util/vfio-helpers: Rework the IOVA allocator to avoid IOVA reserved regions
[qemu/ar7.git] / target / arm / kvm64.c
blobfae07c3f0431d26fb8ebd92a96522af7276bf32a
1 /*
2 * ARM implementation of KVM hooks, 64 bit specific code
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5 * Copyright Alex Bennée 2014, Linaro
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/ptrace.h>
16 #include <linux/elf.h>
17 #include <linux/kvm.h>
19 #include "qemu-common.h"
20 #include "cpu.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "qemu/main-loop.h"
25 #include "exec/gdbstub.h"
26 #include "sysemu/runstate.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/kvm_int.h"
29 #include "kvm_arm.h"
30 #include "internals.h"
31 #include "hw/acpi/acpi.h"
32 #include "hw/acpi/ghes.h"
33 #include "hw/arm/virt.h"
35 static bool have_guest_debug;
38 * Although the ARM implementation of hardware assisted debugging
39 * allows for different breakpoints per-core, the current GDB
40 * interface treats them as a global pool of registers (which seems to
41 * be the case for x86, ppc and s390). As a result we store one copy
42 * of registers which is used for all active cores.
44 * Write access is serialised by virtue of the GDB protocol which
45 * updates things. Read access (i.e. when the values are copied to the
46 * vCPU) is also gated by GDB's run control.
48 * This is not unreasonable as most of the time debugging kernels you
49 * never know which core will eventually execute your function.
52 typedef struct {
53 uint64_t bcr;
54 uint64_t bvr;
55 } HWBreakpoint;
57 /* The watchpoint registers can cover more area than the requested
58 * watchpoint so we need to store the additional information
59 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
60 * when the watchpoint is hit.
62 typedef struct {
63 uint64_t wcr;
64 uint64_t wvr;
65 CPUWatchpoint details;
66 } HWWatchpoint;
68 /* Maximum and current break/watch point counts */
69 int max_hw_bps, max_hw_wps;
70 GArray *hw_breakpoints, *hw_watchpoints;
72 #define cur_hw_wps (hw_watchpoints->len)
73 #define cur_hw_bps (hw_breakpoints->len)
74 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
75 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
77 /**
78 * kvm_arm_init_debug() - check for guest debug capabilities
79 * @cs: CPUState
81 * kvm_check_extension returns the number of debug registers we have
82 * or 0 if we have none.
85 static void kvm_arm_init_debug(CPUState *cs)
87 have_guest_debug = kvm_check_extension(cs->kvm_state,
88 KVM_CAP_SET_GUEST_DEBUG);
90 max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
91 hw_watchpoints = g_array_sized_new(true, true,
92 sizeof(HWWatchpoint), max_hw_wps);
94 max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
95 hw_breakpoints = g_array_sized_new(true, true,
96 sizeof(HWBreakpoint), max_hw_bps);
97 return;
101 * insert_hw_breakpoint()
102 * @addr: address of breakpoint
104 * See ARM ARM D2.9.1 for details but here we are only going to create
105 * simple un-linked breakpoints (i.e. we don't chain breakpoints
106 * together to match address and context or vmid). The hardware is
107 * capable of fancier matching but that will require exposing that
108 * fanciness to GDB's interface
110 * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
112 * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
113 * +------+------+-------+-----+----+------+-----+------+-----+---+
114 * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
115 * +------+------+-------+-----+----+------+-----+------+-----+---+
117 * BT: Breakpoint type (0 = unlinked address match)
118 * LBN: Linked BP number (0 = unused)
119 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
120 * BAS: Byte Address Select (RES1 for AArch64)
121 * E: Enable bit
123 * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
125 * 63 53 52 49 48 2 1 0
126 * +------+-----------+----------+-----+
127 * | RESS | VA[52:49] | VA[48:2] | 0 0 |
128 * +------+-----------+----------+-----+
130 * Depending on the addressing mode bits the top bits of the register
131 * are a sign extension of the highest applicable VA bit. Some
132 * versions of GDB don't do it correctly so we ensure they are correct
133 * here so future PC comparisons will work properly.
136 static int insert_hw_breakpoint(target_ulong addr)
138 HWBreakpoint brk = {
139 .bcr = 0x1, /* BCR E=1, enable */
140 .bvr = sextract64(addr, 0, 53)
143 if (cur_hw_bps >= max_hw_bps) {
144 return -ENOBUFS;
147 brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */
148 brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */
150 g_array_append_val(hw_breakpoints, brk);
152 return 0;
156 * delete_hw_breakpoint()
157 * @pc: address of breakpoint
159 * Delete a breakpoint and shuffle any above down
162 static int delete_hw_breakpoint(target_ulong pc)
164 int i;
165 for (i = 0; i < hw_breakpoints->len; i++) {
166 HWBreakpoint *brk = get_hw_bp(i);
167 if (brk->bvr == pc) {
168 g_array_remove_index(hw_breakpoints, i);
169 return 0;
172 return -ENOENT;
176 * insert_hw_watchpoint()
177 * @addr: address of watch point
178 * @len: size of area
179 * @type: type of watch point
181 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
182 * stuff if we want to. The watch points can be linked with the break
183 * points above to make them context aware. However for simplicity
184 * currently we only deal with simple read/write watch points.
