util/vfio-helpers: Rework the IOVA allocator to avoid IOVA reserved regions
[qemu/ar7.git] / target / arm / helper.c
blobb394db394aed628e2808018765b7166067d3c8af
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/tcg.h"
29 #include "qemu/range.h"
30 #include "qapi/qapi-commands-machine-target.h"
31 #include "qapi/error.h"
32 #include "qemu/guest-random.h"
33 #ifdef CONFIG_TCG
34 #include "arm_ldst.h"
35 #include "exec/cpu_ldst.h"
36 #endif
38 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
40 #ifndef CONFIG_USER_ONLY
42 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
43 MMUAccessType access_type, ARMMMUIdx mmu_idx,
44 bool s1_is_el0,
45 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
46 target_ulong *page_size_ptr,
47 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
48 __attribute__((nonnull));
49 #endif
51 static void switch_mode(CPUARMState *env, int mode);
53 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
55 ARMCPU *cpu = env_archcpu(env);
56 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
58 /* VFP data registers are always little-endian. */
59 if (reg < nregs) {
60 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
62 if (arm_feature(env, ARM_FEATURE_NEON)) {
63 /* Aliases for Q regs. */
64 nregs += 16;
65 if (reg < nregs) {
66 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
67 return gdb_get_reg128(buf, q[0], q[1]);
70 switch (reg - nregs) {
71 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
72 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
73 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
75 return 0;
78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
80 ARMCPU *cpu = env_archcpu(env);
81 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
83 if (reg < nregs) {
84 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
85 return 8;
87 if (arm_feature(env, ARM_FEATURE_NEON)) {
88 nregs += 16;
89 if (reg < nregs) {
90 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
91 q[0] = ldq_le_p(buf);
92 q[1] = ldq_le_p(buf + 8);
93 return 16;
96 switch (reg - nregs) {
97 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
98 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
99 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
101 return 0;
104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
106 switch (reg) {
107 case 0 ... 31:
109 /* 128 bit FP register - quads are in LE order */
110 uint64_t *q = aa64_vfp_qreg(env, reg);
111 return gdb_get_reg128(buf, q[1], q[0]);
113 case 32:
114 /* FPSR */
115 return gdb_get_reg32(buf, vfp_get_fpsr(env));
116 case 33:
117 /* FPCR */
118 return gdb_get_reg32(buf,vfp_get_fpcr(env));
119 default:
120 return 0;
124 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
126 switch (reg) {
127 case 0 ... 31:
128 /* 128 bit FP register */
130 uint64_t *q = aa64_vfp_qreg(env, reg);
131 q[0] = ldq_le_p(buf);
132 q[1] = ldq_le_p(buf + 8);
133 return 16;
135 case 32:
136 /* FPSR */
137 vfp_set_fpsr(env, ldl_p(buf));
138 return 4;
139 case 33:
140 /* FPCR */
141 vfp_set_fpcr(env, ldl_p(buf));
142 return 4;
143 default:
144 return 0;
148 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
150 assert(ri->fieldoffset);
151 if (cpreg_field_is_64bit(ri)) {
152 return CPREG_FIELD64(env, ri);
153 } else {
154 return CPREG_FIELD32(env, ri);
158 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
159 uint64_t value)
161 assert(ri->fieldoffset);
162 if (cpreg_field_is_64bit(ri)) {
163 CPREG_FIELD64(env, ri) = value;
164 } else {
165 CPREG_FIELD32(env, ri) = value;
169 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
171 return (char *)env + ri->fieldoffset;
174 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
176 /* Raw read of a coprocessor register (as needed for migration, etc). */
177 if (ri->type & ARM_CP_CONST) {
178 return ri->resetvalue;
179 } else if (ri->raw_readfn) {
180 return ri->raw_readfn(env, ri);
181 } else if (ri->readfn) {
182 return ri->readfn(env, ri);
183 } else {
184 return raw_read(env, ri);
188 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
189 uint64_t v)
191 /* Raw write of a coprocessor register (as needed for migration, etc).
192 * Note that constant registers are treated as write-ignored; the
193 * caller should check for success by whether a readback gives the
194 * value written.
196 if (ri->type & ARM_CP_CONST) {
197 return;
198 } else if (ri->raw_writefn) {
199 ri->raw_writefn(env, ri, v);
200 } else if (ri->writefn) {
201 ri->writefn(env, ri, v);
202 } else {
203 raw_write(env, ri, v);
208 * arm_get/set_gdb_*: get/set a gdb register
209 * @env: the CPU state
210 * @buf: a buffer to copy to/from
211 * @reg: register number (offset from start of group)
213 * We return the number of bytes copied
216 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
218 ARMCPU *cpu = env_archcpu(env);
219 const ARMCPRegInfo *ri;
220 uint32_t key;
222 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
223 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
224 if (ri) {
225 if (cpreg_field_is_64bit(ri)) {
226 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
227 } else {
228 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
231 return 0;
234 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
236 return 0;
239 #ifdef TARGET_AARCH64
240 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
242 ARMCPU *cpu = env_archcpu(env);
244 switch (reg) {
245 /* The first 32 registers are the zregs */
246 case 0 ... 31:
248 int vq, len = 0;
249 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
250 len += gdb_get_reg128(buf,
251 env->vfp.zregs[reg].d[vq * 2 + 1],
252 env->vfp.zregs[reg].d[vq * 2]);
254 return len;
256 case 32:
257 return gdb_get_reg32(buf, vfp_get_fpsr(env));
258 case 33:
259 return gdb_get_reg32(buf, vfp_get_fpcr(env));
260 /* then 16 predicates and the ffr */
261 case 34 ... 50:
263 int preg = reg - 34;
264 int vq, len = 0;
265 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
266 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
268 return len;
270 case 51:
273 * We report in Vector Granules (VG) which is 64bit in a Z reg
274 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
276 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
277 return gdb_get_reg32(buf, vq * 2);
279 default:
280 /* gdbstub asked for something out our range */
281 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
282 break;
285 return 0;
288 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
290 ARMCPU *cpu = env_archcpu(env);
292 /* The first 32 registers are the zregs */
293 switch (reg) {
294 /* The first 32 registers are the zregs */
295 case 0 ... 31:
297 int vq, len = 0;
298 uint64_t *p = (uint64_t *) buf;
299 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
300 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
301 env->vfp.zregs[reg].d[vq * 2] = *p++;
302 len += 16;
304 return len;
306 case 32:
307 vfp_set_fpsr(env, *(uint32_t *)buf);
308 return 4;
309 case 33:
310 vfp_set_fpcr(env, *(uint32_t *)buf);
311 return 4;
312 case 34 ... 50:
314 int preg = reg - 34;
315 int vq, len = 0;
316 uint64_t *p = (uint64_t *) buf;
317 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
318 env->vfp.pregs[preg].p[vq / 4] = *p++;
319 len += 8;
321 return len;
323 case 51:
324 /* cannot set vg via gdbstub */
325 return 0;
326 default:
327 /* gdbstub asked for something out our range */
328 break;
331 return 0;
333 #endif /* TARGET_AARCH64 */
335 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
337 /* Return true if the regdef would cause an assertion if you called
338 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
339 * program bug for it not to have the NO_RAW flag).
340 * NB that returning false here doesn't necessarily mean that calling
341 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
342 * read/write access functions which are safe for raw use" from "has
343 * read/write access functions which have side effects but has forgotten
344 * to provide raw access functions".
345 * The tests here line up with the conditions in read/write_raw_cp_reg()
346 * and assertions in raw_read()/raw_write().
348 if ((ri->type & ARM_CP_CONST) ||
349 ri->fieldoffset ||
350 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
351 return false;
353 return true;
356 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
358 /* Write the coprocessor state from cpu->env to the (index,value) list. */
359 int i;
360 bool ok = true;
362 for (i = 0; i < cpu->cpreg_array_len; i++) {
363 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
364 const ARMCPRegInfo *ri;
365 uint64_t newval;
367 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
368 if (!ri) {
369 ok = false;
370 continue;
372 if (ri->type & ARM_CP_NO_RAW) {
373 continue;
376 newval = read_raw_cp_reg(&cpu->env, ri);
377 if (kvm_sync) {
379 * Only sync if the previous list->cpustate sync succeeded.
380 * Rather than tracking the success/failure state for every
381 * item in the list, we just recheck "does the raw write we must
382 * have made in write_list_to_cpustate() read back OK" here.
384 uint64_t oldval = cpu->cpreg_values[i];
386 if (oldval == newval) {
387 continue;
390 write_raw_cp_reg(&cpu->env, ri, oldval);
391 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
392 continue;
395 write_raw_cp_reg(&cpu->env, ri, newval);
397 cpu->cpreg_values[i] = newval;
399 return ok;
402 bool write_list_to_cpustate(ARMCPU *cpu)
404 int i;
405 bool ok = true;
407 for (i = 0; i < cpu->cpreg_array_len; i++) {
408 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
409 uint64_t v = cpu->cpreg_values[i];
410 const ARMCPRegInfo *ri;
412 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
413 if (!ri) {
414 ok = false;
415 continue;
417 if (ri->type & ARM_CP_NO_RAW) {
418 continue;
420 /* Write value and confirm it reads back as written
421 * (to catch read-only registers and partially read-only
422 * registers where the incoming migration value doesn't match)
424 write_raw_cp_reg(&cpu->env, ri, v);
425 if (read_raw_cp_reg(&cpu->env, ri) != v) {
426 ok = false;
429 return ok;
432 static void add_cpreg_to_list(gpointer key, gpointer opaque)
434 ARMCPU *cpu = opaque;
435 uint64_t regidx;
436 const ARMCPRegInfo *ri;
438 regidx = *(uint32_t *)key;
439 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
441 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
442 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
443 /* The value array need not be initialized at this point */
444 cpu->cpreg_array_len++;
448 static void count_cpreg(gpointer key, gpointer opaque)
450 ARMCPU *cpu = opaque;
451 uint64_t regidx;
452 const ARMCPRegInfo *ri;
454 regidx = *(uint32_t *)key;
455 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
457 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
458 cpu->cpreg_array_len++;
462 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
464 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
465 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
467 if (aidx > bidx) {
468 return 1;
470 if (aidx < bidx) {
471 return -1;
473 return 0;
476 void init_cpreg_list(ARMCPU *cpu)
478 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
479 * Note that we require cpreg_tuples[] to be sorted by key ID.
481 GList *keys;
482 int arraylen;
484 keys = g_hash_table_get_keys(cpu->cp_regs);
485 keys = g_list_sort(keys, cpreg_key_compare);
487 cpu->cpreg_array_len = 0;
489 g_list_foreach(keys, count_cpreg, cpu);
491 arraylen = cpu->cpreg_array_len;
492 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
493 cpu->cpreg_values = g_new(uint64_t, arraylen);
494 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
495 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
496 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
497 cpu->cpreg_array_len = 0;
499 g_list_foreach(keys, add_cpreg_to_list, cpu);
501 assert(cpu->cpreg_array_len == arraylen);
503 g_list_free(keys);
507 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
509 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
510 const ARMCPRegInfo *ri,
511 bool isread)
513 if (!is_a64(env) && arm_current_el(env) == 3 &&
514 arm_is_secure_below_el3(env)) {
515 return CP_ACCESS_TRAP_UNCATEGORIZED;
517 return CP_ACCESS_OK;
520 /* Some secure-only AArch32 registers trap to EL3 if used from
521 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
522 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
523 * We assume that the .access field is set to PL1_RW.
525 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
526 const ARMCPRegInfo *ri,
527 bool isread)
529 if (arm_current_el(env) == 3) {
530 return CP_ACCESS_OK;
532 if (arm_is_secure_below_el3(env)) {
533 return CP_ACCESS_TRAP_EL3;
535 /* This will be EL1 NS and EL2 NS, which just UNDEF */
536 return CP_ACCESS_TRAP_UNCATEGORIZED;
539 /* Check for traps to "powerdown debug" registers, which are controlled
540 * by MDCR.TDOSA
542 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
543 bool isread)
545 int el = arm_current_el(env);
546 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
547 (env->cp15.mdcr_el2 & MDCR_TDE) ||
548 (arm_hcr_el2_eff(env) & HCR_TGE);
550 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
551 return CP_ACCESS_TRAP_EL2;
553 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
554 return CP_ACCESS_TRAP_EL3;
556 return CP_ACCESS_OK;
559 /* Check for traps to "debug ROM" registers, which are controlled
560 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
562 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
563 bool isread)
565 int el = arm_current_el(env);
566 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
567 (env->cp15.mdcr_el2 & MDCR_TDE) ||
568 (arm_hcr_el2_eff(env) & HCR_TGE);
570 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
571 return CP_ACCESS_TRAP_EL2;
573 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
574 return CP_ACCESS_TRAP_EL3;
576 return CP_ACCESS_OK;
579 /* Check for traps to general debug registers, which are controlled
580 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
582 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
583 bool isread)
585 int el = arm_current_el(env);
586 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
587 (env->cp15.mdcr_el2 & MDCR_TDE) ||
588 (arm_hcr_el2_eff(env) & HCR_TGE);
590 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
591 return CP_ACCESS_TRAP_EL2;
593 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
594 return CP_ACCESS_TRAP_EL3;
596 return CP_ACCESS_OK;
599 /* Check for traps to performance monitor registers, which are controlled
600 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
602 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
603 bool isread)
605 int el = arm_current_el(env);
607 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
608 && !arm_is_secure_below_el3(env)) {
609 return CP_ACCESS_TRAP_EL2;
611 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
612 return CP_ACCESS_TRAP_EL3;
614 return CP_ACCESS_OK;
617 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
618 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
619 bool isread)
621 if (arm_current_el(env) == 1) {
622 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
623 if (arm_hcr_el2_eff(env) & trap) {
624 return CP_ACCESS_TRAP_EL2;
627 return CP_ACCESS_OK;
630 /* Check for traps from EL1 due to HCR_EL2.TSW. */
631 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
632 bool isread)
634 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
635 return CP_ACCESS_TRAP_EL2;
637 return CP_ACCESS_OK;
640 /* Check for traps from EL1 due to HCR_EL2.TACR. */
641 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
642 bool isread)
644 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
645 return CP_ACCESS_TRAP_EL2;
647 return CP_ACCESS_OK;
650 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
651 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
652 bool isread)
654 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
655 return CP_ACCESS_TRAP_EL2;
657 return CP_ACCESS_OK;
660 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
662 ARMCPU *cpu = env_archcpu(env);
664 raw_write(env, ri, value);
665 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
668 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
670 ARMCPU *cpu = env_archcpu(env);
672 if (raw_read(env, ri) != value) {
673 /* Unlike real hardware the qemu TLB uses virtual addresses,
674 * not modified virtual addresses, so this causes a TLB flush.
676 tlb_flush(CPU(cpu));
677 raw_write(env, ri, value);
681 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
682 uint64_t value)
684 ARMCPU *cpu = env_archcpu(env);
686 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
687 && !extended_addresses_enabled(env)) {
688 /* For VMSA (when not using the LPAE long descriptor page table
689 * format) this register includes the ASID, so do a TLB flush.
690 * For PMSA it is purely a process ID and no action is needed.
692 tlb_flush(CPU(cpu));
694 raw_write(env, ri, value);
697 /* IS variants of TLB operations must affect all cores */
698 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
699 uint64_t value)
701 CPUState *cs = env_cpu(env);
703 tlb_flush_all_cpus_synced(cs);
706 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
707 uint64_t value)
709 CPUState *cs = env_cpu(env);
711 tlb_flush_all_cpus_synced(cs);
714 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
715 uint64_t value)
717 CPUState *cs = env_cpu(env);
719 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
722 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
723 uint64_t value)
725 CPUState *cs = env_cpu(env);
727 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
731 * Non-IS variants of TLB operations are upgraded to
732 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
733 * force broadcast of these operations.
735 static bool tlb_force_broadcast(CPUARMState *env)
737 return (env->cp15.hcr_el2 & HCR_FB) &&
738 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
741 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
742 uint64_t value)
744 /* Invalidate all (TLBIALL) */
745 CPUState *cs = env_cpu(env);
747 if (tlb_force_broadcast(env)) {
748 tlb_flush_all_cpus_synced(cs);
749 } else {
750 tlb_flush(cs);
754 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
755 uint64_t value)
757 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
758 CPUState *cs = env_cpu(env);
760 value &= TARGET_PAGE_MASK;
761 if (tlb_force_broadcast(env)) {
762 tlb_flush_page_all_cpus_synced(cs, value);
763 } else {
764 tlb_flush_page(cs, value);
768 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
769 uint64_t value)
771 /* Invalidate by ASID (TLBIASID) */
772 CPUState *cs = env_cpu(env);
774 if (tlb_force_broadcast(env)) {
775 tlb_flush_all_cpus_synced(cs);
776 } else {
777 tlb_flush(cs);
781 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
782 uint64_t value)
784 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
785 CPUState *cs = env_cpu(env);
787 value &= TARGET_PAGE_MASK;
788 if (tlb_force_broadcast(env)) {
789 tlb_flush_page_all_cpus_synced(cs, value);
790 } else {
791 tlb_flush_page(cs, value);
795 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
796 uint64_t value)
798 CPUState *cs = env_cpu(env);
800 tlb_flush_by_mmuidx(cs,
801 ARMMMUIdxBit_E10_1 |
802 ARMMMUIdxBit_E10_1_PAN |
803 ARMMMUIdxBit_E10_0);
806 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
807 uint64_t value)
809 CPUState *cs = env_cpu(env);
811 tlb_flush_by_mmuidx_all_cpus_synced(cs,
812 ARMMMUIdxBit_E10_1 |
813 ARMMMUIdxBit_E10_1_PAN |
814 ARMMMUIdxBit_E10_0);
818 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
819 uint64_t value)
821 CPUState *cs = env_cpu(env);
823 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
826 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
827 uint64_t value)
829 CPUState *cs = env_cpu(env);
831 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
834 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
835 uint64_t value)
837 CPUState *cs = env_cpu(env);
838 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
840 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
843 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
844 uint64_t value)
846 CPUState *cs = env_cpu(env);
847 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
849 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
850 ARMMMUIdxBit_E2);
853 static const ARMCPRegInfo cp_reginfo[] = {
854 /* Define the secure and non-secure FCSE identifier CP registers
855 * separately because there is no secure bank in V8 (no _EL3). This allows
856 * the secure register to be properly reset and migrated. There is also no
857 * v8 EL1 version of the register so the non-secure instance stands alone.
859 { .name = "FCSEIDR",
860 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
861 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
862 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
863 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
864 { .name = "FCSEIDR_S",
865 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
866 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
867 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
868 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
869 /* Define the secure and non-secure context identifier CP registers
870 * separately because there is no secure bank in V8 (no _EL3). This allows
871 * the secure register to be properly reset and migrated. In the
872 * non-secure case, the 32-bit register will have reset and migration
873 * disabled during registration as it is handled by the 64-bit instance.
875 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
876 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
877 .access = PL1_RW, .accessfn = access_tvm_trvm,
878 .secure = ARM_CP_SECSTATE_NS,
879 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
880 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
881 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
882 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
883 .access = PL1_RW, .accessfn = access_tvm_trvm,
884 .secure = ARM_CP_SECSTATE_S,
885 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
886 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
887 REGINFO_SENTINEL
890 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
891 /* NB: Some of these registers exist in v8 but with more precise
892 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
894 /* MMU Domain access control / MPU write buffer control */
895 { .name = "DACR",
896 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
897 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
898 .writefn = dacr_write, .raw_writefn = raw_write,
899 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
900 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
901 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
902 * For v6 and v5, these mappings are overly broad.
904 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
905 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
906 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
907 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
908 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
909 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
910 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
911 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
912 /* Cache maintenance ops; some of this space may be overridden later. */
913 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
914 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
915 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
916 REGINFO_SENTINEL
919 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
920 /* Not all pre-v6 cores implemented this WFI, so this is slightly
921 * over-broad.
923 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
924 .access = PL1_W, .type = ARM_CP_WFI },
925 REGINFO_SENTINEL
928 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
929 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
930 * is UNPREDICTABLE; we choose to NOP as most implementations do).
932 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
933 .access = PL1_W, .type = ARM_CP_WFI },
934 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
935 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
936 * OMAPCP will override this space.
938 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
939 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
940 .resetvalue = 0 },
941 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
942 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
943 .resetvalue = 0 },
944 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
945 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
946 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
947 .resetvalue = 0 },
948 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
949 * implementing it as RAZ means the "debug architecture version" bits
950 * will read as a reserved value, which should cause Linux to not try
951 * to use the debug hardware.
953 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
954 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
955 /* MMU TLB control. Note that the wildcarding means we cover not just
956 * the unified TLB ops but also the dside/iside/inner-shareable variants.
958 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
959 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
960 .type = ARM_CP_NO_RAW },
961 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
962 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
963 .type = ARM_CP_NO_RAW },
964 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
965 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
966 .type = ARM_CP_NO_RAW },
967 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
968 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
969 .type = ARM_CP_NO_RAW },
970 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
971 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
972 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
973 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
974 REGINFO_SENTINEL
977 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
978 uint64_t value)
980 uint32_t mask = 0;
982 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
983 if (!arm_feature(env, ARM_FEATURE_V8)) {
984 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
985 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
986 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
988 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
989 /* VFP coprocessor: cp10 & cp11 [23:20] */
990 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
992 if (!arm_feature(env, ARM_FEATURE_NEON)) {
993 /* ASEDIS [31] bit is RAO/WI */
994 value |= (1 << 31);
997 /* VFPv3 and upwards with NEON implement 32 double precision
998 * registers (D0-D31).
1000 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1001 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1002 value |= (1 << 30);
1005 value &= mask;
1009 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1010 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1012 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1013 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1014 value &= ~(0xf << 20);
1015 value |= env->cp15.cpacr_el1 & (0xf << 20);
1018 env->cp15.cpacr_el1 = value;
1021 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1024 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1025 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1027 uint64_t value = env->cp15.cpacr_el1;
1029 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1030 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1031 value &= ~(0xf << 20);
1033 return value;
1037 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1039 /* Call cpacr_write() so that we reset with the correct RAO bits set
1040 * for our CPU features.
1042 cpacr_write(env, ri, 0);
1045 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1046 bool isread)
1048 if (arm_feature(env, ARM_FEATURE_V8)) {
1049 /* Check if CPACR accesses are to be trapped to EL2 */
1050 if (arm_current_el(env) == 1 &&
1051 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
1052 return CP_ACCESS_TRAP_EL2;
1053 /* Check if CPACR accesses are to be trapped to EL3 */
1054 } else if (arm_current_el(env) < 3 &&
1055 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1056 return CP_ACCESS_TRAP_EL3;
1060 return CP_ACCESS_OK;
1063 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1064 bool isread)
1066 /* Check if CPTR accesses are set to trap to EL3 */
1067 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1068 return CP_ACCESS_TRAP_EL3;
1071 return CP_ACCESS_OK;
1074 static const ARMCPRegInfo v6_cp_reginfo[] = {
1075 /* prefetch by MVA in v6, NOP in v7 */
1076 { .name = "MVA_prefetch",
1077 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1078 .access = PL1_W, .type = ARM_CP_NOP },
1079 /* We need to break the TB after ISB to execute self-modifying code
1080 * correctly and also to take any pending interrupts immediately.
1081 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1083 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1084 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1085 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1086 .access = PL0_W, .type = ARM_CP_NOP },
1087 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1088 .access = PL0_W, .type = ARM_CP_NOP },
1089 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1090 .access = PL1_RW, .accessfn = access_tvm_trvm,
1091 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1092 offsetof(CPUARMState, cp15.ifar_ns) },
1093 .resetvalue = 0, },
1094 /* Watchpoint Fault Address Register : should actually only be present
1095 * for 1136, 1176, 11MPCore.
1097 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1098 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1099 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1100 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1101 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1102 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1103 REGINFO_SENTINEL
1106 /* Definitions for the PMU registers */
1107 #define PMCRN_MASK 0xf800
1108 #define PMCRN_SHIFT 11
1109 #define PMCRLC 0x40
1110 #define PMCRDP 0x20
1111 #define PMCRX 0x10
1112 #define PMCRD 0x8
1113 #define PMCRC 0x4
1114 #define PMCRP 0x2
1115 #define PMCRE 0x1
1117 * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1118 * which can be written as 1 to trigger behaviour but which stay RAZ).
1120 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1122 #define PMXEVTYPER_P 0x80000000
1123 #define PMXEVTYPER_U 0x40000000
1124 #define PMXEVTYPER_NSK 0x20000000
1125 #define PMXEVTYPER_NSU 0x10000000
1126 #define PMXEVTYPER_NSH 0x08000000
1127 #define PMXEVTYPER_M 0x04000000
1128 #define PMXEVTYPER_MT 0x02000000
1129 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1130 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1131 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1132 PMXEVTYPER_M | PMXEVTYPER_MT | \
1133 PMXEVTYPER_EVTCOUNT)
1135 #define PMCCFILTR 0xf8000000
1136 #define PMCCFILTR_M PMXEVTYPER_M
1137 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1139 static inline uint32_t pmu_num_counters(CPUARMState *env)
1141 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1144 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1145 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1147 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1150 typedef struct pm_event {
1151 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1152 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1153 bool (*supported)(CPUARMState *);
1155 * Retrieve the current count of the underlying event. The programmed
1156 * counters hold a difference from the return value from this function
1158 uint64_t (*get_count)(CPUARMState *);
1160 * Return how many nanoseconds it will take (at a minimum) for count events
1161 * to occur. A negative value indicates the counter will never overflow, or
1162 * that the counter has otherwise arranged for the overflow bit to be set
1163 * and the PMU interrupt to be raised on overflow.
1165 int64_t (*ns_per_count)(uint64_t);
1166 } pm_event;
1168 static bool event_always_supported(CPUARMState *env)
1170 return true;
1173 static uint64_t swinc_get_count(CPUARMState *env)
1176 * SW_INCR events are written directly to the pmevcntr's by writes to
1177 * PMSWINC, so there is no underlying count maintained by the PMU itself
1179 return 0;
1182 static int64_t swinc_ns_per(uint64_t ignored)
1184 return -1;
1188 * Return the underlying cycle count for the PMU cycle counters. If we're in
1189 * usermode, simply return 0.
1191 static uint64_t cycles_get_count(CPUARMState *env)
1193 #ifndef CONFIG_USER_ONLY
1194 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1195 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1196 #else
1197 return cpu_get_host_ticks();
1198 #endif
1201 #ifndef CONFIG_USER_ONLY
1202 static int64_t cycles_ns_per(uint64_t cycles)
1204 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1207 static bool instructions_supported(CPUARMState *env)
1209 return use_icount == 1 /* Precise instruction counting */;
1212 static uint64_t instructions_get_count(CPUARMState *env)
1214 return (uint64_t)cpu_get_icount_raw();
1217 static int64_t instructions_ns_per(uint64_t icount)
1219 return cpu_icount_to_ns((int64_t)icount);
1221 #endif
1223 static bool pmu_8_1_events_supported(CPUARMState *env)
1225 /* For events which are supported in any v8.1 PMU */
1226 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1229 static bool pmu_8_4_events_supported(CPUARMState *env)
1231 /* For events which are supported in any v8.1 PMU */
1232 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1235 static uint64_t zero_event_get_count(CPUARMState *env)
1237 /* For events which on QEMU never fire, so their count is always zero */
1238 return 0;
1241 static int64_t zero_event_ns_per(uint64_t cycles)
1243 /* An event which never fires can never overflow */
1244 return -1;
1247 static const pm_event pm_events[] = {
1248 { .number = 0x000, /* SW_INCR */
1249 .supported = event_always_supported,
1250 .get_count = swinc_get_count,
1251 .ns_per_count = swinc_ns_per,
1253 #ifndef CONFIG_USER_ONLY
1254 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1255 .supported = instructions_supported,
1256 .get_count = instructions_get_count,
1257 .ns_per_count = instructions_ns_per,
1259 { .number = 0x011, /* CPU_CYCLES, Cycle */
1260 .supported = event_always_supported,
1261 .get_count = cycles_get_count,
1262 .ns_per_count = cycles_ns_per,
1264 #endif
1265 { .number = 0x023, /* STALL_FRONTEND */
1266 .supported = pmu_8_1_events_supported,
1267 .get_count = zero_event_get_count,
1268 .ns_per_count = zero_event_ns_per,
1270 { .number = 0x024, /* STALL_BACKEND */
1271 .supported = pmu_8_1_events_supported,
1272 .get_count = zero_event_get_count,
1273 .ns_per_count = zero_event_ns_per,
1275 { .number = 0x03c, /* STALL */
1276 .supported = pmu_8_4_events_supported,
1277 .get_count = zero_event_get_count,
1278 .ns_per_count = zero_event_ns_per,
1283 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1284 * events (i.e. the statistical profiling extension), this implementation
1285 * should first be updated to something sparse instead of the current
1286 * supported_event_map[] array.
1288 #define MAX_EVENT_ID 0x3c
1289 #define UNSUPPORTED_EVENT UINT16_MAX
1290 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1293 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1294 * of ARM event numbers to indices in our pm_events array.
1296 * Note: Events in the 0x40XX range are not currently supported.
1298 void pmu_init(ARMCPU *cpu)
1300 unsigned int i;
1303 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1304 * events to them
1306 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1307 supported_event_map[i] = UNSUPPORTED_EVENT;
1309 cpu->pmceid0 = 0;
1310 cpu->pmceid1 = 0;
1312 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1313 const pm_event *cnt = &pm_events[i];
1314 assert(cnt->number <= MAX_EVENT_ID);
1315 /* We do not currently support events in the 0x40xx range */
1316 assert(cnt->number <= 0x3f);
1318 if (cnt->supported(&cpu->env)) {
1319 supported_event_map[cnt->number] = i;
1320 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1321 if (cnt->number & 0x20) {
1322 cpu->pmceid1 |= event_mask;
1323 } else {
1324 cpu->pmceid0 |= event_mask;
1331 * Check at runtime whether a PMU event is supported for the current machine
1333 static bool event_supported(uint16_t number)
1335 if (number > MAX_EVENT_ID) {
1336 return false;
1338 return supported_event_map[number] != UNSUPPORTED_EVENT;
1341 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1342 bool isread)
1344 /* Performance monitor registers user accessibility is controlled
1345 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1346 * trapping to EL2 or EL3 for other accesses.
1348 int el = arm_current_el(env);
1350 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1351 return CP_ACCESS_TRAP;
1353 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1354 && !arm_is_secure_below_el3(env)) {
1355 return CP_ACCESS_TRAP_EL2;
1357 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1358 return CP_ACCESS_TRAP_EL3;
1361 return CP_ACCESS_OK;
1364 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1365 const ARMCPRegInfo *ri,
1366 bool isread)
1368 /* ER: event counter read trap control */
1369 if (arm_feature(env, ARM_FEATURE_V8)
1370 && arm_current_el(env) == 0
1371 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1372 && isread) {
1373 return CP_ACCESS_OK;
1376 return pmreg_access(env, ri, isread);
1379 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1380 const ARMCPRegInfo *ri,
1381 bool isread)
1383 /* SW: software increment write trap control */
1384 if (arm_feature(env, ARM_FEATURE_V8)
1385 && arm_current_el(env) == 0
1386 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1387 && !isread) {
1388 return CP_ACCESS_OK;
1391 return pmreg_access(env, ri, isread);
1394 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1395 const ARMCPRegInfo *ri,
1396 bool isread)
1398 /* ER: event counter read trap control */
1399 if (arm_feature(env, ARM_FEATURE_V8)
1400 && arm_current_el(env) == 0
1401 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1402 return CP_ACCESS_OK;
1405 return pmreg_access(env, ri, isread);
1408 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1409 const ARMCPRegInfo *ri,
1410 bool isread)
1412 /* CR: cycle counter read trap control */
1413 if (arm_feature(env, ARM_FEATURE_V8)
1414 && arm_current_el(env) == 0
1415 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1416 && isread) {
1417 return CP_ACCESS_OK;
1420 return pmreg_access(env, ri, isread);
1423 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1424 * the current EL, security state, and register configuration.
