hw: add compat machines for 4.2
[qemu/ar7.git] / hw / ppc / spapr.c
blob6587d9b559494f0763041fab691d1313b5d1595d
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "qom/cpu.h"
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
83 #include <libfdt.h>
85 /* SLOF memory layout:
87 * SLOF raw image loaded at 0, copies its romfs right below the flat
88 * device-tree, then position SLOF itself 31M below that
90 * So we set FW_OVERHEAD to 40MB which should account for all of that
91 * and more
93 * We load our kernel at 4M, leaving space for SLOF initial image
95 #define FDT_MAX_SIZE 0x100000
96 #define RTAS_MAX_SIZE 0x10000
97 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
98 #define FW_MAX_SIZE 0x400000
99 #define FW_FILE_NAME "slof.bin"
100 #define FW_OVERHEAD 0x2800000
101 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
103 #define MIN_RMA_SLOF 128UL
105 #define PHANDLE_INTC 0x00001111
107 /* These two functions implement the VCPU id numbering: one to compute them
108 * all and one to identify thread 0 of a VCORE. Any change to the first one
109 * is likely to have an impact on the second one, so let's keep them close.
111 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
113 MachineState *ms = MACHINE(spapr);
114 unsigned int smp_threads = ms->smp.threads;
116 assert(spapr->vsmt);
117 return
118 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
120 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
121 PowerPCCPU *cpu)
123 assert(spapr->vsmt);
124 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
127 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
129 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
130 * and newer QEMUs don't even have them. In both cases, we don't want
131 * to send anything on the wire.
133 return false;
136 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
137 .name = "icp/server",
138 .version_id = 1,
139 .minimum_version_id = 1,
140 .needed = pre_2_10_vmstate_dummy_icp_needed,
141 .fields = (VMStateField[]) {
142 VMSTATE_UNUSED(4), /* uint32_t xirr */
143 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
144 VMSTATE_UNUSED(1), /* uint8_t mfrr */
145 VMSTATE_END_OF_LIST()
149 static void pre_2_10_vmstate_register_dummy_icp(int i)
151 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
152 (void *)(uintptr_t) i);
155 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
157 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
158 (void *)(uintptr_t) i);
161 int spapr_max_server_number(SpaprMachineState *spapr)
163 MachineState *ms = MACHINE(spapr);
165 assert(spapr->vsmt);
166 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
169 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
170 int smt_threads)
172 int i, ret = 0;
173 uint32_t servers_prop[smt_threads];
174 uint32_t gservers_prop[smt_threads * 2];
175 int index = spapr_get_vcpu_id(cpu);
177 if (cpu->compat_pvr) {
178 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
179 if (ret < 0) {
180 return ret;
184 /* Build interrupt servers and gservers properties */
185 for (i = 0; i < smt_threads; i++) {
186 servers_prop[i] = cpu_to_be32(index + i);
187 /* Hack, direct the group queues back to cpu 0 */
188 gservers_prop[i*2] = cpu_to_be32(index + i);
189 gservers_prop[i*2 + 1] = 0;
191 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
192 servers_prop, sizeof(servers_prop));
193 if (ret < 0) {
194 return ret;
196 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
197 gservers_prop, sizeof(gservers_prop));
199 return ret;
202 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
204 int index = spapr_get_vcpu_id(cpu);
205 uint32_t associativity[] = {cpu_to_be32(0x5),
206 cpu_to_be32(0x0),
207 cpu_to_be32(0x0),
208 cpu_to_be32(0x0),
209 cpu_to_be32(cpu->node_id),
210 cpu_to_be32(index)};
212 /* Advertise NUMA via ibm,associativity */
213 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
214 sizeof(associativity));
217 /* Populate the "ibm,pa-features" property */
218 static void spapr_populate_pa_features(SpaprMachineState *spapr,
219 PowerPCCPU *cpu,
220 void *fdt, int offset,
221 bool legacy_guest)
223 uint8_t pa_features_206[] = { 6, 0,
224 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
225 uint8_t pa_features_207[] = { 24, 0,
226 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
228 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
230 uint8_t pa_features_300[] = { 66, 0,
231 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
232 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
233 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
234 /* 6: DS207 */
235 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
236 /* 16: Vector */
237 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
238 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
239 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
240 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
242 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
243 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
244 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
245 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
246 /* 42: PM, 44: PC RA, 46: SC vec'd */
247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
248 /* 48: SIMD, 50: QP BFP, 52: String */
249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
250 /* 54: DecFP, 56: DecI, 58: SHA */
251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
252 /* 60: NM atomic, 62: RNG */
253 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255 uint8_t *pa_features = NULL;
256 size_t pa_size;
258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
259 pa_features = pa_features_206;
260 pa_size = sizeof(pa_features_206);
262 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
263 pa_features = pa_features_207;
264 pa_size = sizeof(pa_features_207);
266 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
267 pa_features = pa_features_300;
268 pa_size = sizeof(pa_features_300);
270 if (!pa_features) {
271 return;
274 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276 * Note: we keep CI large pages off by default because a 64K capable
277 * guest provisioned with large pages might otherwise try to map a qemu
278 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
279 * even if that qemu runs on a 4k host.
280 * We dd this bit back here if we are confident this is not an issue
282 pa_features[3] |= 0x20;
284 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
285 pa_features[24] |= 0x80; /* Transactional memory support */
287 if (legacy_guest && pa_size > 40) {
288 /* Workaround for broken kernels that attempt (guest) radix
289 * mode when they can't handle it, if they see the radix bit set
290 * in pa-features. So hide it from them. */
291 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
294 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
297 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
299 MachineState *ms = MACHINE(spapr);
300 int ret = 0, offset, cpus_offset;
301 CPUState *cs;
302 char cpu_model[32];
303 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
305 CPU_FOREACH(cs) {
306 PowerPCCPU *cpu = POWERPC_CPU(cs);
307 DeviceClass *dc = DEVICE_GET_CLASS(cs);
308 int index = spapr_get_vcpu_id(cpu);
309 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu));
311 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
312 continue;
315 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
317 cpus_offset = fdt_path_offset(fdt, "/cpus");
318 if (cpus_offset < 0) {
319 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
320 if (cpus_offset < 0) {
321 return cpus_offset;
324 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
325 if (offset < 0) {
326 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
327 if (offset < 0) {
328 return offset;
332 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
333 pft_size_prop, sizeof(pft_size_prop));
334 if (ret < 0) {
335 return ret;
338 if (nb_numa_nodes > 1) {
339 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
340 if (ret < 0) {
341 return ret;
345 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
346 if (ret < 0) {
347 return ret;
350 spapr_populate_pa_features(spapr, cpu, fdt, offset,
351 spapr->cas_legacy_guest_workaround);
353 return ret;
356 static hwaddr spapr_node0_size(MachineState *machine)
358 if (nb_numa_nodes) {
359 int i;
360 for (i = 0; i < nb_numa_nodes; ++i) {
361 if (numa_info[i].node_mem) {
362 return MIN(pow2floor(numa_info[i].node_mem),
363 machine->ram_size);
367 return machine->ram_size;
370 static void add_str(GString *s, const gchar *s1)
372 g_string_append_len(s, s1, strlen(s1) + 1);
375 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
376 hwaddr size)
378 uint32_t associativity[] = {
379 cpu_to_be32(0x4), /* length */
380 cpu_to_be32(0x0), cpu_to_be32(0x0),
381 cpu_to_be32(0x0), cpu_to_be32(nodeid)
383 char mem_name[32];
384 uint64_t mem_reg_property[2];
385 int off;
387 mem_reg_property[0] = cpu_to_be64(start);
388 mem_reg_property[1] = cpu_to_be64(size);
390 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
391 off = fdt_add_subnode(fdt, 0, mem_name);
392 _FDT(off);
393 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
394 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
395 sizeof(mem_reg_property))));
396 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
397 sizeof(associativity))));
398 return off;
401 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
403 MachineState *machine = MACHINE(spapr);
404 hwaddr mem_start, node_size;
405 int i, nb_nodes = nb_numa_nodes;
406 NodeInfo *nodes = numa_info;
407 NodeInfo ramnode;
409 /* No NUMA nodes, assume there is just one node with whole RAM */
410 if (!nb_numa_nodes) {
411 nb_nodes = 1;
412 ramnode.node_mem = machine->ram_size;
413 nodes = &ramnode;
416 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
417 if (!nodes[i].node_mem) {
418 continue;
420 if (mem_start >= machine->ram_size) {
421 node_size = 0;
422 } else {
423 node_size = nodes[i].node_mem;
424 if (node_size > machine->ram_size - mem_start) {
425 node_size = machine->ram_size - mem_start;
428 if (!mem_start) {
429 /* spapr_machine_init() checks for rma_size <= node0_size
430 * already */
431 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
432 mem_start += spapr->rma_size;
433 node_size -= spapr->rma_size;
435 for ( ; node_size; ) {
436 hwaddr sizetmp = pow2floor(node_size);
438 /* mem_start != 0 here */
439 if (ctzl(mem_start) < ctzl(sizetmp)) {
440 sizetmp = 1ULL << ctzl(mem_start);
443 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
444 node_size -= sizetmp;
445 mem_start += sizetmp;
449 return 0;
452 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
453 SpaprMachineState *spapr)
455 MachineState *ms = MACHINE(spapr);
456 PowerPCCPU *cpu = POWERPC_CPU(cs);
457 CPUPPCState *env = &cpu->env;
458 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
459 int index = spapr_get_vcpu_id(cpu);
460 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
461 0xffffffff, 0xffffffff};
462 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
463 : SPAPR_TIMEBASE_FREQ;
464 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
465 uint32_t page_sizes_prop[64];
466 size_t page_sizes_prop_size;
467 unsigned int smp_threads = ms->smp.threads;
468 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
469 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
470 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
471 SpaprDrc *drc;
472 int drc_index;
473 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
474 int i;
476 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
477 if (drc) {
478 drc_index = spapr_drc_index(drc);
479 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
482 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
483 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
485 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
486 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
487 env->dcache_line_size)));
488 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
489 env->dcache_line_size)));
490 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
491 env->icache_line_size)));
492 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
493 env->icache_line_size)));
495 if (pcc->l1_dcache_size) {
496 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
497 pcc->l1_dcache_size)));
498 } else {
499 warn_report("Unknown L1 dcache size for cpu");
501 if (pcc->l1_icache_size) {
502 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
503 pcc->l1_icache_size)));
504 } else {
505 warn_report("Unknown L1 icache size for cpu");
508 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
509 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
510 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
511 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
512 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
513 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
515 if (env->spr_cb[SPR_PURR].oea_read) {
516 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
518 if (env->spr_cb[SPR_SPURR].oea_read) {
519 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
522 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
523 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
524 segs, sizeof(segs))));
527 /* Advertise VSX (vector extensions) if available
528 * 1 == VMX / Altivec available
529 * 2 == VSX available
531 * Only CPUs for which we create core types in spapr_cpu_core.c
532 * are possible, and all of those have VMX */
533 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
534 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
535 } else {
536 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
539 /* Advertise DFP (Decimal Floating Point) if available
540 * 0 / no property == no DFP
541 * 1 == DFP available */
542 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
543 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
546 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
547 sizeof(page_sizes_prop));
548 if (page_sizes_prop_size) {
549 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
550 page_sizes_prop, page_sizes_prop_size)));
553 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
555 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
556 cs->cpu_index / vcpus_per_socket)));
558 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
559 pft_size_prop, sizeof(pft_size_prop))));
561 if (nb_numa_nodes > 1) {
562 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
565 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
567 if (pcc->radix_page_info) {
568 for (i = 0; i < pcc->radix_page_info->count; i++) {
569 radix_AP_encodings[i] =
570 cpu_to_be32(pcc->radix_page_info->entries[i]);
572 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
573 radix_AP_encodings,
574 pcc->radix_page_info->count *
575 sizeof(radix_AP_encodings[0]))));
579 * We set this property to let the guest know that it can use the large
580 * decrementer and its width in bits.
582 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
583 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
584 pcc->lrg_decr_bits)));
587 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
589 CPUState **rev;
590 CPUState *cs;
591 int n_cpus;
592 int cpus_offset;
593 char *nodename;
594 int i;
596 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
597 _FDT(cpus_offset);
598 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
599 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
602 * We walk the CPUs in reverse order to ensure that CPU DT nodes
603 * created by fdt_add_subnode() end up in the right order in FDT
604 * for the guest kernel the enumerate the CPUs correctly.
606 * The CPU list cannot be traversed in reverse order, so we need
607 * to do extra work.
