2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
14 * http://www.nvmexpress.org/resources/
19 * -drive file=<file>,if=none,id=<drive_id>
20 * -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
21 * cmb_size_mb=<cmb_size_mb[optional]>
23 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
24 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
27 #include "qemu/osdep.h"
28 #include "hw/block/block.h"
30 #include "hw/pci/msix.h"
31 #include "hw/pci/pci.h"
32 #include "sysemu/sysemu.h"
33 #include "qapi/error.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/block-backend.h"
41 #define NVME_GUEST_ERR(trace, fmt, ...) \
43 (trace_##trace)(__VA_ARGS__); \
44 qemu_log_mask(LOG_GUEST_ERROR, #trace \
45 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
48 static void nvme_process_sq(void *opaque
);
50 static void nvme_addr_read(NvmeCtrl
*n
, hwaddr addr
, void *buf
, int size
)
52 if (n
->cmbsz
&& addr
>= n
->ctrl_mem
.addr
&&
53 addr
< (n
->ctrl_mem
.addr
+ int128_get64(n
->ctrl_mem
.size
))) {
54 memcpy(buf
, (void *)&n
->cmbuf
[addr
- n
->ctrl_mem
.addr
], size
);
56 pci_dma_read(&n
->parent_obj
, addr
, buf
, size
);
60 static int nvme_check_sqid(NvmeCtrl
*n
, uint16_t sqid
)
62 return sqid
< n
->num_queues
&& n
->sq
[sqid
] != NULL
? 0 : -1;
65 static int nvme_check_cqid(NvmeCtrl
*n
, uint16_t cqid
)
67 return cqid
< n
->num_queues
&& n
->cq
[cqid
] != NULL
? 0 : -1;
70 static void nvme_inc_cq_tail(NvmeCQueue
*cq
)
73 if (cq
->tail
>= cq
->size
) {
75 cq
->phase
= !cq
->phase
;
79 static void nvme_inc_sq_head(NvmeSQueue
*sq
)
81 sq
->head
= (sq
->head
+ 1) % sq
->size
;
84 static uint8_t nvme_cq_full(NvmeCQueue
*cq
)
86 return (cq
->tail
+ 1) % cq
->size
== cq
->head
;
89 static uint8_t nvme_sq_empty(NvmeSQueue
*sq
)
91 return sq
->head
== sq
->tail
;
94 static void nvme_irq_check(NvmeCtrl
*n
)
96 if (msix_enabled(&(n
->parent_obj
))) {
99 if (~n
->bar
.intms
& n
->irq_status
) {
100 pci_irq_assert(&n
->parent_obj
);
102 pci_irq_deassert(&n
->parent_obj
);
106 static void nvme_irq_assert(NvmeCtrl
*n
, NvmeCQueue
*cq
)
108 if (cq
->irq_enabled
) {
109 if (msix_enabled(&(n
->parent_obj
))) {
110 trace_nvme_irq_msix(cq
->vector
);
111 msix_notify(&(n
->parent_obj
), cq
->vector
);
113 trace_nvme_irq_pin();
114 assert(cq
->cqid
< 64);
115 n
->irq_status
|= 1 << cq
->cqid
;
119 trace_nvme_irq_masked();
123 static void nvme_irq_deassert(NvmeCtrl
*n
, NvmeCQueue
*cq
)
125 if (cq
->irq_enabled
) {
126 if (msix_enabled(&(n
->parent_obj
))) {
129 assert(cq
->cqid
< 64);
130 n
->irq_status
&= ~(1 << cq
->cqid
);
136 static uint16_t nvme_map_prp(QEMUSGList
*qsg
, QEMUIOVector
*iov
, uint64_t prp1
,
137 uint64_t prp2
, uint32_t len
, NvmeCtrl
*n
)
139 hwaddr trans_len
= n
->page_size
- (prp1
% n
->page_size
);
140 trans_len
= MIN(len
, trans_len
);
141 int num_prps
= (len
>> n
->page_bits
) + 1;
143 if (unlikely(!prp1
)) {
144 trace_nvme_err_invalid_prp();
145 return NVME_INVALID_FIELD
| NVME_DNR
;
146 } else if (n
->cmbsz
&& prp1
>= n
->ctrl_mem
.addr
&&
147 prp1
< n
->ctrl_mem
.addr
+ int128_get64(n
->ctrl_mem
.size
)) {
149 qemu_iovec_init(iov
, num_prps
);
150 qemu_iovec_add(iov
, (void *)&n
->cmbuf
[prp1
- n
->ctrl_mem
.addr
], trans_len
);
152 pci_dma_sglist_init(qsg
, &n
->parent_obj
, num_prps
);
153 qemu_sglist_add(qsg
, prp1
, trans_len
);
157 if (unlikely(!prp2
)) {
158 trace_nvme_err_invalid_prp2_missing();
161 if (len
> n
->page_size
) {
162 uint64_t prp_list
[n
->max_prp_ents
];
163 uint32_t nents
, prp_trans
;
166 nents
= (len
+ n
->page_size
- 1) >> n
->page_bits
;
167 prp_trans
= MIN(n
->max_prp_ents
, nents
) * sizeof(uint64_t);
168 nvme_addr_read(n
, prp2
, (void *)prp_list
, prp_trans
);
170 uint64_t prp_ent
= le64_to_cpu(prp_list
[i
]);
172 if (i
== n
->max_prp_ents
- 1 && len
> n
->page_size
) {
173 if (unlikely(!prp_ent
|| prp_ent
& (n
->page_size
- 1))) {
174 trace_nvme_err_invalid_prplist_ent(prp_ent
);
179 nents
= (len
+ n
->page_size
- 1) >> n
->page_bits
;
180 prp_trans
= MIN(n
->max_prp_ents
, nents
) * sizeof(uint64_t);
181 nvme_addr_read(n
, prp_ent
, (void *)prp_list
,
183 prp_ent
= le64_to_cpu(prp_list
[i
]);
186 if (unlikely(!prp_ent
|| prp_ent
& (n
->page_size
- 1))) {
187 trace_nvme_err_invalid_prplist_ent(prp_ent
);
191 trans_len
= MIN(len
, n
->page_size
);
193 qemu_sglist_add(qsg
, prp_ent
, trans_len
);
195 qemu_iovec_add(iov
, (void *)&n
->cmbuf
[prp_ent
- n
->ctrl_mem
.addr
], trans_len
);
201 if (unlikely(prp2
& (n
->page_size
- 1))) {
202 trace_nvme_err_invalid_prp2_align(prp2
);
206 qemu_sglist_add(qsg
, prp2
, len
);
208 qemu_iovec_add(iov
, (void *)&n
->cmbuf
[prp2
- n
