4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
53 //#define DEBUG_SUBPAGE
55 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration
;
59 RAMList ram_list
= { .blocks
= QTAILQ_HEAD_INITIALIZER(ram_list
.blocks
) };
61 static MemoryRegion
*system_memory
;
62 static MemoryRegion
*system_io
;
64 AddressSpace address_space_io
;
65 AddressSpace address_space_memory
;
67 MemoryRegion io_mem_rom
, io_mem_notdirty
;
68 static MemoryRegion io_mem_unassigned
;
72 CPUArchState
*first_cpu
;
73 /* current CPU in the current thread. It is only valid inside
75 DEFINE_TLS(CPUArchState
*,cpu_single_env
);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
81 #if !defined(CONFIG_USER_ONLY)
83 typedef struct PhysPageEntry PhysPageEntry
;
85 struct PhysPageEntry
{
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
91 struct AddressSpaceDispatch
{
92 /* This is a multi-level map on the physical address space.
93 * The bottom level has pointers to MemoryRegionSections.
95 PhysPageEntry phys_map
;
96 MemoryListener listener
;
100 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
101 typedef struct subpage_t
{
105 uint16_t sub_section
[TARGET_PAGE_SIZE
];
108 #define PHYS_SECTION_UNASSIGNED 0
109 #define PHYS_SECTION_NOTDIRTY 1
110 #define PHYS_SECTION_ROM 2
111 #define PHYS_SECTION_WATCH 3
113 typedef PhysPageEntry Node
[L2_SIZE
];
115 typedef struct PhysPageMap
{
116 unsigned sections_nb
;
117 unsigned sections_nb_alloc
;
119 unsigned nodes_nb_alloc
;
121 MemoryRegionSection
*sections
;
124 static PhysPageMap cur_map
;
125 static PhysPageMap next_map
;
127 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
129 static void io_mem_init(void);
130 static void memory_map_init(void);
131 static void *qemu_safe_ram_ptr(ram_addr_t addr
);
133 static MemoryRegion io_mem_watch
;
136 #if !defined(CONFIG_USER_ONLY)
138 static void phys_map_node_reserve(unsigned nodes
)
140 if (next_map
.nodes_nb
+ nodes
> next_map
.nodes_nb_alloc
) {
141 next_map
.nodes_nb_alloc
= MAX(next_map
.nodes_nb_alloc
* 2,
143 next_map
.nodes_nb_alloc
= MAX(next_map
.nodes_nb_alloc
,
144 next_map
.nodes_nb
+ nodes
);
145 next_map
.nodes
= g_renew(Node
, next_map
.nodes
,
146 next_map
.nodes_nb_alloc
);
150 static uint16_t phys_map_node_alloc(void)
155 ret
= next_map
.nodes_nb
++;
156 assert(ret
!= PHYS_MAP_NODE_NIL
);
157 assert(ret
!= next_map
.nodes_nb_alloc
);
158 for (i
= 0; i
< L2_SIZE
; ++i
) {
159 next_map
.nodes
[ret
][i
].is_leaf
= 0;
160 next_map
.nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
165 static void phys_page_set_level(PhysPageEntry
*lp
, hwaddr
*index
,
166 hwaddr
*nb
, uint16_t leaf
,
171 hwaddr step
= (hwaddr
)1 << (level
* L2_BITS
);
173 if (!lp
->is_leaf
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
174 lp
->ptr
= phys_map_node_alloc();
175 p
= next_map
.nodes
[lp
->ptr
];
177 for (i
= 0; i
< L2_SIZE
; i
++) {
179 p
[i
].ptr
= PHYS_SECTION_UNASSIGNED
;
183 p
= next_map
.nodes
[lp
->ptr
];
185 lp
= &p
[(*index
>> (level
* L2_BITS
)) & (L2_SIZE
- 1)];
187 while (*nb
&& lp
< &p
[L2_SIZE
]) {
188 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
194 phys_page_set_level(lp
, index
, nb
, leaf
, level
- 1);
200 static void phys_page_set(AddressSpaceDispatch
*d
,
201 hwaddr index
, hwaddr nb
,
204 /* Wildly overreserve - it doesn't matter much. */
205 phys_map_node_reserve(3 * P_L2_LEVELS
);
207 phys_page_set_level(&d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
210 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr index
,
211 Node
*nodes
, MemoryRegionSection
*sections
)
216 for (i
= P_L2_LEVELS
- 1; i
>= 0 && !lp
.is_leaf
; i
--) {
217 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
218 return §ions
[PHYS_SECTION_UNASSIGNED
];
221 lp
= p
[(index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1)];
223 return §ions
[lp
.ptr
];
226 bool memory_region_is_unassigned(MemoryRegion
*mr
)
228 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
229 && mr
!= &io_mem_watch
;
232 static MemoryRegionSection
*address_space_lookup_region(AddressSpace
*as
,
234 bool resolve_subpage
)
236 MemoryRegionSection
*section
;
239 section
= phys_page_find(as
->dispatch
->phys_map
, addr
>> TARGET_PAGE_BITS
,
240 cur_map
.nodes
, cur_map
.sections
);
241 if (resolve_subpage
&& section
->mr
->subpage
) {
242 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
243 section
= &cur_map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
248 static MemoryRegionSection
*
249 address_space_translate_internal(AddressSpace
*as
, hwaddr addr
, hwaddr
*xlat
,
250 hwaddr
*plen
, bool resolve_subpage
)
252 MemoryRegionSection
*section
;
255 section
= address_space_lookup_region(as
, addr
, resolve_subpage
);
256 /* Compute offset within MemoryRegionSection */
257 addr
-= section
->offset_within_address_space
;
259 /* Compute offset within MemoryRegion */
260 *xlat
= addr
+ section
->offset_within_region
;
262 diff
= int128_sub(section
->mr
->size
, int128_make64(addr
));
263 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
267 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
268 hwaddr
*xlat
, hwaddr
*plen
,
272 MemoryRegionSection
*section
;
277 section
= address_space_translate_internal(as
, addr
, &addr
, plen
, true);
280 if (!mr
->iommu_ops
) {
284 iotlb
= mr
->iommu_ops
->translate(mr
, addr
);
285 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
286 | (addr
& iotlb
.addr_mask
));
287 len
= MIN(len
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
288 if (!(iotlb
.perm
& (1 << is_write
))) {
289 mr
= &io_mem_unassigned
;
293 as
= iotlb
.target_as
;
301 MemoryRegionSection
*
302 address_space_translate_for_iotlb(AddressSpace
*as
, hwaddr addr
, hwaddr
*xlat
,
305 MemoryRegionSection
*section
;
306 section
= address_space_translate_internal(as
, addr
, xlat
, plen
, false);
308 assert(!section
->mr
->iommu_ops
);
313 void cpu_exec_init_all(void)
315 #if !defined(CONFIG_USER_ONLY)
316 qemu_mutex_init(&ram_list
.mutex
);
322 #if !defined(CONFIG_USER_ONLY)
324 static int cpu_common_post_load(void *opaque
, int version_id
)
326 CPUState
*cpu
= opaque
;
328 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
329 version_id is increased. */
330 cpu
->interrupt_request
&= ~0x01;
331 tlb_flush(cpu
->env_ptr
, 1);
336 const VMStateDescription vmstate_cpu_common
= {