1426 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1428 uint64_t filter;
1429 bool e, p, u, nsk, nsu, nsh, m;
1430 bool enabled, prohibited, filtered;
1431 bool secure = arm_is_secure(env);
1432 int el = arm_current_el(env);
1433 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1435 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1436 return false;
1439 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1440 (counter < hpmn || counter == 31)) {
1441 e = env->cp15.c9_pmcr & PMCRE;
1442 } else {
1443 e = env->cp15.mdcr_el2 & MDCR_HPME;
1445 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1447 if (!secure) {
1448 if (el == 2 && (counter < hpmn || counter == 31)) {
1449 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1450 } else {
1451 prohibited = false;
1453 } else {
1454 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1455 !(env->cp15.mdcr_el3 & MDCR_SPME);
1458 if (prohibited && counter == 31) {
1459 prohibited = env->cp15.c9_pmcr & PMCRDP;
1462 if (counter == 31) {
1463 filter = env->cp15.pmccfiltr_el0;
1464 } else {
1465 filter = env->cp15.c14_pmevtyper[counter];
1468 p = filter & PMXEVTYPER_P;
1469 u = filter & PMXEVTYPER_U;
1470 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1471 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1472 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1473 m = arm_el_is_aa64(env, 1) &&
1474 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1476 if (el == 0) {
1477 filtered = secure ? u : u != nsu;
1478 } else if (el == 1) {
1479 filtered = secure ? p : p != nsk;
1480 } else if (el == 2) {
1481 filtered = !nsh;
1482 } else { /* EL3 */
1483 filtered = m != p;
1486 if (counter != 31) {
1488 * If not checking PMCCNTR, ensure the counter is setup to an event we
1489 * support
1491 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1492 if (!event_supported(event)) {
1493 return false;
1497 return enabled && !prohibited && !filtered;
1500 static void pmu_update_irq(CPUARMState *env)
1502 ARMCPU *cpu = env_archcpu(env);
1503 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1504 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1508 * Ensure c15_ccnt is the guest-visible count so that operations such as
1509 * enabling/disabling the counter or filtering, modifying the count itself,
1510 * etc. can be done logically. This is essentially a no-op if the counter is
1511 * not enabled at the time of the call.
1513 static void pmccntr_op_start(CPUARMState *env)
1515 uint64_t cycles = cycles_get_count(env);
1517 if (pmu_counter_enabled(env, 31)) {
1518 uint64_t eff_cycles = cycles;
1519 if (env->cp15.c9_pmcr & PMCRD) {
1520 /* Increment once every 64 processor clock cycles */
1521 eff_cycles /= 64;
1524 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1526 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1527 1ull << 63 : 1ull << 31;
1528 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1529 env->cp15.c9_pmovsr |= (1 << 31);
1530 pmu_update_irq(env);
1533 env->cp15.c15_ccnt = new_pmccntr;
1535 env->cp15.c15_ccnt_delta = cycles;
1539 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1540 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1541 * pmccntr_op_start.
1543 static void pmccntr_op_finish(CPUARMState *env)
1545 if (pmu_counter_enabled(env, 31)) {
1546 #ifndef CONFIG_USER_ONLY
1547 /* Calculate when the counter will next overflow */
1548 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1549 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1550 remaining_cycles = (uint32_t)remaining_cycles;
1552 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1554 if (overflow_in > 0) {
1555 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1556 overflow_in;
1557 ARMCPU *cpu = env_archcpu(env);
1558 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1560 #endif
1562 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1563 if (env->cp15.c9_pmcr & PMCRD) {
1564 /* Increment once every 64 processor clock cycles */
1565 prev_cycles /= 64;
1567 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1571 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1574 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1575 uint64_t count = 0;
1576 if (event_supported(event)) {
1577 uint16_t event_idx = supported_event_map[event];
1578 count = pm_events[event_idx].get_count(env);
1581 if (pmu_counter_enabled(env, counter)) {
1582 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1584 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1585 env->cp15.c9_pmovsr |= (1 << counter);
1586 pmu_update_irq(env);
1588 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1590 env->cp15.c14_pmevcntr_delta[counter] = count;
1593 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1595 if (pmu_counter_enabled(env, counter)) {
1596 #ifndef CONFIG_USER_ONLY
1597 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1598 uint16_t event_idx = supported_event_map[event];
1599 uint64_t delta = UINT32_MAX -
1600 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1601 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1603 if (overflow_in > 0) {
1604 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1605 overflow_in;
1606 ARMCPU *cpu = env_archcpu(env);
1607 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1609 #endif
1611 env->cp15.c14_pmevcntr_delta[counter] -=
1612 env->cp15.c14_pmevcntr[counter];
1616 void pmu_op_start(CPUARMState *env)
1618 unsigned int i;
1619 pmccntr_op_start(env);
1620 for (i = 0; i < pmu_num_counters(env); i++) {
1621 pmevcntr_op_start(env, i);
1625 void pmu_op_finish(CPUARMState *env)
1627 unsigned int i;
1628 pmccntr_op_finish(env);
1629 for (i = 0; i < pmu_num_counters(env); i++) {
1630 pmevcntr_op_finish(env, i);
1634 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1636 pmu_op_start(&cpu->env);
1639 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1641 pmu_op_finish(&cpu->env);
1644 void arm_pmu_timer_cb(void *opaque)
1646 ARMCPU *cpu = opaque;
1649 * Update all the counter values based on the current underlying counts,
1650 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1651 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1652 * counter may expire.
1654 pmu_op_start(&cpu->env);
1655 pmu_op_finish(&cpu->env);
1658 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1659 uint64_t value)
1661 pmu_op_start(env);
1663 if (value & PMCRC) {
1664 /* The counter has been reset */
1665 env->cp15.c15_ccnt = 0;
1668 if (value & PMCRP) {
1669 unsigned int i;
1670 for (i = 0; i < pmu_num_counters(env); i++) {
1671 env->cp15.c14_pmevcntr[i] = 0;
1675 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1676 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1678 pmu_op_finish(env);
1681 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1682 uint64_t value)
1684 unsigned int i;
1685 for (i = 0; i < pmu_num_counters(env); i++) {
1686 /* Increment a counter's count iff: */
1687 if ((value & (1 << i)) && /* counter's bit is set */
1688 /* counter is enabled and not filtered */
1689 pmu_counter_enabled(env, i) &&
1690 /* counter is SW_INCR */
1691 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1692 pmevcntr_op_start(env, i);
1695 * Detect if this write causes an overflow since we can't predict
1696 * PMSWINC overflows like we can for other events
1698 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1700 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1701 env->cp15.c9_pmovsr |= (1 << i);
1702 pmu_update_irq(env);
1705 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1707 pmevcntr_op_finish(env, i);
1712 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1714 uint64_t ret;
1715 pmccntr_op_start(env);
1716 ret = env->cp15.c15_ccnt;
1717 pmccntr_op_finish(env);
1718 return ret;
1721 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1722 uint64_t value)
1724 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1725 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1726 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1727 * accessed.
1729 env->cp15.c9_pmselr = value & 0x1f;
1732 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1733 uint64_t value)
1735 pmccntr_op_start(env);
1736 env->cp15.c15_ccnt = value;
1737 pmccntr_op_finish(env);
1740 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1741 uint64_t value)
1743 uint64_t cur_val = pmccntr_read(env, NULL);
1745 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1748 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1749 uint64_t value)
1751 pmccntr_op_start(env);
1752 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1753 pmccntr_op_finish(env);
1756 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1757 uint64_t value)
1759 pmccntr_op_start(env);
1760 /* M is not accessible from AArch32 */
1761 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1762 (value & PMCCFILTR);
1763 pmccntr_op_finish(env);
1766 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1768 /* M is not visible in AArch32 */
1769 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1772 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1773 uint64_t value)
1775 value &= pmu_counter_mask(env);
1776 env->cp15.c9_pmcnten |= value;
1779 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1780 uint64_t value)
1782 value &= pmu_counter_mask(env);
1783 env->cp15.c9_pmcnten &= ~value;
1786 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1787 uint64_t value)
1789 value &= pmu_counter_mask(env);
1790 env->cp15.c9_pmovsr &= ~value;
1791 pmu_update_irq(env);
1794 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1795 uint64_t value)
1797 value &= pmu_counter_mask(env);
1798 env->cp15.c9_pmovsr |= value;
1799 pmu_update_irq(env);
1802 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803 uint64_t value, const uint8_t counter)
1805 if (counter == 31) {
1806 pmccfiltr_write(env, ri, value);
1807 } else if (counter < pmu_num_counters(env)) {
1808 pmevcntr_op_start(env, counter);
1811 * If this counter's event type is changing, store the current
1812 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1813 * pmevcntr_op_finish has the correct baseline when it converts back to
1814 * a delta.
1816 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1817 PMXEVTYPER_EVTCOUNT;
1818 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1819 if (old_event != new_event) {
1820 uint64_t count = 0;
1821 if (event_supported(new_event)) {
1822 uint16_t event_idx = supported_event_map[new_event];
1823 count = pm_events[event_idx].get_count(env);
1825 env->cp15.c14_pmevcntr_delta[counter] = count;
1828 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1829 pmevcntr_op_finish(env, counter);
1831 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1832 * PMSELR value is equal to or greater than the number of implemented
1833 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1837 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1838 const uint8_t counter)
1840 if (counter == 31) {
1841 return env->cp15.pmccfiltr_el0;
1842 } else if (counter < pmu_num_counters(env)) {
1843 return env->cp15.c14_pmevtyper[counter];
1844 } else {
1846 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1847 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1849 return 0;
1853 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1854 uint64_t value)
1856 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1857 pmevtyper_write(env, ri, value, counter);
1860 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1861 uint64_t value)
1863 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1864 env->cp15.c14_pmevtyper[counter] = value;
1867 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1868 * pmu_op_finish calls when loading saved state for a migration. Because
1869 * we're potentially updating the type of event here, the value written to
1870 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1871 * different counter type. Therefore, we need to set this value to the
1872 * current count for the counter type we're writing so that pmu_op_finish
1873 * has the correct count for its calculation.
1875 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1876 if (event_supported(event)) {
1877 uint16_t event_idx = supported_event_map[event];
1878 env->cp15.c14_pmevcntr_delta[counter] =
1879 pm_events[event_idx].get_count(env);
1883 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1885 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1886 return pmevtyper_read(env, ri, counter);
1889 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1890 uint64_t value)
1892 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1895 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1897 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1900 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1901 uint64_t value, uint8_t counter)
1903 if (counter < pmu_num_counters(env)) {
1904 pmevcntr_op_start(env, counter);
1905 env->cp15.c14_pmevcntr[counter] = value;
1906 pmevcntr_op_finish(env, counter);
1909 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1910 * are CONSTRAINED UNPREDICTABLE.
1914 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1915 uint8_t counter)
1917 if (counter < pmu_num_counters(env)) {
1918 uint64_t ret;
1919 pmevcntr_op_start(env, counter);
1920 ret = env->cp15.c14_pmevcntr[counter];
1921 pmevcntr_op_finish(env, counter);
1922 return ret;
1923 } else {
1924 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1925 * are CONSTRAINED UNPREDICTABLE. */
1926 return 0;
1930 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1931 uint64_t value)
1933 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1934 pmevcntr_write(env, ri, value, counter);
1937 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1939 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1940 return pmevcntr_read(env, ri, counter);
1943 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1944 uint64_t value)
1946 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1947 assert(counter < pmu_num_counters(env));
1948 env->cp15.c14_pmevcntr[counter] = value;
1949 pmevcntr_write(env, ri, value, counter);
1952 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1954 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1955 assert(counter < pmu_num_counters(env));
1956 return env->cp15.c14_pmevcntr[counter];
1959 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1960 uint64_t value)
1962 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1965 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1967 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1970 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1971 uint64_t value)
1973 if (arm_feature(env, ARM_FEATURE_V8)) {
1974 env->cp15.c9_pmuserenr = value & 0xf;
1975 } else {
1976 env->cp15.c9_pmuserenr = value & 1;
1980 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1981 uint64_t value)
1983 /* We have no event counters so only the C bit can be changed */
1984 value &= pmu_counter_mask(env);
1985 env->cp15.c9_pminten |= value;
1986 pmu_update_irq(env);
1989 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1990 uint64_t value)
1992 value &= pmu_counter_mask(env);
1993 env->cp15.c9_pminten &= ~value;
1994 pmu_update_irq(env);
1997 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1998 uint64_t value)
2000 /* Note that even though the AArch64 view of this register has bits
2001 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2002 * architectural requirements for bits which are RES0 only in some
2003 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2004 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2006 raw_write(env, ri, value & ~0x1FULL);
2009 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2011 /* Begin with base v8.0 state. */
2012 uint32_t valid_mask = 0x3fff;
2013 ARMCPU *cpu = env_archcpu(env);
2015 if (ri->state == ARM_CP_STATE_AA64) {
2016 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
2017 valid_mask &= ~SCR_NET;
2019 if (cpu_isar_feature(aa64_lor, cpu)) {
2020 valid_mask |= SCR_TLOR;
2022 if (cpu_isar_feature(aa64_pauth, cpu)) {
2023 valid_mask |= SCR_API | SCR_APK;
2025 if (cpu_isar_feature(aa64_mte, cpu)) {
2026 valid_mask |= SCR_ATA;
2028 } else {
2029 valid_mask &= ~(SCR_RW | SCR_ST);
2032 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2033 valid_mask &= ~SCR_HCE;
2035 /* On ARMv7, SMD (or SCD as it is called in v7) is only
2036 * supported if EL2 exists. The bit is UNK/SBZP when
2037 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2038 * when EL2 is unavailable.
2039 * On ARMv8, this bit is always available.
2041 if (arm_feature(env, ARM_FEATURE_V7) &&
2042 !arm_feature(env, ARM_FEATURE_V8)) {
2043 valid_mask &= ~SCR_SMD;
2047 /* Clear all-context RES0 bits. */
2048 value &= valid_mask;
2049 raw_write(env, ri, value);
2052 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2053 const ARMCPRegInfo *ri,
2054 bool isread)
2056 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2057 return CP_ACCESS_TRAP_EL2;
2060 return CP_ACCESS_OK;
2063 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2065 ARMCPU *cpu = env_archcpu(env);
2067 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2068 * bank
2070 uint32_t index = A32_BANKED_REG_GET(env, csselr,
2071 ri->secure & ARM_CP_SECSTATE_S);
2073 return cpu->ccsidr[index];
2076 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2077 uint64_t value)
2079 raw_write(env, ri, value & 0xf);
2082 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2084 CPUState *cs = env_cpu(env);
2085 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
2086 uint64_t ret = 0;
2087 bool allow_virt = (arm_current_el(env) == 1 &&
2088 (!arm_is_secure_below_el3(env) ||
2089 (env->cp15.scr_el3 & SCR_EEL2)));
2091 if (allow_virt && (hcr_el2 & HCR_IMO)) {
2092 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2093 ret |= CPSR_I;
2095 } else {
2096 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2097 ret |= CPSR_I;
2101 if (allow_virt && (hcr_el2 & HCR_FMO)) {
2102 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2103 ret |= CPSR_F;
2105 } else {
2106 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2107 ret |= CPSR_F;
2111 /* External aborts are not possible in QEMU so A bit is always clear */
2112 return ret;
2115 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2116 bool isread)
2118 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2119 return CP_ACCESS_TRAP_EL2;
2122 return CP_ACCESS_OK;
2125 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2126 bool isread)
2128 if (arm_feature(env, ARM_FEATURE_V8)) {
2129 return access_aa64_tid1(env, ri, isread);
2132 return CP_ACCESS_OK;
2135 static const ARMCPRegInfo v7_cp_reginfo[] = {
2136 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2137 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2138 .access = PL1_W, .type = ARM_CP_NOP },
2139 /* Performance monitors are implementation defined in v7,
2140 * but with an ARM recommended set of registers, which we
2141 * follow.
2143 * Performance registers fall into three categories:
2144 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2145 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2146 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2147 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2148 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2150 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2151 .access = PL0_RW, .type = ARM_CP_ALIAS,
2152 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2153 .writefn = pmcntenset_write,
2154 .accessfn = pmreg_access,
2155 .raw_writefn = raw_write },
2156 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2157 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2158 .access = PL0_RW, .accessfn = pmreg_access,
2159 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2160 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2161 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2162 .access = PL0_RW,
2163 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2164 .accessfn = pmreg_access,
2165 .writefn = pmcntenclr_write,
2166 .type = ARM_CP_ALIAS },
2167 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2168 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2169 .access = PL0_RW, .accessfn = pmreg_access,
2170 .type = ARM_CP_ALIAS,
2171 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2172 .writefn = pmcntenclr_write },
2173 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2174 .access = PL0_RW, .type = ARM_CP_IO,
2175 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2176 .accessfn = pmreg_access,
2177 .writefn = pmovsr_write,
2178 .raw_writefn = raw_write },
2179 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2180 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2181 .access = PL0_RW, .accessfn = pmreg_access,
2182 .type = ARM_CP_ALIAS | ARM_CP_IO,
2183 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2184 .writefn = pmovsr_write,
2185 .raw_writefn = raw_write },
2186 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2187 .access = PL0_W, .accessfn = pmreg_access_swinc,
2188 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2189 .writefn = pmswinc_write },
2190 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2191 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2192 .access = PL0_W, .accessfn = pmreg_access_swinc,
2193 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2194 .writefn = pmswinc_write },
2195 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2196 .access = PL0_RW, .type = ARM_CP_ALIAS,
2197 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2198 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2199 .raw_writefn = raw_write},
2200 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2201 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2202 .access = PL0_RW, .accessfn = pmreg_access_selr,
2203 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2204 .writefn = pmselr_write, .raw_writefn = raw_write, },
2205 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2206 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2207 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2208 .accessfn = pmreg_access_ccntr },
2209 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2210 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2211 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2212 .type = ARM_CP_IO,
2213 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2214 .readfn = pmccntr_read, .writefn = pmccntr_write,
2215 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2216 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2217 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2218 .access = PL0_RW, .accessfn = pmreg_access,
2219 .type = ARM_CP_ALIAS | ARM_CP_IO,
2220 .resetvalue = 0, },
2221 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2222 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2223 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2224 .access = PL0_RW, .accessfn = pmreg_access,
2225 .type = ARM_CP_IO,
2226 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2227 .resetvalue = 0, },
2228 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2229 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2230 .accessfn = pmreg_access,
2231 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2232 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2233 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2234 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2235 .accessfn = pmreg_access,
2236 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2237 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2238 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2239 .accessfn = pmreg_access_xevcntr,
2240 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2241 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2242 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2243 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2244 .accessfn = pmreg_access_xevcntr,
2245 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2246 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2247 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2248 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2249 .resetvalue = 0,
2250 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2251 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2252 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2253 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2254 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2255 .resetvalue = 0,
2256 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2257 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2258 .access = PL1_RW, .accessfn = access_tpm,
2259 .type = ARM_CP_ALIAS | ARM_CP_IO,
2260 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2261 .resetvalue = 0,
2262 .writefn = pmintenset_write, .raw_writefn = raw_write },
2263 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2264 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2265 .access = PL1_RW, .accessfn = access_tpm,
2266 .type = ARM_CP_IO,
2267 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2268 .writefn = pmintenset_write, .raw_writefn = raw_write,
2269 .resetvalue = 0x0 },
2270 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2271 .access = PL1_RW, .accessfn = access_tpm,
2272 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2273 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2274 .writefn = pmintenclr_write, },
2275 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2276 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2277 .access = PL1_RW, .accessfn = access_tpm,
2278 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2279 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2280 .writefn = pmintenclr_write },
2281 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2282 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2283 .access = PL1_R,
2284 .accessfn = access_aa64_tid2,
2285 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2286 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2287 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2288 .access = PL1_RW,
2289 .accessfn = access_aa64_tid2,
2290 .writefn = csselr_write, .resetvalue = 0,
2291 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2292 offsetof(CPUARMState, cp15.csselr_ns) } },
2293 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2294 * just RAZ for all cores:
2296 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2297 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2298 .access = PL1_R, .type = ARM_CP_CONST,
2299 .accessfn = access_aa64_tid1,
2300 .resetvalue = 0 },
2301 /* Auxiliary fault status registers: these also are IMPDEF, and we
2302 * choose to RAZ/WI for all cores.
2304 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2305 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2306 .access = PL1_RW, .accessfn = access_tvm_trvm,
2307 .type = ARM_CP_CONST, .resetvalue = 0 },
2308 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2309 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2310 .access = PL1_RW, .accessfn = access_tvm_trvm,
2311 .type = ARM_CP_CONST, .resetvalue = 0 },
2312 /* MAIR can just read-as-written because we don't implement caches
2313 * and so don't need to care about memory attributes.
2315 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2316 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2317 .access = PL1_RW, .accessfn = access_tvm_trvm,
2318 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2319 .resetvalue = 0 },
2320 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2321 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2322 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2323 .resetvalue = 0 },
2324 /* For non-long-descriptor page tables these are PRRR and NMRR;
2325 * regardless they still act as reads-as-written for QEMU.
2327 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2328 * allows them to assign the correct fieldoffset based on the endianness
2329 * handled in the field definitions.
2331 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2332 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2333 .access = PL1_RW, .accessfn = access_tvm_trvm,
2334 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2335 offsetof(CPUARMState, cp15.mair0_ns) },
2336 .resetfn = arm_cp_reset_ignore },
2337 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2338 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2339 .access = PL1_RW, .accessfn = access_tvm_trvm,
2340 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2341 offsetof(CPUARMState, cp15.mair1_ns) },
2342 .resetfn = arm_cp_reset_ignore },
2343 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2344 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2345 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2346 /* 32 bit ITLB invalidates */
2347 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2348 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2349 .writefn = tlbiall_write },
2350 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2351 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2352 .writefn = tlbimva_write },
2353 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2354 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2355 .writefn = tlbiasid_write },
2356 /* 32 bit DTLB invalidates */
2357 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2358 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2359 .writefn = tlbiall_write },
2360 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2361 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2362 .writefn = tlbimva_write },
2363 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2364 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2365 .writefn = tlbiasid_write },
2366 /* 32 bit TLB invalidates */
2367 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2368 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2369 .writefn = tlbiall_write },
2370 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2371 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2372 .writefn = tlbimva_write },
2373 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2374 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2375 .writefn = tlbiasid_write },
2376 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2377 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2378 .writefn = tlbimvaa_write },
2379 REGINFO_SENTINEL
2382 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2383 /* 32 bit TLB invalidates, Inner Shareable */
2384 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2385 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2386 .writefn = tlbiall_is_write },
2387 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2388 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2389 .writefn = tlbimva_is_write },
2390 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2391 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2392 .writefn = tlbiasid_is_write },
2393 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2394 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2395 .writefn = tlbimvaa_is_write },
2396 REGINFO_SENTINEL
2399 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2400 /* PMOVSSET is not implemented in v7 before v7ve */
2401 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2402 .access = PL0_RW, .accessfn = pmreg_access,
2403 .type = ARM_CP_ALIAS | ARM_CP_IO,
2404 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2405 .writefn = pmovsset_write,
2406 .raw_writefn = raw_write },
2407 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2408 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2409 .access = PL0_RW, .accessfn = pmreg_access,
2410 .type = ARM_CP_ALIAS | ARM_CP_IO,
2411 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2412 .writefn = pmovsset_write,
2413 .raw_writefn = raw_write },
2414 REGINFO_SENTINEL
2417 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2418 uint64_t value)
2420 value &= 1;
2421 env->teecr = value;
2424 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2425 bool isread)
2427 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2428 return CP_ACCESS_TRAP;
2430 return CP_ACCESS_OK;
2433 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2434 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2435 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2436 .resetvalue = 0,
2437 .writefn = teecr_write },
2438 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2439 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2440 .accessfn = teehbr_access, .resetvalue = 0 },
2441 REGINFO_SENTINEL
2444 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2445 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2446 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2447 .access = PL0_RW,
2448 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2449 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2450 .access = PL0_RW,
2451 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2452 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2453 .resetfn = arm_cp_reset_ignore },
2454 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2455 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2456 .access = PL0_R|PL1_W,
2457 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2458 .resetvalue = 0},
2459 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2460 .access = PL0_R|PL1_W,
2461 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2462 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2463 .resetfn = arm_cp_reset_ignore },
2464 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2465 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2466 .access = PL1_RW,
2467 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2468 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2469 .access = PL1_RW,
2470 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2471 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2472 .resetvalue = 0 },
2473 REGINFO_SENTINEL
2476 #ifndef CONFIG_USER_ONLY
2478 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2479 bool isread)
2481 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2482 * Writable only at the highest implemented exception level.
2484 int el = arm_current_el(env);
2485 uint64_t hcr;
2486 uint32_t cntkctl;
2488 switch (el) {
2489 case 0:
2490 hcr = arm_hcr_el2_eff(env);
2491 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2492 cntkctl = env->cp15.cnthctl_el2;
2493 } else {
2494 cntkctl = env->cp15.c14_cntkctl;
2496 if (!extract32(cntkctl, 0, 2)) {
2497 return CP_ACCESS_TRAP;
2499 break;
2500 case 1:
2501 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2502 arm_is_secure_below_el3(env)) {
2503 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2504 return CP_ACCESS_TRAP_UNCATEGORIZED;
2506 break;
2507 case 2:
2508 case 3:
2509 break;
2512 if (!isread && el < arm_highest_el(env)) {
2513 return CP_ACCESS_TRAP_UNCATEGORIZED;
2516 return CP_ACCESS_OK;
2519 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2520 bool isread)
2522 unsigned int cur_el = arm_current_el(env);
2523 bool secure = arm_is_secure(env);
2524 uint64_t hcr = arm_hcr_el2_eff(env);
2526 switch (cur_el) {
2527 case 0:
2528 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2529 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2530 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2531 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2534 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2535 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2536 return CP_ACCESS_TRAP;
2539 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2540 if (hcr & HCR_E2H) {
2541 if (timeridx == GTIMER_PHYS &&
2542 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2543 return CP_ACCESS_TRAP_EL2;
2545 } else {
2546 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2547 if (arm_feature(env, ARM_FEATURE_EL2) &&
2548 timeridx == GTIMER_PHYS && !secure &&
2549 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2550 return CP_ACCESS_TRAP_EL2;
2553 break;
2555 case 1:
2556 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2557 if (arm_feature(env, ARM_FEATURE_EL2) &&
2558 timeridx == GTIMER_PHYS && !secure &&
2559 (hcr & HCR_E2H
2560 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2561 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2562 return CP_ACCESS_TRAP_EL2;
2564 break;
2566 return CP_ACCESS_OK;
2569 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2570 bool isread)
2572 unsigned int cur_el = arm_current_el(env);
2573 bool secure = arm_is_secure(env);
2574 uint64_t hcr = arm_hcr_el2_eff(env);
2576 switch (cur_el) {
2577 case 0:
2578 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2579 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2580 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2581 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2585 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2586 * EL0 if EL0[PV]TEN is zero.
2588 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2589 return CP_ACCESS_TRAP;
2591 /* fall through */
2593 case 1:
2594 if (arm_feature(env, ARM_FEATURE_EL2) &&
2595 timeridx == GTIMER_PHYS && !secure) {
2596 if (hcr & HCR_E2H) {
2597 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2598 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2599 return CP_ACCESS_TRAP_EL2;
2601 } else {
2602 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2603 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2604 return CP_ACCESS_TRAP_EL2;
2608 break;
2610 return CP_ACCESS_OK;
2613 static CPAccessResult gt_pct_access(CPUARMState *env,
2614 const ARMCPRegInfo *ri,
2615 bool isread)
2617 return gt_counter_access(env, GTIMER_PHYS, isread);
2620 static CPAccessResult gt_vct_access(CPUARMState *env,
2621 const ARMCPRegInfo *ri,
2622 bool isread)
2624 return gt_counter_access(env, GTIMER_VIRT, isread);
2627 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2628 bool isread)
2630 return gt_timer_access(env, GTIMER_PHYS, isread);
2633 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2634 bool isread)
2636 return gt_timer_access(env, GTIMER_VIRT, isread);
2639 static CPAccessResult gt_stimer_access(CPUARMState *env,
2640 const ARMCPRegInfo *ri,
2641 bool isread)
2643 /* The AArch64 register view of the secure physical timer is
2644 * always accessible from EL3, and configurably accessible from
2645 * Secure EL1.
2647 switch (arm_current_el(env)) {
2648 case 1:
2649 if (!arm_is_secure(env)) {
2650 return CP_ACCESS_TRAP;
2652 if (!(env->cp15.scr_el3 & SCR_ST)) {
2653 return CP_ACCESS_TRAP_EL3;
2655 return CP_ACCESS_OK;
2656 case 0:
2657 case 2:
2658 return CP_ACCESS_TRAP;
2659 case 3:
2660 return CP_ACCESS_OK;
2661 default:
2662 g_assert_not_reached();
2666 static uint64_t gt_get_countervalue(CPUARMState *env)
2668 ARMCPU *cpu = env_archcpu(env);
2670 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2673 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2675 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2677 if (gt->ctl & 1) {
2678 /* Timer enabled: calculate and set current ISTATUS, irq, and
2679 * reset timer to when ISTATUS next has to change
2681 uint64_t offset = timeridx == GTIMER_VIRT ?
2682 cpu->env.cp15.cntvoff_el2 : 0;
2683 uint64_t count = gt_get_countervalue(&cpu->env);
2684 /* Note that this must be unsigned 64 bit arithmetic: */
2685 int istatus = count - offset >= gt->cval;
2686 uint64_t nexttick;
2687 int irqstate;
2689 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2691 irqstate = (istatus && !(gt->ctl & 2));
2692 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2694 if (istatus) {
2695 /* Next transition is when count rolls back over to zero */
2696 nexttick = UINT64_MAX;
2697 } else {
2698 /* Next transition is when we hit cval */
2699 nexttick = gt->cval + offset;
2701 /* Note that the desired next expiry time might be beyond the
2702 * signed-64-bit range of a QEMUTimer -- in this case we just
2703 * set the timer for as far in the future as possible. When the
2704 * timer expires we will reset the timer for any remaining period.