609 n_cpus = 0;
610 rev = NULL;
611 CPU_FOREACH(cs) {
612 rev = g_renew(CPUState *, rev, n_cpus + 1);
613 rev[n_cpus++] = cs;
616 for (i = n_cpus - 1; i >= 0; i--) {
617 CPUState *cs = rev[i];
618 PowerPCCPU *cpu = POWERPC_CPU(cs);
619 int index = spapr_get_vcpu_id(cpu);
620 DeviceClass *dc = DEVICE_GET_CLASS(cs);
621 int offset;
623 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
624 continue;
627 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
628 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
629 g_free(nodename);
630 _FDT(offset);
631 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
634 g_free(rev);
637 static int spapr_rng_populate_dt(void *fdt)
639 int node;
640 int ret;
642 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
643 if (node <= 0) {
644 return -1;
646 ret = fdt_setprop_string(fdt, node, "device_type",
647 "ibm,platform-facilities");
648 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
649 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
651 node = fdt_add_subnode(fdt, node, "ibm,random-v1");
652 if (node <= 0) {
653 return -1;
655 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
657 return ret ? -1 : 0;
660 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
662 MemoryDeviceInfoList *info;
664 for (info = list; info; info = info->next) {
665 MemoryDeviceInfo *value = info->value;
667 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
668 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
670 if (addr >= pcdimm_info->addr &&
671 addr < (pcdimm_info->addr + pcdimm_info->size)) {
672 return pcdimm_info->node;
677 return -1;
680 struct sPAPRDrconfCellV2 {
681 uint32_t seq_lmbs;
682 uint64_t base_addr;
683 uint32_t drc_index;
684 uint32_t aa_index;
685 uint32_t flags;
686 } QEMU_PACKED;
688 typedef struct DrconfCellQueue {
689 struct sPAPRDrconfCellV2 cell;
690 QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
691 } DrconfCellQueue;
693 static DrconfCellQueue *
694 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
695 uint32_t drc_index, uint32_t aa_index,
696 uint32_t flags)
698 DrconfCellQueue *elem;
700 elem = g_malloc0(sizeof(*elem));
701 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
702 elem->cell.base_addr = cpu_to_be64(base_addr);
703 elem->cell.drc_index = cpu_to_be32(drc_index);
704 elem->cell.aa_index = cpu_to_be32(aa_index);
705 elem->cell.flags = cpu_to_be32(flags);
707 return elem;
710 /* ibm,dynamic-memory-v2 */
711 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
712 int offset, MemoryDeviceInfoList *dimms)
714 MachineState *machine = MACHINE(spapr);
715 uint8_t *int_buf, *cur_index;
716 int ret;
717 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
718 uint64_t addr, cur_addr, size;
719 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
720 uint64_t mem_end = machine->device_memory->base +
721 memory_region_size(&machine->device_memory->mr);
722 uint32_t node, buf_len, nr_entries = 0;
723 SpaprDrc *drc;
724 DrconfCellQueue *elem, *next;
725 MemoryDeviceInfoList *info;
726 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
727 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
729 /* Entry to cover RAM and the gap area */
730 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
731 SPAPR_LMB_FLAGS_RESERVED |
732 SPAPR_LMB_FLAGS_DRC_INVALID);
733 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
734 nr_entries++;
736 cur_addr = machine->device_memory->base;
737 for (info = dimms; info; info = info->next) {
738 PCDIMMDeviceInfo *di = info->value->u.dimm.data;
740 addr = di->addr;
741 size = di->size;
742 node = di->node;
744 /* Entry for hot-pluggable area */
745 if (cur_addr < addr) {
746 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
747 g_assert(drc);
748 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
749 cur_addr, spapr_drc_index(drc), -1, 0);
750 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
751 nr_entries++;
754 /* Entry for DIMM */
755 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
756 g_assert(drc);
757 elem = spapr_get_drconf_cell(size / lmb_size, addr,
758 spapr_drc_index(drc), node,
759 SPAPR_LMB_FLAGS_ASSIGNED);
760 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
761 nr_entries++;
762 cur_addr = addr + size;
765 /* Entry for remaining hotpluggable area */
766 if (cur_addr < mem_end) {
767 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
768 g_assert(drc);
769 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
770 cur_addr, spapr_drc_index(drc), -1, 0);
771 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
772 nr_entries++;
775 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
776 int_buf = cur_index = g_malloc0(buf_len);
777 *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
778 cur_index += sizeof(nr_entries);
780 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
781 memcpy(cur_index, &elem->cell, sizeof(elem->cell));
782 cur_index += sizeof(elem->cell);
783 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
784 g_free(elem);
787 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
788 g_free(int_buf);
789 if (ret < 0) {
790 return -1;
792 return 0;
795 /* ibm,dynamic-memory */
796 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
797 int offset, MemoryDeviceInfoList *dimms)
799 MachineState *machine = MACHINE(spapr);
800 int i, ret;
801 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
802 uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
803 uint32_t nr_lmbs = (machine->device_memory->base +
804 memory_region_size(&machine->device_memory->mr)) /
805 lmb_size;
806 uint32_t *int_buf, *cur_index, buf_len;
809 * Allocate enough buffer size to fit in ibm,dynamic-memory
811 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
812 cur_index = int_buf = g_malloc0(buf_len);
813 int_buf[0] = cpu_to_be32(nr_lmbs);
814 cur_index++;
815 for (i = 0; i < nr_lmbs; i++) {
816 uint64_t addr = i * lmb_size;
817 uint32_t *dynamic_memory = cur_index;
819 if (i >= device_lmb_start) {
820 SpaprDrc *drc;
822 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
823 g_assert(drc);
825 dynamic_memory[0] = cpu_to_be32(addr >> 32);
826 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
827 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
828 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
829 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
830 if (memory_region_present(get_system_memory(), addr)) {
831 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
832 } else {
833 dynamic_memory[5] = cpu_to_be32(0);
835 } else {
837 * LMB information for RMA, boot time RAM and gap b/n RAM and
838 * device memory region -- all these are marked as reserved
839 * and as having no valid DRC.
841 dynamic_memory[0] = cpu_to_be32(addr >> 32);
842 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
843 dynamic_memory[2] = cpu_to_be32(0);
844 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
845 dynamic_memory[4] = cpu_to_be32(-1);
846 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
847 SPAPR_LMB_FLAGS_DRC_INVALID);
850 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
852 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
853 g_free(int_buf);
854 if (ret < 0) {
855 return -1;
857 return 0;
861 * Adds ibm,dynamic-reconfiguration-memory node.
862 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
863 * of this device tree node.
865 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
867 MachineState *machine = MACHINE(spapr);
868 int ret, i, offset;
869 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
870 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
871 uint32_t *int_buf, *cur_index, buf_len;
872 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
873 MemoryDeviceInfoList *dimms = NULL;
876 * Don't create the node if there is no device memory
878 if (machine->ram_size == machine->maxram_size) {
879 return 0;
882 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
884 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
885 sizeof(prop_lmb_size));
886 if (ret < 0) {
887 return ret;
890 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
891 if (ret < 0) {
892 return ret;
895 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
896 if (ret < 0) {
897 return ret;
900 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
901 dimms = qmp_memory_device_list();
902 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
903 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
904 } else {
905 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
907 qapi_free_MemoryDeviceInfoList(dimms);
909 if (ret < 0) {
910 return ret;
913 /* ibm,associativity-lookup-arrays */
914 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
915 cur_index = int_buf = g_malloc0(buf_len);
916 int_buf[0] = cpu_to_be32(nr_nodes);
917 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
918 cur_index += 2;
919 for (i = 0; i < nr_nodes; i++) {
920 uint32_t associativity[] = {
921 cpu_to_be32(0x0),
922 cpu_to_be32(0x0),
923 cpu_to_be32(0x0),
924 cpu_to_be32(i)
926 memcpy(cur_index, associativity, sizeof(associativity));
927 cur_index += 4;
929 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
930 (cur_index - int_buf) * sizeof(uint32_t));
931 g_free(int_buf);
933 return ret;
936 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
937 SpaprOptionVector *ov5_updates)
939 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
940 int ret = 0, offset;
942 /* Generate ibm,dynamic-reconfiguration-memory node if required */
943 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
944 g_assert(smc->dr_lmb_enabled);
945 ret = spapr_populate_drconf_memory(spapr, fdt);
946 if (ret) {
947 goto out;
951 offset = fdt_path_offset(fdt, "/chosen");
952 if (offset < 0) {
953 offset = fdt_add_subnode(fdt, 0, "chosen");
954 if (offset < 0) {
955 return offset;
958 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
959 "ibm,architecture-vec-5");
961 out:
962 return ret;
965 static bool spapr_hotplugged_dev_before_cas(void)
967 Object *drc_container, *obj;
968 ObjectProperty *prop;
969 ObjectPropertyIterator iter;
971 drc_container = container_get(object_get_root(), "/dr-connector");
972 object_property_iter_init(&iter, drc_container);
973 while ((prop = object_property_iter_next(&iter))) {
974 if (!strstart(prop->type, "link<", NULL)) {
975 continue;
977 obj = object_property_get_link(drc_container, prop->name, NULL);
978 if (spapr_drc_needed(obj)) {
979 return true;
982 return false;
985 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
986 target_ulong addr, target_ulong size,
987 SpaprOptionVector *ov5_updates)
989 void *fdt, *fdt_skel;
990 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
992 if (spapr_hotplugged_dev_before_cas()) {
993 return 1;
996 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
997 error_report("SLOF provided an unexpected CAS buffer size "
998 TARGET_FMT_lu " (min: %zu, max: %u)",
999 size, sizeof(hdr), FW_MAX_SIZE);
1000 exit(EXIT_FAILURE);
1003 size -= sizeof(hdr);
1005 /* Create skeleton */
1006 fdt_skel = g_malloc0(size);
1007 _FDT((fdt_create(fdt_skel, size)));
1008 _FDT((fdt_finish_reservemap(fdt_skel)));
1009 _FDT((fdt_begin_node(fdt_skel, "")));
1010 _FDT((fdt_end_node(fdt_skel)));
1011 _FDT((fdt_finish(fdt_skel)));
1012 fdt = g_malloc0(size);
1013 _FDT((fdt_open_into(fdt_skel, fdt, size)));
1014 g_free(fdt_skel);
1016 /* Fixup cpu nodes */
1017 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1019 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1020 return -1;
1023 /* Pack resulting tree */
1024 _FDT((fdt_pack(fdt)));
1026 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1027 trace_spapr_cas_failed(size);
1028 return -1;
1031 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1032 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1033 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1034 g_free(fdt);
1036 return 0;
1039 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1041 MachineState *ms = MACHINE(spapr);
1042 int rtas;
1043 GString *hypertas = g_string_sized_new(256);
1044 GString *qemu_hypertas = g_string_sized_new(256);
1045 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1046 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1047 memory_region_size(&MACHINE(spapr)->device_memory->mr);
1048 uint32_t lrdr_capacity[] = {
1049 cpu_to_be32(max_device_addr >> 32),
1050 cpu_to_be32(max_device_addr & 0xffffffff),
1051 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1052 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
1054 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1055 uint32_t maxdomains[] = {
1056 cpu_to_be32(4),
1057 maxdomain,
1058 maxdomain,
1059 maxdomain,
1060 cpu_to_be32(spapr->gpu_numa_id),
1063 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1065 /* hypertas */
1066 add_str(hypertas, "hcall-pft");
1067 add_str(hypertas, "hcall-term");
1068 add_str(hypertas, "hcall-dabr");
1069 add_str(hypertas, "hcall-interrupt");
1070 add_str(hypertas, "hcall-tce");
1071 add_str(hypertas, "hcall-vio");
1072 add_str(hypertas, "hcall-splpar");
1073 add_str(hypertas, "hcall-bulk");
1074 add_str(hypertas, "hcall-set-mode");
1075 add_str(hypertas, "hcall-sprg0");
1076 add_str(hypertas, "hcall-copy");
1077 add_str(hypertas, "hcall-debug");
1078 add_str(hypertas, "hcall-vphn");
1079 add_str(qemu_hypertas, "hcall-memop1");
1081 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1082 add_str(hypertas, "hcall-multi-tce");
1085 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1086 add_str(hypertas, "hcall-hpt-resize");
1089 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1090 hypertas->str, hypertas->len));
1091 g_string_free(hypertas, TRUE);
1092 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1093 qemu_hypertas->str, qemu_hypertas->len));
1094 g_string_free(qemu_hypertas, TRUE);
1096 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1097 refpoints, sizeof(refpoints)));
1099 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1100 maxdomains, sizeof(maxdomains)));
1102 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1103 RTAS_ERROR_LOG_MAX));
1104 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1105 RTAS_EVENT_SCAN_RATE));
1107 g_assert(msi_nonbroken);
1108 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1111 * According to PAPR, rtas ibm,os-term does not guarantee a return
1112 * back to the guest cpu.
1114 * While an additional ibm,extended-os-term property indicates
1115 * that rtas call return will always occur. Set this property.
1117 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1119 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1120 lrdr_capacity, sizeof(lrdr_capacity)));
1122 spapr_dt_rtas_tokens(fdt, rtas);
1126 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1127 * and the XIVE features that the guest may request and thus the valid
1128 * values for bytes 23..26 of option vector 5:
1130 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1131 int chosen)
1133 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1135 char val[2 * 4] = {
1136 23, spapr->irq->ov5, /* Xive mode. */
1137 24, 0x00, /* Hash/Radix, filled in below. */
1138 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1139 26, 0x40, /* Radix options: GTSE == yes. */
1142 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1143 first_ppc_cpu->compat_pvr)) {
1145 * If we're in a pre POWER9 compat mode then the guest should
1146 * do hash and use the legacy interrupt mode
1148 val[1] = 0x00; /* XICS */
1149 val[3] = 0x00; /* Hash */
1150 } else if (kvm_enabled()) {
1151 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1152 val[3] = 0x80; /* OV5_MMU_BOTH */
1153 } else if (kvmppc_has_cap_mmu_radix()) {
1154 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1155 } else {
1156 val[3] = 0x00; /* Hash */
1158 } else {
1159 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1160 val[3] = 0xC0;
1162 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1163 val, sizeof(val)));
1166 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1168 MachineState *machine = MACHINE(spapr);
1169 int chosen;
1170 const char *boot_device = machine->boot_order;
1171 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1172 size_t cb = 0;
1173 char *bootlist = get_boot_devices_list(&cb);
1175 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1177 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1178 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1179 spapr->initrd_base));
1180 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1181 spapr->initrd_base + spapr->initrd_size));
1183 if (spapr->kernel_size) {
1184 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1185 cpu_to_be64(spapr->kernel_size) };
1187 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1188 &kprop, sizeof(kprop)));
1189 if (spapr->kernel_le) {
1190 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1193 if (boot_menu) {
1194 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1196 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1197 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1198 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1200 if (cb && bootlist) {
1201 int i;
1203 for (i = 0; i < cb; i++) {
1204 if (bootlist[i] == '\n') {
1205 bootlist[i] = ' ';
1208 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1211 if (boot_device && strlen(boot_device)) {
1212 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1215 if (!spapr->has_graphics && stdout_path) {
1217 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1218 * kernel. New platforms should only use the "stdout-path" property. Set
1219 * the new property and continue using older property to remain
1220 * compatible with the existing firmware.
1222 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1223 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1226 spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1228 g_free(stdout_path);
1229 g_free(bootlist);
1232 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1234 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1235 * KVM to work under pHyp with some guest co-operation */
1236 int hypervisor;
1237 uint8_t hypercall[16];
1239 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1240 /* indicate KVM hypercall interface */
1241 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1242 if (kvmppc_has_cap_fixup_hcalls()) {
1244 * Older KVM versions with older guest kernels were broken
1245 * with the magic page, don't allow the guest to map it.