337 .name
= "cpu_common",
339 .minimum_version_id
= 1,
340 .minimum_version_id_old
= 1,
341 .post_load
= cpu_common_post_load
,
342 .fields
= (VMStateField
[]) {
343 VMSTATE_UINT32(halted
, CPUState
),
344 VMSTATE_UINT32(interrupt_request
, CPUState
),
345 VMSTATE_END_OF_LIST()
351 CPUState
*qemu_get_cpu(int index
)
353 CPUArchState
*env
= first_cpu
;
354 CPUState
*cpu
= NULL
;
357 cpu
= ENV_GET_CPU(env
);
358 if (cpu
->cpu_index
== index
) {
364 return env
? cpu
: NULL
;
367 void qemu_for_each_cpu(void (*func
)(CPUState
*cpu
, void *data
), void *data
)
369 CPUArchState
*env
= first_cpu
;
372 func(ENV_GET_CPU(env
), data
);
377 void cpu_exec_init(CPUArchState
*env
)
379 CPUState
*cpu
= ENV_GET_CPU(env
);
380 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
384 #if defined(CONFIG_USER_ONLY)
387 env
->next_cpu
= NULL
;
390 while (*penv
!= NULL
) {
391 penv
= &(*penv
)->next_cpu
;
394 cpu
->cpu_index
= cpu_index
;
396 QTAILQ_INIT(&env
->breakpoints
);
397 QTAILQ_INIT(&env
->watchpoints
);
398 #ifndef CONFIG_USER_ONLY
399 cpu
->thread_id
= qemu_get_thread_id();
402 #if defined(CONFIG_USER_ONLY)
405 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
406 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
407 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
408 cpu_save
, cpu_load
, env
);
409 assert(cc
->vmsd
== NULL
);
411 if (cc
->vmsd
!= NULL
) {
412 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
416 #if defined(TARGET_HAS_ICE)
417 #if defined(CONFIG_USER_ONLY)
418 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
420 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
423 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
425 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env
, pc
) |
426 (pc
& ~TARGET_PAGE_MASK
));
429 #endif /* TARGET_HAS_ICE */
431 #if defined(CONFIG_USER_ONLY)
432 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
437 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
438 int flags
, CPUWatchpoint
**watchpoint
)
443 /* Add a watchpoint. */
444 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
445 int flags
, CPUWatchpoint
**watchpoint
)
447 target_ulong len_mask
= ~(len
- 1);
450 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
451 if ((len
& (len
- 1)) || (addr
& ~len_mask
) ||
452 len
== 0 || len
> TARGET_PAGE_SIZE
) {
453 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
454 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
457 wp
= g_malloc(sizeof(*wp
));
460 wp
->len_mask
= len_mask
;
463 /* keep all GDB-injected watchpoints in front */
465 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
467 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
469 tlb_flush_page(env
, addr
);
476 /* Remove a specific watchpoint. */
477 int cpu_watchpoint_remove(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
480 target_ulong len_mask
= ~(len
- 1);
483 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
484 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
485 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
486 cpu_watchpoint_remove_by_ref(env
, wp
);
493 /* Remove a specific watchpoint by reference. */
494 void cpu_watchpoint_remove_by_ref(CPUArchState
*env
, CPUWatchpoint
*watchpoint
)
496 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
498 tlb_flush_page(env
, watchpoint
->vaddr
);
503 /* Remove all matching watchpoints. */
504 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
506 CPUWatchpoint
*wp
, *next
;
508 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
509 if (wp
->flags
& mask
)
510 cpu_watchpoint_remove_by_ref(env
, wp
);
515 /* Add a breakpoint. */
516 int cpu_breakpoint_insert(CPUArchState
*env
, target_ulong pc
, int flags
,
517 CPUBreakpoint
**breakpoint
)
519 #if defined(TARGET_HAS_ICE)
522 bp
= g_malloc(sizeof(*bp
));
527 /* keep all GDB-injected breakpoints in front */
529 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
531 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
533 breakpoint_invalidate(env
, pc
);
543 /* Remove a specific breakpoint. */
544 int cpu_breakpoint_remove(CPUArchState
*env
, target_ulong pc
, int flags
)
546 #if defined(TARGET_HAS_ICE)
549 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
550 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
551 cpu_breakpoint_remove_by_ref(env
, bp
);
561 /* Remove a specific breakpoint by reference. */
562 void cpu_breakpoint_remove_by_ref(CPUArchState
*env
, CPUBreakpoint
*breakpoint
)
564 #if defined(TARGET_HAS_ICE)
565 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
567 breakpoint_invalidate(env
, breakpoint
->pc
);
573 /* Remove all matching breakpoints. */
574 void cpu_breakpoint_remove_all(CPUArchState
*env
, int mask
)
576 #if defined(TARGET_HAS_ICE)
577 CPUBreakpoint
*bp
, *next
;
579 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
580 if (bp
->flags
& mask
)
581 cpu_breakpoint_remove_by_ref(env
, bp
);
586 /* enable or disable single step mode. EXCP_DEBUG is returned by the
587 CPU loop after each instruction */
588 void cpu_single_step(CPUArchState
*env
, int enabled
)
590 #if defined(TARGET_HAS_ICE)
591 if (env
->singlestep_enabled
!= enabled
) {
592 env
->singlestep_enabled
= enabled
;
594 kvm_update_guest_debug(env
, 0);
596 /* must flush all the translated code to avoid inconsistencies */
597 /* XXX: only flush what is necessary */
604 void cpu_abort(CPUArchState
*env
, const char *fmt
, ...)
606 CPUState
*cpu
= ENV_GET_CPU(env
);
612 fprintf(stderr
, "qemu: fatal: ");
613 vfprintf(stderr
, fmt
, ap
);
614 fprintf(stderr
, "\n");
615 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
616 if (qemu_log_enabled()) {
617 qemu_log("qemu: fatal: ");
618 qemu_log_vprintf(fmt
, ap2
);
620 log_cpu_state(env
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
626 #if defined(CONFIG_USER_ONLY)
628 struct sigaction act
;
629 sigfillset(&act
.sa_mask
);
630 act
.sa_handler
= SIG_DFL
;
631 sigaction(SIGABRT
, &act
, NULL
);
637 CPUArchState
*cpu_copy(CPUArchState
*env
)
639 CPUArchState
*new_env
= cpu_init(env
->cpu_model_str
);
640 CPUArchState
*next_cpu
= new_env
->next_cpu
;
641 #if defined(TARGET_HAS_ICE)
646 memcpy(new_env
, env
, sizeof(CPUArchState
));
648 /* Preserve chaining. */
649 new_env
->next_cpu
= next_cpu
;
651 /* Clone all break/watchpoints.