2706 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2707 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2708 } else {
2709 timer_mod(cpu->gt_timer[timeridx], nexttick);
2711 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2712 } else {
2713 /* Timer disabled: ISTATUS and timer output always clear */
2714 gt->ctl &= ~4;
2715 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2716 timer_del(cpu->gt_timer[timeridx]);
2717 trace_arm_gt_recalc_disabled(timeridx);
2721 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2722 int timeridx)
2724 ARMCPU *cpu = env_archcpu(env);
2726 timer_del(cpu->gt_timer[timeridx]);
2729 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2731 return gt_get_countervalue(env);
2734 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2736 uint64_t hcr;
2738 switch (arm_current_el(env)) {
2739 case 2:
2740 hcr = arm_hcr_el2_eff(env);
2741 if (hcr & HCR_E2H) {
2742 return 0;
2744 break;
2745 case 0:
2746 hcr = arm_hcr_el2_eff(env);
2747 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2748 return 0;
2750 break;
2753 return env->cp15.cntvoff_el2;
2756 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2758 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2761 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2762 int timeridx,
2763 uint64_t value)
2765 trace_arm_gt_cval_write(timeridx, value);
2766 env->cp15.c14_timer[timeridx].cval = value;
2767 gt_recalc_timer(env_archcpu(env), timeridx);
2770 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2771 int timeridx)
2773 uint64_t offset = 0;
2775 switch (timeridx) {
2776 case GTIMER_VIRT:
2777 case GTIMER_HYPVIRT:
2778 offset = gt_virt_cnt_offset(env);
2779 break;
2782 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2783 (gt_get_countervalue(env) - offset));
2786 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2787 int timeridx,
2788 uint64_t value)
2790 uint64_t offset = 0;
2792 switch (timeridx) {
2793 case GTIMER_VIRT:
2794 case GTIMER_HYPVIRT:
2795 offset = gt_virt_cnt_offset(env);
2796 break;
2799 trace_arm_gt_tval_write(timeridx, value);
2800 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2801 sextract64(value, 0, 32);
2802 gt_recalc_timer(env_archcpu(env), timeridx);
2805 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2806 int timeridx,
2807 uint64_t value)
2809 ARMCPU *cpu = env_archcpu(env);
2810 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2812 trace_arm_gt_ctl_write(timeridx, value);
2813 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2814 if ((oldval ^ value) & 1) {
2815 /* Enable toggled */
2816 gt_recalc_timer(cpu, timeridx);
2817 } else if ((oldval ^ value) & 2) {
2818 /* IMASK toggled: don't need to recalculate,
2819 * just set the interrupt line based on ISTATUS
2821 int irqstate = (oldval & 4) && !(value & 2);
2823 trace_arm_gt_imask_toggle(timeridx, irqstate);
2824 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2828 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2830 gt_timer_reset(env, ri, GTIMER_PHYS);
2833 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2834 uint64_t value)
2836 gt_cval_write(env, ri, GTIMER_PHYS, value);
2839 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2841 return gt_tval_read(env, ri, GTIMER_PHYS);
2844 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2845 uint64_t value)
2847 gt_tval_write(env, ri, GTIMER_PHYS, value);
2850 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2851 uint64_t value)
2853 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2856 static int gt_phys_redir_timeridx(CPUARMState *env)
2858 switch (arm_mmu_idx(env)) {
2859 case ARMMMUIdx_E20_0:
2860 case ARMMMUIdx_E20_2:
2861 case ARMMMUIdx_E20_2_PAN:
2862 return GTIMER_HYP;
2863 default:
2864 return GTIMER_PHYS;
2868 static int gt_virt_redir_timeridx(CPUARMState *env)
2870 switch (arm_mmu_idx(env)) {
2871 case ARMMMUIdx_E20_0:
2872 case ARMMMUIdx_E20_2:
2873 case ARMMMUIdx_E20_2_PAN:
2874 return GTIMER_HYPVIRT;
2875 default:
2876 return GTIMER_VIRT;
2880 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2881 const ARMCPRegInfo *ri)
2883 int timeridx = gt_phys_redir_timeridx(env);
2884 return env->cp15.c14_timer[timeridx].cval;
2887 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2888 uint64_t value)
2890 int timeridx = gt_phys_redir_timeridx(env);
2891 gt_cval_write(env, ri, timeridx, value);
2894 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2895 const ARMCPRegInfo *ri)
2897 int timeridx = gt_phys_redir_timeridx(env);
2898 return gt_tval_read(env, ri, timeridx);
2901 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2902 uint64_t value)
2904 int timeridx = gt_phys_redir_timeridx(env);
2905 gt_tval_write(env, ri, timeridx, value);
2908 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2909 const ARMCPRegInfo *ri)
2911 int timeridx = gt_phys_redir_timeridx(env);
2912 return env->cp15.c14_timer[timeridx].ctl;
2915 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2916 uint64_t value)
2918 int timeridx = gt_phys_redir_timeridx(env);
2919 gt_ctl_write(env, ri, timeridx, value);
2922 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2924 gt_timer_reset(env, ri, GTIMER_VIRT);
2927 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2928 uint64_t value)
2930 gt_cval_write(env, ri, GTIMER_VIRT, value);
2933 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2935 return gt_tval_read(env, ri, GTIMER_VIRT);
2938 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2939 uint64_t value)
2941 gt_tval_write(env, ri, GTIMER_VIRT, value);
2944 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2945 uint64_t value)
2947 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2950 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2951 uint64_t value)
2953 ARMCPU *cpu = env_archcpu(env);
2955 trace_arm_gt_cntvoff_write(value);
2956 raw_write(env, ri, value);
2957 gt_recalc_timer(cpu, GTIMER_VIRT);
2960 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2961 const ARMCPRegInfo *ri)
2963 int timeridx = gt_virt_redir_timeridx(env);
2964 return env->cp15.c14_timer[timeridx].cval;
2967 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2968 uint64_t value)
2970 int timeridx = gt_virt_redir_timeridx(env);
2971 gt_cval_write(env, ri, timeridx, value);
2974 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2975 const ARMCPRegInfo *ri)
2977 int timeridx = gt_virt_redir_timeridx(env);
2978 return gt_tval_read(env, ri, timeridx);
2981 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2982 uint64_t value)
2984 int timeridx = gt_virt_redir_timeridx(env);
2985 gt_tval_write(env, ri, timeridx, value);
2988 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2989 const ARMCPRegInfo *ri)
2991 int timeridx = gt_virt_redir_timeridx(env);
2992 return env->cp15.c14_timer[timeridx].ctl;
2995 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2996 uint64_t value)
2998 int timeridx = gt_virt_redir_timeridx(env);
2999 gt_ctl_write(env, ri, timeridx, value);
3002 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3004 gt_timer_reset(env, ri, GTIMER_HYP);
3007 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3008 uint64_t value)
3010 gt_cval_write(env, ri, GTIMER_HYP, value);
3013 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3015 return gt_tval_read(env, ri, GTIMER_HYP);
3018 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3019 uint64_t value)
3021 gt_tval_write(env, ri, GTIMER_HYP, value);
3024 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3025 uint64_t value)
3027 gt_ctl_write(env, ri, GTIMER_HYP, value);
3030 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3032 gt_timer_reset(env, ri, GTIMER_SEC);
3035 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3036 uint64_t value)
3038 gt_cval_write(env, ri, GTIMER_SEC, value);
3041 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3043 return gt_tval_read(env, ri, GTIMER_SEC);
3046 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3047 uint64_t value)
3049 gt_tval_write(env, ri, GTIMER_SEC, value);
3052 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3053 uint64_t value)
3055 gt_ctl_write(env, ri, GTIMER_SEC, value);
3058 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3060 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3063 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064 uint64_t value)
3066 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3069 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3071 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3074 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3075 uint64_t value)
3077 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3080 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3081 uint64_t value)
3083 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3086 void arm_gt_ptimer_cb(void *opaque)
3088 ARMCPU *cpu = opaque;
3090 gt_recalc_timer(cpu, GTIMER_PHYS);
3093 void arm_gt_vtimer_cb(void *opaque)
3095 ARMCPU *cpu = opaque;
3097 gt_recalc_timer(cpu, GTIMER_VIRT);
3100 void arm_gt_htimer_cb(void *opaque)
3102 ARMCPU *cpu = opaque;
3104 gt_recalc_timer(cpu, GTIMER_HYP);
3107 void arm_gt_stimer_cb(void *opaque)
3109 ARMCPU *cpu = opaque;
3111 gt_recalc_timer(cpu, GTIMER_SEC);
3114 void arm_gt_hvtimer_cb(void *opaque)
3116 ARMCPU *cpu = opaque;
3118 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3121 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3123 ARMCPU *cpu = env_archcpu(env);
3125 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3128 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3129 /* Note that CNTFRQ is purely reads-as-written for the benefit
3130 * of software; writing it doesn't actually change the timer frequency.
3131 * Our reset value matches the fixed frequency we implement the timer at.
3133 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3134 .type = ARM_CP_ALIAS,
3135 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3136 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3138 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3139 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3140 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3141 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3142 .resetfn = arm_gt_cntfrq_reset,
3144 /* overall control: mostly access permissions */
3145 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3146 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3147 .access = PL1_RW,
3148 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3149 .resetvalue = 0,
3151 /* per-timer control */
3152 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3153 .secure = ARM_CP_SECSTATE_NS,
3154 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3155 .accessfn = gt_ptimer_access,
3156 .fieldoffset = offsetoflow32(CPUARMState,
3157 cp15.c14_timer[GTIMER_PHYS].ctl),
3158 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3159 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3161 { .name = "CNTP_CTL_S",
3162 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3163 .secure = ARM_CP_SECSTATE_S,
3164 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3165 .accessfn = gt_ptimer_access,
3166 .fieldoffset = offsetoflow32(CPUARMState,
3167 cp15.c14_timer[GTIMER_SEC].ctl),
3168 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3170 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3171 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3172 .type = ARM_CP_IO, .access = PL0_RW,
3173 .accessfn = gt_ptimer_access,
3174 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3175 .resetvalue = 0,
3176 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3177 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3179 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3180 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3181 .accessfn = gt_vtimer_access,
3182 .fieldoffset = offsetoflow32(CPUARMState,
3183 cp15.c14_timer[GTIMER_VIRT].ctl),
3184 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3185 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3187 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3188 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3189 .type = ARM_CP_IO, .access = PL0_RW,
3190 .accessfn = gt_vtimer_access,
3191 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3192 .resetvalue = 0,
3193 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3194 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3196 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3197 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3198 .secure = ARM_CP_SECSTATE_NS,
3199 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3200 .accessfn = gt_ptimer_access,
3201 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3203 { .name = "CNTP_TVAL_S",
3204 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3205 .secure = ARM_CP_SECSTATE_S,
3206 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3207 .accessfn = gt_ptimer_access,
3208 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3210 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3211 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3212 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3213 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3214 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3216 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3217 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3218 .accessfn = gt_vtimer_access,
3219 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3221 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3222 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3223 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3224 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3225 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3227 /* The counter itself */
3228 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3229 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3230 .accessfn = gt_pct_access,
3231 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3233 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3234 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3235 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3236 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3238 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3239 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3240 .accessfn = gt_vct_access,
3241 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3243 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3244 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3245 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3246 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3248 /* Comparison value, indicating when the timer goes off */
3249 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3250 .secure = ARM_CP_SECSTATE_NS,
3251 .access = PL0_RW,
3252 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3253 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3254 .accessfn = gt_ptimer_access,
3255 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3256 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3258 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3259 .secure = ARM_CP_SECSTATE_S,
3260 .access = PL0_RW,
3261 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3262 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3263 .accessfn = gt_ptimer_access,
3264 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3266 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3267 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3268 .access = PL0_RW,
3269 .type = ARM_CP_IO,
3270 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3271 .resetvalue = 0, .accessfn = gt_ptimer_access,
3272 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3273 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3275 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3276 .access = PL0_RW,
3277 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3278 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3279 .accessfn = gt_vtimer_access,
3280 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3281 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3283 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3284 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3285 .access = PL0_RW,
3286 .type = ARM_CP_IO,
3287 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3288 .resetvalue = 0, .accessfn = gt_vtimer_access,
3289 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3290 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3292 /* Secure timer -- this is actually restricted to only EL3
3293 * and configurably Secure-EL1 via the accessfn.
3295 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3296 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3297 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3298 .accessfn = gt_stimer_access,
3299 .readfn = gt_sec_tval_read,
3300 .writefn = gt_sec_tval_write,
3301 .resetfn = gt_sec_timer_reset,
3303 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3304 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3305 .type = ARM_CP_IO, .access = PL1_RW,
3306 .accessfn = gt_stimer_access,
3307 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3308 .resetvalue = 0,
3309 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3311 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3312 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3313 .type = ARM_CP_IO, .access = PL1_RW,
3314 .accessfn = gt_stimer_access,
3315 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3316 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3318 REGINFO_SENTINEL
3321 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3322 bool isread)
3324 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3325 return CP_ACCESS_TRAP;
3327 return CP_ACCESS_OK;
3330 #else
3332 /* In user-mode most of the generic timer registers are inaccessible
3333 * however modern kernels (4.12+) allow access to cntvct_el0
3336 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3338 ARMCPU *cpu = env_archcpu(env);
3340 /* Currently we have no support for QEMUTimer in linux-user so we
3341 * can't call gt_get_countervalue(env), instead we directly
3342 * call the lower level functions.
3344 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3347 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3348 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3349 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3350 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3351 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3352 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3354 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3355 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3356 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3357 .readfn = gt_virt_cnt_read,
3359 REGINFO_SENTINEL
3362 #endif
3364 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3366 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3367 raw_write(env, ri, value);
3368 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3369 raw_write(env, ri, value & 0xfffff6ff);
3370 } else {
3371 raw_write(env, ri, value & 0xfffff1ff);
3375 #ifndef CONFIG_USER_ONLY
3376 /* get_phys_addr() isn't present for user-mode-only targets */
3378 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3379 bool isread)
3381 if (ri->opc2 & 4) {
3382 /* The ATS12NSO* operations must trap to EL3 if executed in
3383 * Secure EL1 (which can only happen if EL3 is AArch64).
3384 * They are simply UNDEF if executed from NS EL1.
3385 * They function normally from EL2 or EL3.
3387 if (arm_current_el(env) == 1) {
3388 if (arm_is_secure_below_el3(env)) {
3389 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3391 return CP_ACCESS_TRAP_UNCATEGORIZED;
3394 return CP_ACCESS_OK;
3397 #ifdef CONFIG_TCG
3398 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3399 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3401 hwaddr phys_addr;
3402 target_ulong page_size;
3403 int prot;
3404 bool ret;
3405 uint64_t par64;
3406 bool format64 = false;
3407 MemTxAttrs attrs = {};
3408 ARMMMUFaultInfo fi = {};
3409 ARMCacheAttrs cacheattrs = {};
3411 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3412 &prot, &page_size, &fi, &cacheattrs);
3414 if (ret) {
3416 * Some kinds of translation fault must cause exceptions rather
3417 * than being reported in the PAR.
3419 int current_el = arm_current_el(env);
3420 int target_el;
3421 uint32_t syn, fsr, fsc;
3422 bool take_exc = false;
3424 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
3425 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3427 * Synchronous stage 2 fault on an access made as part of the
3428 * translation table walk for AT S1E0* or AT S1E1* insn
3429 * executed from NS EL1. If this is a synchronous external abort
3430 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3431 * to EL3. Otherwise the fault is taken as an exception to EL2,
3432 * and HPFAR_EL2 holds the faulting IPA.
3434 if (fi.type == ARMFault_SyncExternalOnWalk &&
3435 (env->cp15.scr_el3 & SCR_EA)) {
3436 target_el = 3;
3437 } else {
3438 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3439 target_el = 2;
3441 take_exc = true;
3442 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3444 * Synchronous external aborts during a translation table walk
3445 * are taken as Data Abort exceptions.
3447 if (fi.stage2) {
3448 if (current_el == 3) {
3449 target_el = 3;
3450 } else {
3451 target_el = 2;
3453 } else {
3454 target_el = exception_target_el(env);
3456 take_exc = true;
3459 if (take_exc) {
3460 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3461 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3462 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3463 fsr = arm_fi_to_lfsc(&fi);
3464 fsc = extract32(fsr, 0, 6);
3465 } else {
3466 fsr = arm_fi_to_sfsc(&fi);
3467 fsc = 0x3f;
3470 * Report exception with ESR indicating a fault due to a
3471 * translation table walk for a cache maintenance instruction.
3473 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3474 fi.ea, 1, fi.s1ptw, 1, fsc);
3475 env->exception.vaddress = value;
3476 env->exception.fsr = fsr;
3477 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3481 if (is_a64(env)) {
3482 format64 = true;
3483 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3485 * ATS1Cxx:
3486 * * TTBCR.EAE determines whether the result is returned using the
3487 * 32-bit or the 64-bit PAR format
3488 * * Instructions executed in Hyp mode always use the 64bit format
3490 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3491 * * The Non-secure TTBCR.EAE bit is set to 1
3492 * * The implementation includes EL2, and the value of HCR.VM is 1
3494 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3496 * ATS1Hx always uses the 64bit format.
3498 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3500 if (arm_feature(env, ARM_FEATURE_EL2)) {
3501 if (mmu_idx == ARMMMUIdx_E10_0 ||
3502 mmu_idx == ARMMMUIdx_E10_1 ||
3503 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3504 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3505 } else {
3506 format64 |= arm_current_el(env) == 2;
3511 if (format64) {
3512 /* Create a 64-bit PAR */
3513 par64 = (1 << 11); /* LPAE bit always set */
3514 if (!ret) {
3515 par64 |= phys_addr & ~0xfffULL;
3516 if (!attrs.secure) {
3517 par64 |= (1 << 9); /* NS */
3519 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3520 par64 |= cacheattrs.shareability << 7; /* SH */
3521 } else {
3522 uint32_t fsr = arm_fi_to_lfsc(&fi);
3524 par64 |= 1; /* F */
3525 par64 |= (fsr & 0x3f) << 1; /* FS */
3526 if (fi.stage2) {
3527 par64 |= (1 << 9); /* S */
3529 if (fi.s1ptw) {
3530 par64 |= (1 << 8); /* PTW */
3533 } else {
3534 /* fsr is a DFSR/IFSR value for the short descriptor
3535 * translation table format (with WnR always clear).
3536 * Convert it to a 32-bit PAR.
3538 if (!ret) {
3539 /* We do not set any attribute bits in the PAR */
3540 if (page_size == (1 << 24)
3541 && arm_feature(env, ARM_FEATURE_V7)) {
3542 par64 = (phys_addr & 0xff000000) | (1 << 1);
3543 } else {
3544 par64 = phys_addr & 0xfffff000;
3546 if (!attrs.secure) {
3547 par64 |= (1 << 9); /* NS */
3549 } else {
3550 uint32_t fsr = arm_fi_to_sfsc(&fi);
3552 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3553 ((fsr & 0xf) << 1) | 1;
3556 return par64;
3558 #endif /* CONFIG_TCG */
3560 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3562 #ifdef CONFIG_TCG
3563 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3564 uint64_t par64;
3565 ARMMMUIdx mmu_idx;
3566 int el = arm_current_el(env);
3567 bool secure = arm_is_secure_below_el3(env);
3569 switch (ri->opc2 & 6) {
3570 case 0:
3571 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3572 switch (el) {
3573 case 3:
3574 mmu_idx = ARMMMUIdx_SE3;
3575 break;
3576 case 2:
3577 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */
3578 /* fall through */
3579 case 1:
3580 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3581 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3582 : ARMMMUIdx_Stage1_E1_PAN);
3583 } else {
3584 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3586 break;
3587 default:
3588 g_assert_not_reached();
3590 break;
3591 case 2:
3592 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3593 switch (el) {
3594 case 3:
3595 mmu_idx = ARMMMUIdx_SE10_0;
3596 break;
3597 case 2:
3598 mmu_idx = ARMMMUIdx_Stage1_E0;
3599 break;
3600 case 1:
3601 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3602 break;
3603 default:
3604 g_assert_not_reached();
3606 break;
3607 case 4:
3608 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3609 mmu_idx = ARMMMUIdx_E10_1;
3610 break;
3611 case 6:
3612 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3613 mmu_idx = ARMMMUIdx_E10_0;
3614 break;
3615 default:
3616 g_assert_not_reached();
3619 par64 = do_ats_write(env, value, access_type, mmu_idx);
3621 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3622 #else
3623 /* Handled by hardware accelerator. */
3624 g_assert_not_reached();
3625 #endif /* CONFIG_TCG */
3628 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3629 uint64_t value)
3631 #ifdef CONFIG_TCG
3632 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3633 uint64_t par64;
3635 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3637 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3638 #else
3639 /* Handled by hardware accelerator. */
3640 g_assert_not_reached();
3641 #endif /* CONFIG_TCG */
3644 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3645 bool isread)
3647 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3648 return CP_ACCESS_TRAP;
3650 return CP_ACCESS_OK;
3653 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3654 uint64_t value)
3656 #ifdef CONFIG_TCG
3657 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3658 ARMMMUIdx mmu_idx;
3659 int secure = arm_is_secure_below_el3(env);
3661 switch (ri->opc2 & 6) {
3662 case 0:
3663 switch (ri->opc1) {
3664 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3665 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3666 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3667 : ARMMMUIdx_Stage1_E1_PAN);
3668 } else {
3669 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3671 break;
3672 case 4: /* AT S1E2R, AT S1E2W */
3673 mmu_idx = ARMMMUIdx_E2;
3674 break;
3675 case 6: /* AT S1E3R, AT S1E3W */
3676 mmu_idx = ARMMMUIdx_SE3;
3677 break;
3678 default:
3679 g_assert_not_reached();
3681 break;
3682 case 2: /* AT S1E0R, AT S1E0W */
3683 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3684 break;
3685 case 4: /* AT S12E1R, AT S12E1W */
3686 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3687 break;
3688 case 6: /* AT S12E0R, AT S12E0W */
3689 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3690 break;
3691 default:
3692 g_assert_not_reached();
3695 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3696 #else
3697 /* Handled by hardware accelerator. */
3698 g_assert_not_reached();
3699 #endif /* CONFIG_TCG */
3701 #endif
3703 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3704 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3705 .access = PL1_RW, .resetvalue = 0,
3706 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3707 offsetoflow32(CPUARMState, cp15.par_ns) },
3708 .writefn = par_write },
3709 #ifndef CONFIG_USER_ONLY
3710 /* This underdecoding is safe because the reginfo is NO_RAW. */
3711 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3712 .access = PL1_W, .accessfn = ats_access,
3713 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3714 #endif
3715 REGINFO_SENTINEL
3718 /* Return basic MPU access permission bits. */
3719 static uint32_t simple_mpu_ap_bits(uint32_t val)
3721 uint32_t ret;
3722 uint32_t mask;
3723 int i;
3724 ret = 0;
3725 mask = 3;
3726 for (i = 0; i < 16; i += 2) {
3727 ret |= (val >> i) & mask;
3728 mask <<= 2;
3730 return ret;
3733 /* Pad basic MPU access permission bits to extended format. */
3734 static uint32_t extended_mpu_ap_bits(uint32_t val)
3736 uint32_t ret;
3737 uint32_t mask;
3738 int i;
3739 ret = 0;
3740 mask = 3;
3741 for (i = 0; i < 16; i += 2) {
3742 ret |= (val & mask) << i;
3743 mask <<= 2;
3745 return ret;
3748 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3749 uint64_t value)
3751 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3754 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3756 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3759 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3760 uint64_t value)
3762 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3765 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3767 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3770 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3772 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3774 if (!u32p) {
3775 return 0;
3778 u32p += env->pmsav7.rnr[M_REG_NS];
3779 return *u32p;
3782 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3783 uint64_t value)
3785 ARMCPU *cpu = env_archcpu(env);
3786 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3788 if (!u32p) {
3789 return;
3792 u32p += env->pmsav7.rnr[M_REG_NS];
3793 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3794 *u32p = value;
3797 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3798 uint64_t value)
3800 ARMCPU *cpu = env_archcpu(env);
3801 uint32_t nrgs = cpu->pmsav7_dregion;
3803 if (value >= nrgs) {
3804 qemu_log_mask(LOG_GUEST_ERROR,
3805 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3806 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3807 return;
3810 raw_write(env, ri, value);
3813 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3814 /* Reset for all these registers is handled in arm_cpu_reset(),
3815 * because the PMSAv7 is also used by M-profile CPUs, which do
3816 * not register cpregs but still need the state to be reset.
3818 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3819 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3820 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3821 .readfn = pmsav7_read, .writefn = pmsav7_write,
3822 .resetfn = arm_cp_reset_ignore },
3823 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3824 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3825 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3826 .readfn = pmsav7_read, .writefn = pmsav7_write,
3827 .resetfn = arm_cp_reset_ignore },
3828 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3829 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3830 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3831 .readfn = pmsav7_read, .writefn = pmsav7_write,
3832 .resetfn = arm_cp_reset_ignore },
3833 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3834 .access = PL1_RW,
3835 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3836 .writefn = pmsav7_rgnr_write,
3837 .resetfn = arm_cp_reset_ignore },
3838 REGINFO_SENTINEL
3841 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3842 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3843 .access = PL1_RW, .type = ARM_CP_ALIAS,
3844 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3845 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3846 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3847 .access = PL1_RW, .type = ARM_CP_ALIAS,
3848 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3849 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3850 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3851 .access = PL1_RW,
3852 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3853 .resetvalue = 0, },
3854 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3855 .access = PL1_RW,
3856 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3857 .resetvalue = 0, },
3858 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3859 .access = PL1_RW,
3860 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3861 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3862 .access = PL1_RW,
3863 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3864 /* Protection region base and size registers */
3865 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3866 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3867 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3868 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3869 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3870 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3871 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3872 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3873 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3874 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3875 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3876 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3877 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3878 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3879 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3880 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3881 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3882 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3883 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3884 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3885 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3886 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3887 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3888 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3889 REGINFO_SENTINEL
3892 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3893 uint64_t value)
3895 TCR *tcr = raw_ptr(env, ri);
3896 int maskshift = extract32(value, 0, 3);
3898 if (!arm_feature(env, ARM_FEATURE_V8)) {
3899 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3900 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3901 * using Long-desciptor translation table format */
3902 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3903 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3904 /* In an implementation that includes the Security Extensions
3905 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3906 * Short-descriptor translation table format.
3908 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3909 } else {
3910 value &= TTBCR_N;
3914 /* Update the masks corresponding to the TCR bank being written
3915 * Note that we always calculate mask and base_mask, but
3916 * they are only used for short-descriptor tables (ie if EAE is 0);
3917 * for long-descriptor tables the TCR fields are used differently
3918 * and the mask and base_mask values are meaningless.
3920 tcr->raw_tcr = value;
3921 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3922 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3925 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3926 uint64_t value)
3928 ARMCPU *cpu = env_archcpu(env);
3929 TCR *tcr = raw_ptr(env, ri);
3931 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3932 /* With LPAE the TTBCR could result in a change of ASID
3933 * via the TTBCR.A1 bit, so do a TLB flush.
3935 tlb_flush(CPU(cpu));
3937 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3938 value = deposit64(tcr->raw_tcr, 0, 32, value);
3939 vmsa_ttbcr_raw_write(env, ri, value);
3942 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3944 TCR *tcr = raw_ptr(env, ri);
3946 /* Reset both the TCR as well as the masks corresponding to the bank of
3947 * the TCR being reset.
3949 tcr->raw_tcr = 0;
3950 tcr->mask = 0;
3951 tcr->base_mask = 0xffffc000u;
3954 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3955 uint64_t value)
3957 ARMCPU *cpu = env_archcpu(env);
3958 TCR *tcr = raw_ptr(env, ri);
3960 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3961 tlb_flush(CPU(cpu));
3962 tcr->raw_tcr = value;
3965 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3966 uint64_t value)
3968 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3969 if (cpreg_field_is_64bit(ri) &&
3970 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3971 ARMCPU *cpu = env_archcpu(env);
3972 tlb_flush(CPU(cpu));
3974 raw_write(env, ri, value);
3977 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3978 uint64_t value)
3981 * If we are running with E2&0 regime, then an ASID is active.
3982 * Flush if that might be changing. Note we're not checking
3983 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3984 * holds the active ASID, only checking the field that might.
3986 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3987 (arm_hcr_el2_eff(env) & HCR_E2H)) {
3988 tlb_flush_by_mmuidx(env_cpu(env),
3989 ARMMMUIdxBit_E20_2 |
3990 ARMMMUIdxBit_E20_2_PAN |
3991 ARMMMUIdxBit_E20_0);
3993 raw_write(env, ri, value);
3996 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3997 uint64_t value)
3999 ARMCPU *cpu = env_archcpu(env);
4000 CPUState *cs = CPU(cpu);
4003 * A change in VMID to the stage2 page table (Stage2) invalidates
4004 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4006 if (raw_read(env, ri) != value) {
4007 tlb_flush_by_mmuidx(cs,
4008 ARMMMUIdxBit_E10_1 |
4009 ARMMMUIdxBit_E10_1_PAN |
4010 ARMMMUIdxBit_E10_0);
4011 raw_write(env, ri, value);
4015 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4016 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4017 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4018 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4019 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4020 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4021 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4022 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4023 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4024 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4025 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4026 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4027 offsetof(CPUARMState, cp15.dfar_ns) } },
4028 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4029 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4030 .access = PL1_RW, .accessfn = access_tvm_trvm,
4031 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4032 .resetvalue = 0, },
4033 REGINFO_SENTINEL
4036 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4037 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4038 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4039 .access = PL1_RW, .accessfn = access_tvm_trvm,
4040 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4041 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4042 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4043 .access = PL1_RW, .accessfn = access_tvm_trvm,
4044 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4045 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4046 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4047 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4048 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4049 .access = PL1_RW, .accessfn = access_tvm_trvm,
4050 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4051 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4052 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4053 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4054 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4055 .access = PL1_RW, .accessfn = access_tvm_trvm,
4056 .writefn = vmsa_tcr_el12_write,
4057 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4058 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4059 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4060 .access = PL1_RW, .accessfn = access_tvm_trvm,
4061 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4062 .raw_writefn = vmsa_ttbcr_raw_write,
4063 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4064 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4065 REGINFO_SENTINEL
4068 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4069 * qemu tlbs nor adjusting cached masks.
4071 static const ARMCPRegInfo ttbcr2_reginfo = {
4072 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4073 .access = PL1_RW, .accessfn = access_tvm_trvm,
4074 .type = ARM_CP_ALIAS,
4075 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4076 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
4079 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4080 uint64_t value)
4082 env->cp15.c15_ticonfig = value & 0xe7;
4083 /* The OS_TYPE bit in this register changes the reported CPUID! */
4084 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4085 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4088 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4089 uint64_t value)
4091 env->cp15.c15_threadid = value & 0xffff;
4094 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4095 uint64_t value)
4097 /* Wait-for-interrupt (deprecated) */
4098 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4101 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4102 uint64_t value)
4104 /* On OMAP there are registers indicating the max/min index of dcache lines
4105 * containing a dirty line; cache flush operations have to reset these.
4107 env->cp15.c15_i_max = 0x000;
4108 env->cp15.c15_i_min = 0xff0;
4111 static const ARMCPRegInfo omap_cp_reginfo[] = {
4112 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4113 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4114 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4115 .resetvalue = 0, },
4116 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4117 .access = PL1_RW, .type = ARM_CP_NOP },
4118 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4119 .access = PL1_RW,
4120 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4121 .writefn = omap_ticonfig_write },
4122 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4123 .access = PL1_RW,
4124 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4125 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4126 .access = PL1_RW, .resetvalue = 0xff0,
4127 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4128 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4129 .access = PL1_RW,
4130 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4131 .writefn = omap_threadid_write },
4132 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4133 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4134 .type = ARM_CP_NO_RAW,
4135 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4136 /* TODO: Peripheral port remap register:
4137 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4138 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4139 * when MMU is off.