1247 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1248 sizeof(hypercall))) {
1249 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1250 hypercall, sizeof(hypercall)));
1255 static void *spapr_build_fdt(SpaprMachineState *spapr)
1257 MachineState *machine = MACHINE(spapr);
1258 MachineClass *mc = MACHINE_GET_CLASS(machine);
1259 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1260 int ret;
1261 void *fdt;
1262 SpaprPhbState *phb;
1263 char *buf;
1265 fdt = g_malloc0(FDT_MAX_SIZE);
1266 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1268 /* Root node */
1269 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1270 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1271 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1273 /* Guest UUID & Name*/
1274 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1275 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1276 if (qemu_uuid_set) {
1277 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1279 g_free(buf);
1281 if (qemu_get_vm_name()) {
1282 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1283 qemu_get_vm_name()));
1286 /* Host Model & Serial Number */
1287 if (spapr->host_model) {
1288 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1289 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1290 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1291 g_free(buf);
1294 if (spapr->host_serial) {
1295 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1296 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1297 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1298 g_free(buf);
1301 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1302 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1304 /* /interrupt controller */
1305 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1306 PHANDLE_INTC);
1308 ret = spapr_populate_memory(spapr, fdt);
1309 if (ret < 0) {
1310 error_report("couldn't setup memory nodes in fdt");
1311 exit(1);
1314 /* /vdevice */
1315 spapr_dt_vdevice(spapr->vio_bus, fdt);
1317 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1318 ret = spapr_rng_populate_dt(fdt);
1319 if (ret < 0) {
1320 error_report("could not set up rng device in the fdt");
1321 exit(1);
1325 QLIST_FOREACH(phb, &spapr->phbs, list) {
1326 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1327 if (ret < 0) {
1328 error_report("couldn't setup PCI devices in fdt");
1329 exit(1);
1333 /* cpus */
1334 spapr_populate_cpus_dt_node(fdt, spapr);
1336 if (smc->dr_lmb_enabled) {
1337 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1340 if (mc->has_hotpluggable_cpus) {
1341 int offset = fdt_path_offset(fdt, "/cpus");
1342 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1343 if (ret < 0) {
1344 error_report("Couldn't set up CPU DR device tree properties");
1345 exit(1);
1349 /* /event-sources */
1350 spapr_dt_events(spapr, fdt);
1352 /* /rtas */
1353 spapr_dt_rtas(spapr, fdt);
1355 /* /chosen */
1356 spapr_dt_chosen(spapr, fdt);
1358 /* /hypervisor */
1359 if (kvm_enabled()) {
1360 spapr_dt_hypervisor(spapr, fdt);
1363 /* Build memory reserve map */
1364 if (spapr->kernel_size) {
1365 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1367 if (spapr->initrd_size) {
1368 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1371 /* ibm,client-architecture-support updates */
1372 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1373 if (ret < 0) {
1374 error_report("couldn't setup CAS properties fdt");
1375 exit(1);
1378 if (smc->dr_phb_enabled) {
1379 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1380 if (ret < 0) {
1381 error_report("Couldn't set up PHB DR device tree properties");
1382 exit(1);
1386 return fdt;
1389 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1391 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1394 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1395 PowerPCCPU *cpu)
1397 CPUPPCState *env = &cpu->env;
1399 /* The TCG path should also be holding the BQL at this point */
1400 g_assert(qemu_mutex_iothread_locked());
1402 if (msr_pr) {
1403 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1404 env->gpr[3] = H_PRIVILEGE;
1405 } else {
1406 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1410 struct LPCRSyncState {
1411 target_ulong value;
1412 target_ulong mask;
1415 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1417 struct LPCRSyncState *s = arg.host_ptr;
1418 PowerPCCPU *cpu = POWERPC_CPU(cs);
1419 CPUPPCState *env = &cpu->env;
1420 target_ulong lpcr;
1422 cpu_synchronize_state(cs);
1423 lpcr = env->spr[SPR_LPCR];
1424 lpcr &= ~s->mask;
1425 lpcr |= s->value;
1426 ppc_store_lpcr(cpu, lpcr);
1429 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1431 CPUState *cs;
1432 struct LPCRSyncState s = {
1433 .value = value,
1434 .mask = mask
1436 CPU_FOREACH(cs) {
1437 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1441 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1443 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1445 /* Copy PATE1:GR into PATE0:HR */
1446 entry->dw0 = spapr->patb_entry & PATE0_HR;
1447 entry->dw1 = spapr->patb_entry;
1450 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1451 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1452 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1453 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1454 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1457 * Get the fd to access the kernel htab, re-opening it if necessary
1459 static int get_htab_fd(SpaprMachineState *spapr)
1461 Error *local_err = NULL;
1463 if (spapr->htab_fd >= 0) {
1464 return spapr->htab_fd;
1467 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1468 if (spapr->htab_fd < 0) {
1469 error_report_err(local_err);
1472 return spapr->htab_fd;
1475 void close_htab_fd(SpaprMachineState *spapr)
1477 if (spapr->htab_fd >= 0) {
1478 close(spapr->htab_fd);
1480 spapr->htab_fd = -1;
1483 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1485 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1487 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1490 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1492 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1494 assert(kvm_enabled());
1496 if (!spapr->htab) {
1497 return 0;
1500 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1503 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1504 hwaddr ptex, int n)
1506 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1507 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1509 if (!spapr->htab) {
1511 * HTAB is controlled by KVM. Fetch into temporary buffer
1513 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1514 kvmppc_read_hptes(hptes, ptex, n);
1515 return hptes;
1519 * HTAB is controlled by QEMU. Just point to the internally
1520 * accessible PTEG.
1522 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1525 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1526 const ppc_hash_pte64_t *hptes,
1527 hwaddr ptex, int n)
1529 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1531 if (!spapr->htab) {
1532 g_free((void *)hptes);
1535 /* Nothing to do for qemu managed HPT */
1538 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1539 uint64_t pte0, uint64_t pte1)
1541 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1542 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1544 if (!spapr->htab) {
1545 kvmppc_write_hpte(ptex, pte0, pte1);
1546 } else {
1547 if (pte0 & HPTE64_V_VALID) {
1548 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1550 * When setting valid, we write PTE1 first. This ensures
1551 * proper synchronization with the reading code in
1552 * ppc_hash64_pteg_search()
1554 smp_wmb();
1555 stq_p(spapr->htab + offset, pte0);
1556 } else {
1557 stq_p(spapr->htab + offset, pte0);
1559 * When clearing it we set PTE0 first. This ensures proper
1560 * synchronization with the reading code in
1561 * ppc_hash64_pteg_search()
1563 smp_wmb();
1564 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1569 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1570 uint64_t pte1)
1572 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1573 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1575 if (!spapr->htab) {
1576 /* There should always be a hash table when this is called */
1577 error_report("spapr_hpte_set_c called with no hash table !");
1578 return;
1581 /* The HW performs a non-atomic byte update */
1582 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1585 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1586 uint64_t pte1)
1588 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1589 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1591 if (!spapr->htab) {
1592 /* There should always be a hash table when this is called */
1593 error_report("spapr_hpte_set_r called with no hash table !");
1594 return;
1597 /* The HW performs a non-atomic byte update */
1598 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1601 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1603 int shift;
1605 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1606 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1607 * that's much more than is needed for Linux guests */
1608 shift = ctz64(pow2ceil(ramsize)) - 7;
1609 shift = MAX(shift, 18); /* Minimum architected size */
1610 shift = MIN(shift, 46); /* Maximum architected size */
1611 return shift;
1614 void spapr_free_hpt(SpaprMachineState *spapr)
1616 g_free(spapr->htab);
1617 spapr->htab = NULL;
1618 spapr->htab_shift = 0;
1619 close_htab_fd(spapr);
1622 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1623 Error **errp)
1625 long rc;
1627 /* Clean up any HPT info from a previous boot */
1628 spapr_free_hpt(spapr);
1630 rc = kvmppc_reset_htab(shift);
1631 if (rc < 0) {
1632 /* kernel-side HPT needed, but couldn't allocate one */
1633 error_setg_errno(errp, errno,
1634 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1635 shift);
1636 /* This is almost certainly fatal, but if the caller really
1637 * wants to carry on with shift == 0, it's welcome to try */
1638 } else if (rc > 0) {
1639 /* kernel-side HPT allocated */
1640 if (rc != shift) {
1641 error_setg(errp,
1642 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1643 shift, rc);
1646 spapr->htab_shift = shift;
1647 spapr->htab = NULL;
1648 } else {
1649 /* kernel-side HPT not needed, allocate in userspace instead */
1650 size_t size = 1ULL << shift;
1651 int i;
1653 spapr->htab = qemu_memalign(size, size);
1654 if (!spapr->htab) {
1655 error_setg_errno(errp, errno,
1656 "Could not allocate HPT of order %d", shift);
1657 return;
1660 memset(spapr->htab, 0, size);
1661 spapr->htab_shift = shift;
1663 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1664 DIRTY_HPTE(HPTE(spapr->htab, i));
1667 /* We're setting up a hash table, so that means we're not radix */
1668 spapr->patb_entry = 0;
1669 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1672 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1674 int hpt_shift;
1676 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1677 || (spapr->cas_reboot
1678 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1679 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1680 } else {
1681 uint64_t current_ram_size;
1683 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1684 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1686 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1688 if (spapr->vrma_adjust) {
1689 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1690 spapr->htab_shift);
1694 static int spapr_reset_drcs(Object *child, void *opaque)
1696 SpaprDrc *drc =
1697 (SpaprDrc *) object_dynamic_cast(child,
1698 TYPE_SPAPR_DR_CONNECTOR);
1700 if (drc) {
1701 spapr_drc_reset(drc);
1704 return 0;
1707 static void spapr_machine_reset(MachineState *machine)
1709 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1710 PowerPCCPU *first_ppc_cpu;
1711 uint32_t rtas_limit;
1712 hwaddr rtas_addr, fdt_addr;
1713 void *fdt;
1714 int rc;
1716 spapr_caps_apply(spapr);
1718 first_ppc_cpu = POWERPC_CPU(first_cpu);
1719 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1720 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1721 spapr->max_compat_pvr)) {
1723 * If using KVM with radix mode available, VCPUs can be started
1724 * without a HPT because KVM will start them in radix mode.
1725 * Set the GR bit in PATE so that we know there is no HPT.
1727 spapr->patb_entry = PATE1_GR;
1728 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1729 } else {
1730 spapr_setup_hpt_and_vrma(spapr);
1734 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1735 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1736 * called from vPHB reset handler so we initialize the counter here.
1737 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1738 * must be equally distant from any other node.
1739 * The final value of spapr->gpu_numa_id is going to be written to
1740 * max-associativity-domains in spapr_build_fdt().
1742 spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1743 qemu_devices_reset();
1746 * If this reset wasn't generated by CAS, we should reset our
1747 * negotiated options and start from scratch
1749 if (!spapr->cas_reboot) {
1750 spapr_ovec_cleanup(spapr->ov5_cas);
1751 spapr->ov5_cas = spapr_ovec_new();
1753 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1756 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1757 spapr_irq_msi_reset(spapr);
1761 * This is fixing some of the default configuration of the XIVE
1762 * devices. To be called after the reset of the machine devices.
1764 spapr_irq_reset(spapr, &error_fatal);
1767 * There is no CAS under qtest. Simulate one to please the code that
1768 * depends on spapr->ov5_cas. This is especially needed to test device
1769 * unplug, so we do that before resetting the DRCs.
1771 if (qtest_enabled()) {
1772 spapr_ovec_cleanup(spapr->ov5_cas);
1773 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1776 /* DRC reset may cause a device to be unplugged. This will cause troubles
1777 * if this device is used by another device (eg, a running vhost backend
1778 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1779 * situations, we reset DRCs after all devices have been reset.