->ctrl_mem
.addr
], trans_len
);
215 qemu_sglist_destroy(qsg
);
216 return NVME_INVALID_FIELD
| NVME_DNR
;
219 static uint16_t nvme_dma_read_prp(NvmeCtrl
*n
, uint8_t *ptr
, uint32_t len
,
220 uint64_t prp1
, uint64_t prp2
)
224 uint16_t status
= NVME_SUCCESS
;
226 trace_nvme_dma_read(prp1
, prp2
);
228 if (nvme_map_prp(&qsg
, &iov
, prp1
, prp2
, len
, n
)) {
229 return NVME_INVALID_FIELD
| NVME_DNR
;
232 if (unlikely(dma_buf_read(ptr
, len
, &qsg
))) {
233 trace_nvme_err_invalid_dma();
234 status
= NVME_INVALID_FIELD
| NVME_DNR
;
236 qemu_sglist_destroy(&qsg
);
238 if (unlikely(qemu_iovec_to_buf(&iov
, 0, ptr
, len
) != len
)) {
239 trace_nvme_err_invalid_dma();
240 status
= NVME_INVALID_FIELD
| NVME_DNR
;
242 qemu_iovec_destroy(&iov
);
247 static void nvme_post_cqes(void *opaque
)
249 NvmeCQueue
*cq
= opaque
;
250 NvmeCtrl
*n
= cq
->ctrl
;
251 NvmeRequest
*req
, *next
;
253 QTAILQ_FOREACH_SAFE(req
, &cq
->req_list
, entry
, next
) {
257 if (nvme_cq_full(cq
)) {
261 QTAILQ_REMOVE(&cq
->req_list
, req
, entry
);
263 req
->cqe
.status
= cpu_to_le16((req
->status
<< 1) | cq
->phase
);
264 req
->cqe
.sq_id
= cpu_to_le16(sq
->sqid
);
265 req
->cqe
.sq_head
= cpu_to_le16(sq
->head
);
266 addr
= cq
->dma_addr
+ cq
->tail
* n
->cqe_size
;
267 nvme_inc_cq_tail(cq
);
268 pci_dma_write(&n
->parent_obj
, addr
, (void *)&req
->cqe
,
270 QTAILQ_INSERT_TAIL(&sq
->req_list
, req
, entry
);
272 nvme_irq_assert(n
, cq
);
275 static void nvme_enqueue_req_completion(NvmeCQueue
*cq
, NvmeRequest
*req
)
277 assert(cq
->cqid
== req
->sq
->cqid
);
278 QTAILQ_REMOVE(&req
->sq
->out_req_list
, req
, entry
);
279 QTAILQ_INSERT_TAIL(&cq
->req_list
, req
, entry
);
280 timer_mod(cq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
283 static void nvme_rw_cb(void *opaque
, int ret
)
285 NvmeRequest
*req
= opaque
;
286 NvmeSQueue
*sq
= req
->sq
;
287 NvmeCtrl
*n
= sq
->ctrl
;
288 NvmeCQueue
*cq
= n
->cq
[sq
->cqid
];
291 block_acct_done(blk_get_stats(n
->conf
.blk
), &req
->acct
);
292 req
->status
= NVME_SUCCESS
;
294 block_acct_failed(blk_get_stats(n
->conf
.blk
), &req
->acct
);
295 req
->status
= NVME_INTERNAL_DEV_ERROR
;
298 qemu_sglist_destroy(&req
->qsg
);
300 nvme_enqueue_req_completion(cq
, req
);
303 static uint16_t nvme_flush(NvmeCtrl
*n
, NvmeNamespace
*ns
, NvmeCmd
*cmd
,
307 block_acct_start(blk_get_stats(n
->conf
.blk
), &req
->acct
, 0,
309 req
->aiocb
= blk_aio_flush(n
->conf
.blk
, nvme_rw_cb
, req
);
311 return NVME_NO_COMPLETE
;
314 static uint16_t nvme_write_zeros(NvmeCtrl
*n
, NvmeNamespace
*ns
, NvmeCmd
*cmd
,
317 NvmeRwCmd
*rw
= (NvmeRwCmd
*)cmd
;
318 const uint8_t lba_index
= NVME_ID_NS_FLBAS_INDEX(ns
->id_ns
.flbas
);
319 const uint8_t data_shift
= ns
->id_ns
.lbaf
[lba_index
].ds
;
320 uint64_t slba
= le64_to_cpu(rw
->slba
);
321 uint32_t nlb
= le16_to_cpu(rw
->nlb
) + 1;
322 uint64_t aio_slba
= slba
<< (data_shift
- BDRV_SECTOR_BITS
);
323 uint32_t aio_nlb
= nlb
<< (data_shift
- BDRV_SECTOR_BITS
);
325 if (unlikely(slba
+ nlb
> ns
->id_ns
.nsze
)) {
326 trace_nvme_err_invalid_lba_range(slba
, nlb
, ns
->id_ns
.nsze
);
327 return NVME_LBA_RANGE
| NVME_DNR
;
331 block_acct_start(blk_get_stats(n
->conf
.blk
), &req
->acct
, 0,
333 req
->aiocb
= blk_aio_pwrite_zeroes(n
->conf
.blk
, aio_slba
, aio_nlb
,
334 BDRV_REQ_MAY_UNMAP
, nvme_rw_cb
, req
);
335 return NVME_NO_COMPLETE
;
338 static uint16_t nvme_rw(NvmeCtrl
*n
, NvmeNamespace
*ns
, NvmeCmd
*cmd
,
341 NvmeRwCmd
*rw
= (NvmeRwCmd
*)cmd
;
342 uint32_t nlb
= le32_to_cpu(rw
->nlb
) + 1;
343 uint64_t slba
= le64_to_cpu(rw
->slba
);
344 uint64_t prp1
= le64_to_cpu(rw
->prp1
);
345 uint64_t prp2
= le64_to_cpu(rw
->prp2
);
347 uint8_t lba_index
= NVME_ID_NS_FLBAS_INDEX(ns
->id_ns
.flbas
);
348 uint8_t data_shift
= ns
->id_ns
.lbaf
[lba_index
].ds
;
349 uint64_t data_size
= (uint64_t)nlb
<< data_shift
;
350 uint64_t data_offset
= slba
<< data_shift
;
351 int is_write
= rw
->opcode
== NVME_CMD_WRITE
? 1 : 0;
352 enum BlockAcctType acct
= is_write
? BLOCK_ACCT_WRITE
: BLOCK_ACCT_READ
;
354 trace_nvme_rw(is_write
? "write" : "read", nlb
, data_size
, slba
);
356 if (unlikely((slba
+ nlb
) > ns
->id_ns
.nsze
)) {
357 block_acct_invalid(blk_get_stats(n
->conf
.blk
), acct
);
358 trace_nvme_err_invalid_lba_range(slba
, nlb
, ns
->id_ns
.nsze
);
359 return NVME_LBA_RANGE
| NVME_DNR
;
362 if (nvme_map_prp(&req
->qsg
, &req
->iov
, prp1
, prp2
, data_size
, n
)) {
363 block_acct_invalid(blk_get_stats(n
->conf
.blk
), acct
);
364 return NVME_INVALID_FIELD
| NVME_DNR
;
367 dma_acct_start(n
->conf
.blk
, &req
->acct
, &req
->qsg
, acct
);
368 if (req
->qsg
.nsg
> 0) {
370 req
->aiocb
= is_write
?