4141 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4142 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4143 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4144 .writefn = omap_cachemaint_write },
4145 { .name = "C9", .cp = 15, .crn = 9,
4146 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4147 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4148 REGINFO_SENTINEL
4151 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4152 uint64_t value)
4154 env->cp15.c15_cpar = value & 0x3fff;
4157 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4158 { .name = "XSCALE_CPAR",
4159 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4160 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4161 .writefn = xscale_cpar_write, },
4162 { .name = "XSCALE_AUXCR",
4163 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4164 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4165 .resetvalue = 0, },
4166 /* XScale specific cache-lockdown: since we have no cache we NOP these
4167 * and hope the guest does not really rely on cache behaviour.
4169 { .name = "XSCALE_LOCK_ICACHE_LINE",
4170 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4171 .access = PL1_W, .type = ARM_CP_NOP },
4172 { .name = "XSCALE_UNLOCK_ICACHE",
4173 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4174 .access = PL1_W, .type = ARM_CP_NOP },
4175 { .name = "XSCALE_DCACHE_LOCK",
4176 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4177 .access = PL1_RW, .type = ARM_CP_NOP },
4178 { .name = "XSCALE_UNLOCK_DCACHE",
4179 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4180 .access = PL1_W, .type = ARM_CP_NOP },
4181 REGINFO_SENTINEL
4184 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4185 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4186 * implementation of this implementation-defined space.
4187 * Ideally this should eventually disappear in favour of actually
4188 * implementing the correct behaviour for all cores.
4190 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4191 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4192 .access = PL1_RW,
4193 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4194 .resetvalue = 0 },
4195 REGINFO_SENTINEL
4198 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4199 /* Cache status: RAZ because we have no cache so it's always clean */
4200 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4201 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4202 .resetvalue = 0 },
4203 REGINFO_SENTINEL
4206 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4207 /* We never have a a block transfer operation in progress */
4208 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4209 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4210 .resetvalue = 0 },
4211 /* The cache ops themselves: these all NOP for QEMU */
4212 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4213 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4214 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4215 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4216 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4217 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4218 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4219 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4220 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4221 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4222 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4223 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4224 REGINFO_SENTINEL
4227 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4228 /* The cache test-and-clean instructions always return (1 << 30)
4229 * to indicate that there are no dirty cache lines.
4231 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4232 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4233 .resetvalue = (1 << 30) },
4234 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4235 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4236 .resetvalue = (1 << 30) },
4237 REGINFO_SENTINEL
4240 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4241 /* Ignore ReadBuffer accesses */
4242 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4243 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4244 .access = PL1_RW, .resetvalue = 0,
4245 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4246 REGINFO_SENTINEL
4249 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4251 ARMCPU *cpu = env_archcpu(env);
4252 unsigned int cur_el = arm_current_el(env);
4253 bool secure = arm_is_secure(env);
4255 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4256 return env->cp15.vpidr_el2;
4258 return raw_read(env, ri);
4261 static uint64_t mpidr_read_val(CPUARMState *env)
4263 ARMCPU *cpu = env_archcpu(env);
4264 uint64_t mpidr = cpu->mp_affinity;
4266 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4267 mpidr |= (1U << 31);
4268 /* Cores which are uniprocessor (non-coherent)
4269 * but still implement the MP extensions set
4270 * bit 30. (For instance, Cortex-R5).
4272 if (cpu->mp_is_up) {
4273 mpidr |= (1u << 30);
4276 return mpidr;
4279 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4281 unsigned int cur_el = arm_current_el(env);
4282 bool secure = arm_is_secure(env);
4284 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4285 return env->cp15.vmpidr_el2;
4287 return mpidr_read_val(env);
4290 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4291 /* NOP AMAIR0/1 */
4292 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4293 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4294 .access = PL1_RW, .accessfn = access_tvm_trvm,
4295 .type = ARM_CP_CONST, .resetvalue = 0 },
4296 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4297 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4298 .access = PL1_RW, .accessfn = access_tvm_trvm,
4299 .type = ARM_CP_CONST, .resetvalue = 0 },
4300 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4301 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4302 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4303 offsetof(CPUARMState, cp15.par_ns)} },
4304 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4305 .access = PL1_RW, .accessfn = access_tvm_trvm,
4306 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4307 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4308 offsetof(CPUARMState, cp15.ttbr0_ns) },
4309 .writefn = vmsa_ttbr_write, },
4310 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4311 .access = PL1_RW, .accessfn = access_tvm_trvm,
4312 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4313 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4314 offsetof(CPUARMState, cp15.ttbr1_ns) },
4315 .writefn = vmsa_ttbr_write, },
4316 REGINFO_SENTINEL
4319 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4321 return vfp_get_fpcr(env);
4324 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4325 uint64_t value)
4327 vfp_set_fpcr(env, value);
4330 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4332 return vfp_get_fpsr(env);
4335 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4336 uint64_t value)
4338 vfp_set_fpsr(env, value);
4341 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4342 bool isread)
4344 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4345 return CP_ACCESS_TRAP;
4347 return CP_ACCESS_OK;
4350 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4351 uint64_t value)
4353 env->daif = value & PSTATE_DAIF;
4356 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4358 return env->pstate & PSTATE_PAN;
4361 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4362 uint64_t value)
4364 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4367 static const ARMCPRegInfo pan_reginfo = {
4368 .name = "PAN", .state = ARM_CP_STATE_AA64,
4369 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4370 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4371 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4374 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4376 return env->pstate & PSTATE_UAO;
4379 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4380 uint64_t value)
4382 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4385 static const ARMCPRegInfo uao_reginfo = {
4386 .name = "UAO", .state = ARM_CP_STATE_AA64,
4387 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4388 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4389 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4392 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4393 const ARMCPRegInfo *ri,
4394 bool isread)
4396 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4397 switch (arm_current_el(env)) {
4398 case 0:
4399 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4400 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4401 return CP_ACCESS_TRAP;
4403 /* fall through */
4404 case 1:
4405 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4406 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4407 return CP_ACCESS_TRAP_EL2;
4409 break;
4411 return CP_ACCESS_OK;
4414 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4415 const ARMCPRegInfo *ri,
4416 bool isread)
4418 /* Cache invalidate/clean to Point of Unification... */
4419 switch (arm_current_el(env)) {
4420 case 0:
4421 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4422 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4423 return CP_ACCESS_TRAP;
4425 /* fall through */
4426 case 1:
4427 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4428 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4429 return CP_ACCESS_TRAP_EL2;
4431 break;
4433 return CP_ACCESS_OK;
4436 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4437 * Page D4-1736 (DDI0487A.b)
4440 static int vae1_tlbmask(CPUARMState *env)
4442 /* Since we exclude secure first, we may read HCR_EL2 directly. */
4443 if (arm_is_secure_below_el3(env)) {
4444 return ARMMMUIdxBit_SE10_1 |
4445 ARMMMUIdxBit_SE10_1_PAN |
4446 ARMMMUIdxBit_SE10_0;
4447 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
4448 == (HCR_E2H | HCR_TGE)) {
4449 return ARMMMUIdxBit_E20_2 |
4450 ARMMMUIdxBit_E20_2_PAN |
4451 ARMMMUIdxBit_E20_0;
4452 } else {
4453 return ARMMMUIdxBit_E10_1 |
4454 ARMMMUIdxBit_E10_1_PAN |
4455 ARMMMUIdxBit_E10_0;
4459 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4460 uint64_t value)
4462 CPUState *cs = env_cpu(env);
4463 int mask = vae1_tlbmask(env);
4465 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4468 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4469 uint64_t value)
4471 CPUState *cs = env_cpu(env);
4472 int mask = vae1_tlbmask(env);
4474 if (tlb_force_broadcast(env)) {
4475 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4476 } else {
4477 tlb_flush_by_mmuidx(cs, mask);
4481 static int alle1_tlbmask(CPUARMState *env)
4484 * Note that the 'ALL' scope must invalidate both stage 1 and
4485 * stage 2 translations, whereas most other scopes only invalidate
4486 * stage 1 translations.
4488 if (arm_is_secure_below_el3(env)) {
4489 return ARMMMUIdxBit_SE10_1 |
4490 ARMMMUIdxBit_SE10_1_PAN |
4491 ARMMMUIdxBit_SE10_0;
4492 } else {
4493 return ARMMMUIdxBit_E10_1 |
4494 ARMMMUIdxBit_E10_1_PAN |
4495 ARMMMUIdxBit_E10_0;
4499 static int e2_tlbmask(CPUARMState *env)
4501 /* TODO: ARMv8.4-SecEL2 */
4502 return ARMMMUIdxBit_E20_0 |
4503 ARMMMUIdxBit_E20_2 |
4504 ARMMMUIdxBit_E20_2_PAN |
4505 ARMMMUIdxBit_E2;
4508 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4509 uint64_t value)
4511 CPUState *cs = env_cpu(env);
4512 int mask = alle1_tlbmask(env);
4514 tlb_flush_by_mmuidx(cs, mask);
4517 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4518 uint64_t value)
4520 CPUState *cs = env_cpu(env);
4521 int mask = e2_tlbmask(env);
4523 tlb_flush_by_mmuidx(cs, mask);
4526 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4527 uint64_t value)
4529 ARMCPU *cpu = env_archcpu(env);
4530 CPUState *cs = CPU(cpu);
4532 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4535 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4536 uint64_t value)
4538 CPUState *cs = env_cpu(env);
4539 int mask = alle1_tlbmask(env);
4541 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4544 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4545 uint64_t value)
4547 CPUState *cs = env_cpu(env);
4548 int mask = e2_tlbmask(env);
4550 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4553 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4554 uint64_t value)
4556 CPUState *cs = env_cpu(env);
4558 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4561 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4562 uint64_t value)
4564 /* Invalidate by VA, EL2
4565 * Currently handles both VAE2 and VALE2, since we don't support
4566 * flush-last-level-only.
4568 CPUState *cs = env_cpu(env);
4569 int mask = e2_tlbmask(env);
4570 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4572 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4575 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4576 uint64_t value)
4578 /* Invalidate by VA, EL3
4579 * Currently handles both VAE3 and VALE3, since we don't support
4580 * flush-last-level-only.
4582 ARMCPU *cpu = env_archcpu(env);
4583 CPUState *cs = CPU(cpu);
4584 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4586 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4589 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4590 uint64_t value)
4592 CPUState *cs = env_cpu(env);
4593 int mask = vae1_tlbmask(env);
4594 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4596 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4599 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4600 uint64_t value)
4602 /* Invalidate by VA, EL1&0 (AArch64 version).
4603 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4604 * since we don't support flush-for-specific-ASID-only or
4605 * flush-last-level-only.
4607 CPUState *cs = env_cpu(env);
4608 int mask = vae1_tlbmask(env);
4609 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4611 if (tlb_force_broadcast(env)) {
4612 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4613 } else {
4614 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4618 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4619 uint64_t value)
4621 CPUState *cs = env_cpu(env);
4622 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4624 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4625 ARMMMUIdxBit_E2);
4628 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4629 uint64_t value)
4631 CPUState *cs = env_cpu(env);
4632 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4634 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4635 ARMMMUIdxBit_SE3);
4638 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4639 bool isread)
4641 int cur_el = arm_current_el(env);
4643 if (cur_el < 2) {
4644 uint64_t hcr = arm_hcr_el2_eff(env);
4646 if (cur_el == 0) {
4647 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4648 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4649 return CP_ACCESS_TRAP_EL2;
4651 } else {
4652 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4653 return CP_ACCESS_TRAP;
4655 if (hcr & HCR_TDZ) {
4656 return CP_ACCESS_TRAP_EL2;
4659 } else if (hcr & HCR_TDZ) {
4660 return CP_ACCESS_TRAP_EL2;
4663 return CP_ACCESS_OK;
4666 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4668 ARMCPU *cpu = env_archcpu(env);
4669 int dzp_bit = 1 << 4;
4671 /* DZP indicates whether DC ZVA access is allowed */
4672 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4673 dzp_bit = 0;
4675 return cpu->dcz_blocksize | dzp_bit;
4678 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4679 bool isread)
4681 if (!(env->pstate & PSTATE_SP)) {
4682 /* Access to SP_EL0 is undefined if it's being used as
4683 * the stack pointer.
4685 return CP_ACCESS_TRAP_UNCATEGORIZED;
4687 return CP_ACCESS_OK;
4690 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4692 return env->pstate & PSTATE_SP;
4695 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4697 update_spsel(env, val);
4700 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4701 uint64_t value)
4703 ARMCPU *cpu = env_archcpu(env);
4705 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4706 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4707 value &= ~SCTLR_M;
4710 /* ??? Lots of these bits are not implemented. */
4712 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4713 if (ri->opc1 == 6) { /* SCTLR_EL3 */
4714 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4715 } else {
4716 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4717 SCTLR_ATA0 | SCTLR_ATA);
4721 if (raw_read(env, ri) == value) {
4722 /* Skip the TLB flush if nothing actually changed; Linux likes
4723 * to do a lot of pointless SCTLR writes.
4725 return;
4728 raw_write(env, ri, value);
4730 /* This may enable/disable the MMU, so do a TLB flush. */
4731 tlb_flush(CPU(cpu));
4733 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4735 * Normally we would always end the TB on an SCTLR write; see the
4736 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4737 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4738 * of hflags from the translator, so do it here.
4740 arm_rebuild_hflags(env);
4744 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4745 bool isread)
4747 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4748 return CP_ACCESS_TRAP_FP_EL2;
4750 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4751 return CP_ACCESS_TRAP_FP_EL3;
4753 return CP_ACCESS_OK;
4756 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4757 uint64_t value)
4759 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4762 static const ARMCPRegInfo v8_cp_reginfo[] = {
4763 /* Minimal set of EL0-visible registers. This will need to be expanded
4764 * significantly for system emulation of AArch64 CPUs.
4766 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4767 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4768 .access = PL0_RW, .type = ARM_CP_NZCV },
4769 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4770 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4771 .type = ARM_CP_NO_RAW,
4772 .access = PL0_RW, .accessfn = aa64_daif_access,
4773 .fieldoffset = offsetof(CPUARMState, daif),
4774 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4775 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4776 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4777 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4778 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4779 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4780 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4781 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4782 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4783 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4784 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4785 .access = PL0_R, .type = ARM_CP_NO_RAW,
4786 .readfn = aa64_dczid_read },
4787 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4788 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4789 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4790 #ifndef CONFIG_USER_ONLY
4791 /* Avoid overhead of an access check that always passes in user-mode */
4792 .accessfn = aa64_zva_access,
4793 #endif
4795 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4796 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4797 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4798 /* Cache ops: all NOPs since we don't emulate caches */
4799 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4800 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4801 .access = PL1_W, .type = ARM_CP_NOP,
4802 .accessfn = aa64_cacheop_pou_access },
4803 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4804 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4805 .access = PL1_W, .type = ARM_CP_NOP,
4806 .accessfn = aa64_cacheop_pou_access },
4807 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4808 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4809 .access = PL0_W, .type = ARM_CP_NOP,
4810 .accessfn = aa64_cacheop_pou_access },
4811 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4812 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4813 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4814 .type = ARM_CP_NOP },
4815 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4816 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4817 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4818 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4819 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4820 .access = PL0_W, .type = ARM_CP_NOP,
4821 .accessfn = aa64_cacheop_poc_access },
4822 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4823 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4824 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4825 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4826 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4827 .access = PL0_W, .type = ARM_CP_NOP,
4828 .accessfn = aa64_cacheop_pou_access },
4829 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4830 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4831 .access = PL0_W, .type = ARM_CP_NOP,
4832 .accessfn = aa64_cacheop_poc_access },
4833 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4834 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4835 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4836 /* TLBI operations */
4837 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4838 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4839 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4840 .writefn = tlbi_aa64_vmalle1is_write },
4841 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4842 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4843 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4844 .writefn = tlbi_aa64_vae1is_write },
4845 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4846 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4847 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4848 .writefn = tlbi_aa64_vmalle1is_write },
4849 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4850 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4851 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4852 .writefn = tlbi_aa64_vae1is_write },
4853 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4854 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4855 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4856 .writefn = tlbi_aa64_vae1is_write },
4857 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4858 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4859 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4860 .writefn = tlbi_aa64_vae1is_write },
4861 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4862 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4863 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4864 .writefn = tlbi_aa64_vmalle1_write },
4865 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4866 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4867 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4868 .writefn = tlbi_aa64_vae1_write },
4869 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4870 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4871 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4872 .writefn = tlbi_aa64_vmalle1_write },
4873 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4874 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4875 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4876 .writefn = tlbi_aa64_vae1_write },
4877 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4878 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4879 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4880 .writefn = tlbi_aa64_vae1_write },
4881 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4882 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4883 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4884 .writefn = tlbi_aa64_vae1_write },
4885 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4886 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4887 .access = PL2_W, .type = ARM_CP_NOP },
4888 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4889 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4890 .access = PL2_W, .type = ARM_CP_NOP },
4891 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4892 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4893 .access = PL2_W, .type = ARM_CP_NO_RAW,
4894 .writefn = tlbi_aa64_alle1is_write },
4895 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4896 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4897 .access = PL2_W, .type = ARM_CP_NO_RAW,
4898 .writefn = tlbi_aa64_alle1is_write },
4899 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4900 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4901 .access = PL2_W, .type = ARM_CP_NOP },
4902 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4903 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4904 .access = PL2_W, .type = ARM_CP_NOP },
4905 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4906 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4907 .access = PL2_W, .type = ARM_CP_NO_RAW,
4908 .writefn = tlbi_aa64_alle1_write },
4909 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4910 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4911 .access = PL2_W, .type = ARM_CP_NO_RAW,
4912 .writefn = tlbi_aa64_alle1is_write },
4913 #ifndef CONFIG_USER_ONLY
4914 /* 64 bit address translation operations */
4915 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4916 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4917 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4918 .writefn = ats_write64 },
4919 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4920 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4921 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4922 .writefn = ats_write64 },
4923 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4924 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4925 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4926 .writefn = ats_write64 },
4927 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4928 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4929 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4930 .writefn = ats_write64 },
4931 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4932 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4933 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4934 .writefn = ats_write64 },
4935 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4936 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4937 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4938 .writefn = ats_write64 },
4939 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4940 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4941 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4942 .writefn = ats_write64 },
4943 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4944 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4945 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4946 .writefn = ats_write64 },
4947 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4948 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4949 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4950 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4951 .writefn = ats_write64 },
4952 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4953 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4954 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4955 .writefn = ats_write64 },
4956 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4957 .type = ARM_CP_ALIAS,
4958 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4959 .access = PL1_RW, .resetvalue = 0,
4960 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4961 .writefn = par_write },
4962 #endif
4963 /* TLB invalidate last level of translation table walk */
4964 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4965 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4966 .writefn = tlbimva_is_write },
4967 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4968 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4969 .writefn = tlbimvaa_is_write },
4970 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4971 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4972 .writefn = tlbimva_write },
4973 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4974 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4975 .writefn = tlbimvaa_write },
4976 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4977 .type = ARM_CP_NO_RAW, .access = PL2_W,
4978 .writefn = tlbimva_hyp_write },
4979 { .name = "TLBIMVALHIS",
4980 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4981 .type = ARM_CP_NO_RAW, .access = PL2_W,
4982 .writefn = tlbimva_hyp_is_write },
4983 { .name = "TLBIIPAS2",
4984 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4985 .type = ARM_CP_NOP, .access = PL2_W },
4986 { .name = "TLBIIPAS2IS",
4987 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4988 .type = ARM_CP_NOP, .access = PL2_W },
4989 { .name = "TLBIIPAS2L",
4990 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4991 .type = ARM_CP_NOP, .access = PL2_W },
4992 { .name = "TLBIIPAS2LIS",
4993 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4994 .type = ARM_CP_NOP, .access = PL2_W },
4995 /* 32 bit cache operations */
4996 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4997 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
4998 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4999 .type = ARM_CP_NOP, .access = PL1_W },
5000 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5001 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5002 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5003 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5004 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5005 .type = ARM_CP_NOP, .access = PL1_W },
5006 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5007 .type = ARM_CP_NOP, .access = PL1_W },
5008 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5009 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5010 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5011 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5012 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5013 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5014 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5015 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5016 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5017 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5018 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5019 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5020 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5021 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5022 /* MMU Domain access control / MPU write buffer control */
5023 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5024 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5025 .writefn = dacr_write, .raw_writefn = raw_write,
5026 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5027 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5028 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5029 .type = ARM_CP_ALIAS,
5030 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5031 .access = PL1_RW,
5032 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5033 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5034 .type = ARM_CP_ALIAS,
5035 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5036 .access = PL1_RW,
5037 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5038 /* We rely on the access checks not allowing the guest to write to the
5039 * state field when SPSel indicates that it's being used as the stack
5040 * pointer.
5042 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5043 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5044 .access = PL1_RW, .accessfn = sp_el0_access,
5045 .type = ARM_CP_ALIAS,
5046 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5047 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5048 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5049 .access = PL2_RW, .type = ARM_CP_ALIAS,
5050 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5051 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5052 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5053 .type = ARM_CP_NO_RAW,
5054 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5055 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5056 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5057 .type = ARM_CP_ALIAS,
5058 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5059 .access = PL2_RW, .accessfn = fpexc32_access },
5060 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5061 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5062 .access = PL2_RW, .resetvalue = 0,
5063 .writefn = dacr_write, .raw_writefn = raw_write,
5064 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5065 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5066 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5067 .access = PL2_RW, .resetvalue = 0,
5068 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5069 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5070 .type = ARM_CP_ALIAS,
5071 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5072 .access = PL2_RW,
5073 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5074 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5075 .type = ARM_CP_ALIAS,
5076 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5077 .access = PL2_RW,
5078 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5079 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5080 .type = ARM_CP_ALIAS,
5081 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5082 .access = PL2_RW,
5083 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5084 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5085 .type = ARM_CP_ALIAS,
5086 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5087 .access = PL2_RW,
5088 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5089 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5090 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5091 .resetvalue = 0,
5092 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5093 { .name = "SDCR", .type = ARM_CP_ALIAS,
5094 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5095 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5096 .writefn = sdcr_write,
5097 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5098 REGINFO_SENTINEL
5101 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
5102 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5103 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5104 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5105 .access = PL2_RW,
5106 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5107 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5108 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5109 .access = PL2_RW,
5110 .type = ARM_CP_CONST, .resetvalue = 0 },
5111 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5112 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5113 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5114 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5115 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5116 .access = PL2_RW,
5117 .type = ARM_CP_CONST, .resetvalue = 0 },
5118 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5119 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5120 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5121 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5122 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5123 .access = PL2_RW, .type = ARM_CP_CONST,
5124 .resetvalue = 0 },
5125 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5126 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5127 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5128 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5129 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5130 .access = PL2_RW, .type = ARM_CP_CONST,
5131 .resetvalue = 0 },
5132 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5133 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5134 .access = PL2_RW, .type = ARM_CP_CONST,
5135 .resetvalue = 0 },
5136 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5137 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5138 .access = PL2_RW, .type = ARM_CP_CONST,
5139 .resetvalue = 0 },
5140 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5141 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5142 .access = PL2_RW, .type = ARM_CP_CONST,
5143 .resetvalue = 0 },
5144 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5145 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5146 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5147 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5148 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5149 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5150 .type = ARM_CP_CONST, .resetvalue = 0 },
5151 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5152 .cp = 15, .opc1 = 6, .crm = 2,
5153 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5154 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5155 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5156 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5157 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5158 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5159 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5160 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5161 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5162 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5163 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5164 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5165 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5166 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5167 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5168 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5169 .resetvalue = 0 },
5170 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5171 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5172 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5173 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5174 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5175 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5176 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5177 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5178 .resetvalue = 0 },
5179 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5180 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5181 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5182 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5183 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5184 .resetvalue = 0 },
5185 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5186 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5187 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5188 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5189 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5190 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5191 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5192 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5193 .access = PL2_RW, .accessfn = access_tda,
5194 .type = ARM_CP_CONST, .resetvalue = 0 },
5195 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5196 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5197 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5198 .type = ARM_CP_CONST, .resetvalue = 0 },
5199 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5200 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5201 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5202 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5203 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5204 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5205 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5206 .type = ARM_CP_CONST,
5207 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5208 .access = PL2_RW, .resetvalue = 0 },
5209 REGINFO_SENTINEL
5212 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5213 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5214 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5215 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5216 .access = PL2_RW,
5217 .type = ARM_CP_CONST, .resetvalue = 0 },
5218 REGINFO_SENTINEL
5221 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5223 ARMCPU *cpu = env_archcpu(env);
5225 if (arm_feature(env, ARM_FEATURE_V8)) {
5226 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5227 } else {
5228 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5231 if (arm_feature(env, ARM_FEATURE_EL3)) {
5232 valid_mask &= ~HCR_HCD;
5233 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5234 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5235 * However, if we're using the SMC PSCI conduit then QEMU is
5236 * effectively acting like EL3 firmware and so the guest at
5237 * EL2 should retain the ability to prevent EL1 from being
5238 * able to make SMC calls into the ersatz firmware, so in
5239 * that case HCR.TSC should be read/write.
5241 valid_mask &= ~HCR_TSC;
5244 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5245 if (cpu_isar_feature(aa64_vh, cpu)) {
5246 valid_mask |= HCR_E2H;
5248 if (cpu_isar_feature(aa64_lor, cpu)) {
5249 valid_mask |= HCR_TLOR;
5251 if (cpu_isar_feature(aa64_pauth, cpu)) {
5252 valid_mask |= HCR_API | HCR_APK;
5254 if (cpu_isar_feature(aa64_mte, cpu)) {
5255 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5259 /* Clear RES0 bits. */
5260 value &= valid_mask;
5263 * These bits change the MMU setup:
5264 * HCR_VM enables stage 2 translation
5265 * HCR_PTW forbids certain page-table setups
5266 * HCR_DC disables stage1 and enables stage2 translation
5267 * HCR_DCT enables tagging on (disabled) stage1 translation
5269 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5270 tlb_flush(CPU(cpu));
5272 env->cp15.hcr_el2 = value;
5275 * Updates to VI and VF require us to update the status of
5276 * virtual interrupts, which are the logical OR of these bits
5277 * and the state of the input lines from the GIC. (This requires
5278 * that we have the iothread lock, which is done by marking the
5279 * reginfo structs as ARM_CP_IO.)
5280 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5281 * possible for it to be taken immediately, because VIRQ and
5282 * VFIQ are masked unless running at EL0 or EL1, and HCR
5283 * can only be written at EL2.
5285 g_assert(qemu_mutex_iothread_locked());
5286 arm_cpu_update_virq(cpu);
5287 arm_cpu_update_vfiq(cpu);
5290 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5292 do_hcr_write(env, value, 0);
5295 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5296 uint64_t value)
5298 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5299 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5300 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5303 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5304 uint64_t value)
5306 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5307 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5308 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5312 * Return the effective value of HCR_EL2.
5313 * Bits that are not included here:
5314 * RW (read from SCR_EL3.RW as needed)
5316 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5318 uint64_t ret = env->cp15.hcr_el2;
5320 if (arm_is_secure_below_el3(env)) {
5322 * "This register has no effect if EL2 is not enabled in the
5323 * current Security state". This is ARMv8.4-SecEL2 speak for
5324 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5326 * Prior to that, the language was "In an implementation that
5327 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5328 * as if this field is 0 for all purposes other than a direct
5329 * read or write access of HCR_EL2". With lots of enumeration
5330 * on a per-field basis. In current QEMU, this is condition
5331 * is arm_is_secure_below_el3.
5333 * Since the v8.4 language applies to the entire register, and
5334 * appears to be backward compatible, use that.
5336 return 0;
5340 * For a cpu that supports both aarch64 and aarch32, we can set bits
5341 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5342 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5344 if (!arm_el_is_aa64(env, 2)) {
5345 uint64_t aa32_valid;
5348 * These bits are up-to-date as of ARMv8.6.
5349 * For HCR, it's easiest to list just the 2 bits that are invalid.
5350 * For HCR2, list those that are valid.
5352 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5353 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5354 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5355 ret &= aa32_valid;
5358 if (ret & HCR_TGE) {
5359 /* These bits are up-to-date as of ARMv8.6. */
5360 if (ret & HCR_E2H) {
5361 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5362 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5363 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5364 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5365 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5366 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5367 } else {
5368 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5370 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5371 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5372 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5373 HCR_TLOR);
5376 return ret;
5379 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5380 uint64_t value)
5383 * For A-profile AArch32 EL3, if NSACR.CP10
5384 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5386 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5387 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5388 value &= ~(0x3 << 10);
5389 value |= env->cp15.cptr_el[2] & (0x3 << 10);
5391 env->cp15.cptr_el[2] = value;
5394 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5397 * For A-profile AArch32 EL3, if NSACR.CP10
5398 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5400 uint64_t value = env->cp15.cptr_el[2];
5402 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5403 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5404 value |= 0x3 << 10;
5406 return value;
5409 static const ARMCPRegInfo el2_cp_reginfo[] = {
5410 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5411 .type = ARM_CP_IO,
5412 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5413 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5414 .writefn = hcr_write },
5415 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5416 .type = ARM_CP_ALIAS | ARM_CP_IO,
5417 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5418 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5419 .writefn = hcr_writelow },
5420 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5421 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5422 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5423 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5424 .type = ARM_CP_ALIAS,
5425 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5426 .access = PL2_RW,
5427 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5428 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5429 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5430 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5431 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5432 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5433 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5434 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5435 .type = ARM_CP_ALIAS,
5436 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5437 .access = PL2_RW,
5438 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5439 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5440 .type = ARM_CP_ALIAS,
5441 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5442 .access = PL2_RW,
5443 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5444 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5445 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5446 .access = PL2_RW, .writefn = vbar_write,
5447 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5448 .resetvalue = 0 },
5449 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5450 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5451 .access = PL3_RW, .type = ARM_CP_ALIAS,
5452 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5453 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5454 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5455 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5456 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5457 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5458 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5459 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5460 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5461 .resetvalue = 0 },
5462 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5463 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5464 .access = PL2_RW, .type = ARM_CP_ALIAS,
5465 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5466 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5467 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5468 .access = PL2_RW, .type = ARM_CP_CONST,
5469 .resetvalue = 0 },
5470 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5471 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5472 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5473 .access = PL2_RW, .type = ARM_CP_CONST,
5474 .resetvalue = 0 },
5475 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5476 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5477 .access = PL2_RW, .type = ARM_CP_CONST,
5478 .resetvalue = 0 },
5479 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5480 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5481 .access = PL2_RW, .type = ARM_CP_CONST,
5482 .resetvalue = 0 },
5483 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5484 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5485 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5486 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5487 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5488 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5489 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5490 .type = ARM_CP_ALIAS,
5491 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5492 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5493 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5494 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5495 .access = PL2_RW,
5496 /* no .writefn needed as this can't cause an ASID change;
5497 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5499 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5500 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5501 .cp = 15, .opc1 = 6, .crm = 2,
5502 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5503 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5504 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5505 .writefn = vttbr_write },
5506 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5507 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5508 .access = PL2_RW, .writefn = vttbr_write,
5509 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5510 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5511 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5512 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5513 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5514 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5515 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5516 .access = PL2_RW, .resetvalue = 0,
5517 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5518 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5519 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5520 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5521 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5522 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5523 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5524 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5525 { .name = "TLBIALLNSNH",
5526 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5527 .type = ARM_CP_NO_RAW, .access = PL2_W,
5528 .writefn = tlbiall_nsnh_write },
5529 { .name = "TLBIALLNSNHIS",
5530 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5531 .type = ARM_CP_NO_RAW, .access = PL2_W,
5532 .writefn = tlbiall_nsnh_is_write },
5533 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5534 .type = ARM_CP_NO_RAW, .access = PL2_W,
5535 .writefn = tlbiall_hyp_write },
5536 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5537 .type = ARM_CP_NO_RAW, .access = PL2_W,
5538 .writefn = tlbiall_hyp_is_write },
5539 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5540 .type = ARM_CP_NO_RAW, .access = PL2_W,
5541 .writefn = tlbimva_hyp_write },
5542 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5543 .type = ARM_CP_NO_RAW, .access = PL2_W,
5544 .writefn = tlbimva_hyp_is_write },
5545 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5546 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5547 .type = ARM_CP_NO_RAW, .access = PL2_W,
5548 .writefn = tlbi_aa64_alle2_write },
5549 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5550 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5551 .type = ARM_CP_NO_RAW, .access = PL2_W,
5552 .writefn = tlbi_aa64_vae2_write },
5553 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5554 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5555 .access = PL2_W, .type = ARM_CP_NO_RAW,
5556 .writefn = tlbi_aa64_vae2_write },
5557 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5558 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5559 .access = PL2_W, .type = ARM_CP_NO_RAW,
5560 .writefn = tlbi_aa64_alle2is_write },
5561 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5562 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5563 .type = ARM_CP_NO_RAW, .access = PL2_W,
5564 .writefn = tlbi_aa64_vae2is_write },
5565 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5566 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5567 .access = PL2_W, .type = ARM_CP_NO_RAW,
5568 .writefn = tlbi_aa64_vae2is_write },
5569 #ifndef CONFIG_USER_ONLY
5570 /* Unlike the other EL2-related AT operations, these must
5571 * UNDEF from EL3 if EL2 is not implemented, which is why we
5572 * define them here rather than with the rest of the AT ops.