186 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
188 * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
189 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
190 * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
191 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
193 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
194 * WT: 0 - unlinked, 1 - linked (not currently used)
195 * LBN: Linked BP number (not currently used)
196 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
197 * BAS: Byte Address Select
198 * LSC: Load/Store control (01: load, 10: store, 11: both)
199 * E: Enable
201 * The bottom 2 bits of the value register are masked. Therefore to
202 * break on any sizes smaller than an unaligned word you need to set
203 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
204 * need to ensure you mask the address as required and set BAS=0xff
207 static int insert_hw_watchpoint(target_ulong addr,
208 target_ulong len, int type)
210 HWWatchpoint wp = {
211 .wcr = 1, /* E=1, enable */
212 .wvr = addr & (~0x7ULL),
213 .details = { .vaddr = addr, .len = len }
216 if (cur_hw_wps >= max_hw_wps) {
217 return -ENOBUFS;
221 * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
222 * valid whether EL3 is implemented or not
224 wp.wcr = deposit32(wp.wcr, 1, 2, 3);
226 switch (type) {
227 case GDB_WATCHPOINT_READ:
228 wp.wcr = deposit32(wp.wcr, 3, 2, 1);
229 wp.details.flags = BP_MEM_READ;
230 break;
231 case GDB_WATCHPOINT_WRITE:
232 wp.wcr = deposit32(wp.wcr, 3, 2, 2);
233 wp.details.flags = BP_MEM_WRITE;
234 break;
235 case GDB_WATCHPOINT_ACCESS:
236 wp.wcr = deposit32(wp.wcr, 3, 2, 3);
237 wp.details.flags = BP_MEM_ACCESS;
238 break;
239 default:
240 g_assert_not_reached();
241 break;
243 if (len <= 8) {
244 /* we align the address and set the bits in BAS */
245 int off = addr & 0x7;
246 int bas = (1 << len) - 1;
248 wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
249 } else {
250 /* For ranges above 8 bytes we need to be a power of 2 */
251 if (is_power_of_2(len)) {
252 int bits = ctz64(len);
254 wp.wvr &= ~((1 << bits) - 1);
255 wp.wcr = deposit32(wp.wcr, 24, 4, bits);
256 wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
257 } else {
258 return -ENOBUFS;
262 g_array_append_val(hw_watchpoints, wp);
263 return 0;
267 static bool check_watchpoint_in_range(int i, target_ulong addr)
269 HWWatchpoint *wp = get_hw_wp(i);
270 uint64_t addr_top, addr_bottom = wp->wvr;
271 int bas = extract32(wp->wcr, 5, 8);
272 int mask = extract32(wp->wcr, 24, 4);
274 if (mask) {
275 addr_top = addr_bottom + (1 << mask);
276 } else {
277 /* BAS must be contiguous but can offset against the base
278 * address in DBGWVR */
279 addr_bottom = addr_bottom + ctz32(bas);
280 addr_top = addr_bottom + clo32(bas);
283 if (addr >= addr_bottom && addr <= addr_top) {
284 return true;
287 return false;
291 * delete_hw_watchpoint()
292 * @addr: address of breakpoint
294 * Delete a breakpoint and shuffle any above down
297 static int delete_hw_watchpoint(target_ulong addr,
298 target_ulong len, int type)
300 int i;
301 for (i = 0; i < cur_hw_wps; i++) {
302 if (check_watchpoint_in_range(i, addr)) {
303 g_array_remove_index(hw_watchpoints, i);
304 return 0;
307 return -ENOENT;
311 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
312 target_ulong len, int type)
314 switch (type) {
315 case GDB_BREAKPOINT_HW:
316 return insert_hw_breakpoint(addr);
317 break;
318 case GDB_WATCHPOINT_READ:
319 case GDB_WATCHPOINT_WRITE:
320 case GDB_WATCHPOINT_ACCESS:
321 return insert_hw_watchpoint(addr, len, type);
322 default:
323 return -ENOSYS;
327 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
328 target_ulong len, int type)
330 switch (type) {
331 case GDB_BREAKPOINT_HW:
332 return delete_hw_breakpoint(addr);
333 case GDB_WATCHPOINT_READ:
334 case GDB_WATCHPOINT_WRITE:
335 case GDB_WATCHPOINT_ACCESS:
336 return delete_hw_watchpoint(addr, len, type);
337 default:
338 return -ENOSYS;
343 void kvm_arch_remove_all_hw_breakpoints(void)
345 if (cur_hw_wps > 0) {
346 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
348 if (cur_hw_bps > 0) {
349 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
353 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
355 int i;
356 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
358 for (i = 0; i < max_hw_wps; i++) {
359 HWWatchpoint *wp = get_hw_wp(i);
360 ptr->dbg_wcr[i] = wp->wcr;
361 ptr->dbg_wvr[i] = wp->wvr;
363 for (i = 0; i < max_hw_bps; i++) {
364 HWBreakpoint *bp = get_hw_bp(i);
365 ptr->dbg_bcr[i] = bp->bcr;
366 ptr->dbg_bvr[i] = bp->bvr;
370 bool kvm_arm_hw_debug_active(CPUState *cs)
372 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
375 static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
377 int i;
379 for (i = 0; i < cur_hw_bps; i++) {
380 HWBreakpoint *bp = get_hw_bp(i);
381 if (bp->bvr == pc) {
382 return true;
385 return false;
388 static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
