docker: Add a glib2-2.22 image
[qemu/ar7.git] / hw / intc / armv7m_nvic.c
blob06d8db6bd696c5a808c85dc7b070beb24ddea442
1 /*
2 * ARM Nested Vectored Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "exec/address-spaces.h"
21 #include "gic_internal.h"
22 #include "qemu/log.h"
24 typedef struct {
25 GICState gic;
26 struct {
27 uint32_t control;
28 uint32_t reload;
29 int64_t tick;
30 QEMUTimer *timer;
31 } systick;
32 MemoryRegion sysregmem;
33 MemoryRegion gic_iomem_alias;
34 MemoryRegion container;
35 uint32_t num_irq;
36 qemu_irq sysresetreq;
37 } nvic_state;
39 #define TYPE_NVIC "armv7m_nvic"
40 /**
41 * NVICClass:
42 * @parent_reset: the parent class' reset handler.
44 * A model of the v7M NVIC and System Controller
46 typedef struct NVICClass {
47 /*< private >*/
48 ARMGICClass parent_class;
49 /*< public >*/
50 DeviceRealize parent_realize;
51 void (*parent_reset)(DeviceState *dev);
52 } NVICClass;
54 #define NVIC_CLASS(klass) \
55 OBJECT_CLASS_CHECK(NVICClass, (klass), TYPE_NVIC)
56 #define NVIC_GET_CLASS(obj) \
57 OBJECT_GET_CLASS(NVICClass, (obj), TYPE_NVIC)
58 #define NVIC(obj) \
59 OBJECT_CHECK(nvic_state, (obj), TYPE_NVIC)
61 static const uint8_t nvic_id[] = {
62 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
65 /* qemu timers run at 1GHz. We want something closer to 1MHz. */
66 #define SYSTICK_SCALE 1000ULL
68 #define SYSTICK_ENABLE (1 << 0)
69 #define SYSTICK_TICKINT (1 << 1)
70 #define SYSTICK_CLKSOURCE (1 << 2)
71 #define SYSTICK_COUNTFLAG (1 << 16)
73 int system_clock_scale;
75 /* Conversion factor from qemu timer to SysTick frequencies. */
76 static inline int64_t systick_scale(nvic_state *s)
78 if (s->systick.control & SYSTICK_CLKSOURCE)
79 return system_clock_scale;
80 else
81 return 1000;
84 static void systick_reload(nvic_state *s, int reset)
86 /* The Cortex-M3 Devices Generic User Guide says that "When the
87 * ENABLE bit is set to 1, the counter loads the RELOAD value from the
88 * SYST RVR register and then counts down". So, we need to check the
89 * ENABLE bit before reloading the value.
91 if ((s->systick.control & SYSTICK_ENABLE) == 0) {
92 return;
95 if (reset)
96 s->systick.tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
97 s->systick.tick += (s->systick.reload + 1) * systick_scale(s);
98 timer_mod(s->systick.timer, s->systick.tick);
101 static void systick_timer_tick(void * opaque)
103 nvic_state *s = (nvic_state *)opaque;
104 s->systick.control |= SYSTICK_COUNTFLAG;
105 if (s->systick.control & SYSTICK_TICKINT) {
106 /* Trigger the interrupt. */
107 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
109 if (s->systick.reload == 0) {
110 s->systick.control &= ~SYSTICK_ENABLE;
111 } else {
112 systick_reload(s, 0);
116 static void systick_reset(nvic_state *s)
118 s->systick.control = 0;
119 s->systick.reload = 0;
120 s->systick.tick = 0;
121 timer_del(s->systick.timer);
124 /* The external routines use the hardware vector numbering, ie. the first
125 IRQ is #16. The internal GIC routines use #32 as the first IRQ. */
126 void armv7m_nvic_set_pending(void *opaque, int irq)
128 nvic_state *s = (nvic_state *)opaque;
129 if (irq >= 16)
130 irq += 16;
131 gic_set_pending_private(&s->gic, 0, irq);
134 /* Make pending IRQ active. */
135 int armv7m_nvic_acknowledge_irq(void *opaque)
137 nvic_state *s = (nvic_state *)opaque;
138 uint32_t irq;
140 irq = gic_acknowledge_irq(&s->gic, 0, MEMTXATTRS_UNSPECIFIED);
141 if (irq == 1023)
142 hw_error("Interrupt but no vector\n");
143 if (irq >= 32)
144 irq -= 16;
145 return irq;