652 Note: Once we support ptrace with hw-debug register access, make sure
653 BP_CPU break/watchpoints are handled correctly on clone. */
654 QTAILQ_INIT(&env
->breakpoints
);
655 QTAILQ_INIT(&env
->watchpoints
);
656 #if defined(TARGET_HAS_ICE)
657 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
658 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
660 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
661 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
669 #if !defined(CONFIG_USER_ONLY)
670 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t end
,
675 /* we modify the TLB cache so that the dirty bit will be set again
676 when accessing the range */
677 start1
= (uintptr_t)qemu_safe_ram_ptr(start
);
678 /* Check that we don't span multiple blocks - this breaks the
679 address comparisons below. */
680 if ((uintptr_t)qemu_safe_ram_ptr(end
- 1) - start1
681 != (end
- 1) - start
) {
684 cpu_tlb_reset_dirty_all(start1
, length
);
688 /* Note: start and end must be within the same ram block. */
689 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
694 start
&= TARGET_PAGE_MASK
;
695 end
= TARGET_PAGE_ALIGN(end
);
697 length
= end
- start
;
700 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
703 tlb_reset_dirty_range_all(start
, end
, length
);
707 static int cpu_physical_memory_set_dirty_tracking(int enable
)
710 in_migration
= enable
;
714 hwaddr
memory_region_section_get_iotlb(CPUArchState
*env
,
715 MemoryRegionSection
*section
,
717 hwaddr paddr
, hwaddr xlat
,
719 target_ulong
*address
)
724 if (memory_region_is_ram(section
->mr
)) {
726 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
728 if (!section
->readonly
) {
729 iotlb
|= PHYS_SECTION_NOTDIRTY
;
731 iotlb
|= PHYS_SECTION_ROM
;
734 iotlb
= section
- cur_map
.sections
;
738 /* Make accesses to pages with watchpoints go via the
739 watchpoint trap routines. */
740 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
741 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
742 /* Avoid trapping reads of pages with a write breakpoint. */
743 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
744 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
745 *address
|= TLB_MMIO
;
753 #endif /* defined(CONFIG_USER_ONLY) */
755 #if !defined(CONFIG_USER_ONLY)
757 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
759 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
761 static uint16_t phys_section_add(MemoryRegionSection
*section
)
763 /* The physical section number is ORed with a page-aligned
764 * pointer to produce the iotlb entries. Thus it should
765 * never overflow into the page-aligned value.
767 assert(next_map
.sections_nb
< TARGET_PAGE_SIZE
);
769 if (next_map
.sections_nb
== next_map
.sections_nb_alloc
) {
770 next_map
.sections_nb_alloc
= MAX(next_map
.sections_nb_alloc
* 2,
772 next_map
.sections
= g_renew(MemoryRegionSection
, next_map
.sections
,
773 next_map
.sections_nb_alloc
);
775 next_map
.sections
[next_map
.sections_nb
] = *section
;
776 memory_region_ref(section
->mr
);
777 return next_map
.sections_nb
++;
780 static void phys_section_destroy(MemoryRegion
*mr
)
782 memory_region_unref(mr
);
785 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
786 memory_region_destroy(&subpage
->iomem
);
791 static void phys_sections_clear(PhysPageMap
*map
)
793 while (map
->sections_nb
> 0) {
794 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
795 phys_section_destroy(section
->mr
);
797 g_free(map
->sections
);
801 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
804 hwaddr base
= section
->offset_within_address_space
806 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
>> TARGET_PAGE_BITS
,
807 next_map
.nodes
, next_map
.sections
);
808 MemoryRegionSection subsection
= {
809 .offset_within_address_space
= base
,
810 .size
= int128_make64(TARGET_PAGE_SIZE
),
814 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
816 if (!(existing
->mr
->subpage
)) {
817 subpage
= subpage_init(d
->as
, base
);
818 subsection
.mr
= &subpage
->iomem
;
819 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
820 phys_section_add(&subsection
));
822 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
824 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
825 end
= start
+ int128_get64(section
->size
) - 1;
826 subpage_register(subpage
, start
, end
, phys_section_add(section
));
830 static void register_multipage(AddressSpaceDispatch
*d
,
831 MemoryRegionSection
*section
)
833 hwaddr start_addr
= section
->offset_within_address_space
;
834 uint16_t section_index
= phys_section_add(section
);
835 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
839 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
842 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
844 AddressSpaceDispatch
*d
= container_of(listener
, AddressSpaceDispatch
, listener
);
845 MemoryRegionSection now
= *section
, remain
= *section
;
846 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
848 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
849 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
850 - now
.offset_within_address_space
;
852 now
.size
= int128_min(int128_make64(left
), now
.size
);
853 register_subpage(d
, &now
);
855 now
.size
= int128_zero();
857 while (int128_ne(remain
.size
, now
.size
)) {
858 remain
.size
= int128_sub(remain
.size
, now
.size
);
859 remain
.offset_within_address_space
+= int128_get64(now
.size
);
860 remain
.offset_within_region
+= int128_get64(now
.size
);
862 if (int128_lt(remain
.size
, page_size
)) {
863 register_subpage(d
, &now
);
864 } else if (remain
.offset_within_region
& ~TARGET_PAGE_MASK
) {
865 now
.size
= page_size
;
866 register_subpage(d
, &now
);
868 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
869 register_multipage(d
, &now
);
874 void qemu_flush_coalesced_mmio_buffer(void)
877 kvm_flush_coalesced_mmio_buffer();
880 void qemu_mutex_lock_ramlist(void)
882 qemu_mutex_lock(&ram_list
.mutex
);
885 void qemu_mutex_unlock_ramlist(void)
887 qemu_mutex_unlock(&ram_list
.mutex
);
890 #if defined(__linux__) && !defined(TARGET_S390X)
894 #define HUGETLBFS_MAGIC 0x958458f6
896 static long gethugepagesize(const char *path
)
902 ret
= statfs(path
, &fs
);
903 } while (ret
!= 0 && errno
== EINTR
);
910 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
911 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
916 static void *file_ram_alloc(RAMBlock
*block
,
921 char *sanitized_name
;
928 unsigned long hpagesize
;
930 hpagesize
= gethugepagesize(path
);
935 if (memory
< hpagesize
) {
939 if (kvm_enabled() && !kvm_has_sync_mmu()) {
940 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
944 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
945 sanitized_name
= g_strdup(block
->mr
->name
);
946 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
951 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
953 g_free(sanitized_name
);
955 fd
= mkstemp(filename
);
957 perror("unable to create backing store for hugepages");
964 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
967 * ftruncate is not supported by hugetlbfs in older
968 * hosts, so don't bother bailing out on errors.