1781 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1783 spapr_clear_pending_events(spapr);
1786 * We place the device tree and RTAS just below either the top of the RMA,
1787 * or just below 2GB, whichever is lower, so that it can be
1788 * processed with 32-bit real mode code if necessary
1790 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1791 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1792 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1794 fdt = spapr_build_fdt(spapr);
1796 spapr_load_rtas(spapr, fdt, rtas_addr);
1798 rc = fdt_pack(fdt);
1800 /* Should only fail if we've built a corrupted tree */
1801 assert(rc == 0);
1803 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1804 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1805 fdt_totalsize(fdt), FDT_MAX_SIZE);
1806 exit(1);
1809 /* Load the fdt */
1810 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1811 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1812 g_free(spapr->fdt_blob);
1813 spapr->fdt_size = fdt_totalsize(fdt);
1814 spapr->fdt_initial_size = spapr->fdt_size;
1815 spapr->fdt_blob = fdt;
1817 /* Set up the entry state */
1818 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1819 first_ppc_cpu->env.gpr[5] = 0;
1821 spapr->cas_reboot = false;
1824 static void spapr_create_nvram(SpaprMachineState *spapr)
1826 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1827 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1829 if (dinfo) {
1830 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1831 &error_fatal);
1834 qdev_init_nofail(dev);
1836 spapr->nvram = (struct SpaprNvram *)dev;
1839 static void spapr_rtc_create(SpaprMachineState *spapr)
1841 object_initialize_child(OBJECT(spapr), "rtc",
1842 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1843 &error_fatal, NULL);
1844 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1845 &error_fatal);
1846 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1847 "date", &error_fatal);
1850 /* Returns whether we want to use VGA or not */
1851 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1853 switch (vga_interface_type) {
1854 case VGA_NONE:
1855 return false;
1856 case VGA_DEVICE:
1857 return true;
1858 case VGA_STD:
1859 case VGA_VIRTIO:
1860 case VGA_CIRRUS:
1861 return pci_vga_init(pci_bus) != NULL;
1862 default:
1863 error_setg(errp,
1864 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1865 return false;
1869 static int spapr_pre_load(void *opaque)
1871 int rc;
1873 rc = spapr_caps_pre_load(opaque);
1874 if (rc) {
1875 return rc;
1878 return 0;
1881 static int spapr_post_load(void *opaque, int version_id)
1883 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1884 int err = 0;
1886 err = spapr_caps_post_migration(spapr);
1887 if (err) {
1888 return err;
1892 * In earlier versions, there was no separate qdev for the PAPR
1893 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1894 * So when migrating from those versions, poke the incoming offset
1895 * value into the RTC device
1897 if (version_id < 3) {
1898 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1899 if (err) {
1900 return err;
1904 if (kvm_enabled() && spapr->patb_entry) {
1905 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1906 bool radix = !!(spapr->patb_entry & PATE1_GR);
1907 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1910 * Update LPCR:HR and UPRT as they may not be set properly in
1911 * the stream
1913 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1914 LPCR_HR | LPCR_UPRT);
1916 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1917 if (err) {
1918 error_report("Process table config unsupported by the host");
1919 return -EINVAL;
1923 err = spapr_irq_post_load(spapr, version_id);
1924 if (err) {
1925 return err;
1928 return err;
1931 static int spapr_pre_save(void *opaque)
1933 int rc;
1935 rc = spapr_caps_pre_save(opaque);
1936 if (rc) {
1937 return rc;
1940 return 0;
1943 static bool version_before_3(void *opaque, int version_id)
1945 return version_id < 3;
1948 static bool spapr_pending_events_needed(void *opaque)
1950 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1951 return !QTAILQ_EMPTY(&spapr->pending_events);
1954 static const VMStateDescription vmstate_spapr_event_entry = {
1955 .name = "spapr_event_log_entry",
1956 .version_id = 1,
1957 .minimum_version_id = 1,
1958 .fields = (VMStateField[]) {
1959 VMSTATE_UINT32(summary, SpaprEventLogEntry),
1960 VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1961 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1962 NULL, extended_length),
1963 VMSTATE_END_OF_LIST()
1967 static const VMStateDescription vmstate_spapr_pending_events = {
1968 .name = "spapr_pending_events",
1969 .version_id = 1,
1970 .minimum_version_id = 1,
1971 .needed = spapr_pending_events_needed,
1972 .fields = (VMStateField[]) {
1973 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1974 vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1975 VMSTATE_END_OF_LIST()
1979 static bool spapr_ov5_cas_needed(void *opaque)
1981 SpaprMachineState *spapr = opaque;
1982 SpaprOptionVector *ov5_mask = spapr_ovec_new();
1983 SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1984 SpaprOptionVector *ov5_removed = spapr_ovec_new();
1985 bool cas_needed;
1987 /* Prior to the introduction of SpaprOptionVector, we had two option
1988 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1989 * Both of these options encode machine topology into the device-tree
1990 * in such a way that the now-booted OS should still be able to interact
1991 * appropriately with QEMU regardless of what options were actually
1992 * negotiatied on the source side.
1994 * As such, we can avoid migrating the CAS-negotiated options if these
1995 * are the only options available on the current machine/platform.
1996 * Since these are the only options available for pseries-2.7 and
1997 * earlier, this allows us to maintain old->new/new->old migration
1998 * compatibility.
2000 * For QEMU 2.8+, there are additional CAS-negotiatable options available
2001 * via default pseries-2.8 machines and explicit command-line parameters.
2002 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
2003 * of the actual CAS-negotiated values to continue working properly. For
2004 * example, availability of memory unplug depends on knowing whether
2005 * OV5_HP_EVT was negotiated via CAS.
2007 * Thus, for any cases where the set of available CAS-negotiatable
2008 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2009 * include the CAS-negotiated options in the migration stream, unless
2010 * if they affect boot time behaviour only.
2012 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2013 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2014 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2016 /* spapr_ovec_diff returns true if bits were removed. we avoid using
2017 * the mask itself since in the future it's possible "legacy" bits may be
2018 * removed via machine options, which could generate a false positive
2019 * that breaks migration.
2021 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2022 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2024 spapr_ovec_cleanup(ov5_mask);
2025 spapr_ovec_cleanup(ov5_legacy);
2026 spapr_ovec_cleanup(ov5_removed);
2028 return cas_needed;
2031 static const VMStateDescription vmstate_spapr_ov5_cas = {
2032 .name = "spapr_option_vector_ov5_cas",
2033 .version_id = 1,
2034 .minimum_version_id = 1,
2035 .needed = spapr_ov5_cas_needed,
2036 .fields = (VMStateField[]) {
2037 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2038 vmstate_spapr_ovec, SpaprOptionVector),
2039 VMSTATE_END_OF_LIST()
2043 static bool spapr_patb_entry_needed(void *opaque)
2045 SpaprMachineState *spapr = opaque;
2047 return !!spapr->patb_entry;
2050 static const VMStateDescription vmstate_spapr_patb_entry = {
2051 .name = "spapr_patb_entry",
2052 .version_id = 1,
2053 .minimum_version_id = 1,
2054 .needed = spapr_patb_entry_needed,
2055 .fields = (VMStateField[]) {
2056 VMSTATE_UINT64(patb_entry, SpaprMachineState),
2057 VMSTATE_END_OF_LIST()
2061 static bool spapr_irq_map_needed(void *opaque)
2063 SpaprMachineState *spapr = opaque;
2065 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2068 static const VMStateDescription vmstate_spapr_irq_map = {
2069 .name = "spapr_irq_map",
2070 .version_id = 1,
2071 .minimum_version_id = 1,
2072 .needed = spapr_irq_map_needed,
2073 .fields = (VMStateField[]) {
2074 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2075 VMSTATE_END_OF_LIST()
2079 static bool spapr_dtb_needed(void *opaque)
2081 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2083 return smc->update_dt_enabled;
2086 static int spapr_dtb_pre_load(void *opaque)
2088 SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2090 g_free(spapr->fdt_blob);
2091 spapr->fdt_blob = NULL;
2092 spapr->fdt_size = 0;
2094 return 0;
2097 static const VMStateDescription vmstate_spapr_dtb = {
2098 .name = "spapr_dtb",
2099 .version_id = 1,
2100 .minimum_version_id = 1,
2101 .needed = spapr_dtb_needed,
2102 .pre_load = spapr_dtb_pre_load,
2103 .fields = (VMStateField[]) {
2104 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2105 VMSTATE_UINT32(fdt_size, SpaprMachineState),
2106 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2107 fdt_size),
2108 VMSTATE_END_OF_LIST()
2112 static const VMStateDescription vmstate_spapr = {
2113 .name = "spapr",
2114 .version_id = 3,
2115 .minimum_version_id = 1,
2116 .pre_load = spapr_pre_load,
2117 .post_load = spapr_post_load,
2118 .pre_save = spapr_pre_save,
2119 .fields = (VMStateField[]) {
2120 /* used to be @next_irq */
2121 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2123 /* RTC offset */
2124 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2126 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2127 VMSTATE_END_OF_LIST()
2129 .subsections = (const VMStateDescription*[]) {
2130 &vmstate_spapr_ov5_cas,
2131 &vmstate_spapr_patb_entry,
2132 &vmstate_spapr_pending_events,
2133 &vmstate_spapr_cap_htm,
2134 &vmstate_spapr_cap_vsx,
2135 &vmstate_spapr_cap_dfp,
2136 &vmstate_spapr_cap_cfpc,
2137 &vmstate_spapr_cap_sbbc,
2138 &vmstate_spapr_cap_ibs,
2139 &vmstate_spapr_cap_hpt_maxpagesize,
2140 &vmstate_spapr_irq_map,
2141 &vmstate_spapr_cap_nested_kvm_hv,
2142 &vmstate_spapr_dtb,
2143 &vmstate_spapr_cap_large_decr,
2144 &vmstate_spapr_cap_ccf_assist,
2145 NULL
2149 static int htab_save_setup(QEMUFile *f, void *opaque)
2151 SpaprMachineState *spapr = opaque;
2153 /* "Iteration" header */
2154 if (!spapr->htab_shift) {
2155 qemu_put_be32(f, -1);
2156 } else {
2157 qemu_put_be32(f, spapr->htab_shift);
2160 if (spapr->htab) {
2161 spapr->htab_save_index = 0;
2162 spapr->htab_first_pass = true;
2163 } else {
2164 if (spapr->htab_shift) {
2165 assert(kvm_enabled());
2170 return 0;
2173 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2174 int chunkstart, int n_valid, int n_invalid)
2176 qemu_put_be32(f, chunkstart);
2177 qemu_put_be16(f, n_valid);
2178 qemu_put_be16(f, n_invalid);
2179 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2180 HASH_PTE_SIZE_64 * n_valid);
2183 static void htab_save_end_marker(QEMUFile *f)
2185 qemu_put_be32(f, 0);
2186 qemu_put_be16(f, 0);
2187 qemu_put_be16(f, 0);
2190 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2191 int64_t max_ns)
2193 bool has_timeout = max_ns != -1;
2194 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2195 int index = spapr->htab_save_index;
2196 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2198 assert(spapr->htab_first_pass);
2200 do {
2201 int chunkstart;
2203 /* Consume invalid HPTEs */
2204 while ((index < htabslots)
2205 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2206 CLEAN_HPTE(HPTE(spapr->htab, index));
2207 index++;
2210 /* Consume valid HPTEs */
2211 chunkstart = index;
2212 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2213 && HPTE_VALID(HPTE(spapr->htab, index))) {
2214 CLEAN_HPTE(HPTE(spapr->htab, index));
2215 index++;
2218 if (index > chunkstart) {
2219 int n_valid = index - chunkstart;
2221 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2223 if (has_timeout &&
2224 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2225 break;
2228 } while ((index < htabslots) && !qemu_file_rate_limit(f));
2230 if (index >= htabslots) {
2231 assert(index == htabslots);
2232 index = 0;
2233 spapr->htab_first_pass = false;
2235 spapr->htab_save_index = index;
2238 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2239 int64_t max_ns)
2241 bool final = max_ns < 0;
2242 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2243 int examined = 0, sent = 0;
2244 int index = spapr->htab_save_index;
2245 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2247 assert(!spapr->htab_first_pass);
2249 do {
2250 int chunkstart, invalidstart;
2252 /* Consume non-dirty HPTEs */
2253 while ((index < htabslots)
2254 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2255 index++;
2256 examined++;
2259 chunkstart = index;
2260 /* Consume valid dirty HPTEs */
2261 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2262 && HPTE_DIRTY(HPTE(spapr->htab, index))
2263 && HPTE_VALID(HPTE(spapr->htab, index))) {
2264 CLEAN_HPTE(HPTE(spapr->htab, index));
2265 index++;
2266 examined++;
2269 invalidstart = index;
2270 /* Consume invalid dirty HPTEs */
2271 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2272 && HPTE_DIRTY(HPTE(spapr->htab, index))
2273 && !HPTE_VALID(HPTE(spapr->htab, index))) {
2274 CLEAN_HPTE(HPTE(spapr->htab, index));
2275 index++;
2276 examined++;
2279 if (index > chunkstart) {
2280 int n_valid = invalidstart - chunkstart;
2281 int n_invalid = index - invalidstart;
2283 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2284 sent += index - chunkstart;
2286 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2287 break;
2291 if (examined >= htabslots) {
2292 break;
2295 if (index >= htabslots) {
2296 assert(index == htabslots);
2297 index = 0;
2299 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2301 if (index >= htabslots) {
2302 assert(index == htabslots);
2303 index = 0;
2306 spapr->htab_save_index = index;
2308 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2311 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2312 #define MAX_KVM_BUF_SIZE 2048
2314 static int htab_save_iterate(QEMUFile *f, void *opaque)
2316 SpaprMachineState *spapr = opaque;
2317 int fd;
2318 int rc = 0;
2320 /* Iteration header */
2321 if (!spapr->htab_shift) {
2322 qemu_put_be32(f, -1);
2323 return 1;
2324 } else {
2325 qemu_put_be32(f, 0);
2328 if (!spapr->htab) {
2329 assert(kvm_enabled());
2331 fd = get_htab_fd(spapr);
2332 if (fd < 0) {
2333 return fd;
2336 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2337 if (rc < 0) {
2338 return rc;
2340 } else if (spapr->htab_first_pass) {
2341 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2342 } else {
2343 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2346 htab_save_end_marker(f);
2348 return rc;
2351 static int htab_save_complete(QEMUFile *f, void *opaque)
2353 SpaprMachineState *spapr = opaque;
2354 int fd;
2356 /* Iteration header */
2357 if (!spapr->htab_shift) {
2358 qemu_put_be32(f, -1);
2359 return 0;
2360 } else {
2361 qemu_put_be32(f, 0);
2364 if (!spapr->htab) {
2365 int rc;
2367 assert(kvm_enabled());
2369 fd = get_htab_fd(spapr);
2370 if (fd < 0) {
2371 return fd;
2374 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2375 if (rc < 0) {
2376 return rc;
2378 } else {
2379 if (spapr->htab_first_pass) {
2380 htab_save_first_pass(f, spapr, -1);
2382 htab_save_later_pass(f, spapr, -1);
2385 /* End marker */
2386 htab_save_end_marker(f);
2388 return 0;
2391 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2393 SpaprMachineState *spapr = opaque;
2394 uint32_t section_hdr;
2395 int fd = -1;
2396 Error *local_err = NULL;
2398 if (version_id < 1 || version_id > 1) {
2399 error_report("htab_load() bad version");
2400 return -EINVAL;
2403 section_hdr = qemu_get_be32(f);