371 dma_blk_write(n
->conf
.blk
, &req
->qsg
, data_offset
, BDRV_SECTOR_SIZE
,
373 dma_blk_read(n
->conf
.blk
, &req
->qsg
, data_offset
, BDRV_SECTOR_SIZE
,
377 req
->aiocb
= is_write
?
378 blk_aio_pwritev(n
->conf
.blk
, data_offset
, &req
->iov
, 0, nvme_rw_cb
,
380 blk_aio_preadv(n
->conf
.blk
, data_offset
, &req
->iov
, 0, nvme_rw_cb
,
384 return NVME_NO_COMPLETE
;
387 static uint16_t nvme_io_cmd(NvmeCtrl
*n
, NvmeCmd
*cmd
, NvmeRequest
*req
)
390 uint32_t nsid
= le32_to_cpu(cmd
->nsid
);
392 if (unlikely(nsid
== 0 || nsid
> n
->num_namespaces
)) {
393 trace_nvme_err_invalid_ns(nsid
, n
->num_namespaces
);
394 return NVME_INVALID_NSID
| NVME_DNR
;
397 ns
= &n
->namespaces
[nsid
- 1];
398 switch (cmd
->opcode
) {
400 return nvme_flush(n
, ns
, cmd
, req
);
401 case NVME_CMD_WRITE_ZEROS
:
402 return nvme_write_zeros(n
, ns
, cmd
, req
);
405 return nvme_rw(n
, ns
, cmd
, req
);
407 trace_nvme_err_invalid_opc(cmd
->opcode
);
408 return NVME_INVALID_OPCODE
| NVME_DNR
;
412 static void nvme_free_sq(NvmeSQueue
*sq
, NvmeCtrl
*n
)
414 n
->sq
[sq
->sqid
] = NULL
;
415 timer_del(sq
->timer
);
416 timer_free(sq
->timer
);
423 static uint16_t nvme_del_sq(NvmeCtrl
*n
, NvmeCmd
*cmd
)
425 NvmeDeleteQ
*c
= (NvmeDeleteQ
*)cmd
;
426 NvmeRequest
*req
, *next
;
429 uint16_t qid
= le16_to_cpu(c
->qid
);
431 if (unlikely(!qid
|| nvme_check_sqid(n
, qid
))) {
432 trace_nvme_err_invalid_del_sq(qid
);
433 return NVME_INVALID_QID
| NVME_DNR
;
436 trace_nvme_del_sq(qid
);
439 while (!QTAILQ_EMPTY(&sq
->out_req_list
)) {
440 req
= QTAILQ_FIRST(&sq
->out_req_list
);
442 blk_aio_cancel(req
->aiocb
);
444 if (!nvme_check_cqid(n
, sq
->cqid
)) {
445 cq
= n
->cq
[sq
->cqid
];
446 QTAILQ_REMOVE(&cq
->sq_list
, sq
, entry
);
449 QTAILQ_FOREACH_SAFE(req
, &cq
->req_list
, entry
, next
) {
451 QTAILQ_REMOVE(&cq
->req_list
, req
, entry
);
452 QTAILQ_INSERT_TAIL(&sq
->req_list
, req
, entry
);
461 static void nvme_init_sq(NvmeSQueue
*sq
, NvmeCtrl
*n
, uint64_t dma_addr
,
462 uint16_t sqid
, uint16_t cqid
, uint16_t size
)
468 sq
->dma_addr
= dma_addr
;
472 sq
->head
= sq
->tail
= 0;
473 sq
->io_req
= g_new(NvmeRequest
, sq
->size
);
475 QTAILQ_INIT(&sq
->req_list
);
476 QTAILQ_INIT(&sq
->out_req_list
);
477 for (i
= 0; i
< sq
->size
; i
++) {
478 sq
->io_req
[i
].sq
= sq
;
479 QTAILQ_INSERT_TAIL(&(sq
->req_list
), &sq
->io_req
[i
], entry
);
481 sq
->timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, nvme_process_sq
, sq
);
485 QTAILQ_INSERT_TAIL(&(cq
->sq_list
), sq
, entry
);
489 static uint16_t nvme_create_sq(NvmeCtrl
*n
, NvmeCmd
*cmd
)
492 NvmeCreateSq
*c
= (NvmeCreateSq
*)cmd
;
494 uint16_t cqid
= le16_to_cpu(c
->cqid
);
495 uint16_t sqid
= le16_to_cpu(c
->sqid
);
496 uint16_t qsize
= le16_to_cpu(c
->qsize
);
497 uint16_t qflags
= le16_to_cpu(c
->sq_flags
);
498 uint64_t prp1
= le64_to_cpu(c
->prp1
);
500 trace_nvme_create_sq(prp1
, sqid
, cqid
, qsize
, qflags
);
502 if (unlikely(!cqid
|| nvme_check_cqid(n
, cqid
))) {
503 trace_nvme_err_invalid_create_sq_cqid(cqid
);
504 return NVME_INVALID_CQID
| NVME_DNR
;
506 if (unlikely(!sqid
|| !nvme_check_sqid(n
, sqid
))) {
507 trace_nvme_err_invalid_create_sq_sqid(sqid
);
508 return NVME_INVALID_QID
| NVME_DNR
;
510 if (unlikely(!qsize
|| qsize
> NVME_CAP_MQES(n
->bar
.cap
))) {
511 trace_nvme_err_invalid_create_sq_size(qsize
);
512 return NVME_MAX_QSIZE_EXCEEDED
| NVME_DNR
;
514 if (unlikely(!prp1
|| prp1
& (n
->page_size
- 1))) {
515 trace_nvme_err_invalid_create_sq_addr(prp1
);
516 return NVME_INVALID_FIELD
| NVME_DNR
;
518 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags
)))) {
519 trace_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags
));
520 return NVME_INVALID_FIELD
| NVME_DNR
;
522 sq
= g_malloc0(sizeof(*sq
));
523 nvme_init_sq(sq
, n
, prp1
, sqid
, cqid
, qsize
+ 1);
527 static void nvme_free_cq(NvmeCQueue
*cq
, NvmeCtrl
*n
)
529 n
->cq
[cq
->cqid
] = NULL
;
530 timer_del(cq
->timer
);
531 timer_free(cq
->timer
);
532 msix_vector_unuse(&n
->parent_obj
, cq
->vector
);
538 static uint16_t nvme_del_cq(NvmeCtrl
*n
, NvmeCmd
*cmd
)
540 NvmeDeleteQ
*c
= (NvmeDeleteQ
*)cmd
;
542 uint16_t qid
= le16_to_cpu(c
->qid
);
544 if (unlikely(!qid
|| nvme_check_cqid(n
, qid
))) {
545 trace_nvme_err_invalid_del_cq_cqid(qid
);
546 return NVME_INVALID_CQID
| NVME_DNR
;
550 if (unlikely(!QTAILQ_EMPTY(&cq
->sq_list
))) {
551 trace_nvme_err_invalid_del_cq_notempty(qid