390 int i;
392 for (i = 0; i < cur_hw_wps; i++) {
393 if (check_watchpoint_in_range(i, addr)) {
394 return &get_hw_wp(i)->details;
397 return NULL;
400 static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr)
402 int err;
404 err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
405 if (err != 0) {
406 error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err));
407 return false;
410 err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
411 if (err != 0) {
412 error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err));
413 return false;
416 return true;
419 void kvm_arm_pmu_init(CPUState *cs)
421 struct kvm_device_attr attr = {
422 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
423 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
426 if (!ARM_CPU(cs)->has_pmu) {
427 return;
429 if (!kvm_arm_pmu_set_attr(cs, &attr)) {
430 error_report("failed to init PMU");
431 abort();
435 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
437 struct kvm_device_attr attr = {
438 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
439 .addr = (intptr_t)&irq,
440 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
443 if (!ARM_CPU(cs)->has_pmu) {
444 return;
446 if (!kvm_arm_pmu_set_attr(cs, &attr)) {
447 error_report("failed to set irq for PMU");
448 abort();
452 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
454 uint64_t ret;
455 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
456 int err;
458 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
459 err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
460 if (err < 0) {
461 return -1;
463 *pret = ret;
464 return 0;
467 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
469 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
471 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
472 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
475 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
477 /* Identify the feature bits corresponding to the host CPU, and
478 * fill out the ARMHostCPUClass fields accordingly. To do this
479 * we have to create a scratch VM, create a single CPU inside it,
480 * and then query that CPU for the relevant ID registers.
482 int fdarray[3];
483 bool sve_supported;
484 uint64_t features = 0;
485 uint64_t t;
486 int err;
488 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
489 * we know these will only support creating one kind of guest CPU,
490 * which is its preferred CPU type. Fortunately these old kernels
491 * support only a very limited number of CPUs.
493 static const uint32_t cpus_to_try[] = {
494 KVM_ARM_TARGET_AEM_V8,
495 KVM_ARM_TARGET_FOUNDATION_V8,
496 KVM_ARM_TARGET_CORTEX_A57,
497 QEMU_KVM_ARM_TARGET_NONE
500 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
501 * to use the preferred target
503 struct kvm_vcpu_init init = { .target = -1, };
505 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
506 return false;
509 ahcf->target = init.target;
510 ahcf->dtb_compatible = "arm,arm-v8";
512 err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
513 ARM64_SYS_REG(3, 0, 0, 4, 0));
514 if (unlikely(err < 0)) {
516 * Before v4.15, the kernel only exposed a limited number of system
517 * registers, not including any of the interesting AArch64 ID regs.
518 * For the most part we could leave these fields as zero with minimal
519 * effect, since this does not affect the values seen by the guest.
521 * However, it could cause problems down the line for QEMU,
522 * so provide a minimal v8.0 default.
524 * ??? Could read MIDR and use knowledge from cpu64.c.
525 * ??? Could map a page of memory into our temp guest and
526 * run the tiniest of hand-crafted kernels to extract
527 * the values seen by the guest.
528 * ??? Either of these sounds like too much effort just
529 * to work around running a modern host kernel.
531 ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
532 err = 0;
533 } else {
534 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
535 ARM64_SYS_REG(3, 0, 0, 4, 1));
536 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
537 ARM64_SYS_REG(3, 0, 0, 5, 0));
538 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
539 ARM64_SYS_REG(3, 0, 0, 5, 1));
540 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
541 ARM64_SYS_REG(3, 0, 0, 6, 0));
542 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
543 ARM64_SYS_REG(3, 0, 0, 6, 1));
544 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
545 ARM64_SYS_REG(3, 0, 0, 7, 0));
546 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
547 ARM64_SYS_REG(3, 0, 0, 7, 1));
548 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
549 ARM64_SYS_REG(3, 0, 0, 7, 2));
552 * Note that if AArch32 support is not present in the host,
553 * the AArch32 sysregs are present to be read, but will
554 * return UNKNOWN values. This is neither better nor worse
555 * than skipping the reads and leaving 0, as we must avoid
556 * considering the values in every case.