148 void armv7m_nvic_complete_irq(void *opaque, int irq)
150 nvic_state *s = (nvic_state *)opaque;
151 if (irq >= 16)
152 irq += 16;
153 gic_complete_irq(&s->gic, 0, irq, MEMTXATTRS_UNSPECIFIED);
156 static uint32_t nvic_readl(nvic_state *s, uint32_t offset)
158 ARMCPU *cpu;
159 uint32_t val;
160 int irq;
162 switch (offset) {
163 case 4: /* Interrupt Control Type. */
164 return (s->num_irq / 32) - 1;
165 case 0x10: /* SysTick Control and Status. */
166 val = s->systick.control;
167 s->systick.control &= ~SYSTICK_COUNTFLAG;
168 return val;
169 case 0x14: /* SysTick Reload Value. */
170 return s->systick.reload;
171 case 0x18: /* SysTick Current Value. */
173 int64_t t;
174 if ((s->systick.control & SYSTICK_ENABLE) == 0)
175 return 0;
176 t = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
177 if (t >= s->systick.tick)
178 return 0;
179 val = ((s->systick.tick - (t + 1)) / systick_scale(s)) + 1;
180 /* The interrupt in triggered when the timer reaches zero.
181 However the counter is not reloaded until the next clock
182 tick. This is a hack to return zero during the first tick. */
183 if (val > s->systick.reload)
184 val = 0;
185 return val;
187 case 0x1c: /* SysTick Calibration Value. */
188 return 10000;
189 case 0xd00: /* CPUID Base. */
190 cpu = ARM_CPU(qemu_get_cpu(0));
191 return cpu->midr;
192 case 0xd04: /* Interrupt Control State. */
193 /* VECTACTIVE */
194 cpu = ARM_CPU(qemu_get_cpu(0));
195 val = cpu->env.v7m.exception;
196 if (val == 1023) {
197 val = 0;
198 } else if (val >= 32) {
199 val -= 16;
201 /* VECTPENDING */
202 if (s->gic.current_pending[0] != 1023)
203 val |= (s->gic.current_pending[0] << 12);
204 /* ISRPENDING and RETTOBASE */
205 for (irq = 32; irq < s->num_irq; irq++) {
206 if (s->gic.irq_state[irq].pending) {
207 val |= (1 << 22);
208 break;
210 if (irq != cpu->env.v7m.exception && s->gic.irq_state[irq].active) {
211 val |= (1 << 11);
214 /* PENDSTSET */
215 if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending)
216 val |= (1 << 26);
217 /* PENDSVSET */
218 if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending)
219 val |= (1 << 28);
220 /* NMIPENDSET */
221 if (s->gic.irq_state[ARMV7M_EXCP_NMI].pending)
222 val |= (1 << 31);
223 return val;
224 case 0xd08: /* Vector Table Offset. */
225 cpu = ARM_CPU(qemu_get_cpu(0));
226 return cpu->env.v7m.vecbase;
227 case 0xd0c: /* Application Interrupt/Reset Control. */
228 return 0xfa050000;
229 case 0xd10: /* System Control. */
230 /* TODO: Implement SLEEPONEXIT. */
231 return 0;
232 case 0xd14: /* Configuration Control. */
233 /* TODO: Implement Configuration Control bits. */
234 return 0;
235 case 0xd24: /* System Handler Status. */
236 val = 0;
237 if (s->gic.irq_state[ARMV7M_EXCP_MEM].active) val |= (1 << 0);
238 if (s->gic.irq_state[ARMV7M_EXCP_BUS].active) val |= (1 << 1);
239 if (s->gic.irq_state[ARMV7M_EXCP_USAGE].active) val |= (1 << 3);
240 if (s->gic.irq_state[ARMV7M_EXCP_SVC].active) val |= (1 << 7);
241 if (s->gic.irq_state[ARMV7M_EXCP_DEBUG].active) val |= (1 << 8);
242 if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].active) val |= (1 << 10);
243 if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].active) val |= (1 << 11);
244 if (s->gic.irq_state[ARMV7M_EXCP_USAGE].pending) val |= (1 << 12);
245 if (s->gic.irq_state[ARMV7M_EXCP_MEM].pending) val |= (1 << 13);
246 if (s->gic.irq_state[ARMV7M_EXCP_BUS].pending) val |= (1 << 14);
247 if (s->gic.irq_state[ARMV7M_EXCP_SVC].pending) val |= (1 << 15);
248 if (s->gic.irq_state[ARMV7M_EXCP_MEM].enabled) val |= (1 << 16);