);
552 return NVME_INVALID_QUEUE_DEL
;
554 trace_nvme_del_cq(qid
);
559 static void nvme_init_cq(NvmeCQueue
*cq
, NvmeCtrl
*n
, uint64_t dma_addr
,
560 uint16_t cqid
, uint16_t vector
, uint16_t size
, uint16_t irq_enabled
)
565 cq
->dma_addr
= dma_addr
;
567 cq
->irq_enabled
= irq_enabled
;
569 cq
->head
= cq
->tail
= 0;
570 QTAILQ_INIT(&cq
->req_list
);
571 QTAILQ_INIT(&cq
->sq_list
);
572 msix_vector_use(&n
->parent_obj
, cq
->vector
);
574 cq
->timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, nvme_post_cqes
, cq
);
577 static uint16_t nvme_create_cq(NvmeCtrl
*n
, NvmeCmd
*cmd
)
580 NvmeCreateCq
*c
= (NvmeCreateCq
*)cmd
;
581 uint16_t cqid
= le16_to_cpu(c
->cqid
);
582 uint16_t vector
= le16_to_cpu(c
->irq_vector
);
583 uint16_t qsize
= le16_to_cpu(c
->qsize
);
584 uint16_t qflags
= le16_to_cpu(c
->cq_flags
);
585 uint64_t prp1
= le64_to_cpu(c
->prp1
);
587 trace_nvme_create_cq(prp1
, cqid
, vector
, qsize
, qflags
,
588 NVME_CQ_FLAGS_IEN(qflags
) != 0);
590 if (unlikely(!cqid
|| !nvme_check_cqid(n
, cqid
))) {
591 trace_nvme_err_invalid_create_cq_cqid(cqid
);
592 return NVME_INVALID_CQID
| NVME_DNR
;
594 if (unlikely(!qsize
|| qsize
> NVME_CAP_MQES(n
->bar
.cap
))) {
595 trace_nvme_err_invalid_create_cq_size(qsize
);
596 return NVME_MAX_QSIZE_EXCEEDED
| NVME_DNR
;
598 if (unlikely(!prp1
)) {
599 trace_nvme_err_invalid_create_cq_addr(prp1
);
600 return NVME_INVALID_FIELD
| NVME_DNR
;
602 if (unlikely(vector
> n
->num_queues
)) {
603 trace_nvme_err_invalid_create_cq_vector(vector
);
604 return NVME_INVALID_IRQ_VECTOR
| NVME_DNR
;
606 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags
)))) {
607 trace_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags
));
608 return NVME_INVALID_FIELD
| NVME_DNR
;
611 cq
= g_malloc0(sizeof(*cq
));
612 nvme_init_cq(cq
, n
, prp1
, cqid
, vector
, qsize
+ 1,
613 NVME_CQ_FLAGS_IEN(qflags
));
617 static uint16_t nvme_identify_ctrl(NvmeCtrl
*n
, NvmeIdentify
*c
)
619 uint64_t prp1
= le64_to_cpu(c
->prp1
);
620 uint64_t prp2
= le64_to_cpu(c
->prp2
);
622 trace_nvme_identify_ctrl();
624 return nvme_dma_read_prp(n
, (uint8_t *)&n
->id_ctrl
, sizeof(n
->id_ctrl
),
628 static uint16_t nvme_identify_ns(NvmeCtrl
*n
, NvmeIdentify
*c
)
631 uint32_t nsid
= le32_to_cpu(c
->nsid
);
632 uint64_t prp1
= le64_to_cpu(c
->prp1
);
633 uint64_t prp2
= le64_to_cpu(c
->prp2
);
635 trace_nvme_identify_ns(nsid
);
637 if (unlikely(nsid
== 0 || nsid
> n
->num_namespaces
)) {
638 trace_nvme_err_invalid_ns(nsid
, n
->num_namespaces
);
639 return NVME_INVALID_NSID
| NVME_DNR
;
642 ns
= &n
->namespaces
[nsid
- 1];
644 return nvme_dma_read_prp(n
, (uint8_t *)&ns
->id_ns
, sizeof(ns
->id_ns
),
648 static uint16_t nvme_identify_nslist(NvmeCtrl
*n
, NvmeIdentify
*c
)
650 static const int data_len
= 4096;
651 uint32_t min_nsid
= le32_to_cpu(c
->nsid
);
652 uint64_t prp1
= le64_to_cpu(c
->prp1
);
653 uint64_t prp2
= le64_to_cpu(c
->prp2
);
658 trace_nvme_identify_nslist(min_nsid
);
660 list
= g_malloc0(data_len
);
661 for (i
= 0; i
< n
->num_namespaces
; i
++) {
665 list
[j
++] = cpu_to_le32(i
+ 1);
666 if (j
== data_len
/ sizeof(uint32_t)) {
670 ret
= nvme_dma_read_prp(n
, (uint8_t *)list
, data_len
, prp1
, prp2
);
676 static uint16_t nvme_identify(NvmeCtrl
*n
, NvmeCmd
*cmd
)
678 NvmeIdentify
*c
= (NvmeIdentify
*)cmd
;
680 switch (le32_to_cpu(c
->cns
)) {
682 return nvme_identify_ns(n
, c
);
684 return nvme_identify_ctrl(n
, c
);
686 return nvme_identify_nslist(n
, c
);
688 trace_nvme_err_invalid_identify_cns(le32_to_cpu(c
->cns
));
689 return NVME_INVALID_FIELD
| NVME_DNR
;
693 static uint16_t nvme_get_feature(NvmeCtrl
*n
, NvmeCmd
*cmd
, NvmeRequest
*req
)
695 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
699 case NVME_VOLATILE_WRITE_CACHE
:
700 result
= blk_enable_write_cache(n
->conf
.blk
);
701 trace_nvme_getfeat_vwcache(result
? "enabled" : "disabled");
703 case NVME_NUMBER_OF_QUEUES
:
704 result
= cpu_to_le32((n
->num_queues
- 2) | ((n
->num_queues
- 2) << 16));
705 trace_nvme_getfeat_numq(result
);
708 trace_nvme_err_invalid_getfeat(dw10
);
709 return NVME_INVALID_FIELD
| NVME_DNR
;
712 req
->cqe
.result
= result
;
716 static uint16_t nvme_set_feature(NvmeCtrl
*n
, NvmeCmd
*cmd
, NvmeRequest
*req
)
718 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
719 uint32_t dw11
= le32_to_cpu(cmd
->cdw11
);
722 case NVME_VOLATILE_WRITE_CACHE
:
723 blk_set_enable_write_cache(n
->conf
.blk
, dw11
& 1);
725 case NVME_NUMBER_OF_QUEUES
:
726 trace_nvme_setfeat_numq((dw11
& 0xFFFF) + 1,
727 ((dw11
>> 16) & 0xFFFF) + 1,
728 n
->num_queues
- 1, n
->num_queues
- 1);
730 cpu_to_le32((n
->num_queues
- 2) | ((n
->num_queues
- 2) << 16));
733 trace_nvme_err_invalid_setfeat(dw10
);
734 return NVME_INVALID_FIELD
| NVME_DNR
;
739 static uint16_t nvme_admin_cmd(NvmeCtrl
*n
, NvmeCmd
*cmd
, NvmeRequest
*req
)
741 switch (cmd
->opcode
) {
742 case NVME_ADM_CMD_DELETE_SQ
:
743 return nvme_del_sq(n
, cmd
);
744 case NVME_ADM_CMD_CREATE_SQ
:
745 return nvme_create_sq(n
, cmd
);
746 case NVME_ADM_CMD_DELETE_CQ
:
747 return nvme_del_cq(n
, cmd
);
748 case NVME_ADM_CMD_CREATE_CQ
:
749 return nvme_create_cq(n
, cmd
);
750 case NVME_ADM_CMD_IDENTIFY
:
751 return nvme_identify(n
, cmd
);
752 case NVME_ADM_CMD_SET_FEATURES
:
753 return nvme_set_feature(n
, cmd
, req
);
754 case NVME_ADM_CMD_GET_FEATURES
:
755 return nvme_get_feature(n
, cmd
, req
);
757 trace_nvme_err_invalid_admin_opc(cmd
->opcode
);
758 return NVME_INVALID_OPCODE
| NVME_DNR
;
762 static void nvme_process_sq(void *opaque
)
764 NvmeSQueue
*sq
= opaque
;
765 NvmeCtrl
*n
= sq
->ctrl
;
766 NvmeCQueue
*cq
= n
->cq
[sq
->cqid
];
773 while (!(nvme_sq_empty(sq
) || QTAILQ_EMPTY(&sq
->req_list
))) {
774 addr
= sq
->dma_addr
+ sq
->head
* n
->sqe_size
;
775 nvme_addr_read(n
, addr
, (void *)&cmd
, sizeof(cmd
));
776 nvme_inc_sq_head(sq
);
778 req
= QTAILQ_FIRST(&sq
->req_list
);
779 QTAILQ_REMOVE(&sq
->req_list
, req
, entry
);
780 QTAILQ_INSERT_TAIL(&sq
->out_req_list
, req
, entry
);
781 memset(&req
->cqe
, 0, sizeof(req
->cqe
));
782 req
->cqe
.cid
= cmd
.cid
;
784 status
= sq
->sqid
? nvme_io_cmd(n
, &cmd
, req
) :
785 nvme_admin_cmd(n
, &cmd
, req
);
786 if (status
!= NVME_NO_COMPLETE
) {
787 req
->status
= status
;
788 nvme_enqueue_req_completion(cq
, req
);
793 static void nvme_clear_ctrl(NvmeCtrl
*n
)
797 for (i
= 0; i
< n
->num_queues
; i
++) {
798 if (n
->sq
[i
] != NULL
) {
799 nvme_free_sq(n
->sq
[i
], n
);
802 for (i
= 0; i
< n
->num_queues
; i
++) {
803 if (n
->cq
[i
] != NULL
) {
804 nvme_free_cq(n
->cq
[i
], n
);
808 blk_flush(n
->conf
.blk
);
812 static int nvme_start_ctrl(NvmeCtrl
*n
)
814 uint32_t page_bits
= NVME_CC_MPS(n
->bar
.cc
) + 12;
815 uint32_t page_size
= 1 << page_bits
;
817 if (unlikely(n
->cq
[0])) {
818 trace_nvme_err_startfail_cq();
821 if (unlikely(n
->sq
[0])) {
822 trace_nvme_err_startfail_sq();
825 if (unlikely(!n
->bar
.asq
)) {
826 trace_nvme_err_startfail_nbarasq();
829 if (unlikely(!n
->bar
.acq
)) {
830 trace_nvme_err_startfail_nbaracq();
833 if (unlikely(n
->bar
.asq
& (page_size
- 1))) {
834 trace_nvme_err_startfail_asq_misaligned(n
->bar
.asq
);
837 if (unlikely(n
->bar
.acq
& (page_size
- 1))) {
838 trace_nvme_err_startfail_acq_misaligned(n
->bar
.acq
);
841 if (unlikely(NVME_CC_MPS(n
->bar
.cc
) <
842 NVME_CAP_MPSMIN(n
->bar
.cap
))) {
843 trace_nvme_err_startfail_page_too_small(
844 NVME_CC_MPS(n
->bar
.cc
),
845 NVME_CAP_MPSMIN(n
->bar
.cap
));
848 if (unlikely(NVME_CC_MPS(n
->bar
.cc
) >
849 NVME_CAP_MPSMAX(n
->bar
.cap
))) {
850 trace_nvme_err_startfail_page_too_large(
851 NVME_CC_MPS(n
->bar
.cc
),
852 NVME_CAP_MPSMAX(n
->bar
.cap
));
855 if (unlikely(NVME_CC_IOCQES(n
->bar
.cc
) <
856 NVME_CTRL_CQES_MIN(n
->id_ctrl
.cqes
))) {
857 trace_nvme_err_startfail_cqent_too_small(
858 NVME_CC_IOCQES(n
->bar
.cc
),
859 NVME_CTRL_CQES_MIN(n
->bar
.cap
));
862 if (unlikely(NVME_CC_IOCQES(n
->bar
.cc
) >
863 NVME_CTRL_CQES_MAX(n
->id_ctrl
.cqes
))) {
864 trace_nvme_err_startfail_cqent_too_large(
865 NVME_CC_IOCQES(n
->bar
.cc
),
866 NVME_CTRL_CQES_MAX(n
->bar
.cap
));
869 if (unlikely(NVME_CC_IOSQES(n
->bar
.cc
) <
870 NVME_CTRL_SQES_MIN(n
->id_ctrl
.sqes
))) {
871 trace_nvme_err_startfail_sqent_too_small(
872 NVME_CC_IOSQES(n
->bar
.cc
),
873 NVME_CTRL_SQES_MIN(n
->bar
.cap
));
876 if (unlikely(NVME_CC_IOSQES(n
->bar
.cc
) >
877 NVME_CTRL_SQES_MAX(n
->id_ctrl
.sqes
))) {
878 trace_nvme_err_startfail_sqent_too_large(
879 NVME_CC_IOSQES(n
->bar
.cc
),
880 NVME_CTRL_SQES_MAX(n
->bar
.cap
));
883 if (unlikely(!NVME_AQA_ASQS(n
->bar
.aqa
))) {
884 trace_nvme_err_startfail_asqent_sz_zero();
887 if (unlikely(!NVME_AQA_ACQS(n
->bar
.aqa
))) {
888 trace_nvme_err_startfail_acqent_sz_zero();
892 n
->page_bits
= page_bits
;
893 n
->page_size
= page_size
;
894 n
->max_prp_ents