5574 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5575 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5576 .access = PL2_W, .accessfn = at_s1e2_access,
5577 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5578 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5579 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5580 .access = PL2_W, .accessfn = at_s1e2_access,
5581 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5582 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5583 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5584 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5585 * to behave as if SCR.NS was 1.
5587 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5588 .access = PL2_W,
5589 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5590 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5591 .access = PL2_W,
5592 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5593 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5594 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5595 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5596 * reset values as IMPDEF. We choose to reset to 3 to comply with
5597 * both ARMv7 and ARMv8.
5599 .access = PL2_RW, .resetvalue = 3,
5600 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5601 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5602 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5603 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5604 .writefn = gt_cntvoff_write,
5605 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5606 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5607 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5608 .writefn = gt_cntvoff_write,
5609 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5610 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5611 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5612 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5613 .type = ARM_CP_IO, .access = PL2_RW,
5614 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5615 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5616 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5617 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5618 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5619 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5620 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5621 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5622 .resetfn = gt_hyp_timer_reset,
5623 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5624 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5625 .type = ARM_CP_IO,
5626 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5627 .access = PL2_RW,
5628 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5629 .resetvalue = 0,
5630 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5631 #endif
5632 /* The only field of MDCR_EL2 that has a defined architectural reset value
5633 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5634 * don't implement any PMU event counters, so using zero as a reset
5635 * value for MDCR_EL2 is okay
5637 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5638 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5639 .access = PL2_RW, .resetvalue = 0,
5640 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5641 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5642 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5643 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5644 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5645 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5646 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5647 .access = PL2_RW,
5648 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5649 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5650 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5651 .access = PL2_RW,
5652 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5653 REGINFO_SENTINEL
5656 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5657 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5658 .type = ARM_CP_ALIAS | ARM_CP_IO,
5659 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5660 .access = PL2_RW,
5661 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5662 .writefn = hcr_writehigh },
5663 REGINFO_SENTINEL
5666 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5667 bool isread)
5669 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5670 * At Secure EL1 it traps to EL3.
5672 if (arm_current_el(env) == 3) {
5673 return CP_ACCESS_OK;
5675 if (arm_is_secure_below_el3(env)) {
5676 return CP_ACCESS_TRAP_EL3;
5678 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5679 if (isread) {
5680 return CP_ACCESS_OK;
5682 return CP_ACCESS_TRAP_UNCATEGORIZED;
5685 static const ARMCPRegInfo el3_cp_reginfo[] = {
5686 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5687 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5688 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5689 .resetvalue = 0, .writefn = scr_write },
5690 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5691 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5692 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5693 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5694 .writefn = scr_write },
5695 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5696 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5697 .access = PL3_RW, .resetvalue = 0,
5698 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5699 { .name = "SDER",
5700 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5701 .access = PL3_RW, .resetvalue = 0,
5702 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5703 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5704 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5705 .writefn = vbar_write, .resetvalue = 0,
5706 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5707 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5708 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5709 .access = PL3_RW, .resetvalue = 0,
5710 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5711 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5712 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5713 .access = PL3_RW,
5714 /* no .writefn needed as this can't cause an ASID change;
5715 * we must provide a .raw_writefn and .resetfn because we handle
5716 * reset and migration for the AArch32 TTBCR(S), which might be
5717 * using mask and base_mask.
5719 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5720 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5721 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5722 .type = ARM_CP_ALIAS,
5723 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5724 .access = PL3_RW,
5725 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5726 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5727 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5728 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5729 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5730 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5731 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5732 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5733 .type = ARM_CP_ALIAS,
5734 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5735 .access = PL3_RW,
5736 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5737 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5738 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5739 .access = PL3_RW, .writefn = vbar_write,
5740 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5741 .resetvalue = 0 },
5742 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5743 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5744 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5745 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5746 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5747 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5748 .access = PL3_RW, .resetvalue = 0,
5749 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5750 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5751 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5752 .access = PL3_RW, .type = ARM_CP_CONST,
5753 .resetvalue = 0 },
5754 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5755 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5756 .access = PL3_RW, .type = ARM_CP_CONST,
5757 .resetvalue = 0 },
5758 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5759 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5760 .access = PL3_RW, .type = ARM_CP_CONST,
5761 .resetvalue = 0 },
5762 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5763 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5764 .access = PL3_W, .type = ARM_CP_NO_RAW,
5765 .writefn = tlbi_aa64_alle3is_write },
5766 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5767 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5768 .access = PL3_W, .type = ARM_CP_NO_RAW,
5769 .writefn = tlbi_aa64_vae3is_write },
5770 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5771 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5772 .access = PL3_W, .type = ARM_CP_NO_RAW,
5773 .writefn = tlbi_aa64_vae3is_write },
5774 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5775 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5776 .access = PL3_W, .type = ARM_CP_NO_RAW,
5777 .writefn = tlbi_aa64_alle3_write },
5778 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5779 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5780 .access = PL3_W, .type = ARM_CP_NO_RAW,
5781 .writefn = tlbi_aa64_vae3_write },
5782 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5783 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5784 .access = PL3_W, .type = ARM_CP_NO_RAW,
5785 .writefn = tlbi_aa64_vae3_write },
5786 REGINFO_SENTINEL
5789 #ifndef CONFIG_USER_ONLY
5790 /* Test if system register redirection is to occur in the current state. */
5791 static bool redirect_for_e2h(CPUARMState *env)
5793 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5796 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5798 CPReadFn *readfn;
5800 if (redirect_for_e2h(env)) {
5801 /* Switch to the saved EL2 version of the register. */
5802 ri = ri->opaque;
5803 readfn = ri->readfn;
5804 } else {
5805 readfn = ri->orig_readfn;
5807 if (readfn == NULL) {
5808 readfn = raw_read;
5810 return readfn(env, ri);
5813 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5814 uint64_t value)
5816 CPWriteFn *writefn;
5818 if (redirect_for_e2h(env)) {
5819 /* Switch to the saved EL2 version of the register. */
5820 ri = ri->opaque;
5821 writefn = ri->writefn;
5822 } else {
5823 writefn = ri->orig_writefn;
5825 if (writefn == NULL) {
5826 writefn = raw_write;
5828 writefn(env, ri, value);
5831 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5833 struct E2HAlias {
5834 uint32_t src_key, dst_key, new_key;
5835 const char *src_name, *dst_name, *new_name;
5836 bool (*feature)(const ARMISARegisters *id);
5839 #define K(op0, op1, crn, crm, op2) \
5840 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5842 static const struct E2HAlias aliases[] = {
5843 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5844 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5845 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5846 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5847 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5848 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5849 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5850 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5851 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5852 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5853 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5854 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5855 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5856 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5857 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5858 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5859 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5860 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5861 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5862 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5863 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5864 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5865 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5866 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5867 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5868 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5869 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5870 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5871 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5872 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5873 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5874 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5877 * Note that redirection of ZCR is mentioned in the description
5878 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5879 * not in the summary table.
5881 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
5882 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5884 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
5885 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5887 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5888 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5890 #undef K
5892 size_t i;
5894 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5895 const struct E2HAlias *a = &aliases[i];
5896 ARMCPRegInfo *src_reg, *dst_reg;
5898 if (a->feature && !a->feature(&cpu->isar)) {
5899 continue;
5902 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5903 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5904 g_assert(src_reg != NULL);
5905 g_assert(dst_reg != NULL);
5907 /* Cross-compare names to detect typos in the keys. */
5908 g_assert(strcmp(src_reg->name, a->src_name) == 0);
5909 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5911 /* None of the core system registers use opaque; we will. */
5912 g_assert(src_reg->opaque == NULL);
5914 /* Create alias before redirection so we dup the right data. */
5915 if (a->new_key) {
5916 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5917 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5918 bool ok;
5920 new_reg->name = a->new_name;
5921 new_reg->type |= ARM_CP_ALIAS;
5922 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
5923 new_reg->access &= PL2_RW | PL3_RW;
5925 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5926 g_assert(ok);
5929 src_reg->opaque = dst_reg;
5930 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5931 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5932 if (!src_reg->raw_readfn) {
5933 src_reg->raw_readfn = raw_read;
5935 if (!src_reg->raw_writefn) {
5936 src_reg->raw_writefn = raw_write;
5938 src_reg->readfn = el2_e2h_read;
5939 src_reg->writefn = el2_e2h_write;
5942 #endif
5944 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5945 bool isread)
5947 int cur_el = arm_current_el(env);
5949 if (cur_el < 2) {
5950 uint64_t hcr = arm_hcr_el2_eff(env);
5952 if (cur_el == 0) {
5953 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5954 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5955 return CP_ACCESS_TRAP_EL2;
5957 } else {
5958 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5959 return CP_ACCESS_TRAP;
5961 if (hcr & HCR_TID2) {
5962 return CP_ACCESS_TRAP_EL2;
5965 } else if (hcr & HCR_TID2) {
5966 return CP_ACCESS_TRAP_EL2;
5970 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5971 return CP_ACCESS_TRAP_EL2;
5974 return CP_ACCESS_OK;
5977 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5978 uint64_t value)
5980 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5981 * read via a bit in OSLSR_EL1.
5983 int oslock;
5985 if (ri->state == ARM_CP_STATE_AA32) {
5986 oslock = (value == 0xC5ACCE55);
5987 } else {
5988 oslock = value & 1;
5991 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5994 static const ARMCPRegInfo debug_cp_reginfo[] = {
5995 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5996 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5997 * unlike DBGDRAR it is never accessible from EL0.
5998 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5999 * accessor.
6001 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6002 .access = PL0_R, .accessfn = access_tdra,
6003 .type = ARM_CP_CONST, .resetvalue = 0 },
6004 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6005 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6006 .access = PL1_R, .accessfn = access_tdra,
6007 .type = ARM_CP_CONST, .resetvalue = 0 },
6008 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6009 .access = PL0_R, .accessfn = access_tdra,
6010 .type = ARM_CP_CONST, .resetvalue = 0 },
6011 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6012 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6013 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6014 .access = PL1_RW, .accessfn = access_tda,
6015 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6016 .resetvalue = 0 },
6017 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
6018 * We don't implement the configurable EL0 access.
6020 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
6021 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6022 .type = ARM_CP_ALIAS,
6023 .access = PL1_R, .accessfn = access_tda,
6024 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6025 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6026 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6027 .access = PL1_W, .type = ARM_CP_NO_RAW,
6028 .accessfn = access_tdosa,
6029 .writefn = oslar_write },
6030 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6031 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6032 .access = PL1_R, .resetvalue = 10,
6033 .accessfn = access_tdosa,
6034 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6035 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6036 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6037 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6038 .access = PL1_RW, .accessfn = access_tdosa,
6039 .type = ARM_CP_NOP },
6040 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6041 * implement vector catch debug events yet.
6043 { .name = "DBGVCR",
6044 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6045 .access = PL1_RW, .accessfn = access_tda,
6046 .type = ARM_CP_NOP },
6047 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6048 * to save and restore a 32-bit guest's DBGVCR)
6050 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6051 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6052 .access = PL2_RW, .accessfn = access_tda,
6053 .type = ARM_CP_NOP },
6054 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6055 * Channel but Linux may try to access this register. The 32-bit
6056 * alias is DBGDCCINT.
6058 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6059 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6060 .access = PL1_RW, .accessfn = access_tda,
6061 .type = ARM_CP_NOP },
6062 REGINFO_SENTINEL
6065 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6066 /* 64 bit access versions of the (dummy) debug registers */
6067 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6068 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6069 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6070 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6071 REGINFO_SENTINEL
6074 /* Return the exception level to which exceptions should be taken
6075 * via SVEAccessTrap. If an exception should be routed through
6076 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6077 * take care of raising that exception.
6078 * C.f. the ARM pseudocode function CheckSVEEnabled.
6080 int sve_exception_el(CPUARMState *env, int el)
6082 #ifndef CONFIG_USER_ONLY
6083 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6085 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6086 bool disabled = false;
6088 /* The CPACR.ZEN controls traps to EL1:
6089 * 0, 2 : trap EL0 and EL1 accesses
6090 * 1 : trap only EL0 accesses
6091 * 3 : trap no accesses
6093 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6094 disabled = true;
6095 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6096 disabled = el == 0;
6098 if (disabled) {
6099 /* route_to_el2 */
6100 return hcr_el2 & HCR_TGE ? 2 : 1;
6103 /* Check CPACR.FPEN. */
6104 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6105 disabled = true;
6106 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6107 disabled = el == 0;
6109 if (disabled) {
6110 return 0;
6114 /* CPTR_EL2. Since TZ and TFP are positive,
6115 * they will be zero when EL2 is not present.
6117 if (el <= 2 && !arm_is_secure_below_el3(env)) {
6118 if (env->cp15.cptr_el[2] & CPTR_TZ) {
6119 return 2;
6121 if (env->cp15.cptr_el[2] & CPTR_TFP) {
6122 return 0;
6126 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6127 if (arm_feature(env, ARM_FEATURE_EL3)
6128 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6129 return 3;
6131 #endif
6132 return 0;
6135 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6137 uint32_t end_len;
6139 end_len = start_len &= 0xf;
6140 if (!test_bit(start_len, cpu->sve_vq_map)) {
6141 end_len = find_last_bit(cpu->sve_vq_map, start_len);
6142 assert(end_len < start_len);
6144 return end_len;
6148 * Given that SVE is enabled, return the vector length for EL.
6150 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6152 ARMCPU *cpu = env_archcpu(env);
6153 uint32_t zcr_len = cpu->sve_max_vq - 1;
6155 if (el <= 1) {
6156 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6158 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6159 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6161 if (arm_feature(env, ARM_FEATURE_EL3)) {
6162 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6165 return sve_zcr_get_valid_len(cpu, zcr_len);
6168 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6169 uint64_t value)
6171 int cur_el = arm_current_el(env);
6172 int old_len = sve_zcr_len_for_el(env, cur_el);
6173 int new_len;
6175 /* Bits other than [3:0] are RAZ/WI. */
6176 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6177 raw_write(env, ri, value & 0xf);
6180 * Because we arrived here, we know both FP and SVE are enabled;
6181 * otherwise we would have trapped access to the ZCR_ELn register.
6183 new_len = sve_zcr_len_for_el(env, cur_el);
6184 if (new_len < old_len) {
6185 aarch64_sve_narrow_vq(env, new_len + 1);
6189 static const ARMCPRegInfo zcr_el1_reginfo = {
6190 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6191 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6192 .access = PL1_RW, .type = ARM_CP_SVE,
6193 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6194 .writefn = zcr_write, .raw_writefn = raw_write
6197 static const ARMCPRegInfo zcr_el2_reginfo = {
6198 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6199 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6200 .access = PL2_RW, .type = ARM_CP_SVE,
6201 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6202 .writefn = zcr_write, .raw_writefn = raw_write
6205 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6206 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6207 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6208 .access = PL2_RW, .type = ARM_CP_SVE,
6209 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6212 static const ARMCPRegInfo zcr_el3_reginfo = {
6213 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6214 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6215 .access = PL3_RW, .type = ARM_CP_SVE,
6216 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6217 .writefn = zcr_write, .raw_writefn = raw_write
6220 void hw_watchpoint_update(ARMCPU *cpu, int n)
6222 CPUARMState *env = &cpu->env;
6223 vaddr len = 0;
6224 vaddr wvr = env->cp15.dbgwvr[n];
6225 uint64_t wcr = env->cp15.dbgwcr[n];
6226 int mask;
6227 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6229 if (env->cpu_watchpoint[n]) {
6230 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6231 env->cpu_watchpoint[n] = NULL;
6234 if (!extract64(wcr, 0, 1)) {
6235 /* E bit clear : watchpoint disabled */
6236 return;
6239 switch (extract64(wcr, 3, 2)) {
6240 case 0:
6241 /* LSC 00 is reserved and must behave as if the wp is disabled */
6242 return;
6243 case 1:
6244 flags |= BP_MEM_READ;
6245 break;
6246 case 2:
6247 flags |= BP_MEM_WRITE;
6248 break;
6249 case 3:
6250 flags |= BP_MEM_ACCESS;
6251 break;
6254 /* Attempts to use both MASK and BAS fields simultaneously are
6255 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6256 * thus generating a watchpoint for every byte in the masked region.
6258 mask = extract64(wcr, 24, 4);
6259 if (mask == 1 || mask == 2) {
6260 /* Reserved values of MASK; we must act as if the mask value was
6261 * some non-reserved value, or as if the watchpoint were disabled.
6262 * We choose the latter.
6264 return;
6265 } else if (mask) {
6266 /* Watchpoint covers an aligned area up to 2GB in size */
6267 len = 1ULL << mask;
6268 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6269 * whether the watchpoint fires when the unmasked bits match; we opt
6270 * to generate the exceptions.
6272 wvr &= ~(len - 1);
6273 } else {
6274 /* Watchpoint covers bytes defined by the byte address select bits */
6275 int bas = extract64(wcr, 5, 8);
6276 int basstart;
6278 if (extract64(wvr, 2, 1)) {
6279 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6280 * ignored, and BAS[3:0] define which bytes to watch.
6282 bas &= 0xf;
6285 if (bas == 0) {
6286 /* This must act as if the watchpoint is disabled */
6287 return;
6290 /* The BAS bits are supposed to be programmed to indicate a contiguous
6291 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6292 * we fire for each byte in the word/doubleword addressed by the WVR.
6293 * We choose to ignore any non-zero bits after the first range of 1s.
6295 basstart = ctz32(bas);
6296 len = cto32(bas >> basstart);
6297 wvr += basstart;
6300 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6301 &env->cpu_watchpoint[n]);
6304 void hw_watchpoint_update_all(ARMCPU *cpu)
6306 int i;
6307 CPUARMState *env = &cpu->env;
6309 /* Completely clear out existing QEMU watchpoints and our array, to
6310 * avoid possible stale entries following migration load.
6312 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6313 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6315 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6316 hw_watchpoint_update(cpu, i);
6320 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6321 uint64_t value)
6323 ARMCPU *cpu = env_archcpu(env);
6324 int i = ri->crm;
6326 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6327 * register reads and behaves as if values written are sign extended.
6328 * Bits [1:0] are RES0.
6330 value = sextract64(value, 0, 49) & ~3ULL;
6332 raw_write(env, ri, value);
6333 hw_watchpoint_update(cpu, i);
6336 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6337 uint64_t value)
6339 ARMCPU *cpu = env_archcpu(env);
6340 int i = ri->crm;
6342 raw_write(env, ri, value);
6343 hw_watchpoint_update(cpu, i);
6346 void hw_breakpoint_update(ARMCPU *cpu, int n)
6348 CPUARMState *env = &cpu->env;
6349 uint64_t bvr = env->cp15.dbgbvr[n];
6350 uint64_t bcr = env->cp15.dbgbcr[n];
6351 vaddr addr;
6352 int bt;
6353 int flags = BP_CPU;
6355 if (env->cpu_breakpoint[n]) {
6356 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6357 env->cpu_breakpoint[n] = NULL;
6360 if (!extract64(bcr, 0, 1)) {
6361 /* E bit clear : watchpoint disabled */
6362 return;
6365 bt = extract64(bcr, 20, 4);
6367 switch (bt) {
6368 case 4: /* unlinked address mismatch (reserved if AArch64) */
6369 case 5: /* linked address mismatch (reserved if AArch64) */
6370 qemu_log_mask(LOG_UNIMP,
6371 "arm: address mismatch breakpoint types not implemented\n");
6372 return;
6373 case 0: /* unlinked address match */
6374 case 1: /* linked address match */
6376 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6377 * we behave as if the register was sign extended. Bits [1:0] are
6378 * RES0. The BAS field is used to allow setting breakpoints on 16
6379 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6380 * a bp will fire if the addresses covered by the bp and the addresses
6381 * covered by the insn overlap but the insn doesn't start at the
6382 * start of the bp address range. We choose to require the insn and
6383 * the bp to have the same address. The constraints on writing to
6384 * BAS enforced in dbgbcr_write mean we have only four cases:
6385 * 0b0000 => no breakpoint
6386 * 0b0011 => breakpoint on addr
6387 * 0b1100 => breakpoint on addr + 2
6388 * 0b1111 => breakpoint on addr
6389 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6391 int bas = extract64(bcr, 5, 4);
6392 addr = sextract64(bvr, 0, 49) & ~3ULL;
6393 if (bas == 0) {
6394 return;
6396 if (bas == 0xc) {
6397 addr += 2;
6399 break;
6401 case 2: /* unlinked context ID match */
6402 case 8: /* unlinked VMID match (reserved if no EL2) */
6403 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6404 qemu_log_mask(LOG_UNIMP,
6405 "arm: unlinked context breakpoint types not implemented\n");
6406 return;
6407 case 9: /* linked VMID match (reserved if no EL2) */
6408 case 11: /* linked context ID and VMID match (reserved if no EL2) */
6409 case 3: /* linked context ID match */
6410 default:
6411 /* We must generate no events for Linked context matches (unless
6412 * they are linked to by some other bp/wp, which is handled in
6413 * updates for the linking bp/wp). We choose to also generate no events
6414 * for reserved values.
6416 return;
6419 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6422 void hw_breakpoint_update_all(ARMCPU *cpu)
6424 int i;
6425 CPUARMState *env = &cpu->env;
6427 /* Completely clear out existing QEMU breakpoints and our array, to
6428 * avoid possible stale entries following migration load.
6430 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6431 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6433 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6434 hw_breakpoint_update(cpu, i);
6438 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6439 uint64_t value)
6441 ARMCPU *cpu = env_archcpu(env);
6442 int i = ri->crm;
6444 raw_write(env, ri, value);
6445 hw_breakpoint_update(cpu, i);
6448 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6449 uint64_t value)
6451 ARMCPU *cpu = env_archcpu(env);
6452 int i = ri->crm;
6454 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6455 * copy of BAS[0].
6457 value = deposit64(value, 6, 1, extract64(value, 5, 1));
6458 value = deposit64(value, 8, 1, extract64(value, 7, 1));
6460 raw_write(env, ri, value);
6461 hw_breakpoint_update(cpu, i);
6464 static void define_debug_regs(ARMCPU *cpu)
6466 /* Define v7 and v8 architectural debug registers.
6467 * These are just dummy implementations for now.
6469 int i;
6470 int wrps, brps, ctx_cmps;
6471 ARMCPRegInfo dbgdidr = {
6472 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
6473 .access = PL0_R, .accessfn = access_tda,
6474 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6477 /* Note that all these register fields hold "number of Xs minus 1". */
6478 brps = arm_num_brps(cpu);
6479 wrps = arm_num_wrps(cpu);
6480 ctx_cmps = arm_num_ctx_cmps(cpu);
6482 assert(ctx_cmps <= brps);
6484 define_one_arm_cp_reg(cpu, &dbgdidr);
6485 define_arm_cp_regs(cpu, debug_cp_reginfo);
6487 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6488 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6491 for (i = 0; i < brps; i++) {
6492 ARMCPRegInfo dbgregs[] = {
6493 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6494 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6495 .access = PL1_RW, .accessfn = access_tda,
6496 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6497 .writefn = dbgbvr_write, .raw_writefn = raw_write
6499 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6500 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6501 .access = PL1_RW, .accessfn = access_tda,
6502 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6503 .writefn = dbgbcr_write, .raw_writefn = raw_write
6505 REGINFO_SENTINEL
6507 define_arm_cp_regs(cpu, dbgregs);
6510 for (i = 0; i < wrps; i++) {
6511 ARMCPRegInfo dbgregs[] = {
6512 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6513 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6514 .access = PL1_RW, .accessfn = access_tda,
6515 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6516 .writefn = dbgwvr_write, .raw_writefn = raw_write
6518 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6519 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6520 .access = PL1_RW, .accessfn = access_tda,
6521 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6522 .writefn = dbgwcr_write, .raw_writefn = raw_write
6524 REGINFO_SENTINEL
6526 define_arm_cp_regs(cpu, dbgregs);
6530 static void define_pmu_regs(ARMCPU *cpu)
6533 * v7 performance monitor control register: same implementor
6534 * field as main ID register, and we implement four counters in
6535 * addition to the cycle count register.
6537 unsigned int i, pmcrn = 4;
6538 ARMCPRegInfo pmcr = {
6539 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6540 .access = PL0_RW,
6541 .type = ARM_CP_IO | ARM_CP_ALIAS,
6542 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6543 .accessfn = pmreg_access, .writefn = pmcr_write,
6544 .raw_writefn = raw_write,
6546 ARMCPRegInfo pmcr64 = {
6547 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6548 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6549 .access = PL0_RW, .accessfn = pmreg_access,
6550 .type = ARM_CP_IO,
6551 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6552 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6553 PMCRLC,
6554 .writefn = pmcr_write, .raw_writefn = raw_write,
6556 define_one_arm_cp_reg(cpu, &pmcr);
6557 define_one_arm_cp_reg(cpu, &pmcr64);
6558 for (i = 0; i < pmcrn; i++) {
6559 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6560 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6561 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6562 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6563 ARMCPRegInfo pmev_regs[] = {
6564 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6565 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6566 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6567 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6568 .accessfn = pmreg_access },
6569 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6570 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6571 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6572 .type = ARM_CP_IO,
6573 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6574 .raw_readfn = pmevcntr_rawread,
6575 .raw_writefn = pmevcntr_rawwrite },
6576 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6577 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6578 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6579 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6580 .accessfn = pmreg_access },
6581 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6582 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6583 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6584 .type = ARM_CP_IO,
6585 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6586 .raw_writefn = pmevtyper_rawwrite },
6587 REGINFO_SENTINEL
6589 define_arm_cp_regs(cpu, pmev_regs);
6590 g_free(pmevcntr_name);
6591 g_free(pmevcntr_el0_name);
6592 g_free(pmevtyper_name);
6593 g_free(pmevtyper_el0_name);
6595 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6596 ARMCPRegInfo v81_pmu_regs[] = {
6597 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6598 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6599 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6600 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6601 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6602 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6603 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6604 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6605 REGINFO_SENTINEL
6607 define_arm_cp_regs(cpu, v81_pmu_regs);
6609 if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6610 static const ARMCPRegInfo v84_pmmir = {
6611 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6612 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6613 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6614 .resetvalue = 0
6616 define_one_arm_cp_reg(cpu, &v84_pmmir);
6620 /* We don't know until after realize whether there's a GICv3
6621 * attached, and that is what registers the gicv3 sysregs.
6622 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6623 * at runtime.
6625 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6627 ARMCPU *cpu = env_archcpu(env);
6628 uint64_t pfr1 = cpu->isar.id_pfr1;
6630 if (env->gicv3state) {
6631 pfr1 |= 1 << 28;
6633 return pfr1;
6636 #ifndef CONFIG_USER_ONLY
6637 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6639 ARMCPU *cpu = env_archcpu(env);
6640 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6642 if (env->gicv3state) {
6643 pfr0 |= 1 << 24;
6645 return pfr0;
6647 #endif
6649 /* Shared logic between LORID and the rest of the LOR* registers.
6650 * Secure state has already been delt with.
6652 static CPAccessResult access_lor_ns(CPUARMState *env)
6654 int el = arm_current_el(env);
6656 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6657 return CP_ACCESS_TRAP_EL2;
6659 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6660 return CP_ACCESS_TRAP_EL3;
6662 return CP_ACCESS_OK;
6665 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
6666 bool isread)
6668 if (arm_is_secure_below_el3(env)) {
6669 /* Access ok in secure mode. */
6670 return CP_ACCESS_OK;
6672 return access_lor_ns(env);
6675 static CPAccessResult access_lor_other(CPUARMState *env,
6676 const ARMCPRegInfo *ri, bool isread)
6678 if (arm_is_secure_below_el3(env)) {
6679 /* Access denied in secure mode. */
6680 return CP_ACCESS_TRAP;
6682 return access_lor_ns(env);
6686 * A trivial implementation of ARMv8.1-LOR leaves all of these
6687 * registers fixed at 0, which indicates that there are zero
6688 * supported Limited Ordering regions.