558 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
559 ARM64_SYS_REG(3, 0, 0, 1, 0));
560 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
561 ARM64_SYS_REG(3, 0, 0, 1, 1));
562 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
563 ARM64_SYS_REG(3, 0, 0, 1, 2));
564 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
565 ARM64_SYS_REG(3, 0, 0, 1, 4));
566 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
567 ARM64_SYS_REG(3, 0, 0, 1, 5));
568 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
569 ARM64_SYS_REG(3, 0, 0, 1, 6));
570 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
571 ARM64_SYS_REG(3, 0, 0, 1, 7));
572 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
573 ARM64_SYS_REG(3, 0, 0, 2, 0));
574 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
575 ARM64_SYS_REG(3, 0, 0, 2, 1));
576 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
577 ARM64_SYS_REG(3, 0, 0, 2, 2));
578 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
579 ARM64_SYS_REG(3, 0, 0, 2, 3));
580 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
581 ARM64_SYS_REG(3, 0, 0, 2, 4));
582 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
583 ARM64_SYS_REG(3, 0, 0, 2, 5));
584 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
585 ARM64_SYS_REG(3, 0, 0, 2, 6));
586 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
587 ARM64_SYS_REG(3, 0, 0, 2, 7));
589 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
590 ARM64_SYS_REG(3, 0, 0, 3, 0));
591 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
592 ARM64_SYS_REG(3, 0, 0, 3, 1));
593 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
594 ARM64_SYS_REG(3, 0, 0, 3, 2));
597 * DBGDIDR is a bit complicated because the kernel doesn't
598 * provide an accessor for it in 64-bit mode, which is what this
599 * scratch VM is in, and there's no architected "64-bit sysreg
600 * which reads the same as the 32-bit register" the way there is
601 * for other ID registers. Instead we synthesize a value from the
602 * AArch64 ID_AA64DFR0, the same way the kernel code in
603 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
604 * We only do this if the CPU supports AArch32 at EL1.
606 if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
607 int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
608 int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
609 int ctx_cmps =
610 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
611 int version = 6; /* ARMv8 debug architecture */
612 bool has_el3 =
613 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
614 uint32_t dbgdidr = 0;
616 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
617 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
618 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
619 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
620 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
621 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
622 dbgdidr |= (1 << 15); /* RES1 bit */
623 ahcf->isar.dbgdidr = dbgdidr;
627 sve_supported = ioctl(fdarray[0], KVM_CHECK_EXTENSION, KVM_CAP_ARM_SVE) > 0;
629 kvm_arm_destroy_scratch_host_vcpu(fdarray);
631 if (err < 0) {
632 return false;
635 /* Add feature bits that can't appear until after VCPU init. */
636 if (sve_supported) {
637 t = ahcf->isar.id_aa64pfr0;
638 t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
639 ahcf->isar.id_aa64pfr0 = t;
643 * We can assume any KVM supporting CPU is at least a v8
644 * with VFPv4+Neon; this in turn implies most of the other
645 * feature bits.
647 features |= 1ULL << ARM_FEATURE_V8;
648 features |= 1ULL << ARM_FEATURE_NEON;
649 features |= 1ULL << ARM_FEATURE_AARCH64;
650 features |= 1ULL << ARM_FEATURE_PMU;
651 features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
653 ahcf->features = features;
655 return true;
658 bool kvm_arm_aarch32_supported(void)
660 return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
663 bool kvm_arm_sve_supported(void)
665 return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
668 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
670 void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map)
672 /* Only call this function if kvm_arm_sve_supported() returns true. */
673 static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
674 static bool probed;
675 uint32_t vq = 0;
676 int i, j;
678 bitmap_clear(map, 0, ARM_MAX_VQ);
681 * KVM ensures all host CPUs support the same set of vector lengths.
682 * So we only need to create the scratch VCPUs once and then cache
683 * the results.
685 if (!probed) {
686 struct kvm_vcpu_init init = {
687 .target = -1,
688 .features[0] = (1 << KVM_ARM_VCPU_SVE),
690 struct kvm_one_reg reg = {
691 .id = KVM_REG_ARM64_SVE_VLS,
692 .addr = (uint64_t)&vls[0],
694 int fdarray[3], ret;
696 probed = true;
698 if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
699 error_report("failed to create scratch VCPU with SVE enabled");
700 abort();
702 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
703 kvm_arm_destroy_scratch_host_vcpu(fdarray);
704 if (ret) {
705 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
706 strerror(errno));
707 abort();
710 for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
711 if (vls[i]) {
712 vq = 64 - clz64(vls[i]) + i * 64;
713 break;
716 if (vq > ARM_MAX_VQ) {
717 warn_report("KVM supports vector lengths larger than "
718 "QEMU can enable");
722 for (i = 0; i < KVM_ARM64_SVE_VLS_WORDS; ++i) {
723 if (!vls[i]) {
724 continue;
726 for (j = 1; j <= 64; ++j) {
727 vq = j + i * 64;
728 if (vq > ARM_MAX_VQ) {
729 return;
731 if (vls[i] & (1UL << (j - 1))) {