= n
->page_size
/ sizeof(uint64_t);
895 n
->cqe_size
= 1 << NVME_CC_IOCQES(n
->bar
.cc
);
896 n
->sqe_size
= 1 << NVME_CC_IOSQES(n
->bar
.cc
);
897 nvme_init_cq(&n
->admin_cq
, n
, n
->bar
.acq
, 0, 0,
898 NVME_AQA_ACQS(n
->bar
.aqa
) + 1, 1);
899 nvme_init_sq(&n
->admin_sq
, n
, n
->bar
.asq
, 0, 0,
900 NVME_AQA_ASQS(n
->bar
.aqa
) + 1);
905 static void nvme_write_bar(NvmeCtrl
*n
, hwaddr offset
, uint64_t data
,
908 if (unlikely(offset
& (sizeof(uint32_t) - 1))) {
909 NVME_GUEST_ERR(nvme_ub_mmiowr_misaligned32
,
910 "MMIO write not 32-bit aligned,"
911 " offset=0x%"PRIx64
"", offset
);
912 /* should be ignored, fall through for now */
915 if (unlikely(size
< sizeof(uint32_t))) {
916 NVME_GUEST_ERR(nvme_ub_mmiowr_toosmall
,
917 "MMIO write smaller than 32-bits,"
918 " offset=0x%"PRIx64
", size=%u",
920 /* should be ignored, fall through for now */
924 case 0xc: /* INTMS */
925 if (unlikely(msix_enabled(&(n
->parent_obj
)))) {
926 NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix
,
927 "undefined access to interrupt mask set"
928 " when MSI-X is enabled");
929 /* should be ignored, fall through for now */
931 n
->bar
.intms
|= data
& 0xffffffff;
932 n
->bar
.intmc
= n
->bar
.intms
;
933 trace_nvme_mmio_intm_set(data
& 0xffffffff,
937 case 0x10: /* INTMC */
938 if (unlikely(msix_enabled(&(n
->parent_obj
)))) {
939 NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix
,
940 "undefined access to interrupt mask clr"
941 " when MSI-X is enabled");
942 /* should be ignored, fall through for now */
944 n
->bar
.intms
&= ~(data
& 0xffffffff);
945 n
->bar
.intmc
= n
->bar
.intms
;
946 trace_nvme_mmio_intm_clr(data
& 0xffffffff,
951 trace_nvme_mmio_cfg(data
& 0xffffffff);
952 /* Windows first sends data, then sends enable bit */
953 if (!NVME_CC_EN(data
) && !NVME_CC_EN(n
->bar
.cc
) &&
954 !NVME_CC_SHN(data
) && !NVME_CC_SHN(n
->bar
.cc
))
959 if (NVME_CC_EN(data
) && !NVME_CC_EN(n
->bar
.cc
)) {
961 if (unlikely(nvme_start_ctrl(n
))) {
962 trace_nvme_err_startfail();
963 n
->bar
.csts
= NVME_CSTS_FAILED
;
965 trace_nvme_mmio_start_success();
966 n
->bar
.csts
= NVME_CSTS_READY
;
968 } else if (!NVME_CC_EN(data
) && NVME_CC_EN(n
->bar
.cc
)) {
969 trace_nvme_mmio_stopped();
971 n
->bar
.csts
&= ~NVME_CSTS_READY
;
973 if (NVME_CC_SHN(data
) && !(NVME_CC_SHN(n
->bar
.cc
))) {
974 trace_nvme_mmio_shutdown_set();
977 n
->bar
.csts
|= NVME_CSTS_SHST_COMPLETE
;
978 } else if (!NVME_CC_SHN(data
) && NVME_CC_SHN(n
->bar
.cc
)) {
979 trace_nvme_mmio_shutdown_cleared();
980 n
->bar
.csts
&= ~NVME_CSTS_SHST_COMPLETE
;
984 case 0x1C: /* CSTS */
985 if (data
& (1 << 4)) {
986 NVME_GUEST_ERR(nvme_ub_mmiowr_ssreset_w1c_unsupported
,
987 "attempted to W1C CSTS.NSSRO"
988 " but CAP.NSSRS is zero (not supported)");
989 } else if (data
!= 0) {
990 NVME_GUEST_ERR(nvme_ub_mmiowr_ro_csts
,
991 "attempted to set a read only bit"
992 " of controller status");
995 case 0x20: /* NSSR */
996 if (data
== 0x4E564D65) {
997 trace_nvme_ub_mmiowr_ssreset_unsupported();
999 /* The spec says that writes of other values have no effect */
1003 case 0x24: /* AQA */
1004 n
->bar
.aqa
= data
& 0xffffffff;
1005 trace_nvme_mmio_aqattr(data
& 0xffffffff);
1007 case 0x28: /* ASQ */
1009 trace_nvme_mmio_asqaddr(data
);
1011 case 0x2c: /* ASQ hi */
1012 n
->bar
.asq
|= data
<< 32;
1013 trace_nvme_mmio_asqaddr_hi(data
, n
->bar
.asq
);
1015 case 0x30: /* ACQ */
1016 trace_nvme_mmio_acqaddr(data
);
1019 case 0x34: /* ACQ hi */
1020 n
->bar
.acq
|= data
<< 32;
1021 trace_nvme_mmio_acqaddr_hi(data
, n
->bar
.acq
);
1023 case 0x38: /* CMBLOC */
1024 NVME_GUEST_ERR(nvme_ub_mmiowr_cmbloc_reserved
,
1025 "invalid write to reserved CMBLOC"
1026 " when CMBSZ is zero, ignored");
1028 case 0x3C: /* CMBSZ */
1029 NVME_GUEST_ERR(nvme_ub_mmiowr_cmbsz_readonly
,
1030 "invalid write to read only CMBSZ, ignored");
1033 NVME_GUEST_ERR(nvme_ub_mmiowr_invalid
,
1034 "invalid MMIO write,"
1035 " offset=0x%"PRIx64
", data=%"PRIx64
"",
1041 static uint64_t nvme_mmio_read(void *opaque
, hwaddr addr
, unsigned size
)
1043 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
1044 uint8_t *ptr
= (uint8_t *)&n
->bar
;
1047 if (unlikely(addr
& (sizeof(uint32_t) - 1))) {
1048 NVME_GUEST_ERR(nvme_ub_mmiord_misaligned32
,
1049 "MMIO read not 32-bit aligned,"
1050 " offset=0x%"PRIx64
"", addr
);
1051 /* should RAZ, fall through for now */
1052 } else if (unlikely(size