2405 if (section_hdr == -1) {
2406 spapr_free_hpt(spapr);
2407 return 0;
2410 if (section_hdr) {
2411 /* First section gives the htab size */
2412 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2413 if (local_err) {
2414 error_report_err(local_err);
2415 return -EINVAL;
2417 return 0;
2420 if (!spapr->htab) {
2421 assert(kvm_enabled());
2423 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2424 if (fd < 0) {
2425 error_report_err(local_err);
2426 return fd;
2430 while (true) {
2431 uint32_t index;
2432 uint16_t n_valid, n_invalid;
2434 index = qemu_get_be32(f);
2435 n_valid = qemu_get_be16(f);
2436 n_invalid = qemu_get_be16(f);
2438 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2439 /* End of Stream */
2440 break;
2443 if ((index + n_valid + n_invalid) >
2444 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2445 /* Bad index in stream */
2446 error_report(
2447 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2448 index, n_valid, n_invalid, spapr->htab_shift);
2449 return -EINVAL;
2452 if (spapr->htab) {
2453 if (n_valid) {
2454 qemu_get_buffer(f, HPTE(spapr->htab, index),
2455 HASH_PTE_SIZE_64 * n_valid);
2457 if (n_invalid) {
2458 memset(HPTE(spapr->htab, index + n_valid), 0,
2459 HASH_PTE_SIZE_64 * n_invalid);
2461 } else {
2462 int rc;
2464 assert(fd >= 0);
2466 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2467 if (rc < 0) {
2468 return rc;
2473 if (!spapr->htab) {
2474 assert(fd >= 0);
2475 close(fd);
2478 return 0;
2481 static void htab_save_cleanup(void *opaque)
2483 SpaprMachineState *spapr = opaque;
2485 close_htab_fd(spapr);
2488 static SaveVMHandlers savevm_htab_handlers = {
2489 .save_setup = htab_save_setup,
2490 .save_live_iterate = htab_save_iterate,
2491 .save_live_complete_precopy = htab_save_complete,
2492 .save_cleanup = htab_save_cleanup,
2493 .load_state = htab_load,
2496 static void spapr_boot_set(void *opaque, const char *boot_device,
2497 Error **errp)
2499 MachineState *machine = MACHINE(opaque);
2500 machine->boot_order = g_strdup(boot_device);
2503 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2505 MachineState *machine = MACHINE(spapr);
2506 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2507 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2508 int i;
2510 for (i = 0; i < nr_lmbs; i++) {
2511 uint64_t addr;
2513 addr = i * lmb_size + machine->device_memory->base;
2514 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2515 addr / lmb_size);
2520 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2521 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2522 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2524 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2526 int i;
2528 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2529 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2530 " is not aligned to %" PRIu64 " MiB",
2531 machine->ram_size,
2532 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2533 return;
2536 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2537 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2538 " is not aligned to %" PRIu64 " MiB",
2539 machine->ram_size,
2540 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2541 return;
2544 for (i = 0; i < nb_numa_nodes; i++) {
2545 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2546 error_setg(errp,
2547 "Node %d memory size 0x%" PRIx64
2548 " is not aligned to %" PRIu64 " MiB",
2549 i, numa_info[i].node_mem,
2550 SPAPR_MEMORY_BLOCK_SIZE / MiB);
2551 return;
2556 /* find cpu slot in machine->possible_cpus by core_id */
2557 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2559 int index = id / ms->smp.threads;
2561 if (index >= ms->possible_cpus->len) {
2562 return NULL;
2564 if (idx) {
2565 *idx = index;
2567 return &ms->possible_cpus->cpus[index];
2570 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2572 MachineState *ms = MACHINE(spapr);
2573 Error *local_err = NULL;
2574 bool vsmt_user = !!spapr->vsmt;
2575 int kvm_smt = kvmppc_smt_threads();
2576 int ret;
2577 unsigned int smp_threads = ms->smp.threads;
2579 if (!kvm_enabled() && (smp_threads > 1)) {
2580 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2581 "on a pseries machine");
2582 goto out;
2584 if (!is_power_of_2(smp_threads)) {
2585 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2586 "machine because it must be a power of 2", smp_threads);
2587 goto out;
2590 /* Detemine the VSMT mode to use: */
2591 if (vsmt_user) {
2592 if (spapr->vsmt < smp_threads) {
2593 error_setg(&local_err, "Cannot support VSMT mode %d"
2594 " because it must be >= threads/core (%d)",
2595 spapr->vsmt, smp_threads);
2596 goto out;
2598 /* In this case, spapr->vsmt has been set by the command line */
2599 } else {
2601 * Default VSMT value is tricky, because we need it to be as
2602 * consistent as possible (for migration), but this requires
2603 * changing it for at least some existing cases. We pick 8 as
2604 * the value that we'd get with KVM on POWER8, the
2605 * overwhelmingly common case in production systems.
2607 spapr->vsmt = MAX(8, smp_threads);
2610 /* KVM: If necessary, set the SMT mode: */
2611 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2612 ret = kvmppc_set_smt_threads(spapr->vsmt);
2613 if (ret) {
2614 /* Looks like KVM isn't able to change VSMT mode */
2615 error_setg(&local_err,
2616 "Failed to set KVM's VSMT mode to %d (errno %d)",
2617 spapr->vsmt, ret);
2618 /* We can live with that if the default one is big enough
2619 * for the number of threads, and a submultiple of the one
2620 * we want. In this case we'll waste some vcpu ids, but
2621 * behaviour will be correct */
2622 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2623 warn_report_err(local_err);
2624 local_err = NULL;
2625 goto out;
2626 } else {
2627 if (!vsmt_user) {
2628 error_append_hint(&local_err,
2629 "On PPC, a VM with %d threads/core"
2630 " on a host with %d threads/core"
2631 " requires the use of VSMT mode %d.\n",
2632 smp_threads, kvm_smt, spapr->vsmt);
2634 kvmppc_hint_smt_possible(&local_err);
2635 goto out;
2639 /* else TCG: nothing to do currently */
2640 out:
2641 error_propagate(errp, local_err);
2644 static void spapr_init_cpus(SpaprMachineState *spapr)
2646 MachineState *machine = MACHINE(spapr);
2647 MachineClass *mc = MACHINE_GET_CLASS(machine);
2648 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2649 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2650 const CPUArchIdList *possible_cpus;
2651 unsigned int smp_cpus = machine->smp.cpus;
2652 unsigned int smp_threads = machine->smp.threads;
2653 unsigned int max_cpus = machine->smp.max_cpus;
2654 int boot_cores_nr = smp_cpus / smp_threads;
2655 int i;
2657 possible_cpus = mc->possible_cpu_arch_ids(machine);
2658 if (mc->has_hotpluggable_cpus) {
2659 if (smp_cpus % smp_threads) {
2660 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2661 smp_cpus, smp_threads);
2662 exit(1);
2664 if (max_cpus % smp_threads) {
2665 error_report("max_cpus (%u) must be multiple of threads (%u)",
2666 max_cpus, smp_threads);
2667 exit(1);
2669 } else {
2670 if (max_cpus != smp_cpus) {
2671 error_report("This machine version does not support CPU hotplug");
2672 exit(1);
2674 boot_cores_nr = possible_cpus->len;
2677 if (smc->pre_2_10_has_unused_icps) {
2678 int i;
2680 for (i = 0; i < spapr_max_server_number(spapr); i++) {
2681 /* Dummy entries get deregistered when real ICPState objects
2682 * are registered during CPU core hotplug.
2684 pre_2_10_vmstate_register_dummy_icp(i);
2688 for (i = 0; i < possible_cpus->len; i++) {
2689 int core_id = i * smp_threads;
2691 if (mc->has_hotpluggable_cpus) {
2692 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2693 spapr_vcpu_id(spapr, core_id));
2696 if (i < boot_cores_nr) {
2697 Object *core = object_new(type);
2698 int nr_threads = smp_threads;
2700 /* Handle the partially filled core for older machine types */
2701 if ((i + 1) * smp_threads >= smp_cpus) {
2702 nr_threads = smp_cpus - i * smp_threads;
2705 object_property_set_int(core, nr_threads, "nr-threads",
2706 &error_fatal);
2707 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2708 &error_fatal);
2709 object_property_set_bool(core, true, "realized", &error_fatal);
2711 object_unref(core);
2716 static PCIHostState *spapr_create_default_phb(void)
2718 DeviceState *dev;
2720 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2721 qdev_prop_set_uint32(dev, "index", 0);
2722 qdev_init_nofail(dev);
2724 return PCI_HOST_BRIDGE(dev);
2727 /* pSeries LPAR / sPAPR hardware init */
2728 static void spapr_machine_init(MachineState *machine)
2730 SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2731 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2732 const char *kernel_filename = machine->kernel_filename;
2733 const char *initrd_filename = machine->initrd_filename;
2734 PCIHostState *phb;
2735 int i;
2736 MemoryRegion *sysmem = get_system_memory();
2737 MemoryRegion *ram = g_new(MemoryRegion, 1);
2738 hwaddr node0_size = spapr_node0_size(machine);
2739 long load_limit, fw_size;
2740 char *filename;
2741 Error *resize_hpt_err = NULL;
2743 msi_nonbroken = true;
2745 QLIST_INIT(&spapr->phbs);
2746 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2748 /* Determine capabilities to run with */
2749 spapr_caps_init(spapr);
2751 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2752 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2754 * If the user explicitly requested a mode we should either
2755 * supply it, or fail completely (which we do below). But if
2756 * it's not set explicitly, we reset our mode to something
2757 * that works
2759 if (resize_hpt_err) {
2760 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2761 error_free(resize_hpt_err);
2762 resize_hpt_err = NULL;
2763 } else {
2764 spapr->resize_hpt = smc->resize_hpt_default;
2768 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2770 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2772 * User requested HPT resize, but this host can't supply it. Bail out
2774 error_report_err(resize_hpt_err);
2775 exit(1);
2778 spapr->rma_size = node0_size;
2780 /* With KVM, we don't actually know whether KVM supports an
2781 * unbounded RMA (PR KVM) or is limited by the hash table size
2782 * (HV KVM using VRMA), so we always assume the latter
2784 * In that case, we also limit the initial allocations for RTAS
2785 * etc... to 256M since we have no way to know what the VRMA size
2786 * is going to be as it depends on the size of the hash table
2787 * which isn't determined yet.
2789 if (kvm_enabled()) {
2790 spapr->vrma_adjust = 1;
2791 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2794 /* Actually we don't support unbounded RMA anymore since we added
2795 * proper emulation of HV mode. The max we can get is 16G which
2796 * also happens to be what we configure for PAPR mode so make sure
2797 * we don't do anything bigger than that
2799 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2801 if (spapr->rma_size > node0_size) {
2802 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2803 spapr->rma_size);
2804 exit(1);
2807 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2808 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2811 * VSMT must be set in order to be able to compute VCPU ids, ie to
2812 * call spapr_max_server_number() or spapr_vcpu_id().
2814 spapr_set_vsmt_mode(spapr, &error_fatal);
2816 /* Set up Interrupt Controller before we create the VCPUs */
2817 spapr_irq_init(spapr, &error_fatal);
2819 /* Set up containers for ibm,client-architecture-support negotiated options
2821 spapr->ov5 = spapr_ovec_new();
2822 spapr->ov5_cas = spapr_ovec_new();
2824 if (smc->dr_lmb_enabled) {
2825 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2826 spapr_validate_node_memory(machine, &error_fatal);
2829 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2831 /* advertise support for dedicated HP event source to guests */
2832 if (spapr->use_hotplug_event_source) {
2833 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2836 /* advertise support for HPT resizing */
2837 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2838 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2841 /* advertise support for ibm,dyamic-memory-v2 */
2842 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2844 /* advertise XIVE on POWER9 machines */
2845 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2846 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2849 /* init CPUs */
2850 spapr_init_cpus(spapr);
2852 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2853 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2854 spapr->max_compat_pvr)) {
2855 /* KVM and TCG always allow GTSE with radix... */
2856 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2858 /* ... but not with hash (currently). */
2860 if (kvm_enabled()) {
2861 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2862 kvmppc_enable_logical_ci_hcalls();
2863 kvmppc_enable_set_mode_hcall();
2865 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2866 kvmppc_enable_clear_ref_mod_hcalls();
2868 /* Enable H_PAGE_INIT */
2869 kvmppc_enable_h_page_init();
2872 /* allocate RAM */
2873 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2874 machine->ram_size);
2875 memory_region_add_subregion(sysmem, 0, ram);
2877 /* always allocate the device memory information */
2878 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2880 /* initialize hotplug memory address space */
2881 if (machine->ram_size < machine->maxram_size) {
2882 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2884 * Limit the number of hotpluggable memory slots to half the number
2885 * slots that KVM supports, leaving the other half for PCI and other
2886 * devices. However ensure that number of slots doesn't drop below 32.
2888 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2889 SPAPR_MAX_RAM_SLOTS;
2891 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2892 max_memslots = SPAPR_MAX_RAM_SLOTS;
2894 if (machine->ram_slots > max_memslots) {
2895 error_report("Specified number of memory slots %"
2896 PRIu64" exceeds max supported %d",
2897 machine->ram_slots, max_memslots);
2898 exit(1);
2901 machine->device_memory->base = ROUND_UP(machine->ram_size,
2902 SPAPR_DEVICE_MEM_ALIGN);
2903 memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2904 "device-memory", device_mem_size);
2905 memory_region_add_subregion(sysmem, machine->device_memory->base,
2906 &machine->device_memory->mr);
2909 if (smc->dr_lmb_enabled) {
2910 spapr_create_lmb_dr_connectors(spapr);
2913 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2914 if (!filename) {
2915 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2916 exit(1);
2918 spapr->rtas_size = get_image_size(filename);
2919 if (spapr->rtas_size < 0) {
2920 error_report("Could not get size of LPAR rtas '%s'", filename);
2921 exit(1);
2923 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2924 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2925 error_report("Could not load LPAR rtas '%s'", filename);
2926 exit(1);
2928 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2929 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2930 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2931 exit(1);
2933 g_free(filename);
2935 /* Set up RTAS event infrastructure */
2936 spapr_events_init(spapr);
2938 /* Set up the RTC RTAS interfaces */
2939 spapr_rtc_create(spapr);
2941 /* Set up VIO bus */
2942 spapr->vio_bus = spapr_vio_bus_init();
2944 for (i = 0; i < serial_max_hds(); i++) {
2945 if (serial_hd(i)) {
2946 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2950 /* We always have at least the nvram device on VIO */
2951 spapr_create_nvram(spapr);
2954 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2955 * connectors (described in root DT node's "ibm,drc-types" property)
2956 * are pre-initialized here. additional child connectors (such as
2957 * connectors for a PHBs PCI slots) are added as needed during their
2958 * parent's realization.