732 set_bit(vq - 1, map);
738 static int kvm_arm_sve_set_vls(CPUState *cs)
740 uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = {0};
741 struct kvm_one_reg reg = {
742 .id = KVM_REG_ARM64_SVE_VLS,
743 .addr = (uint64_t)&vls[0],
745 ARMCPU *cpu = ARM_CPU(cs);
746 uint32_t vq;
747 int i, j;
749 assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
751 for (vq = 1; vq <= cpu->sve_max_vq; ++vq) {
752 if (test_bit(vq - 1, cpu->sve_vq_map)) {
753 i = (vq - 1) / 64;
754 j = (vq - 1) % 64;
755 vls[i] |= 1UL << j;
759 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
762 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
764 int kvm_arch_init_vcpu(CPUState *cs)
766 int ret;
767 uint64_t mpidr;
768 ARMCPU *cpu = ARM_CPU(cs);
769 CPUARMState *env = &cpu->env;
771 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
772 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
773 error_report("KVM is not supported for this guest CPU type");
774 return -EINVAL;
777 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
779 /* Determine init features for this CPU */
780 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
781 if (cs->start_powered_off) {
782 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
784 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
785 cpu->psci_version = 2;
786 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
788 if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
789 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
791 if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
792 cpu->has_pmu = false;
794 if (cpu->has_pmu) {
795 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
796 } else {
797 env->features &= ~(1ULL << ARM_FEATURE_PMU);
799 if (cpu_isar_feature(aa64_sve, cpu)) {
800 assert(kvm_arm_sve_supported());
801 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
804 /* Do KVM_ARM_VCPU_INIT ioctl */
805 ret = kvm_arm_vcpu_init(cs);
806 if (ret) {
807 return ret;
810 if (cpu_isar_feature(aa64_sve, cpu)) {
811 ret = kvm_arm_sve_set_vls(cs);
812 if (ret) {
813 return ret;
815 ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
816 if (ret) {
817 return ret;
822 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
823 * Currently KVM has its own idea about MPIDR assignment, so we
824 * override our defaults with what we get from KVM.
826 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
827 if (ret) {
828 return ret;
830 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
832 kvm_arm_init_debug(cs);
834 /* Check whether user space can specify guest syndrome value */
835 kvm_arm_init_serror_injection(cs);
837 return kvm_arm_init_cpreg_list(cpu);
840 int kvm_arch_destroy_vcpu(CPUState *cs)
842 return 0;
845 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
847 /* Return true if the regidx is a register we should synchronize
848 * via the cpreg_tuples array (ie is not a core or sve reg that
849 * we sync by hand in kvm_arch_get/put_registers())
851 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
852 case KVM_REG_ARM_CORE:
853 case KVM_REG_ARM64_SVE:
854 return false;
855 default:
856 return true;
860 typedef struct CPRegStateLevel {
861 uint64_t regidx;
862 int level;
863 } CPRegStateLevel;
865 /* All system registers not listed in the following table are assumed to be
866 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
867 * often, you must add it to this table with a state of either
868 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
870 static const CPRegStateLevel non_runtime_cpregs[] = {
871 { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
874 int kvm_arm_cpreg_level(uint64_t regidx)
876 int i;
878 for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
879 const CPRegStateLevel *l = &non_runtime_cpregs[i];
880 if (l->regidx == regidx) {
881 return l->level;
885 return KVM_PUT_RUNTIME_STATE;
888 /* Callers must hold the iothread mutex lock */
889 static void kvm_inject_arm_sea(CPUState *c)
891 ARMCPU *cpu = ARM_CPU(c);
892 CPUARMState *env = &cpu->env;
893 CPUClass *cc = CPU_GET_CLASS(c);
894 uint32_t esr;
895 bool same_el;
897 c->exception_index = EXCP_DATA_ABORT;
898 env->exception.target_el = 1;
901 * Set the DFSC to synchronous external abort and set FnV to not valid,
902 * this will tell guest the FAR_ELx is UNKNOWN for this abort.
904 same_el = arm_current_el(env) == env->exception.target_el;
905 esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
907 env->exception.syndrome = esr;
909 cc->do_interrupt(c);
912 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
913 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
915 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
916 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
918 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
919 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
921 static int kvm_arch_put_fpsimd(CPUState *cs)
923 CPUARMState *env = &ARM_CPU(cs)->env;
924 struct kvm_one_reg reg;
925 int i, ret;
927 for (i = 0; i < 32; i++) {
928 uint64_t *q = aa64_vfp_qreg(env, i);
929 #ifdef HOST_WORDS_BIGENDIAN
930 uint64_t fp_val[2] = { q[1], q[0] };
931 reg.addr = (uintptr_t)fp_val;
932 #else
933 reg.addr = (uintptr_t)q;
934 #endif
935 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
936 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
937 if (ret) {
938 return ret;
942 return 0;
946 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
947 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
948 * code the slice index to zero for now as it's unlikely we'll need more than
949 * one slice for quite some time.