< sizeof(uint32_t))) {
1053 NVME_GUEST_ERR(nvme_ub_mmiord_toosmall
,
1054 "MMIO read smaller than 32-bits,"
1055 " offset=0x%"PRIx64
"", addr
);
1056 /* should RAZ, fall through for now */
1059 if (addr
< sizeof(n
->bar
)) {
1060 memcpy(&val
, ptr
+ addr
, size
);
1062 NVME_GUEST_ERR(nvme_ub_mmiord_invalid_ofs
,
1063 "MMIO read beyond last register,"
1064 " offset=0x%"PRIx64
", returning 0", addr
);
1070 static void nvme_process_db(NvmeCtrl
*n
, hwaddr addr
, int val
)
1074 if (unlikely(addr
& ((1 << 2) - 1))) {
1075 NVME_GUEST_ERR(nvme_ub_db_wr_misaligned
,
1076 "doorbell write not 32-bit aligned,"
1077 " offset=0x%"PRIx64
", ignoring", addr
);
1081 if (((addr
- 0x1000) >> 2) & 1) {
1082 /* Completion queue doorbell write */
1084 uint16_t new_head
= val
& 0xffff;
1088 qid
= (addr
- (0x1000 + (1 << 2))) >> 3;
1089 if (unlikely(nvme_check_cqid(n
, qid
))) {
1090 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cq
,
1091 "completion queue doorbell write"
1092 " for nonexistent queue,"
1093 " sqid=%"PRIu32
", ignoring", qid
);
1098 if (unlikely(new_head
>= cq
->size
)) {
1099 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cqhead
,
1100 "completion queue doorbell write value"
1101 " beyond queue size, sqid=%"PRIu32
","
1102 " new_head=%"PRIu16
", ignoring",
1107 start_sqs
= nvme_cq_full(cq
) ? 1 : 0;
1108 cq
->head
= new_head
;
1111 QTAILQ_FOREACH(sq
, &cq
->sq_list
, entry
) {
1112 timer_mod(sq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
1114 timer_mod(cq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
1117 if (cq
->tail
== cq
->head
) {
1118 nvme_irq_deassert(n
, cq
);
1121 /* Submission queue doorbell write */
1123 uint16_t new_tail
= val
& 0xffff;
1126 qid
= (addr
- 0x1000) >> 3;
1127 if (unlikely(nvme_check_sqid(n
, qid
))) {
1128 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sq
,
1129 "submission queue doorbell write"
1130 " for nonexistent queue,"
1131 " sqid=%"PRIu32
", ignoring", qid
);
1136 if (unlikely(new_tail
>= sq
->size
)) {
1137 NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sqtail
,
1138 "submission queue doorbell write value"
1139 " beyond queue size, sqid=%"PRIu32
","
1140 " new_tail=%"PRIu16
", ignoring",
1145 sq
->tail
= new_tail
;
1146 timer_mod(sq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
1150 static void nvme_mmio_write(void *opaque
, hwaddr addr
, uint64_t data
,
1153 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
1154 if (addr
< sizeof(n
->bar
)) {
1155 nvme_write_bar(n
, addr
, data
, size
);
1156 } else if (addr
>= 0x1000) {
1157 nvme_process_db(n
, addr
, data
);
1161 static const MemoryRegionOps nvme_mmio_ops
= {
1162 .read
= nvme_mmio_read
,
1163 .write
= nvme_mmio_write
,
1164 .endianness
= DEVICE_LITTLE_ENDIAN
,
1166 .min_access_size
= 2,
1167 .max_access_size
= 8,
1171 static void nvme_cmb_write(void *opaque
, hwaddr addr
, uint64_t data
,
1174 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
1175 memcpy(&n
->cmbuf
[addr
], &data
, size
);
1178 static uint64_t nvme_cmb_read(void *opaque
, hwaddr addr
, unsigned size
)
1181 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
1183 memcpy(&val
, &n
->cmbuf
[addr
], size
);
1187 static const MemoryRegionOps nvme_cmb_ops
= {
1188 .read
= nvme_cmb_read
,
1189 .write
= nvme_cmb_write
,
1190 .endianness
= DEVICE_LITTLE_ENDIAN
,
1192 .min_access_size
= 2,
1193 .max_access_size
= 8,
1197 static void nvme_realize(PCIDevice
*pci_dev
, Error
**errp
)
1199 NvmeCtrl
*n
= NVME(pci_dev
);
1200 NvmeIdCtrl
*id
= &n
->id_ctrl
;
1207 error_setg(errp
, "drive property not set");
1211 bs_size
= blk_getlength(n
->conf
.blk
);
1213 error_setg(errp
, "could not get backing file size");
1217 blkconf_serial(&n
->conf
, &n
->serial
);
1219 error_setg(errp
, "serial property not set");
1222 blkconf_blocksizes(&n
->conf
);
1223 if (!blkconf_apply_backend_options(&n
->conf
, blk_is_read_only(n
->conf
.blk
),
1228 pci_conf
= pci_dev
->config
;
1229 pci_conf
[PCI_INTERRUPT_PIN
] = 1;
1230 pci_config_set_prog_interface(pci_dev
->config
, 0x2);
1231 pci_config_set_class(pci_dev
->config
, PCI_CLASS_STORAGE_EXPRESS
);
1232 pcie_endpoint_cap_init(&n
->parent_obj
, 0x80);
1234 n
->num_namespaces
= 1;
1236 n
->reg_size
= pow2ceil(0x1004 + 2 * (n
->num_queues
+ 1) * 4);
1237 n
->ns_size
= bs_size
/ (uint64_t)n
->num_namespaces
;
1239 n
->namespaces
= g_new0(NvmeNamespace
, n