249 if (s->gic.irq_state[ARMV7M_EXCP_BUS].enabled) val |= (1 << 17);
250 if (s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled) val |= (1 << 18);
251 return val;
252 case 0xd28: /* Configurable Fault Status. */
253 /* TODO: Implement Fault Status. */
254 qemu_log_mask(LOG_UNIMP, "Configurable Fault Status unimplemented\n");
255 return 0;
256 case 0xd2c: /* Hard Fault Status. */
257 case 0xd30: /* Debug Fault Status. */
258 case 0xd34: /* Mem Manage Address. */
259 case 0xd38: /* Bus Fault Address. */
260 case 0xd3c: /* Aux Fault Status. */
261 /* TODO: Implement fault status registers. */
262 qemu_log_mask(LOG_UNIMP, "Fault status registers unimplemented\n");
263 return 0;
264 case 0xd40: /* PFR0. */
265 return 0x00000030;
266 case 0xd44: /* PRF1. */
267 return 0x00000200;
268 case 0xd48: /* DFR0. */
269 return 0x00100000;
270 case 0xd4c: /* AFR0. */
271 return 0x00000000;
272 case 0xd50: /* MMFR0. */
273 return 0x00000030;
274 case 0xd54: /* MMFR1. */
275 return 0x00000000;
276 case 0xd58: /* MMFR2. */
277 return 0x00000000;
278 case 0xd5c: /* MMFR3. */
279 return 0x00000000;
280 case 0xd60: /* ISAR0. */
281 return 0x01141110;
282 case 0xd64: /* ISAR1. */
283 return 0x02111000;
284 case 0xd68: /* ISAR2. */
285 return 0x21112231;
286 case 0xd6c: /* ISAR3. */
287 return 0x01111110;
288 case 0xd70: /* ISAR4. */
289 return 0x01310102;
290 /* TODO: Implement debug registers. */
291 default:
292 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
293 return 0;
297 static void nvic_writel(nvic_state *s, uint32_t offset, uint32_t value)
299 ARMCPU *cpu;
300 uint32_t oldval;
301 switch (offset) {
302 case 0x10: /* SysTick Control and Status. */
303 oldval = s->systick.control;
304 s->systick.control &= 0xfffffff8;
305 s->systick.control |= value & 7;
306 if ((oldval ^ value) & SYSTICK_ENABLE) {
307 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
308 if (value & SYSTICK_ENABLE) {
309 if (s->systick.tick) {
310 s->systick.tick += now;
311 timer_mod(s->systick.timer, s->systick.tick);
312 } else {
313 systick_reload(s, 1);
315 } else {
316 timer_del(s->systick.timer);
317 s->systick.tick -= now;
318 if (s->systick.tick < 0)
319 s->systick.tick = 0;
321 } else if ((oldval ^ value) & SYSTICK_CLKSOURCE) {
322 /* This is a hack. Force the timer to be reloaded
323 when the reference clock is changed. */
324 systick_reload(s, 1);
326 break;
327 case 0x14: /* SysTick Reload Value. */
328 s->systick.reload = value;
329 break;
330 case 0x18: /* SysTick Current Value. Writes reload the timer. */
331 systick_reload(s, 1);
332 s->systick.control &= ~SYSTICK_COUNTFLAG;
333 break;
334 case 0xd04: /* Interrupt Control State. */
335 if (value & (1 << 31)) {
336 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI);
338 if (value & (1 << 28)) {
339 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV);
340 } else if (value & (1 << 27)) {
341 s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending = 0;
342 gic_update(&s->gic);
344 if (value & (1 << 26)) {
345 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
346 } else if (value & (1 << 25)) {
347 s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending = 0;
348 gic_update(&s->gic);
350 break;
351 case 0xd08: /* Vector Table Offset. */
352 cpu = ARM_CPU(qemu_get_cpu(0));
353 cpu->env.v7m.vecbase = value & 0xffffff80;
354 break;
355 case 0xd0c: /* Application Interrupt/Reset Control. */
356 if ((value >> 16) == 0x05fa) {
357 if (value & 4) {
358 qemu_irq_pulse(s->sysresetreq);
360 if (value & 2) {
361 qemu_log_mask(LOG_UNIMP, "VECTCLRACTIVE unimplemented\n");