951 static int kvm_arch_put_sve(CPUState *cs)
953 ARMCPU *cpu = ARM_CPU(cs);
954 CPUARMState *env = &cpu->env;
955 uint64_t tmp[ARM_MAX_VQ * 2];
956 uint64_t *r;
957 struct kvm_one_reg reg;
958 int n, ret;
960 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
961 r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
962 reg.addr = (uintptr_t)r;
963 reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
964 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
965 if (ret) {
966 return ret;
970 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
971 r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
972 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
973 reg.addr = (uintptr_t)r;
974 reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
975 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
976 if (ret) {
977 return ret;
981 r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
982 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
983 reg.addr = (uintptr_t)r;
984 reg.id = KVM_REG_ARM64_SVE_FFR(0);
985 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
986 if (ret) {
987 return ret;
990 return 0;
993 int kvm_arch_put_registers(CPUState *cs, int level)
995 struct kvm_one_reg reg;
996 uint64_t val;
997 uint32_t fpr;
998 int i, ret;
999 unsigned int el;
1001 ARMCPU *cpu = ARM_CPU(cs);
1002 CPUARMState *env = &cpu->env;
1004 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
1005 * AArch64 registers before pushing them out to 64-bit KVM.
1007 if (!is_a64(env)) {
1008 aarch64_sync_32_to_64(env);
1011 for (i = 0; i < 31; i++) {
1012 reg.id = AARCH64_CORE_REG(regs.regs[i]);
1013 reg.addr = (uintptr_t) &env->xregs[i];
1014 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1015 if (ret) {
1016 return ret;
1020 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1021 * QEMU side we keep the current SP in xregs[31] as well.
1023 aarch64_save_sp(env, 1);
1025 reg.id = AARCH64_CORE_REG(regs.sp);
1026 reg.addr = (uintptr_t) &env->sp_el[0];
1027 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1028 if (ret) {
1029 return ret;
1032 reg.id = AARCH64_CORE_REG(sp_el1);
1033 reg.addr = (uintptr_t) &env->sp_el[1];
1034 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1035 if (ret) {
1036 return ret;
1039 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
1040 if (is_a64(env)) {
1041 val = pstate_read(env);
1042 } else {
1043 val = cpsr_read(env);
1045 reg.id = AARCH64_CORE_REG(regs.pstate);
1046 reg.addr = (uintptr_t) &val;
1047 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1048 if (ret) {
1049 return ret;
1052 reg.id = AARCH64_CORE_REG(regs.pc);
1053 reg.addr = (uintptr_t) &env->pc;
1054 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1055 if (ret) {
1056 return ret;
1059 reg.id = AARCH64_CORE_REG(elr_el1);
1060 reg.addr = (uintptr_t) &env->elr_el[1];
1061 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1062 if (ret) {
1063 return ret;
1066 /* Saved Program State Registers
1068 * Before we restore from the banked_spsr[] array we need to
1069 * ensure that any modifications to env->spsr are correctly
1070 * reflected in the banks.
1072 el = arm_current_el(env);
1073 if (el > 0 && !is_a64(env)) {
1074 i = bank_number(env->uncached_cpsr & CPSR_M);
1075 env->banked_spsr[i] = env->spsr;
1078 /* KVM 0-4 map to QEMU banks 1-5 */
1079 for (i = 0; i < KVM_NR_SPSR; i++) {
1080 reg.id = AARCH64_CORE_REG(spsr[i]);
1081 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1082 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1083 if (ret) {
1084 return ret;
1088 if (cpu_isar_feature(aa64_sve, cpu)) {
1089 ret = kvm_arch_put_sve(cs);
1090 } else {
1091 ret = kvm_arch_put_fpsimd(cs);
1093 if (ret) {
1094 return ret;
1097 reg.addr = (uintptr_t)(&fpr);
1098 fpr = vfp_get_fpsr(env);
1099 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1100 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1101 if (ret) {
1102 return ret;
1105 reg.addr = (uintptr_t)(&fpr);
1106 fpr = vfp_get_fpcr(env);
1107 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1108 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1109 if (ret) {
1110 return ret;
1113 write_cpustate_to_list(cpu, true);
1115 if (!write_list_to_kvmstate(cpu, level)) {
1116 return -EINVAL;
1120 * Setting VCPU events should be triggered after syncing the registers
1121 * to avoid overwriting potential changes made by KVM upon calling
1122 * KVM_SET_VCPU_EVENTS ioctl
1124 ret = kvm_put_vcpu_events(cpu);
1125 if (ret) {
1126 return ret;
1129 kvm_arm_sync_mpstate_to_kvm(cpu);
1131 return ret;
1134 static int kvm_arch_get_fpsimd(CPUState *cs)
1136 CPUARMState *env = &ARM_CPU(cs)->env;
1137 struct kvm_one_reg reg;
1138 int i, ret;
1140 for (i = 0; i < 32; i++) {
1141 uint64_t *q = aa64_vfp_qreg(env, i);
1142 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
1143 reg.addr = (uintptr_t)q;
1144 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1145 if (ret) {
1146 return ret;
1147 } else {
1148 #ifdef HOST_WORDS_BIGENDIAN
1149 uint64_t t;
1150 t = q[0], q[0] = q[1], q[1] = t;
1151 #endif
1155 return 0;
1159 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
1160 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
1161 * code the slice index to zero for now as it's unlikely we'll need more than
1162 * one slice for quite some time.
