * These functions perform a load or store of the byte, word,
1779 * longword or quad to the specified address. The address is
1780 * a physical address in the AddressSpace, but it must lie within
1781 * a #MemoryRegion that was mapped with address_space_cache_init.
1783 * The _le suffixed functions treat the data as little endian;
1784 * _be indicates big endian; no suffix indicates "same endianness
1787 * The "guest CPU endianness" accessors are deprecated for use outside
1788 * target-* code; devices should be CPU-agnostic and use either the LE
1789 * or the BE accessors.
1791 * @cache: previously initialized #MemoryRegionCache to be accessed
1792 * @addr: address within the address space
1793 * @val: data value, for stores
1794 * @attrs: memory transaction attributes
1795 * @result: location to write the success/failure of the transaction;
1796 * if NULL, this information is discarded
1798 uint32_t address_space_ldub_cached(MemoryRegionCache
*cache
, hwaddr addr
,
1799 MemTxAttrs attrs
, MemTxResult
*result
);
1800 uint32_t address_space_lduw_le_cached(MemoryRegionCache
*cache
, hwaddr addr
,
1801 MemTxAttrs attrs
, MemTxResult
*result
);
1802 uint32_t address_space_lduw_be_cached(MemoryRegionCache
*cache
, hwaddr addr
,
1803 MemTxAttrs attrs
, MemTxResult
*result
);
1804 uint32_t address_space_ldl_le_cached(MemoryRegionCache
*cache
, hwaddr addr
,
1805 MemTxAttrs attrs
, MemTxResult
*result
);
1806 uint32_t address_space_ldl_be_cached(MemoryRegionCache
*cache
, hwaddr addr
,
1807 MemTxAttrs attrs
, MemTxResult
*result
);
1808 uint64_t address_space_ldq_le_cached(MemoryRegionCache
*cache
, hwaddr addr
,
1809 MemTxAttrs attrs
, MemTxResult
*result
);
1810 uint64_t address_space_ldq_be_cached(MemoryRegionCache
*cache
, hwaddr addr
,
1811 MemTxAttrs attrs
, MemTxResult
*result
);
1812 void address_space_stb_cached(MemoryRegionCache
*cache
, hwaddr addr
, uint32_t val
,
1813 MemTxAttrs attrs
, MemTxResult
*result
);
1814 void address_space_stw_le_cached(MemoryRegionCache
*cache
, hwaddr addr
, uint32_t val
,
1815 MemTxAttrs attrs
, MemTxResult
*result
);
1816 void address_space_stw_be_cached(MemoryRegionCache
*cache
, hwaddr addr
, uint32_t val
,
1817 MemTxAttrs attrs
, MemTxResult
*result
);
1818 void address_space_stl_le_cached(MemoryRegionCache
*cache
, hwaddr addr
, uint32_t val
,
1819 MemTxAttrs attrs
, MemTxResult
*result
);
1820 void address_space_stl_be_cached(MemoryRegionCache
*cache
, hwaddr addr
, uint32_t val
,
1821 MemTxAttrs attrs
, MemTxResult
*result
);
1822 void address_space_stq_le_cached(MemoryRegionCache
*cache
, hwaddr addr
, uint64_t val
,
1823 MemTxAttrs attrs
, MemTxResult
*result
);
1824 void address_space_stq_be_cached(MemoryRegionCache
*cache
, hwaddr addr
, uint64_t val
,
1825 MemTxAttrs attrs
, MemTxResult
*result
);
1827 uint32_t ldub_phys_cached(MemoryRegionCache
*cache
, hwaddr addr
);
1828 uint32_t lduw_le_phys_cached(MemoryRegionCache
*cache
, hwaddr addr
);
1829 uint32_t lduw_be_phys_cached(MemoryRegionCache
*cache
, hwaddr addr
);
1830 uint32_t ldl_le_phys_cached(MemoryRegionCache
*cache
, hwaddr addr
);
1831 uint32_t ldl_be_phys_cached(MemoryRegionCache
*cache
, hwaddr addr
);
1832 uint64_t ldq_le_phys_cached(MemoryRegionCache
*cache
, hwaddr addr
);
1833 uint64_t ldq_be_phys_cached(MemoryRegionCache
*cache
, hwaddr addr
);
1834 void stb_phys_cached(MemoryRegionCache
*cache
, hwaddr addr
, uint32_t val
);
1835 void stw_le_phys_cached(MemoryRegionCache
*cache
, hwaddr addr
, uint32_t val
);
1836 void stw_be_phys_cached(MemoryRegionCache
*cache
, hwaddr addr
, uint32_t val
);
1837 void stl_le_phys_cached(MemoryRegionCache
*cache
, hwaddr addr
, uint32_t val
);
1838 void stl_be_phys_cached(MemoryRegionCache
*cache
, hwaddr addr
, uint32_t val
);
1839 void stq_le_phys_cached(MemoryRegionCache
*cache
, hwaddr addr
, uint64_t val
);
1840 void stq_be_phys_cached(MemoryRegionCache
*cache
, hwaddr addr
, uint64_t val
);
1841 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1842 * entry. Should be called from an RCU critical section.
1844 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
1847 /* address_space_translate: translate an address range into an address space
1848 * into a MemoryRegion and an address range into that section. Should be
1849 * called from an RCU critical section, to avoid that the last reference
1850 * to the returned region disappears after address_space_translate returns.