2960 if (smc->dr_phb_enabled) {
2961 for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2962 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2966 /* Set up PCI */
2967 spapr_pci_rtas_init();
2969 phb = spapr_create_default_phb();
2971 for (i = 0; i < nb_nics; i++) {
2972 NICInfo *nd = &nd_table[i];
2974 if (!nd->model) {
2975 nd->model = g_strdup("spapr-vlan");
2978 if (g_str_equal(nd->model, "spapr-vlan") ||
2979 g_str_equal(nd->model, "ibmveth")) {
2980 spapr_vlan_create(spapr->vio_bus, nd);
2981 } else {
2982 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2986 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2987 spapr_vscsi_create(spapr->vio_bus);
2990 /* Graphics */
2991 if (spapr_vga_init(phb->bus, &error_fatal)) {
2992 spapr->has_graphics = true;
2993 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2996 if (machine->usb) {
2997 if (smc->use_ohci_by_default) {
2998 pci_create_simple(phb->bus, -1, "pci-ohci");
2999 } else {
3000 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3003 if (spapr->has_graphics) {
3004 USBBus *usb_bus = usb_bus_find(-1);
3006 usb_create_simple(usb_bus, "usb-kbd");
3007 usb_create_simple(usb_bus, "usb-mouse");
3011 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
3012 error_report(
3013 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3014 MIN_RMA_SLOF);
3015 exit(1);
3018 if (kernel_filename) {
3019 uint64_t lowaddr = 0;
3021 spapr->kernel_size = load_elf(kernel_filename, NULL,
3022 translate_kernel_address, NULL,
3023 NULL, &lowaddr, NULL, 1,
3024 PPC_ELF_MACHINE, 0, 0);
3025 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3026 spapr->kernel_size = load_elf(kernel_filename, NULL,
3027 translate_kernel_address, NULL, NULL,
3028 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3029 0, 0);
3030 spapr->kernel_le = spapr->kernel_size > 0;
3032 if (spapr->kernel_size < 0) {
3033 error_report("error loading %s: %s", kernel_filename,
3034 load_elf_strerror(spapr->kernel_size));
3035 exit(1);
3038 /* load initrd */
3039 if (initrd_filename) {
3040 /* Try to locate the initrd in the gap between the kernel
3041 * and the firmware. Add a bit of space just in case
3043 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3044 + 0x1ffff) & ~0xffff;
3045 spapr->initrd_size = load_image_targphys(initrd_filename,
3046 spapr->initrd_base,
3047 load_limit
3048 - spapr->initrd_base);
3049 if (spapr->initrd_size < 0) {
3050 error_report("could not load initial ram disk '%s'",
3051 initrd_filename);
3052 exit(1);
3057 if (bios_name == NULL) {
3058 bios_name = FW_FILE_NAME;
3060 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3061 if (!filename) {
3062 error_report("Could not find LPAR firmware '%s'", bios_name);
3063 exit(1);
3065 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3066 if (fw_size <= 0) {
3067 error_report("Could not load LPAR firmware '%s'", filename);
3068 exit(1);
3070 g_free(filename);
3072 /* FIXME: Should register things through the MachineState's qdev
3073 * interface, this is a legacy from the sPAPREnvironment structure
3074 * which predated MachineState but had a similar function */
3075 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3076 register_savevm_live(NULL, "spapr/htab", -1, 1,
3077 &savevm_htab_handlers, spapr);
3079 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3080 &error_fatal);
3082 qemu_register_boot_set(spapr_boot_set, spapr);
3084 if (kvm_enabled()) {
3085 /* to stop and start vmclock */
3086 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3087 &spapr->tb);
3089 kvmppc_spapr_enable_inkernel_multitce();
3093 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3095 if (!vm_type) {
3096 return 0;
3099 if (!strcmp(vm_type, "HV")) {
3100 return 1;
3103 if (!strcmp(vm_type, "PR")) {
3104 return 2;
3107 error_report("Unknown kvm-type specified '%s'", vm_type);
3108 exit(1);
3112 * Implementation of an interface to adjust firmware path
3113 * for the bootindex property handling.
3115 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3116 DeviceState *dev)
3118 #define CAST(type, obj, name) \
3119 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3120 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
3121 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3122 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3124 if (d) {
3125 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3126 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3127 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3129 if (spapr) {
3131 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3132 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3133 * 0x8000 | (target << 8) | (bus << 5) | lun
3134 * (see the "Logical unit addressing format" table in SAM5)
3136 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3137 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3138 (uint64_t)id << 48);
3139 } else if (virtio) {
3141 * We use SRP luns of the form 01000000 | (target << 8) | lun
3142 * in the top 32 bits of the 64-bit LUN
3143 * Note: the quote above is from SLOF and it is wrong,
3144 * the actual binding is:
3145 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3147 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3148 if (d->lun >= 256) {
3149 /* Use the LUN "flat space addressing method" */
3150 id |= 0x4000;
3152 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3153 (uint64_t)id << 32);
3154 } else if (usb) {
3156 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3157 * in the top 32 bits of the 64-bit LUN
3159 unsigned usb_port = atoi(usb->port->path);
3160 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3161 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3162 (uint64_t)id << 32);
3167 * SLOF probes the USB devices, and if it recognizes that the device is a
3168 * storage device, it changes its name to "storage" instead of "usb-host",
3169 * and additionally adds a child node for the SCSI LUN, so the correct
3170 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3172 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3173 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3174 if (usb_host_dev_is_scsi_storage(usbdev)) {
3175 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3179 if (phb) {
3180 /* Replace "pci" with "pci@800000020000000" */
3181 return g_strdup_printf("pci@%"PRIX64, phb->buid);
3184 if (vsc) {
3185 /* Same logic as virtio above */
3186 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3187 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3190 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3191 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3192 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3193 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3196 return NULL;
3199 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3201 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3203 return g_strdup(spapr->kvm_type);
3206 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3208 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3210 g_free(spapr->kvm_type);
3211 spapr->kvm_type = g_strdup(value);
3214 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3216 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3218 return spapr->use_hotplug_event_source;
3221 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3222 Error **errp)
3224 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3226 spapr->use_hotplug_event_source = value;
3229 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3231 return true;
3234 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3236 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3238 switch (spapr->resize_hpt) {
3239 case SPAPR_RESIZE_HPT_DEFAULT:
3240 return g_strdup("default");
3241 case SPAPR_RESIZE_HPT_DISABLED:
3242 return g_strdup("disabled");
3243 case SPAPR_RESIZE_HPT_ENABLED:
3244 return g_strdup("enabled");
3245 case SPAPR_RESIZE_HPT_REQUIRED:
3246 return g_strdup("required");
3248 g_assert_not_reached();
3251 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3253 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3255 if (strcmp(value, "default") == 0) {
3256 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3257 } else if (strcmp(value, "disabled") == 0) {
3258 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3259 } else if (strcmp(value, "enabled") == 0) {
3260 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3261 } else if (strcmp(value, "required") == 0) {
3262 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3263 } else {
3264 error_setg(errp, "Bad value for \"resize-hpt\" property");
3268 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3269 void *opaque, Error **errp)
3271 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3274 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3275 void *opaque, Error **errp)
3277 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3280 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3282 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3284 if (spapr->irq == &spapr_irq_xics_legacy) {
3285 return g_strdup("legacy");
3286 } else if (spapr->irq == &spapr_irq_xics) {
3287 return g_strdup("xics");
3288 } else if (spapr->irq == &spapr_irq_xive) {
3289 return g_strdup("xive");
3290 } else if (spapr->irq == &spapr_irq_dual) {
3291 return g_strdup("dual");
3293 g_assert_not_reached();
3296 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3298 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3300 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3301 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3302 return;
3305 /* The legacy IRQ backend can not be set */
3306 if (strcmp(value, "xics") == 0) {
3307 spapr->irq = &spapr_irq_xics;
3308 } else if (strcmp(value, "xive") == 0) {
3309 spapr->irq = &spapr_irq_xive;
3310 } else if (strcmp(value, "dual") == 0) {
3311 spapr->irq = &spapr_irq_dual;
3312 } else {
3313 error_setg(errp, "Bad value for \"ic-mode\" property");
3317 static char *spapr_get_host_model(Object *obj, Error **errp)
3319 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3321 return g_strdup(spapr->host_model);
3324 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3326 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3328 g_free(spapr->host_model);
3329 spapr->host_model = g_strdup(value);
3332 static char *spapr_get_host_serial(Object *obj, Error **errp)
3334 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3336 return g_strdup(spapr->host_serial);
3339 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3341 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3343 g_free(spapr->host_serial);
3344 spapr->host_serial = g_strdup(value);
3347 static void spapr_instance_init(Object *obj)
3349 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3350 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3352 spapr->htab_fd = -1;
3353 spapr->use_hotplug_event_source = true;
3354 object_property_add_str(obj, "kvm-type",
3355 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3356 object_property_set_description(obj, "kvm-type",
3357 "Specifies the KVM virtualization mode (HV, PR)",
3358 NULL);
3359 object_property_add_bool(obj, "modern-hotplug-events",
3360 spapr_get_modern_hotplug_events,
3361 spapr_set_modern_hotplug_events,
3362 NULL);
3363 object_property_set_description(obj, "modern-hotplug-events",
3364 "Use dedicated hotplug event mechanism in"
3365 " place of standard EPOW events when possible"
3366 " (required for memory hot-unplug support)",
3367 NULL);
3368 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3369 "Maximum permitted CPU compatibility mode",
3370 &error_fatal);
3372 object_property_add_str(obj, "resize-hpt",
3373 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3374 object_property_set_description(obj, "resize-hpt",
3375 "Resizing of the Hash Page Table (enabled, disabled, required)",
3376 NULL);
3377 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3378 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3379 object_property_set_description(obj, "vsmt",
3380 "Virtual SMT: KVM behaves as if this were"
3381 " the host's SMT mode", &error_abort);
3382 object_property_add_bool(obj, "vfio-no-msix-emulation",
3383 spapr_get_msix_emulation, NULL, NULL);
3385 /* The machine class defines the default interrupt controller mode */
3386 spapr->irq = smc->irq;
3387 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3388 spapr_set_ic_mode, NULL);
3389 object_property_set_description(obj, "ic-mode",
3390 "Specifies the interrupt controller mode (xics, xive, dual)",
3391 NULL);
3393 object_property_add_str(obj, "host-model",
3394 spapr_get_host_model, spapr_set_host_model,
3395 &error_abort);
3396 object_property_set_description(obj, "host-model",
3397 "Host model to advertise in guest device tree", &error_abort);
3398 object_property_add_str(obj, "host-serial",
3399 spapr_get_host_serial, spapr_set_host_serial,
3400 &error_abort);
3401 object_property_set_description(obj, "host-serial",
3402 "Host serial number to advertise in guest device tree", &error_abort);
3405 static void spapr_machine_finalizefn(Object *obj)
3407 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3409 g_free(spapr->kvm_type);
3412 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3414 cpu_synchronize_state(cs);
3415 ppc_cpu_do_system_reset(cs);
3418 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3420 CPUState *cs;
3422 CPU_FOREACH(cs) {
3423 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3427 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3428 void *fdt, int *fdt_start_offset, Error **errp)
3430 uint64_t addr;
3431 uint32_t node;
3433 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3434 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3435 &error_abort);
3436 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3437 SPAPR_MEMORY_BLOCK_SIZE);
3438 return 0;
3441 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3442 bool dedicated_hp_event_source, Error **errp)
3444 SpaprDrc *drc;
3445 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3446 int i;
3447 uint64_t addr = addr_start;
3448 bool hotplugged = spapr_drc_hotplugged(dev);
3449 Error *local_err = NULL;
3451 for (i = 0; i < nr_lmbs; i++) {
3452 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3453 addr / SPAPR_MEMORY_BLOCK_SIZE);
3454 g_assert(drc);
3456 spapr_drc_attach(drc, dev, &local_err);
3457 if (local_err) {
3458 while (addr > addr_start) {
3459 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3460 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3461 addr / SPAPR_MEMORY_BLOCK_SIZE);
3462 spapr_drc_detach(drc);
3464 error_propagate(errp, local_err);
3465 return;
3467 if (!hotplugged) {
3468 spapr_drc_reset(drc);
3470 addr += SPAPR_MEMORY_BLOCK_SIZE;
3472 /* send hotplug notification to the
3473 * guest only in case of hotplugged memory
3475 if (hotplugged) {
3476 if (dedicated_hp_event_source) {
3477 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3478 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3479 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3480 nr_lmbs,
3481 spapr_drc_index(drc));
3482 } else {
3483 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3484 nr_lmbs);
3489 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3490 Error **errp)
3492 Error *local_err = NULL;
3493 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3494 PCDIMMDevice *dimm = PC_DIMM(dev);
3495 uint64_t size, addr;
3497 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3499 pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3500 if (local_err) {
3501 goto out;
3504 addr = object_property_get_uint(OBJECT(dimm),
3505 PC_DIMM_ADDR_PROP, &local_err);
3506 if (local_err) {
3507 goto out_unplug;
3510 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3511 &local_err);
3512 if (local_err) {
3513 goto out_unplug;
3516 return;
3518 out_unplug:
3519 pc_dimm_unplug(dimm, MACHINE(ms));
3520 out:
3521 error_propagate(errp, local_err);
3524 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3525 Error **errp)
3527 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3528 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3529 PCDIMMDevice *dimm = PC_DIMM(dev);
3530 Error *local_err = NULL;
3531 uint64_t size;
3532 Object *memdev;
3533 hwaddr pagesize;
3535 if (!smc->dr_lmb_enabled) {
3536 error_setg(errp, "Memory hotplug not supported for this machine");
3537 return;
3540 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3541 if (local_err) {
3542 error_propagate(errp, local_err);
3543 return;
3546 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3547 error_setg(errp, "Hotplugged memory size must be a multiple of "
3548 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3549 return;
3552 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3553 &error_abort);
3554 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3555 spapr_check_pagesize(spapr, pagesize, &local_err);
3556 if (local_err) {
3557 error_propagate(errp, local_err);
3558 return;
3561 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3564 struct SpaprDimmState {
3565 PCDIMMDevice *dimm;
3566 uint32_t nr_lmbs;
3567 QTAILQ_ENTRY(SpaprDimmState) next;
3570 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3571 PCDIMMDevice *dimm)
3573 SpaprDimmState *dimm_state = NULL;
3575 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3576 if (dimm_state->dimm == dimm) {
3577 break;
3580 return dimm_state;
3583 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3584 uint32_t nr_lmbs,
3585 PCDIMMDevice *dimm)
3587 SpaprDimmState *ds = NULL;
3590 * If this request is for a DIMM whose removal had failed earlier
3591 * (due to guest's refusal to remove the LMBs), we would have this
3592 * dimm already in the pending_dimm_unplugs list. In that
3593 * case don't add again.