6690 static const ARMCPRegInfo lor_reginfo[] = {
6691 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6692 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6693 .access = PL1_RW, .accessfn = access_lor_other,
6694 .type = ARM_CP_CONST, .resetvalue = 0 },
6695 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6696 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6697 .access = PL1_RW, .accessfn = access_lor_other,
6698 .type = ARM_CP_CONST, .resetvalue = 0 },
6699 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6700 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6701 .access = PL1_RW, .accessfn = access_lor_other,
6702 .type = ARM_CP_CONST, .resetvalue = 0 },
6703 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6704 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6705 .access = PL1_RW, .accessfn = access_lor_other,
6706 .type = ARM_CP_CONST, .resetvalue = 0 },
6707 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6708 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6709 .access = PL1_R, .accessfn = access_lorid,
6710 .type = ARM_CP_CONST, .resetvalue = 0 },
6711 REGINFO_SENTINEL
6714 #ifdef TARGET_AARCH64
6715 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6716 bool isread)
6718 int el = arm_current_el(env);
6720 if (el < 2 &&
6721 arm_feature(env, ARM_FEATURE_EL2) &&
6722 !(arm_hcr_el2_eff(env) & HCR_APK)) {
6723 return CP_ACCESS_TRAP_EL2;
6725 if (el < 3 &&
6726 arm_feature(env, ARM_FEATURE_EL3) &&
6727 !(env->cp15.scr_el3 & SCR_APK)) {
6728 return CP_ACCESS_TRAP_EL3;
6730 return CP_ACCESS_OK;
6733 static const ARMCPRegInfo pauth_reginfo[] = {
6734 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6735 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6736 .access = PL1_RW, .accessfn = access_pauth,
6737 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6738 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6739 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6740 .access = PL1_RW, .accessfn = access_pauth,
6741 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6742 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6743 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6744 .access = PL1_RW, .accessfn = access_pauth,
6745 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6746 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6747 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6748 .access = PL1_RW, .accessfn = access_pauth,
6749 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6750 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6751 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6752 .access = PL1_RW, .accessfn = access_pauth,
6753 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6754 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6755 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6756 .access = PL1_RW, .accessfn = access_pauth,
6757 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6758 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6759 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6760 .access = PL1_RW, .accessfn = access_pauth,
6761 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6762 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6763 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6764 .access = PL1_RW, .accessfn = access_pauth,
6765 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6766 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6767 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6768 .access = PL1_RW, .accessfn = access_pauth,
6769 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6770 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6771 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6772 .access = PL1_RW, .accessfn = access_pauth,
6773 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6774 REGINFO_SENTINEL
6777 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6779 Error *err = NULL;
6780 uint64_t ret;
6782 /* Success sets NZCV = 0000. */
6783 env->NF = env->CF = env->VF = 0, env->ZF = 1;
6785 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6787 * ??? Failed, for unknown reasons in the crypto subsystem.
6788 * The best we can do is log the reason and return the
6789 * timed-out indication to the guest. There is no reason
6790 * we know to expect this failure to be transitory, so the
6791 * guest may well hang retrying the operation.
6793 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6794 ri->name, error_get_pretty(err));
6795 error_free(err);
6797 env->ZF = 0; /* NZCF = 0100 */
6798 return 0;
6800 return ret;
6803 /* We do not support re-seeding, so the two registers operate the same. */
6804 static const ARMCPRegInfo rndr_reginfo[] = {
6805 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6806 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6807 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6808 .access = PL0_R, .readfn = rndr_readfn },
6809 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6810 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6811 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6812 .access = PL0_R, .readfn = rndr_readfn },
6813 REGINFO_SENTINEL
6816 #ifndef CONFIG_USER_ONLY
6817 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6818 uint64_t value)
6820 ARMCPU *cpu = env_archcpu(env);
6821 /* CTR_EL0 System register -> DminLine, bits [19:16] */
6822 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6823 uint64_t vaddr_in = (uint64_t) value;
6824 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6825 void *haddr;
6826 int mem_idx = cpu_mmu_index(env, false);
6828 /* This won't be crossing page boundaries */
6829 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6830 if (haddr) {
6832 ram_addr_t offset;
6833 MemoryRegion *mr;
6835 /* RCU lock is already being held */
6836 mr = memory_region_from_host(haddr, &offset);
6838 if (mr) {
6839 memory_region_writeback(mr, offset, dline_size);
6844 static const ARMCPRegInfo dcpop_reg[] = {
6845 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6846 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6847 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6848 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6849 REGINFO_SENTINEL
6852 static const ARMCPRegInfo dcpodp_reg[] = {
6853 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6854 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6855 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6856 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6857 REGINFO_SENTINEL
6859 #endif /*CONFIG_USER_ONLY*/
6861 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
6862 bool isread)
6864 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
6865 return CP_ACCESS_TRAP_EL2;
6868 return CP_ACCESS_OK;
6871 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
6872 bool isread)
6874 int el = arm_current_el(env);
6876 if (el < 2 &&
6877 arm_feature(env, ARM_FEATURE_EL2) &&
6878 !(arm_hcr_el2_eff(env) & HCR_ATA)) {
6879 return CP_ACCESS_TRAP_EL2;
6881 if (el < 3 &&
6882 arm_feature(env, ARM_FEATURE_EL3) &&
6883 !(env->cp15.scr_el3 & SCR_ATA)) {
6884 return CP_ACCESS_TRAP_EL3;
6886 return CP_ACCESS_OK;
6889 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
6891 return env->pstate & PSTATE_TCO;
6894 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6896 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
6899 static const ARMCPRegInfo mte_reginfo[] = {
6900 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
6901 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
6902 .access = PL1_RW, .accessfn = access_mte,
6903 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
6904 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
6905 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
6906 .access = PL1_RW, .accessfn = access_mte,
6907 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
6908 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
6909 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
6910 .access = PL2_RW, .accessfn = access_mte,
6911 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
6912 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
6913 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
6914 .access = PL3_RW,
6915 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
6916 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
6917 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
6918 .access = PL1_RW, .accessfn = access_mte,
6919 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
6920 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
6921 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
6922 .access = PL1_RW, .accessfn = access_mte,
6923 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
6924 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
6925 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
6926 .access = PL1_R, .accessfn = access_aa64_tid5,
6927 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
6928 { .name = "TCO", .state = ARM_CP_STATE_AA64,
6929 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6930 .type = ARM_CP_NO_RAW,
6931 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
6932 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
6933 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
6934 .type = ARM_CP_NOP, .access = PL1_W,
6935 .accessfn = aa64_cacheop_poc_access },
6936 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
6937 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
6938 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6939 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
6940 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
6941 .type = ARM_CP_NOP, .access = PL1_W,
6942 .accessfn = aa64_cacheop_poc_access },
6943 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
6944 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
6945 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6946 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
6947 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
6948 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6949 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
6950 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
6951 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6952 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
6953 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
6954 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6955 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
6956 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
6957 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6958 REGINFO_SENTINEL
6961 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
6962 { .name = "TCO", .state = ARM_CP_STATE_AA64,
6963 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6964 .type = ARM_CP_CONST, .access = PL0_RW, },
6965 REGINFO_SENTINEL
6968 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
6969 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
6970 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
6971 .type = ARM_CP_NOP, .access = PL0_W,
6972 .accessfn = aa64_cacheop_poc_access },
6973 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
6974 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
6975 .type = ARM_CP_NOP, .access = PL0_W,
6976 .accessfn = aa64_cacheop_poc_access },
6977 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
6978 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
6979 .type = ARM_CP_NOP, .access = PL0_W,
6980 .accessfn = aa64_cacheop_poc_access },
6981 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
6982 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
6983 .type = ARM_CP_NOP, .access = PL0_W,
6984 .accessfn = aa64_cacheop_poc_access },
6985 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
6986 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
6987 .type = ARM_CP_NOP, .access = PL0_W,
6988 .accessfn = aa64_cacheop_poc_access },
6989 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
6990 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
6991 .type = ARM_CP_NOP, .access = PL0_W,
6992 .accessfn = aa64_cacheop_poc_access },
6993 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
6994 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
6995 .type = ARM_CP_NOP, .access = PL0_W,
6996 .accessfn = aa64_cacheop_poc_access },
6997 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
6998 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
6999 .type = ARM_CP_NOP, .access = PL0_W,
7000 .accessfn = aa64_cacheop_poc_access },
7001 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7002 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7003 .access = PL0_W, .type = ARM_CP_DC_GVA,
7004 #ifndef CONFIG_USER_ONLY
7005 /* Avoid overhead of an access check that always passes in user-mode */
7006 .accessfn = aa64_zva_access,
7007 #endif
7009 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7010 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7011 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7012 #ifndef CONFIG_USER_ONLY
7013 /* Avoid overhead of an access check that always passes in user-mode */
7014 .accessfn = aa64_zva_access,
7015 #endif
7017 REGINFO_SENTINEL
7020 #endif
7022 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7023 bool isread)
7025 int el = arm_current_el(env);
7027 if (el == 0) {
7028 uint64_t sctlr = arm_sctlr(env, el);
7029 if (!(sctlr & SCTLR_EnRCTX)) {
7030 return CP_ACCESS_TRAP;
7032 } else if (el == 1) {
7033 uint64_t hcr = arm_hcr_el2_eff(env);
7034 if (hcr & HCR_NV) {
7035 return CP_ACCESS_TRAP_EL2;
7038 return CP_ACCESS_OK;
7041 static const ARMCPRegInfo predinv_reginfo[] = {
7042 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7043 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7044 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7045 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7046 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7047 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7048 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7049 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7050 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7052 * Note the AArch32 opcodes have a different OPC1.
7054 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7055 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7056 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7057 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7058 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7059 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7060 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7061 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7062 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7063 REGINFO_SENTINEL
7066 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7068 /* Read the high 32 bits of the current CCSIDR */
7069 return extract64(ccsidr_read(env, ri), 32, 32);
7072 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7073 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7074 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7075 .access = PL1_R,
7076 .accessfn = access_aa64_tid2,
7077 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7078 REGINFO_SENTINEL
7081 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7082 bool isread)
7084 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7085 return CP_ACCESS_TRAP_EL2;
7088 return CP_ACCESS_OK;
7091 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7092 bool isread)
7094 if (arm_feature(env, ARM_FEATURE_V8)) {
7095 return access_aa64_tid3(env, ri, isread);
7098 return CP_ACCESS_OK;
7101 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7102 bool isread)
7104 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7105 return CP_ACCESS_TRAP_EL2;
7108 return CP_ACCESS_OK;
7111 static const ARMCPRegInfo jazelle_regs[] = {
7112 { .name = "JIDR",
7113 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7114 .access = PL1_R, .accessfn = access_jazelle,
7115 .type = ARM_CP_CONST, .resetvalue = 0 },
7116 { .name = "JOSCR",
7117 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7118 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7119 { .name = "JMCR",
7120 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7121 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7122 REGINFO_SENTINEL
7125 static const ARMCPRegInfo vhe_reginfo[] = {
7126 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7127 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7128 .access = PL2_RW,
7129 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7130 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7131 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7132 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7133 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7134 #ifndef CONFIG_USER_ONLY
7135 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7136 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7137 .fieldoffset =
7138 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7139 .type = ARM_CP_IO, .access = PL2_RW,
7140 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7141 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7142 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7143 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7144 .resetfn = gt_hv_timer_reset,
7145 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7146 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7147 .type = ARM_CP_IO,
7148 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7149 .access = PL2_RW,
7150 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7151 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7152 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7153 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7154 .type = ARM_CP_IO | ARM_CP_ALIAS,
7155 .access = PL2_RW, .accessfn = e2h_access,
7156 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7157 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7158 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7159 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7160 .type = ARM_CP_IO | ARM_CP_ALIAS,
7161 .access = PL2_RW, .accessfn = e2h_access,
7162 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7163 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7164 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7165 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7166 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7167 .access = PL2_RW, .accessfn = e2h_access,
7168 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7169 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7170 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7171 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7172 .access = PL2_RW, .accessfn = e2h_access,
7173 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7174 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7175 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7176 .type = ARM_CP_IO | ARM_CP_ALIAS,
7177 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7178 .access = PL2_RW, .accessfn = e2h_access,
7179 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7180 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7181 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7182 .type = ARM_CP_IO | ARM_CP_ALIAS,
7183 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7184 .access = PL2_RW, .accessfn = e2h_access,
7185 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7186 #endif
7187 REGINFO_SENTINEL
7190 #ifndef CONFIG_USER_ONLY
7191 static const ARMCPRegInfo ats1e1_reginfo[] = {
7192 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7193 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7194 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7195 .writefn = ats_write64 },
7196 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7197 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7198 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7199 .writefn = ats_write64 },
7200 REGINFO_SENTINEL
7203 static const ARMCPRegInfo ats1cp_reginfo[] = {
7204 { .name = "ATS1CPRP",
7205 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7206 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7207 .writefn = ats_write },
7208 { .name = "ATS1CPWP",
7209 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7210 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7211 .writefn = ats_write },
7212 REGINFO_SENTINEL
7214 #endif
7217 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7218 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7219 * is non-zero, which is never for ARMv7, optionally in ARMv8
7220 * and mandatorily for ARMv8.2 and up.
7221 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7222 * implementation is RAZ/WI we can ignore this detail, as we
7223 * do for ACTLR.
7225 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7226 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7227 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7228 .access = PL1_RW, .accessfn = access_tacr,
7229 .type = ARM_CP_CONST, .resetvalue = 0 },
7230 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7231 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7232 .access = PL2_RW, .type = ARM_CP_CONST,
7233 .resetvalue = 0 },
7234 REGINFO_SENTINEL
7237 void register_cp_regs_for_features(ARMCPU *cpu)
7239 /* Register all the coprocessor registers based on feature bits */
7240 CPUARMState *env = &cpu->env;
7241 if (arm_feature(env, ARM_FEATURE_M)) {
7242 /* M profile has no coprocessor registers */
7243 return;
7246 define_arm_cp_regs(cpu, cp_reginfo);
7247 if (!arm_feature(env, ARM_FEATURE_V8)) {
7248 /* Must go early as it is full of wildcards that may be
7249 * overridden by later definitions.
7251 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7254 if (arm_feature(env, ARM_FEATURE_V6)) {
7255 /* The ID registers all have impdef reset values */
7256 ARMCPRegInfo v6_idregs[] = {
7257 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7258 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7259 .access = PL1_R, .type = ARM_CP_CONST,
7260 .accessfn = access_aa32_tid3,
7261 .resetvalue = cpu->isar.id_pfr0 },
7262 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7263 * the value of the GIC field until after we define these regs.
7265 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7266 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7267 .access = PL1_R, .type = ARM_CP_NO_RAW,
7268 .accessfn = access_aa32_tid3,
7269 .readfn = id_pfr1_read,
7270 .writefn = arm_cp_write_ignore },
7271 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7272 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7273 .access = PL1_R, .type = ARM_CP_CONST,
7274 .accessfn = access_aa32_tid3,
7275 .resetvalue = cpu->isar.id_dfr0 },
7276 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7277 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7278 .access = PL1_R, .type = ARM_CP_CONST,
7279 .accessfn = access_aa32_tid3,
7280 .resetvalue = cpu->id_afr0 },
7281 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7282 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7283 .access = PL1_R, .type = ARM_CP_CONST,
7284 .accessfn = access_aa32_tid3,
7285 .resetvalue = cpu->isar.id_mmfr0 },
7286 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7287 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7288 .access = PL1_R, .type = ARM_CP_CONST,
7289 .accessfn = access_aa32_tid3,
7290 .resetvalue = cpu->isar.id_mmfr1 },
7291 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7292 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7293 .access = PL1_R, .type = ARM_CP_CONST,
7294 .accessfn = access_aa32_tid3,
7295 .resetvalue = cpu->isar.id_mmfr2 },
7296 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7297 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7298 .access = PL1_R, .type = ARM_CP_CONST,
7299 .accessfn = access_aa32_tid3,
7300 .resetvalue = cpu->isar.id_mmfr3 },
7301 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7302 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7303 .access = PL1_R, .type = ARM_CP_CONST,
7304 .accessfn = access_aa32_tid3,
7305 .resetvalue = cpu->isar.id_isar0 },
7306 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7307 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7308 .access = PL1_R, .type = ARM_CP_CONST,
7309 .accessfn = access_aa32_tid3,
7310 .resetvalue = cpu->isar.id_isar1 },
7311 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7312 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7313 .access = PL1_R, .type = ARM_CP_CONST,
7314 .accessfn = access_aa32_tid3,
7315 .resetvalue = cpu->isar.id_isar2 },
7316 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7317 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7318 .access = PL1_R, .type = ARM_CP_CONST,
7319 .accessfn = access_aa32_tid3,
7320 .resetvalue = cpu->isar.id_isar3 },
7321 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7322 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7323 .access = PL1_R, .type = ARM_CP_CONST,
7324 .accessfn = access_aa32_tid3,
7325 .resetvalue = cpu->isar.id_isar4 },
7326 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7327 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7328 .access = PL1_R, .type = ARM_CP_CONST,
7329 .accessfn = access_aa32_tid3,
7330 .resetvalue = cpu->isar.id_isar5 },
7331 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7332 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7333 .access = PL1_R, .type = ARM_CP_CONST,
7334 .accessfn = access_aa32_tid3,
7335 .resetvalue = cpu->isar.id_mmfr4 },
7336 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7337 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7338 .access = PL1_R, .type = ARM_CP_CONST,
7339 .accessfn = access_aa32_tid3,
7340 .resetvalue = cpu->isar.id_isar6 },
7341 REGINFO_SENTINEL
7343 define_arm_cp_regs(cpu, v6_idregs);
7344 define_arm_cp_regs(cpu, v6_cp_reginfo);
7345 } else {
7346 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7348 if (arm_feature(env, ARM_FEATURE_V6K)) {
7349 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7351 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7352 !arm_feature(env, ARM_FEATURE_PMSA)) {
7353 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7355 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7356 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7358 if (arm_feature(env, ARM_FEATURE_V7)) {
7359 ARMCPRegInfo clidr = {
7360 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7361 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7362 .access = PL1_R, .type = ARM_CP_CONST,
7363 .accessfn = access_aa64_tid2,
7364 .resetvalue = cpu->clidr
7366 define_one_arm_cp_reg(cpu, &clidr);
7367 define_arm_cp_regs(cpu, v7_cp_reginfo);
7368 define_debug_regs(cpu);
7369 define_pmu_regs(cpu);
7370 } else {
7371 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7373 if (arm_feature(env, ARM_FEATURE_V8)) {
7374 /* AArch64 ID registers, which all have impdef reset values.
7375 * Note that within the ID register ranges the unused slots
7376 * must all RAZ, not UNDEF; future architecture versions may
7377 * define new registers here.
7379 ARMCPRegInfo v8_idregs[] = {
7381 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7382 * emulation because we don't know the right value for the
7383 * GIC field until after we define these regs.
7385 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7386 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7387 .access = PL1_R,
7388 #ifdef CONFIG_USER_ONLY
7389 .type = ARM_CP_CONST,
7390 .resetvalue = cpu->isar.id_aa64pfr0
7391 #else
7392 .type = ARM_CP_NO_RAW,
7393 .accessfn = access_aa64_tid3,
7394 .readfn = id_aa64pfr0_read,
7395 .writefn = arm_cp_write_ignore
7396 #endif
7398 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7399 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7400 .access = PL1_R, .type = ARM_CP_CONST,
7401 .accessfn = access_aa64_tid3,
7402 .resetvalue = cpu->isar.id_aa64pfr1},
7403 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7404 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7405 .access = PL1_R, .type = ARM_CP_CONST,
7406 .accessfn = access_aa64_tid3,
7407 .resetvalue = 0 },
7408 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7409 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7410 .access = PL1_R, .type = ARM_CP_CONST,
7411 .accessfn = access_aa64_tid3,
7412 .resetvalue = 0 },
7413 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7414 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7415 .access = PL1_R, .type = ARM_CP_CONST,
7416 .accessfn = access_aa64_tid3,
7417 /* At present, only SVEver == 0 is defined anyway. */
7418 .resetvalue = 0 },
7419 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7420 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7421 .access = PL1_R, .type = ARM_CP_CONST,
7422 .accessfn = access_aa64_tid3,
7423 .resetvalue = 0 },
7424 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7425 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7426 .access = PL1_R, .type = ARM_CP_CONST,
7427 .accessfn = access_aa64_tid3,
7428 .resetvalue = 0 },
7429 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7430 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7431 .access = PL1_R, .type = ARM_CP_CONST,
7432 .accessfn = access_aa64_tid3,
7433 .resetvalue = 0 },
7434 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7435 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7436 .access = PL1_R, .type = ARM_CP_CONST,
7437 .accessfn = access_aa64_tid3,
7438 .resetvalue = cpu->isar.id_aa64dfr0 },
7439 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7440 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7441 .access = PL1_R, .type = ARM_CP_CONST,
7442 .accessfn = access_aa64_tid3,
7443 .resetvalue = cpu->isar.id_aa64dfr1 },
7444 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7445 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7446 .access = PL1_R, .type = ARM_CP_CONST,
7447 .accessfn = access_aa64_tid3,
7448 .resetvalue = 0 },
7449 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7450 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7451 .access = PL1_R, .type = ARM_CP_CONST,
7452 .accessfn = access_aa64_tid3,
7453 .resetvalue = 0 },
7454 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7455 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7456 .access = PL1_R, .type = ARM_CP_CONST,
7457 .accessfn = access_aa64_tid3,
7458 .resetvalue = cpu->id_aa64afr0 },
7459 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7460 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7461 .access = PL1_R, .type = ARM_CP_CONST,
7462 .accessfn = access_aa64_tid3,
7463 .resetvalue = cpu->id_aa64afr1 },
7464 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7465 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7466 .access = PL1_R, .type = ARM_CP_CONST,
7467 .accessfn = access_aa64_tid3,
7468 .resetvalue = 0 },
7469 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7470 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7471 .access = PL1_R, .type = ARM_CP_CONST,
7472 .accessfn = access_aa64_tid3,
7473 .resetvalue = 0 },
7474 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7475 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7476 .access = PL1_R, .type = ARM_CP_CONST,
7477 .accessfn = access_aa64_tid3,
7478 .resetvalue = cpu->isar.id_aa64isar0 },
7479 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7480 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7481 .access = PL1_R, .type = ARM_CP_CONST,
7482 .accessfn = access_aa64_tid3,
7483 .resetvalue = cpu->isar.id_aa64isar1 },
7484 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7485 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7486 .access = PL1_R, .type = ARM_CP_CONST,
7487 .accessfn = access_aa64_tid3,
7488 .resetvalue = 0 },
7489 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7490 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7491 .access = PL1_R, .type = ARM_CP_CONST,
7492 .accessfn = access_aa64_tid3,
7493 .resetvalue = 0 },
7494 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7495 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7496 .access = PL1_R, .type = ARM_CP_CONST,
7497 .accessfn = access_aa64_tid3,
7498 .resetvalue = 0 },
7499 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7500 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7501 .access = PL1_R, .type = ARM_CP_CONST,
7502 .accessfn = access_aa64_tid3,
7503 .resetvalue = 0 },
7504 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7505 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7506 .access = PL1_R, .type = ARM_CP_CONST,
7507 .accessfn = access_aa64_tid3,
7508 .resetvalue = 0 },
7509 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7510 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7511 .access = PL1_R, .type = ARM_CP_CONST,
7512 .accessfn = access_aa64_tid3,
7513 .resetvalue = 0 },
7514 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7515 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7516 .access = PL1_R, .type = ARM_CP_CONST,
7517 .accessfn = access_aa64_tid3,
7518 .resetvalue = cpu->isar.id_aa64mmfr0 },
7519 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7520 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7521 .access = PL1_R, .type = ARM_CP_CONST,
7522 .accessfn = access_aa64_tid3,
7523 .resetvalue = cpu->isar.id_aa64mmfr1 },
7524 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7525 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7526 .access = PL1_R, .type = ARM_CP_CONST,
7527 .accessfn = access_aa64_tid3,
7528 .resetvalue = cpu->isar.id_aa64mmfr2 },
7529 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7530 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7531 .access = PL1_R, .type = ARM_CP_CONST,
7532 .accessfn = access_aa64_tid3,
7533 .resetvalue = 0 },
7534 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7535 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7536 .access = PL1_R, .type = ARM_CP_CONST,
7537 .accessfn = access_aa64_tid3,
7538 .resetvalue = 0 },
7539 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7541 .access = PL1_R, .type = ARM_CP_CONST,
7542 .accessfn = access_aa64_tid3,
7543 .resetvalue = 0 },
7544 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7545 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7546 .access = PL1_R, .type = ARM_CP_CONST,
7547 .accessfn = access_aa64_tid3,
7548 .resetvalue = 0 },
7549 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7550 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7551 .access = PL1_R, .type = ARM_CP_CONST,
7552 .accessfn = access_aa64_tid3,
7553 .resetvalue = 0 },
7554 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7555 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7556 .access = PL1_R, .type = ARM_CP_CONST,
7557 .accessfn = access_aa64_tid3,
7558 .resetvalue = cpu->isar.mvfr0 },
7559 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7560 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7561 .access = PL1_R, .type = ARM_CP_CONST,
7562 .accessfn = access_aa64_tid3,
7563 .resetvalue = cpu->isar.mvfr1 },
7564 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7565 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7566 .access = PL1_R, .type = ARM_CP_CONST,
7567 .accessfn = access_aa64_tid3,
7568 .resetvalue = cpu->isar.mvfr2 },
7569 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7570 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7571 .access = PL1_R, .type = ARM_CP_CONST,
7572 .accessfn = access_aa64_tid3,
7573 .resetvalue = 0 },
7574 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7575 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7576 .access = PL1_R, .type = ARM_CP_CONST,
7577 .accessfn = access_aa64_tid3,
7578 .resetvalue = 0 },
7579 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7580 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7581 .access = PL1_R, .type = ARM_CP_CONST,
7582 .accessfn = access_aa64_tid3,
7583 .resetvalue = 0 },
7584 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7585 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7586 .access = PL1_R, .type = ARM_CP_CONST,
7587 .accessfn = access_aa64_tid3,
7588 .resetvalue = 0 },
7589 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7590 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7591 .access = PL1_R, .type = ARM_CP_CONST,
7592 .accessfn = access_aa64_tid3,
7593 .resetvalue = 0 },
7594 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7595 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7596 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7597 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7598 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7599 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7600 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7601 .resetvalue = cpu->pmceid0 },
7602 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7603 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7604 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7605 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7606 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7607 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7608 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7609 .resetvalue = cpu->pmceid1 },
7610 REGINFO_SENTINEL
7612 #ifdef CONFIG_USER_ONLY
7613 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7614 { .name = "ID_AA64PFR0_EL1",
7615 .exported_bits = 0x000f000f00ff0000,
7616 .fixed_bits = 0x0000000000000011 },
7617 { .name = "ID_AA64PFR1_EL1",
7618 .exported_bits = 0x00000000000000f0 },
7619 { .name = "ID_AA64PFR*_EL1_RESERVED",
7620 .is_glob = true },
7621 { .name = "ID_AA64ZFR0_EL1" },
7622 { .name = "ID_AA64MMFR0_EL1",
7623 .fixed_bits = 0x00000000ff000000 },
7624 { .name = "ID_AA64MMFR1_EL1" },
7625 { .name = "ID_AA64MMFR*_EL1_RESERVED",
7626 .is_glob = true },
7627 { .name = "ID_AA64DFR0_EL1",
7628 .fixed_bits = 0x0000000000000006 },
7629 { .name = "ID_AA64DFR1_EL1" },
7630 { .name = "ID_AA64DFR*_EL1_RESERVED",
7631 .is_glob = true },
7632 { .name = "ID_AA64AFR*",
7633 .is_glob = true },
7634 { .name = "ID_AA64ISAR0_EL1",
7635 .exported_bits = 0x00fffffff0fffff0 },
7636 { .name = "ID_AA64ISAR1_EL1",
7637 .exported_bits = 0x000000f0ffffffff },
7638 { .name = "ID_AA64ISAR*_EL1_RESERVED",
7639 .is_glob = true },
7640 REGUSERINFO_SENTINEL
7642 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7643 #endif
7644 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7645 if (!arm_feature(env, ARM_FEATURE_EL3) &&
7646 !arm_feature(env, ARM_FEATURE_EL2)) {
7647 ARMCPRegInfo rvbar = {
7648 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7649 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7650 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7652 define_one_arm_cp_reg(cpu, &rvbar);
7654 define_arm_cp_regs(cpu, v8_idregs);
7655 define_arm_cp_regs(cpu, v8_cp_reginfo);
7657 if (arm_feature(env, ARM_FEATURE_EL2)) {
7658 uint64_t vmpidr_def = mpidr_read_val(env);
7659 ARMCPRegInfo vpidr_regs[] = {
7660 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7661 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7662 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7663 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7664 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7665 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7666 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7667 .access = PL2_RW, .resetvalue = cpu->midr,
7668 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7669 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7670 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7671 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7672 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7673 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7674 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7675 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7676 .access = PL2_RW,
7677 .resetvalue = vmpidr_def,
7678 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7679 REGINFO_SENTINEL
7681 define_arm_cp_regs(cpu, vpidr_regs);
7682 define_arm_cp_regs(cpu, el2_cp_reginfo);
7683 if (arm_feature(env, ARM_FEATURE_V8)) {
7684 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7686 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7687 if (!arm_feature(env, ARM_FEATURE_EL3)) {
7688 ARMCPRegInfo rvbar = {
7689 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7690 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7691 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7693 define_one_arm_cp_reg(cpu, &rvbar);
7695 } else {
7696 /* If EL2 is missing but higher ELs are enabled, we need to
7697 * register the no_el2 reginfos.
7699 if (arm_feature(env, ARM_FEATURE_EL3)) {
7700 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7701 * of MIDR_EL1 and MPIDR_EL1.
7703 ARMCPRegInfo vpidr_regs[] = {
7704 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7705 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7706 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7707 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7708 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7709 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7710 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7711 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7712 .type = ARM_CP_NO_RAW,
7713 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7714 REGINFO_SENTINEL
7716 define_arm_cp_regs(cpu, vpidr_regs);
7717 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7718 if (arm_feature(env, ARM_FEATURE_V8)) {
7719 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7723 if (arm_feature(env, ARM_FEATURE_EL3)) {
7724 define_arm_cp_regs(cpu, el3_cp_reginfo);
7725 ARMCPRegInfo el3_regs[] = {
7726 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7727 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7728 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7729 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7730 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7731 .access = PL3_RW,
7732 .raw_writefn = raw_write, .writefn = sctlr_write,
7733 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7734 .resetvalue = cpu->reset_sctlr },
7735 REGINFO_SENTINEL
7738 define_arm_cp_regs(cpu, el3_regs);
7740 /* The behaviour of NSACR is sufficiently various that we don't
7741 * try to describe it in a single reginfo:
7742 * if EL3 is 64 bit, then trap to EL3 from S EL1,
7743 * reads as constant 0xc00 from NS EL1 and NS EL2
7744 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7745 * if v7 without EL3, register doesn't exist
7746 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7748 if (arm_feature(env, ARM_FEATURE_EL3)) {
7749 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7750 ARMCPRegInfo nsacr = {
7751 .name = "NSACR", .type = ARM_CP_CONST,
7752 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7753 .access = PL1_RW, .accessfn = nsacr_access,
7754 .resetvalue = 0xc00
7756 define_one_arm_cp_reg(cpu, &nsacr);
7757 } else {
7758 ARMCPRegInfo nsacr = {
7759 .name = "NSACR",
7760 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7761 .access = PL3_RW | PL1_R,
7762 .resetvalue = 0,
7763 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7765 define_one_arm_cp_reg(cpu, &nsacr);
7767 } else {
7768 if (arm_feature(env, ARM_FEATURE_V8)) {
7769 ARMCPRegInfo nsacr = {
7770 .name = "NSACR", .type = ARM_CP_CONST,
7771 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7772 .access = PL1_R,
7773 .resetvalue = 0xc00
7775 define_one_arm_cp_reg(cpu, &nsacr);
7779 if (arm_feature(env, ARM_FEATURE_PMSA)) {
7780 if (arm_feature(env, ARM_FEATURE_V6)) {
7781 /* PMSAv6 not implemented */
7782 assert(arm_feature(env, ARM_FEATURE_V7));
7783 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7784 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7785 } else {
7786 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7788 } else {
7789 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7790 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7791 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
7792 if (cpu_isar_feature(aa32_hpd, cpu)) {
7793 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7796 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7797 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7799 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7800 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7802 if (arm_feature(env, ARM_FEATURE_VAPA)) {
7803 define_arm_cp_regs(cpu, vapa_cp_reginfo);
7805 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7806 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7808 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7809 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7811 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7812 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7814 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7815 define_arm_cp_regs(cpu, omap_cp_reginfo);
7817 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7818 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7820 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7821 define_arm_cp_regs(cpu, xscale_cp_reginfo);
7823 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7824 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7826 if (arm_feature(env, ARM_FEATURE_LPAE)) {
7827 define_arm_cp_regs(cpu, lpae_cp_reginfo);
7829 if (cpu_isar_feature(aa32_jazelle, cpu)) {
7830 define_arm_cp_regs(cpu, jazelle_regs);
7832 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7833 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7834 * be read-only (ie write causes UNDEF exception).