1852 * @fv: #FlatView to be accessed
1853 * @addr: address within that address space
1854 * @xlat: pointer to address within the returned memory region section's
1856 * @len: pointer to length
1857 * @is_write: indicates the transfer direction
1859 MemoryRegion
*flatview_translate(FlatView
*fv
,
1860 hwaddr addr
, hwaddr
*xlat
,
1861 hwaddr
*len
, bool is_write
);
1863 static inline MemoryRegion
*address_space_translate(AddressSpace
*as
,
1864 hwaddr addr
, hwaddr
*xlat
,
1865 hwaddr
*len
, bool is_write
)
1867 return flatview_translate(address_space_to_flatview(as
),
1868 addr
, xlat
, len
, is_write
);
1871 /* address_space_access_valid: check for validity of accessing an address
1874 * Check whether memory is assigned to the given address space range, and
1875 * access is permitted by any IOMMU regions that are active for the address
1878 * For now, addr and len should be aligned to a page size. This limitation
1879 * will be lifted in the future.
1881 * @as: #AddressSpace to be accessed
1882 * @addr: address within that address space
1883 * @len: length of the area to be checked
1884 * @is_write: indicates the transfer direction
1886 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
);
1888 /* address_space_map: map a physical memory region into a host virtual address
1890 * May map a subset of the requested range, given by and returned in @plen.
1891 * May return %NULL if resources needed to perform the mapping are exhausted.
1892 * Use only for reads OR writes - not for read-modify-write operations.
1893 * Use cpu_register_map_client() to know when retrying the map operation is
1894 * likely to succeed.
1896 * @as: #AddressSpace to be accessed
1897 * @addr: address within that address space
1898 * @plen: pointer to length of buffer; updated on return
1899 * @is_write: indicates the transfer direction
1901 void *address_space_map(AddressSpace
*as
, hwaddr addr
,
1902 hwaddr
*plen
, bool is_write
);
1904 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1906 * Will also mark the memory as dirty if @is_write == %true. @access_len gives
1907 * the amount of memory that was actually read or written by the caller.
1909 * @as: #AddressSpace used
1910 * @buffer: host pointer as returned by address_space_map()
1911 * @len: buffer length as returned by address_space_map()
1912 * @access_len: amount of data actually transferred
1913 * @is_write: indicates the transfer direction
1915 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
1916 int is_write
, hwaddr access_len
);
1919 /* Internal functions, part of the implementation of address_space_read. */
1920 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
1921 MemTxAttrs attrs
, uint8_t *buf
, int len
);
1922 MemTxResult
flatview_read_continue(FlatView
*fv
, hwaddr addr
,
1923 MemTxAttrs attrs
, uint8_t *buf
,
1924 int len
, hwaddr addr1
, hwaddr l
,
1926 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
);
1928 static inline bool memory_access_is_direct(MemoryRegion
*mr
, bool is_write
)
1931 return memory_region_is_ram(mr
) &&
1932 !mr
->readonly
&& !memory_region_is_ram_device(mr
);
1934 return (memory_region_is_ram(mr
) && !memory_region_is_ram_device(mr
)) ||
1935 memory_region_is_romd(mr
);
1940 * address_space_read: read from an address space.
1942 * Return a MemTxResult indicating whether the operation succeeded
1943 * or failed (eg unassigned memory, device rejected the transaction,
1944 * IOMMU fault). Called within RCU critical section.
1946 * @as: #AddressSpace to be accessed
1947 * @addr: address within that address space
1948 * @attrs: memory transaction attributes
1949 * @buf: buffer with the data transferred
1951 static inline __attribute__((__always_inline__
))
1952 MemTxResult
address_space_read(AddressSpace
*as
, hwaddr addr
,
1953 MemTxAttrs attrs
, uint8_t *buf
,
1956 MemTxResult result
= MEMTX_OK
;
1962 if (__builtin_constant_p(len
)) {
1965 fv
= address_space_to_flatview(as
);
1967 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false);
1968 if (len
== l
&& memory_access_is_direct(mr
, false)) {
1969 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
1970 memcpy(buf
, ptr
, len
);
1972 result
= flatview_read_continue(fv
, addr
, attrs
, buf
, len
,
1978 result
= address_space_read_full(as
, addr
, attrs
, buf
, len
);
1984 * address_space_read_cached: read from a cached RAM region
1986 * @cache: Cached region to be addressed
1987 * @addr: address relative to the base of the RAM region
1988 * @buf: buffer with the data transferred
1989 * @len: length of the data transferred
1992 address_space_read_cached(MemoryRegionCache
*cache
, hwaddr addr
,
1995 assert(addr
< cache
->len
&& len
<= cache
->len
- addr
);
1996 address_space_read(cache
->as
, cache
->xlat
+ addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
);
2000 * address_space_write_cached: write to a cached RAM region
2002 * @cache: Cached region to be addressed
2003 * @addr: address relative to the base of the RAM region
2004 * @buf: buffer with the data transferred
2005 * @len: length of the data transferred
2008 address_space_write_cached(MemoryRegionCache
*cache
, hwaddr addr
,
2011 assert(addr
< cache
->len
&& len
<= cache
->len
- addr
);
2012 address_space_write(cache
->as
, cache
->xlat
+ addr
, MEMTXATTRS_UNSPECIFIED
, buf
, len
);