3595 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3596 if (!ds) {
3597 ds = g_malloc0(sizeof(SpaprDimmState));
3598 ds->nr_lmbs = nr_lmbs;
3599 ds->dimm = dimm;
3600 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3602 return ds;
3605 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3606 SpaprDimmState *dimm_state)
3608 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3609 g_free(dimm_state);
3612 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3613 PCDIMMDevice *dimm)
3615 SpaprDrc *drc;
3616 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3617 &error_abort);
3618 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3619 uint32_t avail_lmbs = 0;
3620 uint64_t addr_start, addr;
3621 int i;
3623 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3624 &error_abort);
3626 addr = addr_start;
3627 for (i = 0; i < nr_lmbs; i++) {
3628 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3629 addr / SPAPR_MEMORY_BLOCK_SIZE);
3630 g_assert(drc);
3631 if (drc->dev) {
3632 avail_lmbs++;
3634 addr += SPAPR_MEMORY_BLOCK_SIZE;
3637 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3640 /* Callback to be called during DRC release. */
3641 void spapr_lmb_release(DeviceState *dev)
3643 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3644 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3645 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3647 /* This information will get lost if a migration occurs
3648 * during the unplug process. In this case recover it. */
3649 if (ds == NULL) {
3650 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3651 g_assert(ds);
3652 /* The DRC being examined by the caller at least must be counted */
3653 g_assert(ds->nr_lmbs);
3656 if (--ds->nr_lmbs) {
3657 return;
3661 * Now that all the LMBs have been removed by the guest, call the
3662 * unplug handler chain. This can never fail.
3664 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3665 object_unparent(OBJECT(dev));
3668 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3670 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3671 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3673 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3674 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3675 spapr_pending_dimm_unplugs_remove(spapr, ds);
3678 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3679 DeviceState *dev, Error **errp)
3681 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3682 Error *local_err = NULL;
3683 PCDIMMDevice *dimm = PC_DIMM(dev);
3684 uint32_t nr_lmbs;
3685 uint64_t size, addr_start, addr;
3686 int i;
3687 SpaprDrc *drc;
3689 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3690 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3692 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3693 &local_err);
3694 if (local_err) {
3695 goto out;
3699 * An existing pending dimm state for this DIMM means that there is an
3700 * unplug operation in progress, waiting for the spapr_lmb_release
3701 * callback to complete the job (BQL can't cover that far). In this case,
3702 * bail out to avoid detaching DRCs that were already released.
3704 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3705 error_setg(&local_err,
3706 "Memory unplug already in progress for device %s",
3707 dev->id);
3708 goto out;
3711 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3713 addr = addr_start;
3714 for (i = 0; i < nr_lmbs; i++) {
3715 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3716 addr / SPAPR_MEMORY_BLOCK_SIZE);
3717 g_assert(drc);
3719 spapr_drc_detach(drc);
3720 addr += SPAPR_MEMORY_BLOCK_SIZE;
3723 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3724 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3725 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3726 nr_lmbs, spapr_drc_index(drc));
3727 out:
3728 error_propagate(errp, local_err);
3731 /* Callback to be called during DRC release. */
3732 void spapr_core_release(DeviceState *dev)
3734 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3736 /* Call the unplug handler chain. This can never fail. */
3737 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3738 object_unparent(OBJECT(dev));
3741 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3743 MachineState *ms = MACHINE(hotplug_dev);
3744 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3745 CPUCore *cc = CPU_CORE(dev);
3746 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3748 if (smc->pre_2_10_has_unused_icps) {
3749 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3750 int i;
3752 for (i = 0; i < cc->nr_threads; i++) {
3753 CPUState *cs = CPU(sc->threads[i]);
3755 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3759 assert(core_slot);
3760 core_slot->cpu = NULL;
3761 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3764 static
3765 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3766 Error **errp)
3768 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3769 int index;
3770 SpaprDrc *drc;
3771 CPUCore *cc = CPU_CORE(dev);
3773 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3774 error_setg(errp, "Unable to find CPU core with core-id: %d",
3775 cc->core_id);
3776 return;
3778 if (index == 0) {
3779 error_setg(errp, "Boot CPU core may not be unplugged");
3780 return;
3783 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3784 spapr_vcpu_id(spapr, cc->core_id));
3785 g_assert(drc);
3787 spapr_drc_detach(drc);
3789 spapr_hotplug_req_remove_by_index(drc);
3792 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3793 void *fdt, int *fdt_start_offset, Error **errp)
3795 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3796 CPUState *cs = CPU(core->threads[0]);
3797 PowerPCCPU *cpu = POWERPC_CPU(cs);
3798 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3799 int id = spapr_get_vcpu_id(cpu);
3800 char *nodename;
3801 int offset;
3803 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3804 offset = fdt_add_subnode(fdt, 0, nodename);
3805 g_free(nodename);
3807 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3809 *fdt_start_offset = offset;
3810 return 0;
3813 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3814 Error **errp)
3816 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3817 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3818 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3819 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3820 CPUCore *cc = CPU_CORE(dev);
3821 CPUState *cs;
3822 SpaprDrc *drc;
3823 Error *local_err = NULL;
3824 CPUArchId *core_slot;
3825 int index;
3826 bool hotplugged = spapr_drc_hotplugged(dev);
3828 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3829 if (!core_slot) {
3830 error_setg(errp, "Unable to find CPU core with core-id: %d",
3831 cc->core_id);
3832 return;
3834 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3835 spapr_vcpu_id(spapr, cc->core_id));
3837 g_assert(drc || !mc->has_hotpluggable_cpus);
3839 if (drc) {
3840 spapr_drc_attach(drc, dev, &local_err);
3841 if (local_err) {
3842 error_propagate(errp, local_err);
3843 return;
3846 if (hotplugged) {
3848 * Send hotplug notification interrupt to the guest only
3849 * in case of hotplugged CPUs.
3851 spapr_hotplug_req_add_by_index(drc);
3852 } else {
3853 spapr_drc_reset(drc);
3857 core_slot->cpu = OBJECT(dev);
3859 if (smc->pre_2_10_has_unused_icps) {
3860 int i;
3862 for (i = 0; i < cc->nr_threads; i++) {
3863 cs = CPU(core->threads[i]);
3864 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3869 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3870 Error **errp)
3872 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3873 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3874 Error *local_err = NULL;
3875 CPUCore *cc = CPU_CORE(dev);
3876 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3877 const char *type = object_get_typename(OBJECT(dev));
3878 CPUArchId *core_slot;
3879 int index;
3880 unsigned int smp_threads = machine->smp.threads;
3882 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3883 error_setg(&local_err, "CPU hotplug not supported for this machine");
3884 goto out;
3887 if (strcmp(base_core_type, type)) {
3888 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3889 goto out;
3892 if (cc->core_id % smp_threads) {
3893 error_setg(&local_err, "invalid core id %d", cc->core_id);
3894 goto out;
3898 * In general we should have homogeneous threads-per-core, but old
3899 * (pre hotplug support) machine types allow the last core to have
3900 * reduced threads as a compatibility hack for when we allowed
3901 * total vcpus not a multiple of threads-per-core.
3903 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3904 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3905 cc->nr_threads, smp_threads);
3906 goto out;
3909 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3910 if (!core_slot) {
3911 error_setg(&local_err, "core id %d out of range", cc->core_id);
3912 goto out;
3915 if (core_slot->cpu) {
3916 error_setg(&local_err, "core %d already populated", cc->core_id);
3917 goto out;
3920 numa_cpu_pre_plug(core_slot, dev, &local_err);
3922 out:
3923 error_propagate(errp, local_err);
3926 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3927 void *fdt, int *fdt_start_offset, Error **errp)
3929 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3930 int intc_phandle;
3932 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3933 if (intc_phandle <= 0) {
3934 return -1;
3937 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3938 fdt_start_offset)) {
3939 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3940 return -1;
3943 /* generally SLOF creates these, for hotplug it's up to QEMU */
3944 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3946 return 0;
3949 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3950 Error **errp)
3952 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3953 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3954 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3955 const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3957 if (dev->hotplugged && !smc->dr_phb_enabled) {
3958 error_setg(errp, "PHB hotplug not supported for this machine");
3959 return;
3962 if (sphb->index == (uint32_t)-1) {
3963 error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3964 return;
3968 * This will check that sphb->index doesn't exceed the maximum number of
3969 * PHBs for the current machine type.
3971 smc->phb_placement(spapr, sphb->index,
3972 &sphb->buid, &sphb->io_win_addr,
3973 &sphb->mem_win_addr, &sphb->mem64_win_addr,
3974 windows_supported, sphb->dma_liobn,
3975 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3976 errp);
3979 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3980 Error **errp)
3982 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3983 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3984 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3985 SpaprDrc *drc;
3986 bool hotplugged = spapr_drc_hotplugged(dev);
3987 Error *local_err = NULL;
3989 if (!smc->dr_phb_enabled) {
3990 return;
3993 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3994 /* hotplug hooks should check it's enabled before getting this far */
3995 assert(drc);
3997 spapr_drc_attach(drc, DEVICE(dev), &local_err);
3998 if (local_err) {
3999 error_propagate(errp, local_err);
4000 return;
4003 if (hotplugged) {
4004 spapr_hotplug_req_add_by_index(drc);
4005 } else {
4006 spapr_drc_reset(drc);
4010 void spapr_phb_release(DeviceState *dev)
4012 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4014 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4015 object_unparent(OBJECT(dev));
4018 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4020 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4023 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4024 DeviceState *dev, Error **errp)
4026 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4027 SpaprDrc *drc;
4029 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4030 assert(drc);
4032 if (!spapr_drc_unplug_requested(drc)) {
4033 spapr_drc_detach(drc);
4034 spapr_hotplug_req_remove_by_index(drc);
4038 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4039 DeviceState *dev, Error **errp)
4041 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4042 spapr_memory_plug(hotplug_dev, dev, errp);
4043 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4044 spapr_core_plug(hotplug_dev, dev, errp);
4045 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4046 spapr_phb_plug(hotplug_dev, dev, errp);
4050 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4051 DeviceState *dev, Error **errp)
4053 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4054 spapr_memory_unplug(hotplug_dev, dev);
4055 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4056 spapr_core_unplug(hotplug_dev, dev);
4057 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4058 spapr_phb_unplug(hotplug_dev, dev);
4062 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4063 DeviceState *dev, Error **errp)
4065 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4066 MachineClass *mc = MACHINE_GET_CLASS(sms);
4067 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4069 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4070 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4071 spapr_memory_unplug_request(hotplug_dev, dev, errp);
4072 } else {
4073 /* NOTE: this means there is a window after guest reset, prior to
4074 * CAS negotiation, where unplug requests will fail due to the
4075 * capability not being detected yet. This is a bit different than
4076 * the case with PCI unplug, where the events will be queued and
4077 * eventually handled by the guest after boot
4079 error_setg(errp, "Memory hot unplug not supported for this guest");
4081 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4082 if (!mc->has_hotpluggable_cpus) {
4083 error_setg(errp, "CPU hot unplug not supported on this machine");
4084 return;
4086 spapr_core_unplug_request(hotplug_dev, dev, errp);
4087 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4088 if (!smc->dr_phb_enabled) {
4089 error_setg(errp, "PHB hot unplug not supported on this machine");
4090 return;
4092 spapr_phb_unplug_request(hotplug_dev, dev, errp);
4096 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4097 DeviceState *dev, Error **errp)
4099 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4100 spapr_memory_pre_plug(hotplug_dev, dev, errp);
4101 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4102 spapr_core_pre_plug(hotplug_dev, dev, errp);
4103 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4104 spapr_phb_pre_plug(hotplug_dev, dev, errp);
4108 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4109 DeviceState *dev)
4111 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4112 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4113 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4114 return HOTPLUG_HANDLER(machine);
4116 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4117 PCIDevice *pcidev = PCI_DEVICE(dev);
4118 PCIBus *root = pci_device_root_bus(pcidev);
4119 SpaprPhbState *phb =
4120 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4121 TYPE_SPAPR_PCI_HOST_BRIDGE);
4123 if (phb) {
4124 return HOTPLUG_HANDLER(phb);
4127 return NULL;
4130 static CpuInstanceProperties
4131 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4133 CPUArchId *core_slot;
4134 MachineClass *mc = MACHINE_GET_CLASS(machine);
4136 /* make sure possible_cpu are intialized */
4137 mc->possible_cpu_arch_ids(machine);
4138 /* get CPU core slot containing thread that matches cpu_index */
4139 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4140 assert(core_slot);
4141 return core_slot->props;
4144 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4146 return idx / ms->smp.cores % nb_numa_nodes;
4149 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4151 int i;
4152 unsigned int smp_threads = machine->smp.threads;
4153 unsigned int smp_cpus = machine->smp.cpus;
4154 const char *core_type;
4155 int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4156 MachineClass *mc = MACHINE_GET_CLASS(machine);
4158 if (!mc->has_hotpluggable_cpus) {
4159 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4161 if (machine->possible_cpus) {
4162 assert(machine->possible_cpus->len == spapr_max_cores);
4163 return machine->possible_cpus;
4166 core_type = spapr_get_cpu_core_type(machine->cpu_type);
4167 if (!core_type) {
4168 error_report("Unable to find sPAPR CPU Core definition");
4169 exit(1);
4172 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4173 sizeof(CPUArchId) * spapr_max_cores);
4174 machine->possible_cpus->len = spapr_max_cores;
4175 for (i = 0; i < machine->possible_cpus->len; i++) {
4176 int core_id = i * smp_threads;
4178 machine->possible_cpus->cpus[i].type = core_type;
4179 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4180 machine->possible_cpus->cpus[i].arch_id = core_id;
4181 machine->possible_cpus->cpus[i].props.has_core_id = true;
4182 machine->possible_cpus->cpus[i].props.core_id = core_id;
4184 return machine->possible_cpus;
4187 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4188 uint64_t *buid, hwaddr *pio,
4189 hwaddr *mmio32, hwaddr *mmio64,
4190 unsigned n_dma, uint32_t *liobns,
4191 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4194 * New-style PHB window placement.