969 * If anything goes wrong with it under other filesystems,
972 if (ftruncate(fd
, memory
))
976 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
977 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
978 * to sidestep this quirk.
980 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
981 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
983 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
985 if (area
== MAP_FAILED
) {
986 perror("file_ram_alloc: can't mmap RAM pages");
995 static ram_addr_t
find_ram_offset(ram_addr_t size
)
997 RAMBlock
*block
, *next_block
;
998 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1000 assert(size
!= 0); /* it would hand out same offset multiple times */
1002 if (QTAILQ_EMPTY(&ram_list
.blocks
))
1005 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1006 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1008 end
= block
->offset
+ block
->length
;
1010 QTAILQ_FOREACH(next_block
, &ram_list
.blocks
, next
) {
1011 if (next_block
->offset
>= end
) {
1012 next
= MIN(next
, next_block
->offset
);
1015 if (next
- end
>= size
&& next
- end
< mingap
) {
1017 mingap
= next
- end
;
1021 if (offset
== RAM_ADDR_MAX
) {
1022 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1030 ram_addr_t
last_ram_offset(void)
1033 ram_addr_t last
= 0;
1035 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
)
1036 last
= MAX(last
, block
->offset
+ block
->length
);
1041 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1044 QemuOpts
*machine_opts
;
1046 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1047 machine_opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
1049 !qemu_opt_get_bool(machine_opts
, "dump-guest-core", true)) {
1050 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1052 perror("qemu_madvise");
1053 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1054 "but dump_guest_core=off specified\n");
1059 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1061 RAMBlock
*new_block
, *block
;
1064 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1065 if (block
->offset
== addr
) {
1071 assert(!new_block
->idstr
[0]);
1074 char *id
= qdev_get_dev_path(dev
);
1076 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1080 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1082 /* This assumes the iothread lock is taken here too. */
1083 qemu_mutex_lock_ramlist();
1084 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1085 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1086 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1091 qemu_mutex_unlock_ramlist();
1094 static int memory_try_enable_merging(void *addr
, size_t len
)
1098 opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
1099 if (opts
&& !qemu_opt_get_bool(opts
, "mem-merge", true)) {
1100 /* disabled by the user */
1104 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1107 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1110 RAMBlock
*block
, *new_block
;
1112 size
= TARGET_PAGE_ALIGN(size
);
1113 new_block
= g_malloc0(sizeof(*new_block
));
1115 /* This assumes the iothread lock is taken here too. */
1116 qemu_mutex_lock_ramlist();
1118 new_block
->offset
= find_ram_offset(size
);
1120 new_block
->host
= host
;
1121 new_block
->flags
|= RAM_PREALLOC_MASK
;
1124 #if defined (__linux__) && !defined(TARGET_S390X)
1125 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
1126 if (!new_block
->host
) {
1127 new_block
->host
= qemu_anon_ram_alloc(size
);
1128 memory_try_enable_merging(new_block
->host
, size
);
1131 fprintf(stderr
, "-mem-path option unsupported\n");
1135 if (xen_enabled()) {
1136 xen_ram_alloc(new_block
->offset
, size
, mr
);
1137 } else if (kvm_enabled()) {
1138 /* some s390/kvm configurations have special constraints */
1139 new_block
->host
= kvm_ram_alloc(size
);
1141 new_block
->host
= qemu_anon_ram_alloc(size
);
1143 memory_try_enable_merging(new_block
->host
, size
);
1146 new_block
->length
= size
;
1148 /* Keep the list sorted from biggest to smallest block. */
1149 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1150 if (block
->length
< new_block
->length
) {
1155 QTAILQ_INSERT_BEFORE(block
, new_block
, next
);
1157 QTAILQ_INSERT_TAIL(&ram_list
.blocks
, new_block
, next
);
1159 ram_list
.mru_block
= NULL
;
1162 qemu_mutex_unlock_ramlist();
1164 ram_list
.phys_dirty
= g_realloc(ram_list
.phys_dirty
,
1165 last_ram_offset() >> TARGET_PAGE_BITS
);
1166 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
1167 0, size
>> TARGET_PAGE_BITS
);
1168 cpu_physical_memory_set_dirty_range(new_block
->offset
, size
, 0xff);
1170 qemu_ram_setup_dump(new_block
->host
, size
);
1171 qemu_madvise(new_block
->host
, size
, QEMU_MADV_HUGEPAGE
);
1174 kvm_setup_guest_memory(new_block
->host
, size
);
1176 return new_block
->offset
;
1179 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
1181 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
1184 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1188 /* This assumes the iothread lock is taken here too. */
1189 qemu_mutex_lock_ramlist();
1190 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1191 if (addr
== block
->offset
) {
1192 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1193 ram_list
.mru_block
= NULL
;
1199 qemu_mutex_unlock_ramlist();
1202 void qemu_ram_free(ram_addr_t addr
)
1206 /* This assumes the iothread lock is taken here too. */
1207 qemu_mutex_lock_ramlist();
1208 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1209 if (addr
== block
->offset
) {
1210 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1211 ram_list
.mru_block
= NULL
;
1213 if (block
->flags
& RAM_PREALLOC_MASK
) {
1215 } else if (mem_path
) {
1216 #if defined (__linux__) && !defined(TARGET_S390X)
1218 munmap(block
->host
, block
->length
);
1221 qemu_anon_ram_free(block
->host
, block
->length
);
1227 if (xen_enabled()) {
1228 xen_invalidate_map_cache_entry(block
->host
);
1230 qemu_anon_ram_free(block
->host
, block
->length
);
1237 qemu_mutex_unlock_ramlist();
1242 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1249 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1250 offset
= addr
- block
->offset
;
1251 if (offset
< block
->length
) {
1252 vaddr
= block
->host
+ offset
;
1253 if (block
->flags
& RAM_PREALLOC_MASK
) {
1257 munmap(vaddr
, length
);
1259 #if defined(__linux__) && !defined(TARGET_S390X)
1262 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
1265 flags
|= MAP_PRIVATE
;
1267 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1268 flags
, block
->fd
, offset
);
1270 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1271 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1278 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1279 flags
|= MAP_SHARED
| MAP_ANONYMOUS
;
1280 area
= mmap(vaddr
, length
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
1283 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1284 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1288 if (area
!= vaddr
) {
1289 fprintf(stderr
, "Could not remap addr: "
1290 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1294 memory_try_enable_merging(vaddr
, length
);
1295 qemu_ram_setup_dump(vaddr
, length
);
1301 #endif /* !_WIN32 */
1303 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1307 /* The list is protected by the iothread lock here. */
1308 block
= ram_list
.mru_block
;
1309 if (block
&& addr
- block
->offset
< block
->length
) {
1312 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1313 if (addr
- block
->offset
< block
->length
) {
1318 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1322 ram_list
.mru_block
= block
;
1326 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1327 With the exception of the softmmu code in this file, this should
1328 only be used for local memory (e.g. video ram) that the device owns,
1329 and knows it isn't going to access beyond the end of the block.