1164 static int kvm_arch_get_sve(CPUState *cs)
1166 ARMCPU *cpu = ARM_CPU(cs);
1167 CPUARMState *env = &cpu->env;
1168 struct kvm_one_reg reg;
1169 uint64_t *r;
1170 int n, ret;
1172 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
1173 r = &env->vfp.zregs[n].d[0];
1174 reg.addr = (uintptr_t)r;
1175 reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
1176 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1177 if (ret) {
1178 return ret;
1180 sve_bswap64(r, r, cpu->sve_max_vq * 2);
1183 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
1184 r = &env->vfp.pregs[n].p[0];
1185 reg.addr = (uintptr_t)r;
1186 reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
1187 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1188 if (ret) {
1189 return ret;
1191 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1194 r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
1195 reg.addr = (uintptr_t)r;
1196 reg.id = KVM_REG_ARM64_SVE_FFR(0);
1197 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1198 if (ret) {
1199 return ret;
1201 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
1203 return 0;
1206 int kvm_arch_get_registers(CPUState *cs)
1208 struct kvm_one_reg reg;
1209 uint64_t val;
1210 unsigned int el;
1211 uint32_t fpr;
1212 int i, ret;
1214 ARMCPU *cpu = ARM_CPU(cs);
1215 CPUARMState *env = &cpu->env;
1217 for (i = 0; i < 31; i++) {
1218 reg.id = AARCH64_CORE_REG(regs.regs[i]);
1219 reg.addr = (uintptr_t) &env->xregs[i];
1220 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1221 if (ret) {
1222 return ret;
1226 reg.id = AARCH64_CORE_REG(regs.sp);
1227 reg.addr = (uintptr_t) &env->sp_el[0];
1228 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1229 if (ret) {
1230 return ret;
1233 reg.id = AARCH64_CORE_REG(sp_el1);
1234 reg.addr = (uintptr_t) &env->sp_el[1];
1235 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1236 if (ret) {
1237 return ret;
1240 reg.id = AARCH64_CORE_REG(regs.pstate);
1241 reg.addr = (uintptr_t) &val;
1242 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1243 if (ret) {
1244 return ret;
1247 env->aarch64 = ((val & PSTATE_nRW) == 0);
1248 if (is_a64(env)) {
1249 pstate_write(env, val);
1250 } else {
1251 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
1254 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
1255 * QEMU side we keep the current SP in xregs[31] as well.
1257 aarch64_restore_sp(env, 1);
1259 reg.id = AARCH64_CORE_REG(regs.pc);
1260 reg.addr = (uintptr_t) &env->pc;
1261 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1262 if (ret) {
1263 return ret;
1266 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
1267 * incoming AArch64 regs received from 64-bit KVM.
1268 * We must perform this after all of the registers have been acquired from
1269 * the kernel.
1271 if (!is_a64(env)) {
1272 aarch64_sync_64_to_32(env);
1275 reg.id = AARCH64_CORE_REG(elr_el1);
1276 reg.addr = (uintptr_t) &env->elr_el[1];
1277 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1278 if (ret) {
1279 return ret;
1282 /* Fetch the SPSR registers
1284 * KVM SPSRs 0-4 map to QEMU banks 1-5
1286 for (i = 0; i < KVM_NR_SPSR; i++) {
1287 reg.id = AARCH64_CORE_REG(spsr[i]);
1288 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
1289 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1290 if (ret) {
1291 return ret;
1295 el = arm_current_el(env);
1296 if (el > 0 && !is_a64(env)) {
1297 i = bank_number(env->uncached_cpsr & CPSR_M);
1298 env->spsr = env->banked_spsr[i];
1301 if (cpu_isar_feature(aa64_sve, cpu)) {
1302 ret = kvm_arch_get_sve(cs);
1303 } else {
1304 ret = kvm_arch_get_fpsimd(cs);
1306 if (ret) {
1307 return ret;
1310 reg.addr = (uintptr_t)(&fpr);
1311 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
1312 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1313 if (ret) {
1314 return ret;
1316 vfp_set_fpsr(env, fpr);
1318 reg.addr = (uintptr_t)(&fpr);
1319 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
1320 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
1321 if (ret) {
1322 return ret;
1324 vfp_set_fpcr(env, fpr);
1326 ret = kvm_get_vcpu_events(cpu);
1327 if (ret) {
1328 return ret;
1331 if (!write_kvmstate_to_list(cpu)) {
1332 return -EINVAL;
1334 /* Note that it's OK to have registers which aren't in CPUState,
1335 * so we can ignore a failure return here.
1337 write_list_to_cpustate(cpu);
1339 kvm_arm_sync_mpstate_to_qemu(cpu);
1341 /* TODO: other registers */
1342 return ret;
1345 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
1347 ram_addr_t ram_addr;
1348 hwaddr paddr;
1349 Object *obj = qdev_get_machine();
1350 VirtMachineState *vms = VIRT_MACHINE(obj);
1351 bool acpi_enabled = virt_is_acpi_enabled(vms);
1353 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
1355 if (acpi_enabled && addr &&
1356 object_property_get_bool(obj, "ras", NULL)) {
1357 ram_addr = qemu_ram_addr_from_host(addr);
1358 if (ram_addr != RAM_ADDR_INVALID &&
1359 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
1360 kvm_hwpoison_page_add(ram_addr);
1362 * If this is a BUS_MCEERR_AR, we know we have been called
1363 * synchronously from the vCPU thread, so we can easily
1364 * synchronize the state and inject an error.