7837 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7838 /* Pre-v8 MIDR space.
7839 * Note that the MIDR isn't a simple constant register because
7840 * of the TI925 behaviour where writes to another register can
7841 * cause the MIDR value to change.
7843 * Unimplemented registers in the c15 0 0 0 space default to
7844 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7845 * and friends override accordingly.
7847 { .name = "MIDR",
7848 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7849 .access = PL1_R, .resetvalue = cpu->midr,
7850 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7851 .readfn = midr_read,
7852 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7853 .type = ARM_CP_OVERRIDE },
7854 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7855 { .name = "DUMMY",
7856 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7857 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7858 { .name = "DUMMY",
7859 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7860 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7861 { .name = "DUMMY",
7862 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7863 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7864 { .name = "DUMMY",
7865 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7866 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7867 { .name = "DUMMY",
7868 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
7869 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7870 REGINFO_SENTINEL
7872 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
7873 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
7874 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
7875 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
7876 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7877 .readfn = midr_read },
7878 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
7879 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7880 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7881 .access = PL1_R, .resetvalue = cpu->midr },
7882 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7883 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
7884 .access = PL1_R, .resetvalue = cpu->midr },
7885 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
7886 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
7887 .access = PL1_R,
7888 .accessfn = access_aa64_tid1,
7889 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
7890 REGINFO_SENTINEL
7892 ARMCPRegInfo id_cp_reginfo[] = {
7893 /* These are common to v8 and pre-v8 */
7894 { .name = "CTR",
7895 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
7896 .access = PL1_R, .accessfn = ctr_el0_access,
7897 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7898 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
7899 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
7900 .access = PL0_R, .accessfn = ctr_el0_access,
7901 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7902 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
7903 { .name = "TCMTR",
7904 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
7905 .access = PL1_R,
7906 .accessfn = access_aa32_tid1,
7907 .type = ARM_CP_CONST, .resetvalue = 0 },
7908 REGINFO_SENTINEL
7910 /* TLBTR is specific to VMSA */
7911 ARMCPRegInfo id_tlbtr_reginfo = {
7912 .name = "TLBTR",
7913 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
7914 .access = PL1_R,
7915 .accessfn = access_aa32_tid1,
7916 .type = ARM_CP_CONST, .resetvalue = 0,
7918 /* MPUIR is specific to PMSA V6+ */
7919 ARMCPRegInfo id_mpuir_reginfo = {
7920 .name = "MPUIR",
7921 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7922 .access = PL1_R, .type = ARM_CP_CONST,
7923 .resetvalue = cpu->pmsav7_dregion << 8
7925 ARMCPRegInfo crn0_wi_reginfo = {
7926 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
7927 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
7928 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
7930 #ifdef CONFIG_USER_ONLY
7931 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
7932 { .name = "MIDR_EL1",
7933 .exported_bits = 0x00000000ffffffff },
7934 { .name = "REVIDR_EL1" },
7935 REGUSERINFO_SENTINEL
7937 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
7938 #endif
7939 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
7940 arm_feature(env, ARM_FEATURE_STRONGARM)) {
7941 ARMCPRegInfo *r;
7942 /* Register the blanket "writes ignored" value first to cover the
7943 * whole space. Then update the specific ID registers to allow write
7944 * access, so that they ignore writes rather than causing them to
7945 * UNDEF.
7947 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
7948 for (r = id_pre_v8_midr_cp_reginfo;
7949 r->type != ARM_CP_SENTINEL; r++) {
7950 r->access = PL1_RW;
7952 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
7953 r->access = PL1_RW;
7955 id_mpuir_reginfo.access = PL1_RW;
7956 id_tlbtr_reginfo.access = PL1_RW;
7958 if (arm_feature(env, ARM_FEATURE_V8)) {
7959 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
7960 } else {
7961 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
7963 define_arm_cp_regs(cpu, id_cp_reginfo);
7964 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
7965 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
7966 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7967 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
7971 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
7972 ARMCPRegInfo mpidr_cp_reginfo[] = {
7973 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
7974 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7975 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
7976 REGINFO_SENTINEL
7978 #ifdef CONFIG_USER_ONLY
7979 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
7980 { .name = "MPIDR_EL1",
7981 .fixed_bits = 0x0000000080000000 },
7982 REGUSERINFO_SENTINEL
7984 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
7985 #endif
7986 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
7989 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
7990 ARMCPRegInfo auxcr_reginfo[] = {
7991 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
7992 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
7993 .access = PL1_RW, .accessfn = access_tacr,
7994 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
7995 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
7996 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
7997 .access = PL2_RW, .type = ARM_CP_CONST,
7998 .resetvalue = 0 },
7999 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8000 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8001 .access = PL3_RW, .type = ARM_CP_CONST,
8002 .resetvalue = 0 },
8003 REGINFO_SENTINEL
8005 define_arm_cp_regs(cpu, auxcr_reginfo);
8006 if (cpu_isar_feature(aa32_ac2, cpu)) {
8007 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8011 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8013 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8014 * There are two flavours:
8015 * (1) older 32-bit only cores have a simple 32-bit CBAR
8016 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8017 * 32-bit register visible to AArch32 at a different encoding
8018 * to the "flavour 1" register and with the bits rearranged to
8019 * be able to squash a 64-bit address into the 32-bit view.
8020 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8021 * in future if we support AArch32-only configs of some of the
8022 * AArch64 cores we might need to add a specific feature flag
8023 * to indicate cores with "flavour 2" CBAR.
8025 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8026 /* 32 bit view is [31:18] 0...0 [43:32]. */
8027 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8028 | extract64(cpu->reset_cbar, 32, 12);
8029 ARMCPRegInfo cbar_reginfo[] = {
8030 { .name = "CBAR",
8031 .type = ARM_CP_CONST,
8032 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8033 .access = PL1_R, .resetvalue = cbar32 },
8034 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8035 .type = ARM_CP_CONST,
8036 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8037 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8038 REGINFO_SENTINEL
8040 /* We don't implement a r/w 64 bit CBAR currently */
8041 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8042 define_arm_cp_regs(cpu, cbar_reginfo);
8043 } else {
8044 ARMCPRegInfo cbar = {
8045 .name = "CBAR",
8046 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8047 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8048 .fieldoffset = offsetof(CPUARMState,
8049 cp15.c15_config_base_address)
8051 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8052 cbar.access = PL1_R;
8053 cbar.fieldoffset = 0;
8054 cbar.type = ARM_CP_CONST;
8056 define_one_arm_cp_reg(cpu, &cbar);
8060 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8061 ARMCPRegInfo vbar_cp_reginfo[] = {
8062 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8063 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8064 .access = PL1_RW, .writefn = vbar_write,
8065 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8066 offsetof(CPUARMState, cp15.vbar_ns) },
8067 .resetvalue = 0 },
8068 REGINFO_SENTINEL
8070 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8073 /* Generic registers whose values depend on the implementation */
8075 ARMCPRegInfo sctlr = {
8076 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8077 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8078 .access = PL1_RW, .accessfn = access_tvm_trvm,
8079 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8080 offsetof(CPUARMState, cp15.sctlr_ns) },
8081 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8082 .raw_writefn = raw_write,
8084 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8085 /* Normally we would always end the TB on an SCTLR write, but Linux
8086 * arch/arm/mach-pxa/sleep.S expects two instructions following
8087 * an MMU enable to execute from cache. Imitate this behaviour.
8089 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8091 define_one_arm_cp_reg(cpu, &sctlr);
8094 if (cpu_isar_feature(aa64_lor, cpu)) {
8095 define_arm_cp_regs(cpu, lor_reginfo);
8097 if (cpu_isar_feature(aa64_pan, cpu)) {
8098 define_one_arm_cp_reg(cpu, &pan_reginfo);
8100 #ifndef CONFIG_USER_ONLY
8101 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8102 define_arm_cp_regs(cpu, ats1e1_reginfo);
8104 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8105 define_arm_cp_regs(cpu, ats1cp_reginfo);
8107 #endif
8108 if (cpu_isar_feature(aa64_uao, cpu)) {
8109 define_one_arm_cp_reg(cpu, &uao_reginfo);
8112 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8113 define_arm_cp_regs(cpu, vhe_reginfo);
8116 if (cpu_isar_feature(aa64_sve, cpu)) {
8117 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8118 if (arm_feature(env, ARM_FEATURE_EL2)) {
8119 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8120 } else {
8121 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8123 if (arm_feature(env, ARM_FEATURE_EL3)) {
8124 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8128 #ifdef TARGET_AARCH64
8129 if (cpu_isar_feature(aa64_pauth, cpu)) {
8130 define_arm_cp_regs(cpu, pauth_reginfo);
8132 if (cpu_isar_feature(aa64_rndr, cpu)) {
8133 define_arm_cp_regs(cpu, rndr_reginfo);
8135 #ifndef CONFIG_USER_ONLY
8136 /* Data Cache clean instructions up to PoP */
8137 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8138 define_one_arm_cp_reg(cpu, dcpop_reg);
8140 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8141 define_one_arm_cp_reg(cpu, dcpodp_reg);
8144 #endif /*CONFIG_USER_ONLY*/
8147 * If full MTE is enabled, add all of the system registers.
8148 * If only "instructions available at EL0" are enabled,
8149 * then define only a RAZ/WI version of PSTATE.TCO.
8151 if (cpu_isar_feature(aa64_mte, cpu)) {
8152 define_arm_cp_regs(cpu, mte_reginfo);
8153 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8154 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8155 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8156 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8158 #endif
8160 if (cpu_isar_feature(any_predinv, cpu)) {
8161 define_arm_cp_regs(cpu, predinv_reginfo);
8164 if (cpu_isar_feature(any_ccidx, cpu)) {
8165 define_arm_cp_regs(cpu, ccsidr2_reginfo);
8168 #ifndef CONFIG_USER_ONLY
8170 * Register redirections and aliases must be done last,
8171 * after the registers from the other extensions have been defined.
8173 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8174 define_arm_vh_e2h_redirects_aliases(cpu);
8176 #endif
8179 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8181 CPUState *cs = CPU(cpu);
8182 CPUARMState *env = &cpu->env;
8184 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8186 * The lower part of each SVE register aliases to the FPU
8187 * registers so we don't need to include both.
8189 #ifdef TARGET_AARCH64
8190 if (isar_feature_aa64_sve(&cpu->isar)) {
8191 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8192 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8193 "sve-registers.xml", 0);
8194 } else
8195 #endif
8197 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8198 aarch64_fpu_gdb_set_reg,
8199 34, "aarch64-fpu.xml", 0);
8201 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8202 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8203 51, "arm-neon.xml", 0);
8204 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8205 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8206 35, "arm-vfp3.xml", 0);
8207 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8208 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8209 19, "arm-vfp.xml", 0);
8211 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8212 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8213 "system-registers.xml", 0);
8217 /* Sort alphabetically by type name, except for "any". */
8218 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8220 ObjectClass *class_a = (ObjectClass *)a;
8221 ObjectClass *class_b = (ObjectClass *)b;
8222 const char *name_a, *name_b;
8224 name_a = object_class_get_name(class_a);
8225 name_b = object_class_get_name(class_b);
8226 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8227 return 1;
8228 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8229 return -1;
8230 } else {
8231 return strcmp(name_a, name_b);
8235 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8237 ObjectClass *oc = data;
8238 const char *typename;
8239 char *name;
8241 typename = object_class_get_name(oc);
8242 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8243 qemu_printf(" %s\n", name);
8244 g_free(name);
8247 void arm_cpu_list(void)
8249 GSList *list;
8251 list = object_class_get_list(TYPE_ARM_CPU, false);
8252 list = g_slist_sort(list, arm_cpu_list_compare);
8253 qemu_printf("Available CPUs:\n");
8254 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8255 g_slist_free(list);
8258 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8260 ObjectClass *oc = data;
8261 CpuDefinitionInfoList **cpu_list = user_data;
8262 CpuDefinitionInfoList *entry;
8263 CpuDefinitionInfo *info;
8264 const char *typename;
8266 typename = object_class_get_name(oc);
8267 info = g_malloc0(sizeof(*info));
8268 info->name = g_strndup(typename,
8269 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8270 info->q_typename = g_strdup(typename);
8272 entry = g_malloc0(sizeof(*entry));
8273 entry->value = info;
8274 entry->next = *cpu_list;
8275 *cpu_list = entry;
8278 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8280 CpuDefinitionInfoList *cpu_list = NULL;
8281 GSList *list;
8283 list = object_class_get_list(TYPE_ARM_CPU, false);
8284 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8285 g_slist_free(list);
8287 return cpu_list;
8290 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8291 void *opaque, int state, int secstate,
8292 int crm, int opc1, int opc2,
8293 const char *name)
8295 /* Private utility function for define_one_arm_cp_reg_with_opaque():
8296 * add a single reginfo struct to the hash table.
8298 uint32_t *key = g_new(uint32_t, 1);
8299 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8300 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8301 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8303 r2->name = g_strdup(name);
8304 /* Reset the secure state to the specific incoming state. This is
8305 * necessary as the register may have been defined with both states.
8307 r2->secure = secstate;
8309 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8310 /* Register is banked (using both entries in array).
8311 * Overwriting fieldoffset as the array is only used to define
8312 * banked registers but later only fieldoffset is used.
8314 r2->fieldoffset = r->bank_fieldoffsets[ns];
8317 if (state == ARM_CP_STATE_AA32) {
8318 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8319 /* If the register is banked then we don't need to migrate or
8320 * reset the 32-bit instance in certain cases:
8322 * 1) If the register has both 32-bit and 64-bit instances then we
8323 * can count on the 64-bit instance taking care of the
8324 * non-secure bank.
8325 * 2) If ARMv8 is enabled then we can count on a 64-bit version
8326 * taking care of the secure bank. This requires that separate
8327 * 32 and 64-bit definitions are provided.
8329 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8330 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8331 r2->type |= ARM_CP_ALIAS;
8333 } else if ((secstate != r->secure) && !ns) {
8334 /* The register is not banked so we only want to allow migration of
8335 * the non-secure instance.
8337 r2->type |= ARM_CP_ALIAS;
8340 if (r->state == ARM_CP_STATE_BOTH) {
8341 /* We assume it is a cp15 register if the .cp field is left unset.
8343 if (r2->cp == 0) {
8344 r2->cp = 15;
8347 #ifdef HOST_WORDS_BIGENDIAN
8348 if (r2->fieldoffset) {
8349 r2->fieldoffset += sizeof(uint32_t);
8351 #endif
8354 if (state == ARM_CP_STATE_AA64) {
8355 /* To allow abbreviation of ARMCPRegInfo
8356 * definitions, we treat cp == 0 as equivalent to
8357 * the value for "standard guest-visible sysreg".
8358 * STATE_BOTH definitions are also always "standard
8359 * sysreg" in their AArch64 view (the .cp value may
8360 * be non-zero for the benefit of the AArch32 view).
8362 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8363 r2->cp = CP_REG_ARM64_SYSREG_CP;
8365 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8366 r2->opc0, opc1, opc2);
8367 } else {
8368 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8370 if (opaque) {
8371 r2->opaque = opaque;
8373 /* reginfo passed to helpers is correct for the actual access,
8374 * and is never ARM_CP_STATE_BOTH:
8376 r2->state = state;
8377 /* Make sure reginfo passed to helpers for wildcarded regs
8378 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8380 r2->crm = crm;
8381 r2->opc1 = opc1;
8382 r2->opc2 = opc2;
8383 /* By convention, for wildcarded registers only the first
8384 * entry is used for migration; the others are marked as
8385 * ALIAS so we don't try to transfer the register
8386 * multiple times. Special registers (ie NOP/WFI) are
8387 * never migratable and not even raw-accessible.
8389 if ((r->type & ARM_CP_SPECIAL)) {
8390 r2->type |= ARM_CP_NO_RAW;
8392 if (((r->crm == CP_ANY) && crm != 0) ||
8393 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8394 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8395 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8398 /* Check that raw accesses are either forbidden or handled. Note that
8399 * we can't assert this earlier because the setup of fieldoffset for
8400 * banked registers has to be done first.
8402 if (!(r2->type & ARM_CP_NO_RAW)) {
8403 assert(!raw_accessors_invalid(r2));
8406 /* Overriding of an existing definition must be explicitly
8407 * requested.
8409 if (!(r->type & ARM_CP_OVERRIDE)) {
8410 ARMCPRegInfo *oldreg;
8411 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8412 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8413 fprintf(stderr, "Register redefined: cp=%d %d bit "
8414 "crn=%d crm=%d opc1=%d opc2=%d, "
8415 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8416 r2->crn, r2->crm, r2->opc1, r2->opc2,
8417 oldreg->name, r2->name);
8418 g_assert_not_reached();
8421 g_hash_table_insert(cpu->cp_regs, key, r2);
8425 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8426 const ARMCPRegInfo *r, void *opaque)
8428 /* Define implementations of coprocessor registers.
8429 * We store these in a hashtable because typically
8430 * there are less than 150 registers in a space which
8431 * is 16*16*16*8*8 = 262144 in size.
8432 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8433 * If a register is defined twice then the second definition is
8434 * used, so this can be used to define some generic registers and
8435 * then override them with implementation specific variations.
8436 * At least one of the original and the second definition should
8437 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8438 * against accidental use.
8440 * The state field defines whether the register is to be
8441 * visible in the AArch32 or AArch64 execution state. If the
8442 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8443 * reginfo structure for the AArch32 view, which sees the lower
8444 * 32 bits of the 64 bit register.
8446 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8447 * be wildcarded. AArch64 registers are always considered to be 64
8448 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8449 * the register, if any.
8451 int crm, opc1, opc2, state;
8452 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8453 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8454 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8455 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8456 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8457 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8458 /* 64 bit registers have only CRm and Opc1 fields */
8459 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8460 /* op0 only exists in the AArch64 encodings */
8461 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8462 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8463 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8465 * This API is only for Arm's system coprocessors (14 and 15) or
8466 * (M-profile or v7A-and-earlier only) for implementation defined
8467 * coprocessors in the range 0..7. Our decode assumes this, since
8468 * 8..13 can be used for other insns including VFP and Neon. See
8469 * valid_cp() in translate.c. Assert here that we haven't tried
8470 * to use an invalid coprocessor number.
8472 switch (r->state) {
8473 case ARM_CP_STATE_BOTH:
8474 /* 0 has a special meaning, but otherwise the same rules as AA32. */
8475 if (r->cp == 0) {
8476 break;
8478 /* fall through */
8479 case ARM_CP_STATE_AA32:
8480 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8481 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8482 assert(r->cp >= 14 && r->cp <= 15);
8483 } else {
8484 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8486 break;
8487 case ARM_CP_STATE_AA64:
8488 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8489 break;
8490 default:
8491 g_assert_not_reached();
8493 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8494 * encodes a minimum access level for the register. We roll this
8495 * runtime check into our general permission check code, so check
8496 * here that the reginfo's specified permissions are strict enough
8497 * to encompass the generic architectural permission check.
8499 if (r->state != ARM_CP_STATE_AA32) {
8500 int mask = 0;
8501 switch (r->opc1) {
8502 case 0:
8503 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8504 mask = PL0U_R | PL1_RW;
8505 break;
8506 case 1: case 2:
8507 /* min_EL EL1 */
8508 mask = PL1_RW;
8509 break;
8510 case 3:
8511 /* min_EL EL0 */
8512 mask = PL0_RW;
8513 break;
8514 case 4:
8515 case 5:
8516 /* min_EL EL2 */
8517 mask = PL2_RW;
8518 break;
8519 case 6:
8520 /* min_EL EL3 */
8521 mask = PL3_RW;
8522 break;
8523 case 7:
8524 /* min_EL EL1, secure mode only (we don't check the latter) */
8525 mask = PL1_RW;
8526 break;
8527 default:
8528 /* broken reginfo with out-of-range opc1 */
8529 assert(false);
8530 break;
8532 /* assert our permissions are not too lax (stricter is fine) */
8533 assert((r->access & ~mask) == 0);
8536 /* Check that the register definition has enough info to handle
8537 * reads and writes if they are permitted.
8539 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8540 if (r->access & PL3_R) {
8541 assert((r->fieldoffset ||
8542 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8543 r->readfn);
8545 if (r->access & PL3_W) {
8546 assert((r->fieldoffset ||
8547 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8548 r->writefn);
8551 /* Bad type field probably means missing sentinel at end of reg list */
8552 assert(cptype_valid(r->type));
8553 for (crm = crmmin; crm <= crmmax; crm++) {
8554 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8555 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8556 for (state = ARM_CP_STATE_AA32;
8557 state <= ARM_CP_STATE_AA64; state++) {
8558 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8559 continue;
8561 if (state == ARM_CP_STATE_AA32) {
8562 /* Under AArch32 CP registers can be common
8563 * (same for secure and non-secure world) or banked.
8565 char *name;
8567 switch (r->secure) {
8568 case ARM_CP_SECSTATE_S:
8569 case ARM_CP_SECSTATE_NS:
8570 add_cpreg_to_hashtable(cpu, r, opaque, state,
8571 r->secure, crm, opc1, opc2,
8572 r->name);
8573 break;
8574 default:
8575 name = g_strdup_printf("%s_S", r->name);
8576 add_cpreg_to_hashtable(cpu, r, opaque, state,
8577 ARM_CP_SECSTATE_S,
8578 crm, opc1, opc2, name);
8579 g_free(name);
8580 add_cpreg_to_hashtable(cpu, r, opaque, state,
8581 ARM_CP_SECSTATE_NS,
8582 crm, opc1, opc2, r->name);
8583 break;
8585 } else {
8586 /* AArch64 registers get mapped to non-secure instance
8587 * of AArch32 */
8588 add_cpreg_to_hashtable(cpu, r, opaque, state,
8589 ARM_CP_SECSTATE_NS,
8590 crm, opc1, opc2, r->name);
8598 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8599 const ARMCPRegInfo *regs, void *opaque)
8601 /* Define a whole list of registers */
8602 const ARMCPRegInfo *r;
8603 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8604 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8609 * Modify ARMCPRegInfo for access from userspace.
8611 * This is a data driven modification directed by
8612 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8613 * user-space cannot alter any values and dynamic values pertaining to
8614 * execution state are hidden from user space view anyway.
8616 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8618 const ARMCPRegUserSpaceInfo *m;
8619 ARMCPRegInfo *r;
8621 for (m = mods; m->name; m++) {
8622 GPatternSpec *pat = NULL;
8623 if (m->is_glob) {
8624 pat = g_pattern_spec_new(m->name);
8626 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8627 if (pat && g_pattern_match_string(pat, r->name)) {
8628 r->type = ARM_CP_CONST;
8629 r->access = PL0U_R;
8630 r->resetvalue = 0;
8631 /* continue */
8632 } else if (strcmp(r->name, m->name) == 0) {
8633 r->type = ARM_CP_CONST;
8634 r->access = PL0U_R;
8635 r->resetvalue &= m->exported_bits;
8636 r->resetvalue |= m->fixed_bits;
8637 break;
8640 if (pat) {
8641 g_pattern_spec_free(pat);
8646 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8648 return g_hash_table_lookup(cpregs, &encoded_cp);
8651 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8652 uint64_t value)
8654 /* Helper coprocessor write function for write-ignore registers */
8657 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8659 /* Helper coprocessor write function for read-as-zero registers */
8660 return 0;
8663 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8665 /* Helper coprocessor reset function for do-nothing-on-reset registers */
8668 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8670 /* Return true if it is not valid for us to switch to
8671 * this CPU mode (ie all the UNPREDICTABLE cases in
8672 * the ARM ARM CPSRWriteByInstr pseudocode).
8675 /* Changes to or from Hyp via MSR and CPS are illegal. */
8676 if (write_type == CPSRWriteByInstr &&
8677 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8678 mode == ARM_CPU_MODE_HYP)) {
8679 return 1;
8682 switch (mode) {
8683 case ARM_CPU_MODE_USR:
8684 return 0;
8685 case ARM_CPU_MODE_SYS:
8686 case ARM_CPU_MODE_SVC:
8687 case ARM_CPU_MODE_ABT:
8688 case ARM_CPU_MODE_UND:
8689 case ARM_CPU_MODE_IRQ:
8690 case ARM_CPU_MODE_FIQ:
8691 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8692 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8694 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8695 * and CPS are treated as illegal mode changes.
8697 if (write_type == CPSRWriteByInstr &&
8698 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8699 (arm_hcr_el2_eff(env) & HCR_TGE)) {
8700 return 1;
8702 return 0;
8703 case ARM_CPU_MODE_HYP:
8704 return !arm_feature(env, ARM_FEATURE_EL2)
8705 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
8706 case ARM_CPU_MODE_MON:
8707 return arm_current_el(env) < 3;
8708 default:
8709 return 1;
8713 uint32_t cpsr_read(CPUARMState *env)
8715 int ZF;
8716 ZF = (env->ZF == 0);
8717 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8718 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8719 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8720 | ((env->condexec_bits & 0xfc) << 8)
8721 | (env->GE << 16) | (env->daif & CPSR_AIF);
8724 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8725 CPSRWriteType write_type)
8727 uint32_t changed_daif;
8729 if (mask & CPSR_NZCV) {
8730 env->ZF = (~val) & CPSR_Z;
8731 env->NF = val;
8732 env->CF = (val >> 29) & 1;
8733 env->VF = (val << 3) & 0x80000000;
8735 if (mask & CPSR_Q)
8736 env->QF = ((val & CPSR_Q) != 0);
8737 if (mask & CPSR_T)
8738 env->thumb = ((val & CPSR_T) != 0);
8739 if (mask & CPSR_IT_0_1) {
8740 env->condexec_bits &= ~3;
8741 env->condexec_bits |= (val >> 25) & 3;
8743 if (mask & CPSR_IT_2_7) {
8744 env->condexec_bits &= 3;
8745 env->condexec_bits |= (val >> 8) & 0xfc;
8747 if (mask & CPSR_GE) {
8748 env->GE = (val >> 16) & 0xf;
8751 /* In a V7 implementation that includes the security extensions but does
8752 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8753 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8754 * bits respectively.
8756 * In a V8 implementation, it is permitted for privileged software to
8757 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8759 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8760 arm_feature(env, ARM_FEATURE_EL3) &&
8761 !arm_feature(env, ARM_FEATURE_EL2) &&
8762 !arm_is_secure(env)) {
8764 changed_daif = (env->daif ^ val) & mask;
8766 if (changed_daif & CPSR_A) {
8767 /* Check to see if we are allowed to change the masking of async
8768 * abort exceptions from a non-secure state.
8770 if (!(env->cp15.scr_el3 & SCR_AW)) {
8771 qemu_log_mask(LOG_GUEST_ERROR,
8772 "Ignoring attempt to switch CPSR_A flag from "
8773 "non-secure world with SCR.AW bit clear\n");
8774 mask &= ~CPSR_A;
8778 if (changed_daif & CPSR_F) {
8779 /* Check to see if we are allowed to change the masking of FIQ
8780 * exceptions from a non-secure state.
8782 if (!(env->cp15.scr_el3 & SCR_FW)) {
8783 qemu_log_mask(LOG_GUEST_ERROR,
8784 "Ignoring attempt to switch CPSR_F flag from "
8785 "non-secure world with SCR.FW bit clear\n");
8786 mask &= ~CPSR_F;
8789 /* Check whether non-maskable FIQ (NMFI) support is enabled.
8790 * If this bit is set software is not allowed to mask
8791 * FIQs, but is allowed to set CPSR_F to 0.
8793 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8794 (val & CPSR_F)) {
8795 qemu_log_mask(LOG_GUEST_ERROR,
8796 "Ignoring attempt to enable CPSR_F flag "
8797 "(non-maskable FIQ [NMFI] support enabled)\n");
8798 mask &= ~CPSR_F;
8803 env->daif &= ~(CPSR_AIF & mask);
8804 env->daif |= val & CPSR_AIF & mask;
8806 if (write_type != CPSRWriteRaw &&
8807 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8808 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8809 /* Note that we can only get here in USR mode if this is a
8810 * gdb stub write; for this case we follow the architectural
8811 * behaviour for guest writes in USR mode of ignoring an attempt
8812 * to switch mode. (Those are caught by translate.c for writes
8813 * triggered by guest instructions.)
8815 mask &= ~CPSR_M;
8816 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8817 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8818 * v7, and has defined behaviour in v8:
8819 * + leave CPSR.M untouched
8820 * + allow changes to the other CPSR fields
8821 * + set PSTATE.IL
8822 * For user changes via the GDB stub, we don't set PSTATE.IL,
8823 * as this would be unnecessarily harsh for a user error.
8825 mask &= ~CPSR_M;
8826 if (write_type != CPSRWriteByGDBStub &&
8827 arm_feature(env, ARM_FEATURE_V8)) {
8828 mask |= CPSR_IL;
8829 val |= CPSR_IL;
8831 qemu_log_mask(LOG_GUEST_ERROR,
8832 "Illegal AArch32 mode switch attempt from %s to %s\n",
8833 aarch32_mode_name(env->uncached_cpsr),
8834 aarch32_mode_name(val));
8835 } else {
8836 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8837 write_type == CPSRWriteExceptionReturn ?