->num_namespaces
);
1240 n
->sq
= g_new0(NvmeSQueue
*, n
->num_queues
);
1241 n
->cq
= g_new0(NvmeCQueue
*, n
->num_queues
);
1243 memory_region_init_io(&n
->iomem
, OBJECT(n
), &nvme_mmio_ops
, n
,
1244 "nvme", n
->reg_size
);
1245 pci_register_bar(&n
->parent_obj
, 0,
1246 PCI_BASE_ADDRESS_SPACE_MEMORY
| PCI_BASE_ADDRESS_MEM_TYPE_64
,
1248 msix_init_exclusive_bar(&n
->parent_obj
, n
->num_queues
, 4, NULL
);
1250 id
->vid
= cpu_to_le16(pci_get_word(pci_conf
+ PCI_VENDOR_ID
));
1251 id
->ssvid
= cpu_to_le16(pci_get_word(pci_conf
+ PCI_SUBSYSTEM_VENDOR_ID
));
1252 strpadcpy((char *)id
->mn
, sizeof(id
->mn
), "QEMU NVMe Ctrl", ' ');
1253 strpadcpy((char *)id
->fr
, sizeof(id
->fr
), "1.0", ' ');
1254 strpadcpy((char *)id
->sn
, sizeof(id
->sn
), n
->serial
, ' ');
1259 id
->oacs
= cpu_to_le16(0);
1262 id
->sqes
= (0x6 << 4) | 0x6;
1263 id
->cqes
= (0x4 << 4) | 0x4;
1264 id
->nn
= cpu_to_le32(n
->num_namespaces
);
1265 id
->oncs
= cpu_to_le16(NVME_ONCS_WRITE_ZEROS
);
1266 id
->psd
[0].mp
= cpu_to_le16(0x9c4);
1267 id
->psd
[0].enlat
= cpu_to_le32(0x10);
1268 id
->psd
[0].exlat
= cpu_to_le32(0x4);
1269 if (blk_enable_write_cache(n
->conf
.blk
)) {
1274 NVME_CAP_SET_MQES(n
->bar
.cap
, 0x7ff);
1275 NVME_CAP_SET_CQR(n
->bar
.cap
, 1);
1276 NVME_CAP_SET_AMS(n
->bar
.cap
, 1);
1277 NVME_CAP_SET_TO(n
->bar
.cap
, 0xf);
1278 NVME_CAP_SET_CSS(n
->bar
.cap
, 1);
1279 NVME_CAP_SET_MPSMAX(n
->bar
.cap
, 4);
1281 n
->bar
.vs
= 0x00010200;
1282 n
->bar
.intmc
= n
->bar
.intms
= 0;
1284 if (n
->cmb_size_mb
) {
1286 NVME_CMBLOC_SET_BIR(n
->bar
.cmbloc
, 2);
1287 NVME_CMBLOC_SET_OFST(n
->bar
.cmbloc
, 0);
1289 NVME_CMBSZ_SET_SQS(n
->bar
.cmbsz
, 1);
1290 NVME_CMBSZ_SET_CQS(n
->bar
.cmbsz
, 0);
1291 NVME_CMBSZ_SET_LISTS(n
->bar
.cmbsz
, 0);
1292 NVME_CMBSZ_SET_RDS(n
->bar
.cmbsz
, 1);
1293 NVME_CMBSZ_SET_WDS(n
->bar
.cmbsz
, 1);
1294 NVME_CMBSZ_SET_SZU(n
->bar
.cmbsz
, 2); /* MBs */
1295 NVME_CMBSZ_SET_SZ(n
->bar
.cmbsz
, n
->cmb_size_mb
);
1297 n
->cmbloc
= n
->bar
.cmbloc
;
1298 n
->cmbsz
= n
->bar
.cmbsz
;
1300 n
->cmbuf
= g_malloc0(NVME_CMBSZ_GETSIZE(n
->bar
.cmbsz
));
1301 memory_region_init_io(&n
->ctrl_mem
, OBJECT(n
), &nvme_cmb_ops
, n
,
1302 "nvme-cmb", NVME_CMBSZ_GETSIZE(n
->bar
.cmbsz
));
1303 pci_register_bar(&n
->parent_obj
, NVME_CMBLOC_BIR(n
->bar
.cmbloc
),
1304 PCI_BASE_ADDRESS_SPACE_MEMORY
| PCI_BASE_ADDRESS_MEM_TYPE_64
|
1305 PCI_BASE_ADDRESS_MEM_PREFETCH
, &n
->ctrl_mem
);
1309 for (i
= 0; i
< n
->num_namespaces
; i
++) {
1310 NvmeNamespace
*ns
= &n
->namespaces
[i
];
1311 NvmeIdNs
*id_ns
= &ns
->id_ns
;
1318 id_ns
->lbaf
[0].ds
= BDRV_SECTOR_BITS
;
1319 id_ns
->ncap
= id_ns
->nuse
= id_ns
->nsze
=
1320 cpu_to_le64(n
->ns_size
>>
1321 id_ns
->lbaf
[NVME_ID_NS_FLBAS_INDEX(ns
->id_ns
.flbas
)].ds
);
1325 static void nvme_exit(PCIDevice
*pci_dev
)
1327 NvmeCtrl
*n
= NVME(pci_dev
);
1330 g_free(n
->namespaces
);
1334 memory_region_unref(&n
->ctrl_mem
);
1337 msix_uninit_exclusive_bar(pci_dev
);
1340 static Property nvme_props
[] = {
1341 DEFINE_BLOCK_PROPERTIES(NvmeCtrl
, conf
),
1342 DEFINE_PROP_STRING("serial", NvmeCtrl
, serial
),
1343 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl
, cmb_size_mb
, 0),
1344 DEFINE_PROP_END_OF_LIST(),
1347 static const VMStateDescription nvme_vmstate
= {
1352 static void nvme_class_init(ObjectClass
*oc
, void *data
)
1354 DeviceClass
*dc
= DEVICE_CLASS(oc
);
1355 PCIDeviceClass
*pc
= PCI_DEVICE_CLASS(oc
);
1357 pc
->realize
= nvme_realize
;
1358 pc
->exit
= nvme_exit
;
1359 pc
->class_id
= PCI_CLASS_STORAGE_EXPRESS
;
1360 pc
->vendor_id
= PCI_VENDOR_ID_INTEL
;
1361 pc
->device_id
= 0x5845;
1364 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
1365 dc
->desc
= "Non-Volatile Memory Express";
1366 dc
->props
= nvme_props
;
1367 dc
->vmsd
= &nvme_vmstate
;
1370 static void nvme_instance_init(Object
*obj
)
1372 NvmeCtrl
*s
= NVME(obj
);
1374 device_add_bootindex_property(obj
, &s
->conf
.bootindex
,
1375 "bootindex", "/namespace@1,0",
1376 DEVICE(obj
), &error_abort
);
1379 static const TypeInfo nvme_info
= {
1381 .parent
= TYPE_PCI_DEVICE
,
1382 .instance_size
= sizeof(NvmeCtrl
),
1383 .class_init
= nvme_class_init
,
1384 .instance_init
= nvme_instance_init
,
1385 .interfaces
= (InterfaceInfo
[]) {
1386 { INTERFACE_PCIE_DEVICE
},
1391 static void nvme_register_types(void)
1393 type_register_static(&nvme_info
);
1396 type_init(nvme_register_types
)