4196 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4197 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4198 * windows.
4200 * Some guest kernels can't work with MMIO windows above 1<<46
4201 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4203 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4204 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4205 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4206 * 1TiB 64-bit MMIO windows for each PHB.
4208 const uint64_t base_buid = 0x800000020000000ULL;
4209 int i;
4211 /* Sanity check natural alignments */
4212 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4213 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4214 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4215 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4216 /* Sanity check bounds */
4217 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4218 SPAPR_PCI_MEM32_WIN_SIZE);
4219 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4220 SPAPR_PCI_MEM64_WIN_SIZE);
4222 if (index >= SPAPR_MAX_PHBS) {
4223 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4224 SPAPR_MAX_PHBS - 1);
4225 return;
4228 *buid = base_buid + index;
4229 for (i = 0; i < n_dma; ++i) {
4230 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4233 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4234 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4235 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4237 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4238 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4241 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4243 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4245 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4248 static void spapr_ics_resend(XICSFabric *dev)
4250 SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4252 ics_resend(spapr->ics);
4255 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4257 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4259 return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4262 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4263 Monitor *mon)
4265 SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4267 spapr->irq->print_info(spapr, mon);
4270 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4272 return cpu->vcpu_id;
4275 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4277 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4278 MachineState *ms = MACHINE(spapr);
4279 int vcpu_id;
4281 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4283 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4284 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4285 error_append_hint(errp, "Adjust the number of cpus to %d "
4286 "or try to raise the number of threads per core\n",
4287 vcpu_id * ms->smp.threads / spapr->vsmt);
4288 return;
4291 cpu->vcpu_id = vcpu_id;
4294 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4296 CPUState *cs;
4298 CPU_FOREACH(cs) {
4299 PowerPCCPU *cpu = POWERPC_CPU(cs);
4301 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4302 return cpu;
4306 return NULL;
4309 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4311 MachineClass *mc = MACHINE_CLASS(oc);
4312 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4313 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4314 NMIClass *nc = NMI_CLASS(oc);
4315 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4316 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4317 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4318 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4320 mc->desc = "pSeries Logical Partition (PAPR compliant)";
4321 mc->ignore_boot_device_suffixes = true;
4324 * We set up the default / latest behaviour here. The class_init
4325 * functions for the specific versioned machine types can override
4326 * these details for backwards compatibility
4328 mc->init = spapr_machine_init;
4329 mc->reset = spapr_machine_reset;
4330 mc->block_default_type = IF_SCSI;
4331 mc->max_cpus = 1024;
4332 mc->no_parallel = 1;
4333 mc->default_boot_order = "";
4334 mc->default_ram_size = 512 * MiB;
4335 mc->default_display = "std";
4336 mc->kvm_type = spapr_kvm_type;
4337 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4338 mc->pci_allow_0_address = true;
4339 assert(!mc->get_hotplug_handler);
4340 mc->get_hotplug_handler = spapr_get_hotplug_handler;
4341 hc->pre_plug = spapr_machine_device_pre_plug;
4342 hc->plug = spapr_machine_device_plug;
4343 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4344 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4345 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4346 hc->unplug_request = spapr_machine_device_unplug_request;
4347 hc->unplug = spapr_machine_device_unplug;
4349 smc->dr_lmb_enabled = true;
4350 smc->update_dt_enabled = true;
4351 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4352 mc->has_hotpluggable_cpus = true;
4353 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4354 fwc->get_dev_path = spapr_get_fw_dev_path;
4355 nc->nmi_monitor_handler = spapr_nmi;
4356 smc->phb_placement = spapr_phb_placement;
4357 vhc->hypercall = emulate_spapr_hypercall;
4358 vhc->hpt_mask = spapr_hpt_mask;
4359 vhc->map_hptes = spapr_map_hptes;
4360 vhc->unmap_hptes = spapr_unmap_hptes;
4361 vhc->hpte_set_c = spapr_hpte_set_c;
4362 vhc->hpte_set_r = spapr_hpte_set_r;
4363 vhc->get_pate = spapr_get_pate;
4364 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4365 xic->ics_get = spapr_ics_get;
4366 xic->ics_resend = spapr_ics_resend;
4367 xic->icp_get = spapr_icp_get;
4368 ispc->print_info = spapr_pic_print_info;
4369 /* Force NUMA node memory size to be a multiple of
4370 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4371 * in which LMBs are represented and hot-added
4373 mc->numa_mem_align_shift = 28;
4374 mc->numa_mem_supported = true;
4376 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4377 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4378 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4379 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4380 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4381 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4382 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4383 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4384 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4385 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4386 spapr_caps_add_properties(smc, &error_abort);
4387 smc->irq = &spapr_irq_dual;
4388 smc->dr_phb_enabled = true;
4391 static const TypeInfo spapr_machine_info = {
4392 .name = TYPE_SPAPR_MACHINE,
4393 .parent = TYPE_MACHINE,
4394 .abstract = true,
4395 .instance_size = sizeof(SpaprMachineState),
4396 .instance_init = spapr_instance_init,
4397 .instance_finalize = spapr_machine_finalizefn,
4398 .class_size = sizeof(SpaprMachineClass),
4399 .class_init = spapr_machine_class_init,
4400 .interfaces = (InterfaceInfo[]) {
4401 { TYPE_FW_PATH_PROVIDER },
4402 { TYPE_NMI },
4403 { TYPE_HOTPLUG_HANDLER },
4404 { TYPE_PPC_VIRTUAL_HYPERVISOR },
4405 { TYPE_XICS_FABRIC },
4406 { TYPE_INTERRUPT_STATS_PROVIDER },
4411 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4412 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4413 void *data) \
4415 MachineClass *mc = MACHINE_CLASS(oc); \
4416 spapr_machine_##suffix##_class_options(mc); \
4417 if (latest) { \
4418 mc->alias = "pseries"; \
4419 mc->is_default = 1; \
4422 static const TypeInfo spapr_machine_##suffix##_info = { \
4423 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4424 .parent = TYPE_SPAPR_MACHINE, \
4425 .class_init = spapr_machine_##suffix##_class_init, \
4426 }; \
4427 static void spapr_machine_register_##suffix(void) \
4429 type_register(&spapr_machine_##suffix##_info); \
4431 type_init(spapr_machine_register_##suffix)
4434 * pseries-4.2
4436 static void spapr_machine_4_2_class_options(MachineClass *mc)
4438 /* Defaults for the latest behaviour inherited from the base class */
4441 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4444 * pseries-4.1
4446 static void spapr_machine_4_1_class_options(MachineClass *mc)
4448 spapr_machine_4_2_class_options(mc);
4449 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4452 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4455 * pseries-4.0
4457 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4458 uint64_t *buid, hwaddr *pio,
4459 hwaddr *mmio32, hwaddr *mmio64,
4460 unsigned n_dma, uint32_t *liobns,
4461 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4463 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4464 nv2gpa, nv2atsd, errp);
4465 *nv2gpa = 0;
4466 *nv2atsd = 0;
4469 static void spapr_machine_4_0_class_options(MachineClass *mc)
4471 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4473 spapr_machine_4_1_class_options(mc);
4474 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4475 smc->phb_placement = phb_placement_4_0;
4476 smc->irq = &spapr_irq_xics;
4477 smc->pre_4_1_migration = true;
4480 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4483 * pseries-3.1
4485 static void spapr_machine_3_1_class_options(MachineClass *mc)
4487 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4489 spapr_machine_4_0_class_options(mc);
4490 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4492 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4493 smc->update_dt_enabled = false;
4494 smc->dr_phb_enabled = false;
4495 smc->broken_host_serial_model = true;
4496 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4497 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4498 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4499 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4502 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4505 * pseries-3.0
4508 static void spapr_machine_3_0_class_options(MachineClass *mc)
4510 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4512 spapr_machine_3_1_class_options(mc);
4513 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4515 smc->legacy_irq_allocation = true;
4516 smc->irq = &spapr_irq_xics_legacy;
4519 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4522 * pseries-2.12
4524 static void spapr_machine_2_12_class_options(MachineClass *mc)
4526 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4527 static GlobalProperty compat[] = {
4528 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4529 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4532 spapr_machine_3_0_class_options(mc);
4533 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4534 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4536 /* We depend on kvm_enabled() to choose a default value for the
4537 * hpt-max-page-size capability. Of course we can't do it here
4538 * because this is too early and the HW accelerator isn't initialzed
4539 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4541 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4544 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4546 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4548 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4550 spapr_machine_2_12_class_options(mc);
4551 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4552 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4553 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4556 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4559 * pseries-2.11
4562 static void spapr_machine_2_11_class_options(MachineClass *mc)
4564 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4566 spapr_machine_2_12_class_options(mc);
4567 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4568 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4571 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4574 * pseries-2.10
4577 static void spapr_machine_2_10_class_options(MachineClass *mc)
4579 spapr_machine_2_11_class_options(mc);
4580 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4583 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4586 * pseries-2.9
4589 static void spapr_machine_2_9_class_options(MachineClass *mc)
4591 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4592 static GlobalProperty compat[] = {
4593 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4596 spapr_machine_2_10_class_options(mc);
4597 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4598 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4599 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4600 smc->pre_2_10_has_unused_icps = true;
4601 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4604 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4607 * pseries-2.8
4610 static void spapr_machine_2_8_class_options(MachineClass *mc)
4612 static GlobalProperty compat[] = {
4613 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4616 spapr_machine_2_9_class_options(mc);
4617 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4618 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4619 mc->numa_mem_align_shift = 23;
4622 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4625 * pseries-2.7
4628 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4629 uint64_t *buid, hwaddr *pio,
4630 hwaddr *mmio32, hwaddr *mmio64,
4631 unsigned n_dma, uint32_t *liobns,
4632 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4634 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4635 const uint64_t base_buid = 0x800000020000000ULL;
4636 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4637 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4638 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4639 const uint32_t max_index = 255;
4640 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4642 uint64_t ram_top = MACHINE(spapr)->ram_size;
4643 hwaddr phb0_base, phb_base;
4644 int i;
4646 /* Do we have device memory? */
4647 if (MACHINE(spapr)->maxram_size > ram_top) {
4648 /* Can't just use maxram_size, because there may be an
4649 * alignment gap between normal and device memory regions
4651 ram_top = MACHINE(spapr)->device_memory->base +
4652 memory_region_size(&MACHINE(spapr)->device_memory->mr);
4655 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4657 if (index > max_index) {
4658 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4659 max_index);
4660 return;
4663 *buid = base_buid + index;
4664 for (i = 0; i < n_dma; ++i) {
4665 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4668 phb_base = phb0_base + index * phb_spacing;
4669 *pio = phb_base + pio_offset;
4670 *mmio32 = phb_base + mmio_offset;
4672 * We don't set the 64-bit MMIO window, relying on the PHB's
4673 * fallback behaviour of automatically splitting a large "32-bit"
4674 * window into contiguous 32-bit and 64-bit windows
4677 *nv2gpa = 0;
4678 *nv2atsd = 0;
4681 static void spapr_machine_2_7_class_options(MachineClass *mc)
4683 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4684 static GlobalProperty compat[] = {
4685 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4686 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4687 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4688 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4691 spapr_machine_2_8_class_options(mc);
4692 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4693 mc->default_machine_opts = "modern-hotplug-events=off";
4694 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4695 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4696 smc->phb_placement = phb_placement_2_7;
4699 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4702 * pseries-2.6
4705 static void spapr_machine_2_6_class_options(MachineClass *mc)
4707 static GlobalProperty compat[] = {
4708 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4711 spapr_machine_2_7_class_options(mc);
4712 mc->has_hotpluggable_cpus = false;
4713 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4714 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4717 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4720 * pseries-2.5
4723 static void spapr_machine_2_5_class_options(MachineClass *mc)
4725 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4726 static GlobalProperty compat[] = {
4727 { "spapr-vlan", "use-rx-buffer-pools", "off" },
4730 spapr_machine_2_6_class_options(mc);
4731 smc->use_ohci_by_default = true;
4732 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4733 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4736 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4739 * pseries-2.4
4742 static void spapr_machine_2_4_class_options(MachineClass *mc)
4744 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4746 spapr_machine_2_5_class_options(mc);
4747 smc->dr_lmb_enabled = false;
4748 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4751 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4754 * pseries-2.3
4757 static void spapr_machine_2_3_class_options(MachineClass *mc)
4759 static GlobalProperty compat[] = {
4760 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4762 spapr_machine_2_4_class_options(mc);
4763 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4764 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4766 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4769 * pseries-2.2
4772 static void spapr_machine_2_2_class_options(MachineClass *mc)
4774 static GlobalProperty compat[] = {
4775 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4778 spapr_machine_2_3_class_options(mc);
4779 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4780 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4781 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4783 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4786 * pseries-2.1
4789 static void spapr_machine_2_1_class_options(MachineClass *mc)
4791 spapr_machine_2_2_class_options(mc);
4792 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4794 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4796 static void spapr_machine_register_types(void)
4798 type_register_static(&spapr_machine_info);
4801 type_init(spapr_machine_register_types)