1331 It should not be used for general purpose DMA.
1332 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1334 void *qemu_get_ram_ptr(ram_addr_t addr
)
1336 RAMBlock
*block
= qemu_get_ram_block(addr
);
1338 if (xen_enabled()) {
1339 /* We need to check if the requested address is in the RAM
1340 * because we don't want to map the entire memory in QEMU.
1341 * In that case just map until the end of the page.
1343 if (block
->offset
== 0) {
1344 return xen_map_cache(addr
, 0, 0);
1345 } else if (block
->host
== NULL
) {
1347 xen_map_cache(block
->offset
, block
->length
, 1);
1350 return block
->host
+ (addr
- block
->offset
);
1353 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1354 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1356 * ??? Is this still necessary?
1358 static void *qemu_safe_ram_ptr(ram_addr_t addr
)
1362 /* The list is protected by the iothread lock here. */
1363 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1364 if (addr
- block
->offset
< block
->length
) {
1365 if (xen_enabled()) {
1366 /* We need to check if the requested address is in the RAM
1367 * because we don't want to map the entire memory in QEMU.
1368 * In that case just map until the end of the page.
1370 if (block
->offset
== 0) {
1371 return xen_map_cache(addr
, 0, 0);
1372 } else if (block
->host
== NULL
) {
1374 xen_map_cache(block
->offset
, block
->length
, 1);
1377 return block
->host
+ (addr
- block
->offset
);
1381 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1387 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1388 * but takes a size argument */
1389 static void *qemu_ram_ptr_length(ram_addr_t addr
, ram_addr_t
*size
)
1394 if (xen_enabled()) {
1395 return xen_map_cache(addr
, *size
, 1);
1399 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1400 if (addr
- block
->offset
< block
->length
) {
1401 if (addr
- block
->offset
+ *size
> block
->length
)
1402 *size
= block
->length
- addr
+ block
->offset
;
1403 return block
->host
+ (addr
- block
->offset
);
1407 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1412 /* Some of the softmmu routines need to translate from a host pointer
1413 (typically a TLB entry) back to a ram offset. */
1414 MemoryRegion
*qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1417 uint8_t *host
= ptr
;
1419 if (xen_enabled()) {
1420 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1421 return qemu_get_ram_block(*ram_addr
)->mr
;
1424 block
= ram_list
.mru_block
;
1425 if (block
&& block
->host
&& host
- block
->host
< block
->length
) {
1429 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1430 /* This case append when the block is not mapped. */
1431 if (block
->host
== NULL
) {
1434 if (host
- block
->host
< block
->length
) {
1442 *ram_addr
= block
->offset
+ (host
- block
->host
);
1446 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1447 uint64_t val
, unsigned size
)
1450 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1451 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
1452 tb_invalidate_phys_page_fast(ram_addr
, size
);
1453 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1457 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1460 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1463 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
1468 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
1469 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
1470 /* we remove the notdirty callback only if the code has been
1472 if (dirty_flags
== 0xff)
1473 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
1476 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
1477 unsigned size
, bool is_write
)
1482 static const MemoryRegionOps notdirty_mem_ops
= {
1483 .write
= notdirty_mem_write
,
1484 .valid
.accepts
= notdirty_mem_accepts
,
1485 .endianness
= DEVICE_NATIVE_ENDIAN
,
1488 /* Generate a debug exception if a watchpoint has been hit. */
1489 static void check_watchpoint(int offset
, int len_mask
, int flags
)
1491 CPUArchState
*env
= cpu_single_env
;
1492 target_ulong pc
, cs_base
;
1497 if (env
->watchpoint_hit
) {
1498 /* We re-entered the check after replacing the TB. Now raise
1499 * the debug interrupt so that is will trigger after the
1500 * current instruction. */
1501 cpu_interrupt(ENV_GET_CPU(env
), CPU_INTERRUPT_DEBUG
);
1504 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
1505 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1506 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
1507 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
1508 wp
->flags
|= BP_WATCHPOINT_HIT
;
1509 if (!env
->watchpoint_hit
) {
1510 env
->watchpoint_hit
= wp
;
1511 tb_check_watchpoint(env
);
1512 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
1513 env
->exception_index
= EXCP_DEBUG
;
1516 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
1517 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
1518 cpu_resume_from_signal(env
, NULL
);
1522 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
1527 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1528 so these check for a hit then pass through to the normal out-of-line
1530 static uint64_t watch_mem_read(void *opaque
, hwaddr addr
,
1533 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_READ
);
1535 case 1: return ldub_phys(addr
);
1536 case 2: return lduw_phys(addr
);
1537 case 4: return ldl_phys(addr
);
1542 static void watch_mem_write(void *opaque
, hwaddr addr
,
1543 uint64_t val
, unsigned size
)
1545 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_WRITE
);
1548 stb_phys(addr
, val
);
1551 stw_phys(addr
, val
);
1554 stl_phys(addr
, val
);
1560 static const MemoryRegionOps watch_mem_ops
= {
1561 .read
= watch_mem_read
,
1562 .write
= watch_mem_write
,
1563 .endianness
= DEVICE_NATIVE_ENDIAN
,
1566 static uint64_t subpage_read(void *opaque