363 if (value & 1) {
364 qemu_log_mask(LOG_UNIMP, "AIRCR system reset unimplemented\n");
366 if (value & 0x700) {
367 qemu_log_mask(LOG_UNIMP, "PRIGROUP unimplemented\n");
370 break;
371 case 0xd10: /* System Control. */
372 case 0xd14: /* Configuration Control. */
373 /* TODO: Implement control registers. */
374 qemu_log_mask(LOG_UNIMP, "NVIC: SCR and CCR unimplemented\n");
375 break;
376 case 0xd24: /* System Handler Control. */
377 /* TODO: Real hardware allows you to set/clear the active bits
378 under some circumstances. We don't implement this. */
379 s->gic.irq_state[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
380 s->gic.irq_state[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
381 s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
382 break;
383 case 0xd28: /* Configurable Fault Status. */
384 case 0xd2c: /* Hard Fault Status. */
385 case 0xd30: /* Debug Fault Status. */
386 case 0xd34: /* Mem Manage Address. */
387 case 0xd38: /* Bus Fault Address. */
388 case 0xd3c: /* Aux Fault Status. */
389 qemu_log_mask(LOG_UNIMP,
390 "NVIC: fault status registers unimplemented\n");
391 break;
392 case 0xf00: /* Software Triggered Interrupt Register */
393 if ((value & 0x1ff) < s->num_irq) {
394 gic_set_pending_private(&s->gic, 0, value & 0x1ff);
396 break;
397 default:
398 qemu_log_mask(LOG_GUEST_ERROR,
399 "NVIC: Bad write offset 0x%x\n", offset);
403 static uint64_t nvic_sysreg_read(void *opaque, hwaddr addr,
404 unsigned size)
406 nvic_state *s = (nvic_state *)opaque;
407 uint32_t offset = addr;
408 int i;
409 uint32_t val;
411 switch (offset) {
412 case 0xd18 ... 0xd23: /* System Handler Priority. */
413 val = 0;
414 for (i = 0; i < size; i++) {
415 val |= s->gic.priority1[(offset - 0xd14) + i][0] << (i * 8);
417 return val;
418 case 0xfe0 ... 0xfff: /* ID. */
419 if (offset & 3) {
420 return 0;
422 return nvic_id[(offset - 0xfe0) >> 2];
424 if (size == 4) {
425 return nvic_readl(s, offset);
427 qemu_log_mask(LOG_GUEST_ERROR,
428 "NVIC: Bad read of size %d at offset 0x%x\n", size, offset);
429 return 0;
432 static void nvic_sysreg_write(void *opaque, hwaddr addr,
433 uint64_t value, unsigned size)
435 nvic_state *s = (nvic_state *)opaque;
436 uint32_t offset = addr;
437 int i;
439 switch (offset) {
440 case 0xd18 ... 0xd23: /* System Handler Priority. */
441 for (i = 0; i < size; i++) {
442 s->gic.priority1[(offset - 0xd14) + i][0] =
443 (value >> (i * 8)) & 0xff;
445 gic_update(&s->gic);
446 return;
448 if (size == 4) {
449 nvic_writel(s, offset, value);
450 return;
452 qemu_log_mask(LOG_GUEST_ERROR,
453 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
456 static const MemoryRegionOps nvic_sysreg_ops = {
457 .read = nvic_sysreg_read,
458 .write = nvic_sysreg_write,
459 .endianness = DEVICE_NATIVE_ENDIAN,
462 static const VMStateDescription vmstate_nvic = {
463 .name = "armv7m_nvic",
464 .version_id = 1,
465 .minimum_version_id = 1,
466 .fields = (VMStateField[]) {
467 VMSTATE_UINT32(systick.control, nvic_state),
468 VMSTATE_UINT32(systick.reload, nvic_state),
469 VMSTATE_INT64(systick.tick, nvic_state),
470 VMSTATE_TIMER_PTR(systick.timer, nvic_state),
471 VMSTATE_END_OF_LIST()
475 static void armv7m_nvic_reset(DeviceState *dev)
477 nvic_state *s = NVIC(dev);
478 NVICClass *nc = NVIC_GET_CLASS(s);
479 nc->parent_reset(dev);
480 /* Common GIC reset resets to disabled; the NVIC doesn't have
481 * per-CPU interfaces so mark our non-existent CPU interface
482 * as enabled by default, and with a priority mask which allows
483 * all interrupts through.