1366 * TODO: we currently don't tell the guest at all about
1367 * BUS_MCEERR_AO. In that case we might either be being
1368 * called synchronously from the vCPU thread, or a bit
1369 * later from the main thread, so doing the injection of
1370 * the error would be more complicated.
1372 if (code == BUS_MCEERR_AR) {
1373 kvm_cpu_synchronize_state(c);
1374 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
1375 kvm_inject_arm_sea(c);
1376 } else {
1377 error_report("failed to record the error");
1378 abort();
1381 return;
1383 if (code == BUS_MCEERR_AO) {
1384 error_report("Hardware memory error at addr %p for memory used by "
1385 "QEMU itself instead of guest system!", addr);
1389 if (code == BUS_MCEERR_AR) {
1390 error_report("Hardware memory error!");
1391 exit(1);
1395 /* C6.6.29 BRK instruction */
1396 static const uint32_t brk_insn = 0xd4200000;
1398 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1400 if (have_guest_debug) {
1401 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
1402 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
1403 return -EINVAL;
1405 return 0;
1406 } else {
1407 error_report("guest debug not supported on this kernel");
1408 return -EINVAL;
1412 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1414 static uint32_t brk;
1416 if (have_guest_debug) {
1417 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
1418 brk != brk_insn ||
1419 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
1420 return -EINVAL;
1422 return 0;
1423 } else {
1424 error_report("guest debug not supported on this kernel");
1425 return -EINVAL;
1429 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1431 * To minimise translating between kernel and user-space the kernel
1432 * ABI just provides user-space with the full exception syndrome
1433 * register value to be decoded in QEMU.
1436 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
1438 int hsr_ec = syn_get_ec(debug_exit->hsr);
1439 ARMCPU *cpu = ARM_CPU(cs);
1440 CPUClass *cc = CPU_GET_CLASS(cs);
1441 CPUARMState *env = &cpu->env;
1443 /* Ensure PC is synchronised */
1444 kvm_cpu_synchronize_state(cs);
1446 switch (hsr_ec) {
1447 case EC_SOFTWARESTEP:
1448 if (cs->singlestep_enabled) {
1449 return true;
1450 } else {
1452 * The kernel should have suppressed the guest's ability to
1453 * single step at this point so something has gone wrong.
1455 error_report("%s: guest single-step while debugging unsupported"
1456 " (%"PRIx64", %"PRIx32")",
1457 __func__, env->pc, debug_exit->hsr);
1458 return false;
1460 break;
1461 case EC_AA64_BKPT:
1462 if (kvm_find_sw_breakpoint(cs, env->pc)) {
1463 return true;
1465 break;
1466 case EC_BREAKPOINT:
1467 if (find_hw_breakpoint(cs, env->pc)) {
1468 return true;
1470 break;
1471 case EC_WATCHPOINT:
1473 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1474 if (wp) {
1475 cs->watchpoint_hit = wp;
1476 return true;
1478 break;
1480 default:
1481 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1482 __func__, debug_exit->hsr, env->pc);
1485 /* If we are not handling the debug exception it must belong to
1486 * the guest. Let's re-use the existing TCG interrupt code to set
1487 * everything up properly.
1489 cs->exception_index = EXCP_BKPT;
1490 env->exception.syndrome = debug_exit->hsr;
1491 env->exception.vaddress = debug_exit->far;
1492 env->exception.target_el = 1;
1493 qemu_mutex_lock_iothread();
1494 cc->do_interrupt(cs);
1495 qemu_mutex_unlock_iothread();
1497 return false;
1500 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1501 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1504 * ESR_EL1
1505 * ISS encoding
1506 * AARCH64: DFSC, bits [5:0]
1507 * AARCH32:
1508 * TTBCR.EAE == 0
1509 * FS[4] - DFSR[10]
1510 * FS[3:0] - DFSR[3:0]
1511 * TTBCR.EAE == 1
1512 * FS, bits [5:0]
1514 #define ESR_DFSC(aarch64, lpae, v) \
1515 ((aarch64 || (lpae)) ? ((v) & 0x3F) \
1516 : (((v) >> 6) | ((v) & 0x1F)))
1518 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1519 ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1521 bool kvm_arm_verify_ext_dabt_pending(CPUState *cs)
1523 uint64_t dfsr_val;
1525 if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1526 ARMCPU *cpu = ARM_CPU(cs);
1527 CPUARMState *env = &cpu->env;
1528 int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1529 int lpae = 0;
1531 if (!aarch64_mode) {
1532 uint64_t ttbcr;
1534 if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1535 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1536 && (ttbcr & TTBCR_EAE);
1540 * The verification here is based on the DFSC bits
1541 * of the ESR_EL1 reg only
1543 return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1544 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1546 return false;