, hwaddr addr
,
1569 subpage_t
*subpage
= opaque
;
1572 #if defined(DEBUG_SUBPAGE)
1573 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
"\n", __func__
,
1574 subpage
, len
, addr
);
1576 address_space_read(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1589 static void subpage_write(void *opaque
, hwaddr addr
,
1590 uint64_t value
, unsigned len
)
1592 subpage_t
*subpage
= opaque
;
1595 #if defined(DEBUG_SUBPAGE)
1596 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1597 " value %"PRIx64
"\n",
1598 __func__
, subpage
, len
, addr
, value
);
1613 address_space_write(subpage
->as
, addr
+ subpage
->base
, buf
, len
);
1616 static bool subpage_accepts(void *opaque
, hwaddr addr
,
1617 unsigned size
, bool is_write
)
1619 subpage_t
*subpage
= opaque
;
1620 #if defined(DEBUG_SUBPAGE)
1621 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx
"\n",
1622 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
1625 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
1629 static const MemoryRegionOps subpage_ops
= {
1630 .read
= subpage_read
,
1631 .write
= subpage_write
,
1632 .valid
.accepts
= subpage_accepts
,
1633 .endianness
= DEVICE_NATIVE_ENDIAN
,
1636 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1641 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
1643 idx
= SUBPAGE_IDX(start
);
1644 eidx
= SUBPAGE_IDX(end
);
1645 #if defined(DEBUG_SUBPAGE)
1646 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
1647 mmio
, start
, end
, idx
, eidx
, memory
);
1649 for (; idx
<= eidx
; idx
++) {
1650 mmio
->sub_section
[idx
] = section
;
1656 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
1660 mmio
= g_malloc0(sizeof(subpage_t
));
1664 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
1665 "subpage", TARGET_PAGE_SIZE
);
1666 mmio
->iomem
.subpage
= true;
1667 #if defined(DEBUG_SUBPAGE)
1668 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
1669 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
1671 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
1676 static uint16_t dummy_section(MemoryRegion
*mr
)
1678 MemoryRegionSection section
= {
1680 .offset_within_address_space
= 0,
1681 .offset_within_region
= 0,
1682 .size
= int128_2_64(),
1685 return phys_section_add(§ion
);
1688 MemoryRegion
*iotlb_to_region(hwaddr index
)
1690 return cur_map
.sections
[index
& ~TARGET_PAGE_MASK
].mr
;
1693 static void io_mem_init(void)
1695 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, "rom", UINT64_MAX
);
1696 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
1697 "unassigned", UINT64_MAX
);
1698 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
1699 "notdirty", UINT64_MAX
);
1700 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
1701 "watch", UINT64_MAX
);
1704 static void mem_begin(MemoryListener
*listener
)
1706 AddressSpaceDispatch
*d
= container_of(listener
, AddressSpaceDispatch
, listener
);
1708 d
->phys_map
.ptr
= PHYS_MAP_NODE_NIL
;
1711 static void core_begin(MemoryListener
*listener
)
1715 memset(&next_map
, 0, sizeof(next_map
));
1716 n
= dummy_section(&io_mem_unassigned
);
1717 assert(n
== PHYS_SECTION_UNASSIGNED
);
1718 n
= dummy_section(&io_mem_notdirty
);
1719 assert(n
== PHYS_SECTION_NOTDIRTY
);
1720 n
= dummy_section(&io_mem_rom
);
1721 assert(n
== PHYS_SECTION_ROM
);
1722 n
= dummy_section(&io_mem_watch
);
1723 assert(n
== PHYS_SECTION_WATCH
);
1726 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1727 * All AddressSpaceDispatch instances have switched to the next map.
1729 static void core_commit(MemoryListener
*listener
)
1731 PhysPageMap info
= cur_map
;
1733 phys_sections_clear(&info
);
1736 static void tcg_commit(MemoryListener
*listener
)
1740 /* since each CPU stores ram addresses in its TLB cache, we must
1741 reset the modified entries */
1743 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1748 static void core_log_global_start(MemoryListener
*listener
)
1750 cpu_physical_memory_set_dirty_tracking(1);
1753 static void core_log_global_stop(MemoryListener
*listener
)
1755 cpu_physical_memory_set_dirty_tracking(0);
1758 static MemoryListener core_memory_listener
= {
1759 .begin
= core_begin
,
1760 .commit
= core_commit
,
1761 .log_global_start
= core_log_global_start
,
1762 .log_global_stop
= core_log_global_stop
,
1766 static MemoryListener tcg_memory_listener
= {
1767 .commit
= tcg_commit
,
1770 void address_space_init_dispatch(AddressSpace
*as
)
1772 AddressSpaceDispatch
*d
= g_new(AddressSpaceDispatch
, 1);
1774 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .is_leaf
= 0 };
1775 d
->listener
= (MemoryListener
) {
1777 .region_add
= mem_add
,
1778 .region_nop
= mem_add
,
1783 memory_listener_register(&d
->listener
, as
);
1786 void address_space_destroy_dispatch(AddressSpace
*as
)
1788 AddressSpaceDispatch
*d
= as
->dispatch
;
1790 memory_listener_unregister(&d
->listener
);
1792 as
->dispatch
= NULL
;
1795 static void memory_map_init(void)
1797 system_memory
= g_malloc(sizeof(*system_memory
));
1798 memory_region_init(system_memory
, NULL
, "system", INT64_MAX
);
1799 address_space_init(&address_space_memory
, system_memory
, "memory");
1801 system_io
= g_malloc(sizeof(*system_io
));
1802 memory_region_init(system_io
, NULL
, "io", 65536);
1803 address_space_init(&address_space_io
, system_io
, "I/O");
1805 memory_listener_register(&core_memory_listener
, &address_space_memory
);
1806 memory_listener_register(&tcg_memory_listener
, &address_space_memory
);
1809 MemoryRegion
*get_system_memory(void)
1811 return system_memory
;
1814 MemoryRegion
*get_system_io(void)
1819 #endif /* !defined(CONFIG_USER_ONLY) */
1821 /* physical memory access (slow version, mainly for debug) */
1822 #if defined(CONFIG_USER_ONLY)
1823 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
1824 uint8_t *buf
, int len
, int is_write
)
1831 page
= addr
& TARGET_PAGE_MASK
;