485 s->gic.cpu_ctlr[0] = GICC_CTLR_EN_GRP0;
486 s->gic.priority_mask[0] = 0x100;
487 /* The NVIC as a whole is always enabled. */
488 s->gic.ctlr = 1;
489 systick_reset(s);
492 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
494 nvic_state *s = NVIC(dev);
495 NVICClass *nc = NVIC_GET_CLASS(s);
496 Error *local_err = NULL;
498 /* The NVIC always has only one CPU */
499 s->gic.num_cpu = 1;
500 /* Tell the common code we're an NVIC */
501 s->gic.revision = 0xffffffff;
502 s->num_irq = s->gic.num_irq;
503 nc->parent_realize(dev, &local_err);
504 if (local_err) {
505 error_propagate(errp, local_err);
506 return;
508 gic_init_irqs_and_distributor(&s->gic);
509 /* The NVIC and system controller register area looks like this:
510 * 0..0xff : system control registers, including systick
511 * 0x100..0xcff : GIC-like registers
512 * 0xd00..0xfff : system control registers
513 * We use overlaying to put the GIC like registers
514 * over the top of the system control register region.
516 memory_region_init(&s->container, OBJECT(s), "nvic", 0x1000);
517 /* The system register region goes at the bottom of the priority
518 * stack as it covers the whole page.
520 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
521 "nvic_sysregs", 0x1000);
522 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
523 /* Alias the GIC region so we can get only the section of it
524 * we need, and layer it on top of the system register region.
526 memory_region_init_alias(&s->gic_iomem_alias, OBJECT(s),
527 "nvic-gic", &s->gic.iomem,
528 0x100, 0xc00);
529 memory_region_add_subregion_overlap(&s->container, 0x100,
530 &s->gic_iomem_alias, 1);
531 /* Map the whole thing into system memory at the location required
532 * by the v7M architecture.
534 memory_region_add_subregion(get_system_memory(), 0xe000e000, &s->container);
535 s->systick.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, systick_timer_tick, s);
538 static void armv7m_nvic_instance_init(Object *obj)
540 /* We have a different default value for the num-irq property
541 * than our superclass. This function runs after qdev init
542 * has set the defaults from the Property array and before
543 * any user-specified property setting, so just modify the
544 * value in the GICState struct.
546 GICState *s = ARM_GIC_COMMON(obj);
547 DeviceState *dev = DEVICE(obj);
548 nvic_state *nvic = NVIC(obj);
549 /* The ARM v7m may have anything from 0 to 496 external interrupt
550 * IRQ lines. We default to 64. Other boards may differ and should
551 * set the num-irq property appropriately.
553 s->num_irq = 64;
554 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
557 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
559 NVICClass *nc = NVIC_CLASS(klass);
560 DeviceClass *dc = DEVICE_CLASS(klass);
562 nc->parent_reset = dc->reset;
563 nc->parent_realize = dc->realize;
564 dc->vmsd = &vmstate_nvic;
565 dc->reset = armv7m_nvic_reset;
566 dc->realize = armv7m_nvic_realize;
569 static const TypeInfo armv7m_nvic_info = {
570 .name = TYPE_NVIC,
571 .parent = TYPE_ARM_GIC_COMMON,
572 .instance_init = armv7m_nvic_instance_init,
573 .instance_size = sizeof(nvic_state),
574 .class_init = armv7m_nvic_class_init,
575 .class_size = sizeof(NVICClass),
578 static void armv7m_nvic_register_types(void)
580 type_register_static(&armv7m_nvic_info);
583 type_init(armv7m_nvic_register_types)