1832 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
1835 flags
= page_get_flags(page
);
1836 if (!(flags
& PAGE_VALID
))
1839 if (!(flags
& PAGE_WRITE
))
1841 /* XXX: this code should not depend on lock_user */
1842 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
1845 unlock_user(p
, addr
, l
);
1847 if (!(flags
& PAGE_READ
))
1849 /* XXX: this code should not depend on lock_user */
1850 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
1853 unlock_user(p
, addr
, 0);
1864 static void invalidate_and_set_dirty(hwaddr addr
,
1867 if (!cpu_physical_memory_is_dirty(addr
)) {
1868 /* invalidate code */
1869 tb_invalidate_phys_page_range(addr
, addr
+ length
, 0);
1871 cpu_physical_memory_set_dirty_flags(addr
, (0xff & ~CODE_DIRTY_FLAG
));
1873 xen_modified_memory(addr
, length
);
1876 static inline bool memory_access_is_direct(MemoryRegion
*mr
, bool is_write
)
1878 if (memory_region_is_ram(mr
)) {
1879 return !(is_write
&& mr
->readonly
);
1881 if (memory_region_is_romd(mr
)) {
1888 static inline int memory_access_size(MemoryRegion
*mr
, int l
, hwaddr addr
)
1890 if (l
>= 4 && (((addr
& 3) == 0 || mr
->ops
->impl
.unaligned
))) {
1893 if (l
>= 2 && (((addr
& 1) == 0) || mr
->ops
->impl
.unaligned
)) {
1899 bool address_space_rw(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
,
1900 int len
, bool is_write
)
1911 mr
= address_space_translate(as
, addr
, &addr1
, &l
, is_write
);
1914 if (!memory_access_is_direct(mr
, is_write
)) {
1915 l
= memory_access_size(mr
, l
, addr1
);
1916 /* XXX: could force cpu_single_env to NULL to avoid
1919 /* 32 bit write access */
1921 error
|= io_mem_write(mr
, addr1
, val
, 4);
1922 } else if (l
== 2) {
1923 /* 16 bit write access */
1925 error
|= io_mem_write(mr
, addr1
, val
, 2);
1927 /* 8 bit write access */
1929 error
|= io_mem_write(mr
, addr1
, val
, 1);
1932 addr1
+= memory_region_get_ram_addr(mr
);
1934 ptr
= qemu_get_ram_ptr(addr1
);
1935 memcpy(ptr
, buf
, l
);
1936 invalidate_and_set_dirty(addr1
, l
);
1939 if (!memory_access_is_direct(mr
, is_write
)) {
1941 l
= memory_access_size(mr
, l
, addr1
);
1943 /* 32 bit read access */
1944 error
|= io_mem_read(mr
, addr1
, &val
, 4);
1946 } else if (l
== 2) {
1947 /* 16 bit read access */
1948 error
|= io_mem_read(mr
, addr1
, &val
, 2);
1951 /* 8 bit read access */
1952 error
|= io_mem_read(mr
, addr1
, &val
, 1);
1957 ptr
= qemu_get_ram_ptr(mr
->ram_addr
+ addr1
);
1958 memcpy(buf
, ptr
, l
);
1969 bool address_space_write(AddressSpace
*as
, hwaddr addr
,
1970 const uint8_t *buf
, int len
)
1972 return address_space_rw(as
, addr
, (uint8_t *)buf
, len
, true);
1975 bool address_space_read(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
, int len
)
1977 return address_space_rw(as
, addr
, buf
, len
, false);
1981 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
1982 int len
, int is_write
)
1984 address_space_rw(&address_space_memory
, addr
, buf
, len
, is_write
);
1987 /* used for ROM loading : can write in RAM and ROM */
1988 void cpu_physical_memory_write_rom(hwaddr addr
,
1989 const uint8_t *buf
, int len
)
1998 mr
= address_space_translate(&address_space_memory
,
1999 addr
, &addr1
, &l
, true);
2001 if (!(memory_region_is_ram(mr
) ||
2002 memory_region_is_romd(mr
))) {
2005 addr1
+= memory_region_get_ram_addr(mr
);
2007 ptr
= qemu_get_ram_ptr(addr1
);
2008 memcpy(ptr
, buf
, l
);
2009 invalidate_and_set_dirty(addr1
, l
);
2024 static BounceBuffer bounce
;
2026 typedef struct MapClient
{
2028 void (*callback
)(void *opaque
);
2029 QLIST_ENTRY(MapClient
) link
;
2032 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2033 = QLIST_HEAD_INITIALIZER(map_client_list
);
2035 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
2037 MapClient
*client
= g_malloc(sizeof(*client
));
2039 client
->opaque
= opaque
;
2040 client
->callback
= callback
;
2041 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2045 static void cpu_unregister_map_client(void *_client
)
2047 MapClient
*client
= (MapClient
*)_client
;
2049 QLIST_REMOVE(client
, link
);
2053 static void cpu_notify_map_clients(void)
2057 while (!QLIST_EMPTY(&map_client_list
)) {
2058 client
= QLIST_FIRST(&map_client_list
);
2059 client
->callback(client
->opaque
);
2060 cpu_unregister_map_client(client
);
2064 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2071 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2072 if (!memory_access_is_direct(mr
, is_write
)) {
2073 l
= memory_access_size(mr
, l
, addr
);
2074 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2085 /* Map a physical memory region into a host virtual address.
2086 * May map a subset of the requested range, given by and returned in *plen.
2087 * May return NULL if resources needed to perform the mapping are exhausted.
2088 * Use only for reads OR writes - not for read-modify-write operations.
2089 * Use cpu_register_map_client() to know when retrying the map operation is
2090 * likely to succeed.
2092 void *address_space_map(AddressSpace
*as
,
2099 hwaddr l
, xlat
, base
;
2100 MemoryRegion
*mr
, *this_mr
;
2108 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2109 if (!memory_access_is_direct(mr
, is_write
)) {
2110 if (bounce
.buffer
) {
2113 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
2117 memory_region_ref(mr
);
2120 address_space_read(as
, addr
, bounce
.buffer
, l
);
2124 return bounce
.buffer
;
2128 raddr
= memory_region_get_ram_addr(mr
);
2139 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2140 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
2145 memory_region_ref(mr
);
2147 return qemu_ram_ptr_length(raddr
+ base
, plen
);
2150 /* Unmaps a memory region previously mapped by address_space_map().
2151 * Will also mark the memory as dirty if is_write == 1. access_len gives
2152 * the amount of memory that was actually read or written by the caller.
2154 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2155 int is_write
, hwaddr access_len
)
2157 if (buffer
!= bounce
.buffer
) {
2161 mr
= qemu_ram_addr_from_host(buffer
, &addr1
);
2164 while (access_len
) {
2166 l
= TARGET_PAGE_SIZE
;
2169 invalidate_and_set_dirty(addr1
, l
);
2174 if (xen_enabled()) {
2175 xen_invalidate_map_cache_entry(buffer
);
2177 memory_region_unref(mr
);
2181 address_space_write(as
, bounce
.addr
, bounce
.buffer
, access_len
);
2183 qemu_vfree(bounce
.buffer
);
2184 bounce
.buffer
= NULL
;
2185 memory_region_unref(bounce
.mr
);
2186 cpu_notify_map_clients();
2189 void *cpu_physical_memory_map(hwaddr addr
,
2193 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2196 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2197 int is_write
, hwaddr access_len
)
2199 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2202 /* warning: addr must be aligned */
2203 static inline uint32_t ldl_phys_internal(hwaddr addr
,
2204 enum device_endian endian
)
2212 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2214 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
2216 io_mem_read(mr
, addr1
, &val
, 4);
2217 #if defined(TARGET_WORDS_BIGENDIAN)
2218 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2222 if (endian
== DEVICE_BIG_ENDIAN
) {
2228 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2232 case DEVICE_LITTLE_ENDIAN
:
2233 val
= ldl_le_p(ptr
);
2235 case DEVICE_BIG_ENDIAN
:
2236 val
= ldl_be_p(ptr
);
2246 uint32_t ldl_phys(hwaddr addr
)
2248 return ldl_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2251 uint32_t ldl_le_phys(hwaddr addr
)
2253 return ldl_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2256 uint32_t ldl_be_phys(hwaddr addr
)
2258 return ldl_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2261 /* warning: addr must be aligned */
2262 static inline uint64_t ldq_phys_internal(hwaddr addr
,
2263 enum device_endian endian
)
2271 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2273 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
2275 io_mem_read(mr
, addr1
, &val
, 8);
2276 #if defined(TARGET_WORDS_BIGENDIAN)
2277 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2281 if (endian
== DEVICE_BIG_ENDIAN
) {
2287 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2291 case DEVICE_LITTLE_ENDIAN
:
2292 val
= ldq_le_p(ptr
);
2294 case DEVICE_BIG_ENDIAN
:
2295 val
= ldq_be_p(ptr
);
2305 uint64_t ldq_phys(hwaddr addr
)
2307 return ldq_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2310 uint64_t ldq_le_phys(hwaddr addr
)
2312 return ldq_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2315 uint64_t ldq_be_phys(hwaddr addr
)
2317 return ldq_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2321 uint32_t ldub_phys(hwaddr addr
)
2324 cpu_physical_memory_read(addr
, &val
, 1);
2328 /* warning: addr must be aligned */
2329 static inline uint32_t lduw_phys_internal(hwaddr addr
,
2330 enum device_endian endian
)
2338 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2340 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
2342 io_mem_read(mr
, addr1
, &val
, 2);
2343 #if defined(TARGET_WORDS_BIGENDIAN)
2344 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2348 if (endian
== DEVICE_BIG_ENDIAN
) {
2354 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(mr
)
2358 case DEVICE_LITTLE_ENDIAN
:
2359 val
= lduw_le_p(ptr
);
2361 case DEVICE_BIG_ENDIAN
:
2362 val
= lduw_be_p(ptr
);
2372 uint32_t lduw_phys(hwaddr addr
)
2374 return lduw_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2377 uint32_t lduw_le_phys(hwaddr addr
)
2379 return lduw_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2382 uint32_t lduw_be_phys(hwaddr addr
)
2384 return lduw_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2387 /* warning: addr must be aligned. The ram page is not masked as dirty
2388 and the code inside is not invalidated. It is useful if the dirty
2389 bits are used to track modified PTEs */
2390 void stl_phys_notdirty(hwaddr addr
, uint32_t val
)
2397 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2399 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2400 io_mem_write(mr
, addr1
, val
, 4);
2402 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2403 ptr
= qemu_get_ram_ptr(addr1
);
2406 if (unlikely(in_migration
)) {
2407 if (!cpu_physical_memory_is_dirty(addr1
)) {
2408 /* invalidate code */
2409 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
2411 cpu_physical_memory_set_dirty_flags(
2412 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
2418 /* warning: addr must be aligned */
2419 static inline void stl_phys_internal(hwaddr addr
, uint32_t val
,
2420 enum device_endian endian
)
2427 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2429 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
2430 #if defined(TARGET_WORDS_BIGENDIAN)
2431 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2435 if (endian
== DEVICE_BIG_ENDIAN
) {
2439 io_mem_write(mr
, addr1
, val
, 4);
2442 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2443 ptr
= qemu_get_ram_ptr(addr1
);
2445 case DEVICE_LITTLE_ENDIAN
:
2448 case DEVICE_BIG_ENDIAN
:
2455 invalidate_and_set_dirty(addr1
, 4);
2459 void stl_phys(hwaddr addr
, uint32_t val
)
2461 stl_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2464 void stl_le_phys(hwaddr addr
, uint32_t val
)
2466 stl_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2469 void stl_be_phys(hwaddr addr
, uint32_t val
)
2471 stl_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2475 void stb_phys(hwaddr addr
, uint32_t val
)
2478 cpu_physical_memory_write(addr
, &v
, 1);
2481 /* warning: addr must be aligned */
2482 static inline void stw_phys_internal(hwaddr addr
, uint32_t val
,
2483 enum device_endian endian
)
2490 mr
= address_space_translate(&address_space_memory
, addr
, &addr1
, &l
,
2492 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
2493 #if defined(TARGET_WORDS_BIGENDIAN)
2494 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2498 if (endian
== DEVICE_BIG_ENDIAN
) {
2502 io_mem_write(mr
, addr1
, val
, 2);
2505 addr1
+= memory_region_get_ram_addr(mr
) & TARGET_PAGE_MASK
;
2506 ptr
= qemu_get_ram_ptr(addr1
);
2508 case DEVICE_LITTLE_ENDIAN
:
2511 case DEVICE_BIG_ENDIAN
:
2518 invalidate_and_set_dirty(addr1
, 2);
2522 void stw_phys(hwaddr addr
, uint32_t val
)
2524 stw_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2527 void stw_le_phys(hwaddr addr
, uint32_t val
)
2529 stw_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2532 void stw_be_phys(hwaddr addr
, uint32_t val
)
2534 stw_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2538 void stq_phys(hwaddr addr
, uint64_t val
)
2541 cpu_physical_memory_write(addr
, &val
, 8);
2544 void stq_le_phys(hwaddr addr
, uint64_t val
)
2546 val
= cpu_to_le64(val
);
2547 cpu_physical_memory_write(addr
, &val
, 8);
2550 void stq_be_phys(hwaddr addr
, uint64_t val
)
2552 val
= cpu_to_be64(val
);
2553 cpu_physical_memory_write(addr
, &val
, 8);
2556 /* virtual memory access for debug (includes writing to ROM) */
2557 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
2558 uint8_t *buf
, int len
, int is_write
)
2565 page
= addr
& TARGET_PAGE_MASK
;
2566 phys_addr
= cpu_get_phys_page_debug(env
, page
);
2567 /* if no physical page mapped, return an error */
2568 if (phys_addr
== -1)
2570 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2573 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
2575 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
2577 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
2586 #if !defined(CONFIG_USER_ONLY)
2589 * A helper function for the _utterly broken_ virtio device model to find out if
2590 * it's running on a big endian machine. Don't do this at home kids!
2592 bool virtio_is_big_endian(void);
2593 bool virtio_is_big_endian(void)
2595 #if defined(TARGET_WORDS_BIGENDIAN)
2604 #ifndef CONFIG_USER_ONLY
2605 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
2610 mr
= address_space_translate(&address_space_memory
,
2611 phys_addr
, &phys_addr
, &l
, false);
2613 return !(memory_region_is_ram(mr
) ||
2614 memory_region_is_romd(mr
));
2617 void qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
2621 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
2622 func(block
->host
, block
->offset
, block
->length
, opaque
);