8838 "Exception return from AArch32" :
8839 "AArch32 mode switch from",
8840 aarch32_mode_name(env->uncached_cpsr),
8841 aarch32_mode_name(val), env->regs[15]);
8842 switch_mode(env, val & CPSR_M);
8845 mask &= ~CACHED_CPSR_BITS;
8846 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8849 /* Sign/zero extend */
8850 uint32_t HELPER(sxtb16)(uint32_t x)
8852 uint32_t res;
8853 res = (uint16_t)(int8_t)x;
8854 res |= (uint32_t)(int8_t)(x >> 16) << 16;
8855 return res;
8858 uint32_t HELPER(uxtb16)(uint32_t x)
8860 uint32_t res;
8861 res = (uint16_t)(uint8_t)x;
8862 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
8863 return res;
8866 int32_t HELPER(sdiv)(int32_t num, int32_t den)
8868 if (den == 0)
8869 return 0;
8870 if (num == INT_MIN && den == -1)
8871 return INT_MIN;
8872 return num / den;
8875 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
8877 if (den == 0)
8878 return 0;
8879 return num / den;
8882 uint32_t HELPER(rbit)(uint32_t x)
8884 return revbit32(x);
8887 #ifdef CONFIG_USER_ONLY
8889 static void switch_mode(CPUARMState *env, int mode)
8891 ARMCPU *cpu = env_archcpu(env);
8893 if (mode != ARM_CPU_MODE_USR) {
8894 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
8898 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8899 uint32_t cur_el, bool secure)
8901 return 1;
8904 void aarch64_sync_64_to_32(CPUARMState *env)
8906 g_assert_not_reached();
8909 #else
8911 static void switch_mode(CPUARMState *env, int mode)
8913 int old_mode;
8914 int i;
8916 old_mode = env->uncached_cpsr & CPSR_M;
8917 if (mode == old_mode)
8918 return;
8920 if (old_mode == ARM_CPU_MODE_FIQ) {
8921 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8922 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
8923 } else if (mode == ARM_CPU_MODE_FIQ) {
8924 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8925 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
8928 i = bank_number(old_mode);
8929 env->banked_r13[i] = env->regs[13];
8930 env->banked_spsr[i] = env->spsr;
8932 i = bank_number(mode);
8933 env->regs[13] = env->banked_r13[i];
8934 env->spsr = env->banked_spsr[i];
8936 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
8937 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
8940 /* Physical Interrupt Target EL Lookup Table
8942 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
8944 * The below multi-dimensional table is used for looking up the target
8945 * exception level given numerous condition criteria. Specifically, the
8946 * target EL is based on SCR and HCR routing controls as well as the
8947 * currently executing EL and secure state.
8949 * Dimensions:
8950 * target_el_table[2][2][2][2][2][4]
8951 * | | | | | +--- Current EL
8952 * | | | | +------ Non-secure(0)/Secure(1)
8953 * | | | +--------- HCR mask override
8954 * | | +------------ SCR exec state control
8955 * | +--------------- SCR mask override
8956 * +------------------ 32-bit(0)/64-bit(1) EL3
8958 * The table values are as such:
8959 * 0-3 = EL0-EL3
8960 * -1 = Cannot occur
8962 * The ARM ARM target EL table includes entries indicating that an "exception
8963 * is not taken". The two cases where this is applicable are:
8964 * 1) An exception is taken from EL3 but the SCR does not have the exception
8965 * routed to EL3.
8966 * 2) An exception is taken from EL2 but the HCR does not have the exception
8967 * routed to EL2.
8968 * In these two cases, the below table contain a target of EL1. This value is
8969 * returned as it is expected that the consumer of the table data will check
8970 * for "target EL >= current EL" to ensure the exception is not taken.
8972 * SCR HCR
8973 * 64 EA AMO From
8974 * BIT IRQ IMO Non-secure Secure
8975 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
8977 static const int8_t target_el_table[2][2][2][2][2][4] = {
8978 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
8979 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
8980 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
8981 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
8982 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
8983 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
8984 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
8985 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
8986 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
8987 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
8988 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
8989 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
8990 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
8991 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
8992 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
8993 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
8997 * Determine the target EL for physical exceptions
8999 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9000 uint32_t cur_el, bool secure)
9002 CPUARMState *env = cs->env_ptr;
9003 bool rw;
9004 bool scr;
9005 bool hcr;
9006 int target_el;
9007 /* Is the highest EL AArch64? */
9008 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9009 uint64_t hcr_el2;
9011 if (arm_feature(env, ARM_FEATURE_EL3)) {
9012 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9013 } else {
9014 /* Either EL2 is the highest EL (and so the EL2 register width
9015 * is given by is64); or there is no EL2 or EL3, in which case
9016 * the value of 'rw' does not affect the table lookup anyway.
9018 rw = is64;
9021 hcr_el2 = arm_hcr_el2_eff(env);
9022 switch (excp_idx) {
9023 case EXCP_IRQ:
9024 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9025 hcr = hcr_el2 & HCR_IMO;
9026 break;
9027 case EXCP_FIQ:
9028 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9029 hcr = hcr_el2 & HCR_FMO;
9030 break;
9031 default:
9032 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9033 hcr = hcr_el2 & HCR_AMO;
9034 break;
9038 * For these purposes, TGE and AMO/IMO/FMO both force the
9039 * interrupt to EL2. Fold TGE into the bit extracted above.
9041 hcr |= (hcr_el2 & HCR_TGE) != 0;
9043 /* Perform a table-lookup for the target EL given the current state */
9044 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9046 assert(target_el > 0);
9048 return target_el;
9051 void arm_log_exception(int idx)
9053 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9054 const char *exc = NULL;
9055 static const char * const excnames[] = {
9056 [EXCP_UDEF] = "Undefined Instruction",
9057 [EXCP_SWI] = "SVC",
9058 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9059 [EXCP_DATA_ABORT] = "Data Abort",
9060 [EXCP_IRQ] = "IRQ",
9061 [EXCP_FIQ] = "FIQ",
9062 [EXCP_BKPT] = "Breakpoint",
9063 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9064 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9065 [EXCP_HVC] = "Hypervisor Call",
9066 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9067 [EXCP_SMC] = "Secure Monitor Call",
9068 [EXCP_VIRQ] = "Virtual IRQ",
9069 [EXCP_VFIQ] = "Virtual FIQ",
9070 [EXCP_SEMIHOST] = "Semihosting call",
9071 [EXCP_NOCP] = "v7M NOCP UsageFault",
9072 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9073 [EXCP_STKOF] = "v8M STKOF UsageFault",
9074 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9075 [EXCP_LSERR] = "v8M LSERR UsageFault",
9076 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9079 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9080 exc = excnames[idx];
9082 if (!exc) {
9083 exc = "unknown";
9085 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9090 * Function used to synchronize QEMU's AArch64 register set with AArch32
9091 * register set. This is necessary when switching between AArch32 and AArch64
9092 * execution state.
9094 void aarch64_sync_32_to_64(CPUARMState *env)
9096 int i;
9097 uint32_t mode = env->uncached_cpsr & CPSR_M;
9099 /* We can blanket copy R[0:7] to X[0:7] */
9100 for (i = 0; i < 8; i++) {
9101 env->xregs[i] = env->regs[i];
9105 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9106 * Otherwise, they come from the banked user regs.
9108 if (mode == ARM_CPU_MODE_FIQ) {
9109 for (i = 8; i < 13; i++) {
9110 env->xregs[i] = env->usr_regs[i - 8];
9112 } else {
9113 for (i = 8; i < 13; i++) {
9114 env->xregs[i] = env->regs[i];
9119 * Registers x13-x23 are the various mode SP and FP registers. Registers
9120 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9121 * from the mode banked register.
9123 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9124 env->xregs[13] = env->regs[13];
9125 env->xregs[14] = env->regs[14];
9126 } else {
9127 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9128 /* HYP is an exception in that it is copied from r14 */
9129 if (mode == ARM_CPU_MODE_HYP) {
9130 env->xregs[14] = env->regs[14];
9131 } else {
9132 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9136 if (mode == ARM_CPU_MODE_HYP) {
9137 env->xregs[15] = env->regs[13];
9138 } else {
9139 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9142 if (mode == ARM_CPU_MODE_IRQ) {
9143 env->xregs[16] = env->regs[14];
9144 env->xregs[17] = env->regs[13];
9145 } else {
9146 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9147 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9150 if (mode == ARM_CPU_MODE_SVC) {
9151 env->xregs[18] = env->regs[14];
9152 env->xregs[19] = env->regs[13];
9153 } else {
9154 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9155 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9158 if (mode == ARM_CPU_MODE_ABT) {
9159 env->xregs[20] = env->regs[14];
9160 env->xregs[21] = env->regs[13];
9161 } else {
9162 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9163 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9166 if (mode == ARM_CPU_MODE_UND) {
9167 env->xregs[22] = env->regs[14];
9168 env->xregs[23] = env->regs[13];
9169 } else {
9170 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9171 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9175 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9176 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9177 * FIQ bank for r8-r14.
9179 if (mode == ARM_CPU_MODE_FIQ) {
9180 for (i = 24; i < 31; i++) {
9181 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9183 } else {
9184 for (i = 24; i < 29; i++) {
9185 env->xregs[i] = env->fiq_regs[i - 24];
9187 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9188 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9191 env->pc = env->regs[15];
9195 * Function used to synchronize QEMU's AArch32 register set with AArch64
9196 * register set. This is necessary when switching between AArch32 and AArch64
9197 * execution state.
9199 void aarch64_sync_64_to_32(CPUARMState *env)
9201 int i;
9202 uint32_t mode = env->uncached_cpsr & CPSR_M;
9204 /* We can blanket copy X[0:7] to R[0:7] */
9205 for (i = 0; i < 8; i++) {
9206 env->regs[i] = env->xregs[i];
9210 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9211 * Otherwise, we copy x8-x12 into the banked user regs.
9213 if (mode == ARM_CPU_MODE_FIQ) {
9214 for (i = 8; i < 13; i++) {
9215 env->usr_regs[i - 8] = env->xregs[i];
9217 } else {
9218 for (i = 8; i < 13; i++) {
9219 env->regs[i] = env->xregs[i];
9224 * Registers r13 & r14 depend on the current mode.
9225 * If we are in a given mode, we copy the corresponding x registers to r13
9226 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9227 * for the mode.
9229 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9230 env->regs[13] = env->xregs[13];
9231 env->regs[14] = env->xregs[14];
9232 } else {
9233 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9236 * HYP is an exception in that it does not have its own banked r14 but
9237 * shares the USR r14
9239 if (mode == ARM_CPU_MODE_HYP) {
9240 env->regs[14] = env->xregs[14];
9241 } else {
9242 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9246 if (mode == ARM_CPU_MODE_HYP) {
9247 env->regs[13] = env->xregs[15];
9248 } else {
9249 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9252 if (mode == ARM_CPU_MODE_IRQ) {
9253 env->regs[14] = env->xregs[16];
9254 env->regs[13] = env->xregs[17];
9255 } else {
9256 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9257 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9260 if (mode == ARM_CPU_MODE_SVC) {
9261 env->regs[14] = env->xregs[18];
9262 env->regs[13] = env->xregs[19];
9263 } else {
9264 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9265 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9268 if (mode == ARM_CPU_MODE_ABT) {
9269 env->regs[14] = env->xregs[20];
9270 env->regs[13] = env->xregs[21];
9271 } else {
9272 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9273 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9276 if (mode == ARM_CPU_MODE_UND) {
9277 env->regs[14] = env->xregs[22];
9278 env->regs[13] = env->xregs[23];
9279 } else {
9280 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9281 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9284 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9285 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9286 * FIQ bank for r8-r14.
9288 if (mode == ARM_CPU_MODE_FIQ) {
9289 for (i = 24; i < 31; i++) {
9290 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9292 } else {
9293 for (i = 24; i < 29; i++) {
9294 env->fiq_regs[i - 24] = env->xregs[i];
9296 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9297 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9300 env->regs[15] = env->pc;
9303 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9304 uint32_t mask, uint32_t offset,
9305 uint32_t newpc)
9307 int new_el;
9309 /* Change the CPU state so as to actually take the exception. */
9310 switch_mode(env, new_mode);
9313 * For exceptions taken to AArch32 we must clear the SS bit in both
9314 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9316 env->uncached_cpsr &= ~PSTATE_SS;
9317 env->spsr = cpsr_read(env);
9318 /* Clear IT bits. */
9319 env->condexec_bits = 0;
9320 /* Switch to the new mode, and to the correct instruction set. */
9321 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9323 /* This must be after mode switching. */
9324 new_el = arm_current_el(env);
9326 /* Set new mode endianness */
9327 env->uncached_cpsr &= ~CPSR_E;
9328 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9329 env->uncached_cpsr |= CPSR_E;
9331 /* J and IL must always be cleared for exception entry */
9332 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9333 env->daif |= mask;
9335 if (new_mode == ARM_CPU_MODE_HYP) {
9336 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9337 env->elr_el[2] = env->regs[15];
9338 } else {
9339 /* CPSR.PAN is normally preserved preserved unless... */
9340 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9341 switch (new_el) {
9342 case 3:
9343 if (!arm_is_secure_below_el3(env)) {
9344 /* ... the target is EL3, from non-secure state. */
9345 env->uncached_cpsr &= ~CPSR_PAN;
9346 break;
9348 /* ... the target is EL3, from secure state ... */
9349 /* fall through */
9350 case 1:
9351 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9352 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9353 env->uncached_cpsr |= CPSR_PAN;
9355 break;
9359 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9360 * and we should just guard the thumb mode on V4
9362 if (arm_feature(env, ARM_FEATURE_V4T)) {
9363 env->thumb =
9364 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9366 env->regs[14] = env->regs[15] + offset;
9368 env->regs[15] = newpc;
9369 arm_rebuild_hflags(env);
9372 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9375 * Handle exception entry to Hyp mode; this is sufficiently
9376 * different to entry to other AArch32 modes that we handle it
9377 * separately here.
9379 * The vector table entry used is always the 0x14 Hyp mode entry point,
9380 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9381 * The offset applied to the preferred return address is always zero
9382 * (see DDI0487C.a section G1.12.3).
9383 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9385 uint32_t addr, mask;
9386 ARMCPU *cpu = ARM_CPU(cs);
9387 CPUARMState *env = &cpu->env;
9389 switch (cs->exception_index) {
9390 case EXCP_UDEF:
9391 addr = 0x04;
9392 break;
9393 case EXCP_SWI:
9394 addr = 0x14;
9395 break;
9396 case EXCP_BKPT:
9397 /* Fall through to prefetch abort. */
9398 case EXCP_PREFETCH_ABORT:
9399 env->cp15.ifar_s = env->exception.vaddress;
9400 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9401 (uint32_t)env->exception.vaddress);
9402 addr = 0x0c;
9403 break;
9404 case EXCP_DATA_ABORT:
9405 env->cp15.dfar_s = env->exception.vaddress;
9406 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9407 (uint32_t)env->exception.vaddress);
9408 addr = 0x10;
9409 break;
9410 case EXCP_IRQ:
9411 addr = 0x18;
9412 break;
9413 case EXCP_FIQ:
9414 addr = 0x1c;
9415 break;
9416 case EXCP_HVC:
9417 addr = 0x08;
9418 break;
9419 case EXCP_HYP_TRAP:
9420 addr = 0x14;
9421 break;
9422 default:
9423 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9426 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9427 if (!arm_feature(env, ARM_FEATURE_V8)) {
9429 * QEMU syndrome values are v8-style. v7 has the IL bit
9430 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9431 * If this is a v7 CPU, squash the IL bit in those cases.
9433 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9434 (cs->exception_index == EXCP_DATA_ABORT &&
9435 !(env->exception.syndrome & ARM_EL_ISV)) ||
9436 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9437 env->exception.syndrome &= ~ARM_EL_IL;
9440 env->cp15.esr_el[2] = env->exception.syndrome;
9443 if (arm_current_el(env) != 2 && addr < 0x14) {
9444 addr = 0x14;
9447 mask = 0;
9448 if (!(env->cp15.scr_el3 & SCR_EA)) {
9449 mask |= CPSR_A;
9451 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9452 mask |= CPSR_I;
9454 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9455 mask |= CPSR_F;
9458 addr += env->cp15.hvbar;
9460 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9463 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9465 ARMCPU *cpu = ARM_CPU(cs);
9466 CPUARMState *env = &cpu->env;
9467 uint32_t addr;
9468 uint32_t mask;
9469 int new_mode;
9470 uint32_t offset;
9471 uint32_t moe;
9473 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9474 switch (syn_get_ec(env->exception.syndrome)) {
9475 case EC_BREAKPOINT:
9476 case EC_BREAKPOINT_SAME_EL:
9477 moe = 1;
9478 break;
9479 case EC_WATCHPOINT:
9480 case EC_WATCHPOINT_SAME_EL:
9481 moe = 10;
9482 break;
9483 case EC_AA32_BKPT:
9484 moe = 3;
9485 break;
9486 case EC_VECTORCATCH:
9487 moe = 5;
9488 break;
9489 default:
9490 moe = 0;
9491 break;
9494 if (moe) {
9495 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9498 if (env->exception.target_el == 2) {
9499 arm_cpu_do_interrupt_aarch32_hyp(cs);
9500 return;
9503 switch (cs->exception_index) {
9504 case EXCP_UDEF:
9505 new_mode = ARM_CPU_MODE_UND;
9506 addr = 0x04;
9507 mask = CPSR_I;
9508 if (env->thumb)
9509 offset = 2;
9510 else
9511 offset = 4;
9512 break;
9513 case EXCP_SWI:
9514 new_mode = ARM_CPU_MODE_SVC;
9515 addr = 0x08;
9516 mask = CPSR_I;
9517 /* The PC already points to the next instruction. */
9518 offset = 0;
9519 break;
9520 case EXCP_BKPT:
9521 /* Fall through to prefetch abort. */
9522 case EXCP_PREFETCH_ABORT:
9523 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9524 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9525 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9526 env->exception.fsr, (uint32_t)env->exception.vaddress);
9527 new_mode = ARM_CPU_MODE_ABT;
9528 addr = 0x0c;
9529 mask = CPSR_A | CPSR_I;
9530 offset = 4;
9531 break;
9532 case EXCP_DATA_ABORT:
9533 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9534 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9535 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9536 env->exception.fsr,
9537 (uint32_t)env->exception.vaddress);
9538 new_mode = ARM_CPU_MODE_ABT;
9539 addr = 0x10;
9540 mask = CPSR_A | CPSR_I;
9541 offset = 8;
9542 break;
9543 case EXCP_IRQ:
9544 new_mode = ARM_CPU_MODE_IRQ;
9545 addr = 0x18;
9546 /* Disable IRQ and imprecise data aborts. */
9547 mask = CPSR_A | CPSR_I;
9548 offset = 4;
9549 if (env->cp15.scr_el3 & SCR_IRQ) {
9550 /* IRQ routed to monitor mode */
9551 new_mode = ARM_CPU_MODE_MON;
9552 mask |= CPSR_F;
9554 break;
9555 case EXCP_FIQ:
9556 new_mode = ARM_CPU_MODE_FIQ;
9557 addr = 0x1c;
9558 /* Disable FIQ, IRQ and imprecise data aborts. */
9559 mask = CPSR_A | CPSR_I | CPSR_F;
9560 if (env->cp15.scr_el3 & SCR_FIQ) {
9561 /* FIQ routed to monitor mode */
9562 new_mode = ARM_CPU_MODE_MON;
9564 offset = 4;
9565 break;
9566 case EXCP_VIRQ:
9567 new_mode = ARM_CPU_MODE_IRQ;
9568 addr = 0x18;
9569 /* Disable IRQ and imprecise data aborts. */
9570 mask = CPSR_A | CPSR_I;
9571 offset = 4;
9572 break;
9573 case EXCP_VFIQ:
9574 new_mode = ARM_CPU_MODE_FIQ;
9575 addr = 0x1c;
9576 /* Disable FIQ, IRQ and imprecise data aborts. */
9577 mask = CPSR_A | CPSR_I | CPSR_F;
9578 offset = 4;
9579 break;
9580 case EXCP_SMC:
9581 new_mode = ARM_CPU_MODE_MON;
9582 addr = 0x08;
9583 mask = CPSR_A | CPSR_I | CPSR_F;
9584 offset = 0;
9585 break;
9586 default:
9587 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9588 return; /* Never happens. Keep compiler happy. */
9591 if (new_mode == ARM_CPU_MODE_MON) {
9592 addr += env->cp15.mvbar;
9593 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9594 /* High vectors. When enabled, base address cannot be remapped. */
9595 addr += 0xffff0000;
9596 } else {
9597 /* ARM v7 architectures provide a vector base address register to remap
9598 * the interrupt vector table.
9599 * This register is only followed in non-monitor mode, and is banked.
9600 * Note: only bits 31:5 are valid.
9602 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9605 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9606 env->cp15.scr_el3 &= ~SCR_NS;
9609 take_aarch32_exception(env, new_mode, mask, offset, addr);
9612 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9615 * Return the register number of the AArch64 view of the AArch32
9616 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9617 * be that of the AArch32 mode the exception came from.
9619 int mode = env->uncached_cpsr & CPSR_M;
9621 switch (aarch32_reg) {
9622 case 0 ... 7:
9623 return aarch32_reg;
9624 case 8 ... 12:
9625 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9626 case 13:
9627 switch (mode) {
9628 case ARM_CPU_MODE_USR:
9629 case ARM_CPU_MODE_SYS:
9630 return 13;
9631 case ARM_CPU_MODE_HYP:
9632 return 15;
9633 case ARM_CPU_MODE_IRQ:
9634 return 17;
9635 case ARM_CPU_MODE_SVC:
9636 return 19;
9637 case ARM_CPU_MODE_ABT:
9638 return 21;
9639 case ARM_CPU_MODE_UND:
9640 return 23;
9641 case ARM_CPU_MODE_FIQ:
9642 return 29;
9643 default:
9644 g_assert_not_reached();
9646 case 14:
9647 switch (mode) {
9648 case ARM_CPU_MODE_USR:
9649 case ARM_CPU_MODE_SYS:
9650 case ARM_CPU_MODE_HYP:
9651 return 14;
9652 case ARM_CPU_MODE_IRQ:
9653 return 16;
9654 case ARM_CPU_MODE_SVC:
9655 return 18;
9656 case ARM_CPU_MODE_ABT:
9657 return 20;
9658 case ARM_CPU_MODE_UND:
9659 return 22;
9660 case ARM_CPU_MODE_FIQ:
9661 return 30;
9662 default:
9663 g_assert_not_reached();
9665 case 15:
9666 return 31;
9667 default:
9668 g_assert_not_reached();
9672 /* Handle exception entry to a target EL which is using AArch64 */
9673 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9675 ARMCPU *cpu = ARM_CPU(cs);
9676 CPUARMState *env = &cpu->env;
9677 unsigned int new_el = env->exception.target_el;
9678 target_ulong addr = env->cp15.vbar_el[new_el];
9679 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9680 unsigned int old_mode;
9681 unsigned int cur_el = arm_current_el(env);
9682 int rt;
9685 * Note that new_el can never be 0. If cur_el is 0, then
9686 * el0_a64 is is_a64(), else el0_a64 is ignored.
9688 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9690 if (cur_el < new_el) {
9691 /* Entry vector offset depends on whether the implemented EL
9692 * immediately lower than the target level is using AArch32 or AArch64
9694 bool is_aa64;
9695 uint64_t hcr;
9697 switch (new_el) {
9698 case 3:
9699 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9700 break;
9701 case 2:
9702 hcr = arm_hcr_el2_eff(env);
9703 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9704 is_aa64 = (hcr & HCR_RW) != 0;
9705 break;
9707 /* fall through */
9708 case 1:
9709 is_aa64 = is_a64(env);
9710 break;
9711 default:
9712 g_assert_not_reached();
9715 if (is_aa64) {
9716 addr += 0x400;
9717 } else {
9718 addr += 0x600;
9720 } else if (pstate_read(env) & PSTATE_SP) {
9721 addr += 0x200;
9724 switch (cs->exception_index) {
9725 case EXCP_PREFETCH_ABORT:
9726 case EXCP_DATA_ABORT:
9727 env->cp15.far_el[new_el] = env->exception.vaddress;
9728 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9729 env->cp15.far_el[new_el]);
9730 /* fall through */
9731 case EXCP_BKPT:
9732 case EXCP_UDEF:
9733 case EXCP_SWI:
9734 case EXCP_HVC:
9735 case EXCP_HYP_TRAP:
9736 case EXCP_SMC:
9737 switch (syn_get_ec(env->exception.syndrome)) {
9738 case EC_ADVSIMDFPACCESSTRAP:
9740 * QEMU internal FP/SIMD syndromes from AArch32 include the
9741 * TA and coproc fields which are only exposed if the exception
9742 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9743 * AArch64 format syndrome.
9745 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9746 break;
9747 case EC_CP14RTTRAP:
9748 case EC_CP15RTTRAP:
9749 case EC_CP14DTTRAP:
9751 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
9752 * the raw register field from the insn; when taking this to
9753 * AArch64 we must convert it to the AArch64 view of the register
9754 * number. Notice that we read a 4-bit AArch32 register number and
9755 * write back a 5-bit AArch64 one.
9757 rt = extract32(env->exception.syndrome, 5, 4);
9758 rt = aarch64_regnum(env, rt);
9759 env->exception.syndrome = deposit32(env->exception.syndrome,
9760 5, 5, rt);
9761 break;
9762 case EC_CP15RRTTRAP:
9763 case EC_CP14RRTTRAP:
9764 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
9765 rt = extract32(env->exception.syndrome, 5, 4);
9766 rt = aarch64_regnum(env, rt);
9767 env->exception.syndrome = deposit32(env->exception.syndrome,
9768 5, 5, rt);
9769 rt = extract32(env->exception.syndrome, 10, 4);
9770 rt = aarch64_regnum(env, rt);
9771 env->exception.syndrome = deposit32(env->exception.syndrome,
9772 10, 5, rt);
9773 break;
9775 env->cp15.esr_el[new_el] = env->exception.syndrome;
9776 break;
9777 case EXCP_IRQ:
9778 case EXCP_VIRQ:
9779 addr += 0x80;
9780 break;
9781 case EXCP_FIQ:
9782 case EXCP_VFIQ:
9783 addr += 0x100;
9784 break;
9785 default:
9786 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9789 if (is_a64(env)) {
9790 old_mode = pstate_read(env);
9791 aarch64_save_sp(env, arm_current_el(env));
9792 env->elr_el[new_el] = env->pc;
9793 } else {
9794 old_mode = cpsr_read(env);
9795 env->elr_el[new_el] = env->regs[15];
9797 aarch64_sync_32_to_64(env);
9799 env->condexec_bits = 0;
9801 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9803 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9804 env->elr_el[new_el]);
9806 if (cpu_isar_feature(aa64_pan, cpu)) {
9807 /* The value of PSTATE.PAN is normally preserved, except when ... */
9808 new_mode |= old_mode & PSTATE_PAN;
9809 switch (new_el) {
9810 case 2:
9811 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
9812 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9813 != (HCR_E2H | HCR_TGE)) {
9814 break;
9816 /* fall through */
9817 case 1:
9818 /* ... the target is EL1 ... */
9819 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
9820 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9821 new_mode |= PSTATE_PAN;
9823 break;
9826 if (cpu_isar_feature(aa64_mte, cpu)) {
9827 new_mode |= PSTATE_TCO;
9830 pstate_write(env, PSTATE_DAIF | new_mode);
9831 env->aarch64 = 1;
9832 aarch64_restore_sp(env, new_el);
9833 helper_rebuild_hflags_a64(env, new_el);
9835 env->pc = addr;
9837 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9838 new_el, env->pc, pstate_read(env));
9842 * Do semihosting call and set the appropriate return value. All the
9843 * permission and validity checks have been done at translate time.
9845 * We only see semihosting exceptions in TCG only as they are not
9846 * trapped to the hypervisor in KVM.
9848 #ifdef CONFIG_TCG
9849 static void handle_semihosting(CPUState *cs)
9851 ARMCPU *cpu = ARM_CPU(cs);
9852 CPUARMState *env = &cpu->env;
9854 if (is_a64(env)) {
9855 qemu_log_mask(CPU_LOG_INT,
9856 "...handling as semihosting call 0x%" PRIx64 "\n",
9857 env->xregs[0]);
9858 env->xregs[0] = do_arm_semihosting(env);
9859 env->pc += 4;
9860 } else {
9861 qemu_log_mask(CPU_LOG_INT,
9862 "...handling as semihosting call 0x%x\n",
9863 env->regs[0]);
9864 env->regs[0] = do_arm_semihosting(env);
9865 env->regs[15] += env->thumb ? 2 : 4;
9868 #endif
9870 /* Handle a CPU exception for A and R profile CPUs.
9871 * Do any appropriate logging, handle PSCI calls, and then hand off
9872 * to the AArch64-entry or AArch32-entry function depending on the
9873 * target exception level's register width.
9875 void arm_cpu_do_interrupt(CPUState *cs)
9877 ARMCPU *cpu = ARM_CPU(cs);
9878 CPUARMState *env = &cpu->env;
9879 unsigned int new_el = env->exception.target_el;
9881 assert(!arm_feature(env, ARM_FEATURE_M));
9883 arm_log_exception(cs->exception_index);
9884 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9885 new_el);
9886 if (qemu_loglevel_mask(CPU_LOG_INT)
9887 && !excp_is_internal(cs->exception_index)) {
9888 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9889 syn_get_ec(env->exception.syndrome),
9890 env->exception.syndrome);
9893 if (arm_is_psci_call(cpu, cs->exception_index)) {
9894 arm_handle_psci_call(cpu);
9895 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9896 return;
9900 * Semihosting semantics depend on the register width of the code
9901 * that caused the exception, not the target exception level, so
9902 * must be handled here.
9904 #ifdef CONFIG_TCG
9905 if (cs->exception_index == EXCP_SEMIHOST) {
9906 handle_semihosting(cs);
9907 return;
9909 #endif
9911 /* Hooks may change global state so BQL should be held, also the
9912 * BQL needs to be held for any modification of
9913 * cs->interrupt_request.
9915 g_assert(qemu_mutex_iothread_locked());
9917 arm_call_pre_el_change_hook(cpu);
9919 assert(!excp_is_internal(cs->exception_index));
9920 if (arm_el_is_aa64(env, new_el)) {
9921 arm_cpu_do_interrupt_aarch64(cs);
9922 } else {
9923 arm_cpu_do_interrupt_aarch32(cs);
9926 arm_call_el_change_hook(cpu);
9928 if (!kvm_enabled()) {
9929 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9932 #endif /* !CONFIG_USER_ONLY */
9934 uint64_t arm_sctlr(CPUARMState *env, int el)
9936 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
9937 if (el == 0) {
9938 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
9939 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1);
9941 return env->cp15.sctlr_el[el];
9944 /* Return the SCTLR value which controls this address translation regime */
9945 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9947 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9950 #ifndef CONFIG_USER_ONLY
9952 /* Return true if the specified stage of address translation is disabled */
9953 static inline bool regime_translation_disabled(CPUARMState *env,
9954 ARMMMUIdx mmu_idx)
9956 if (arm_feature(env, ARM_FEATURE_M)) {
9957 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9958 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9959 case R_V7M_MPU_CTRL_ENABLE_MASK:
9960 /* Enabled, but not for HardFault and NMI */
9961 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9962 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9963 /* Enabled for all cases */
9964 return false;
9965 case 0:
9966 default:
9967 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9968 * we warned about that in armv7m_nvic.c when the guest set it.
9970 return true;
9974 if (mmu_idx == ARMMMUIdx_Stage2) {
9975 /* HCR.DC means HCR.VM behaves as 1 */
9976 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9979 if (env->cp15.hcr_el2 & HCR_TGE) {
9980 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9981 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9982 return true;
9986 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
9987 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9988 return true;
9991 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9994 static inline bool regime_translation_big_endian(CPUARMState *env,
9995 ARMMMUIdx mmu_idx)
9997 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10000 /* Return the TTBR associated with this translation regime */
10001 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10002 int ttbrn)
10004 if (mmu_idx == ARMMMUIdx_Stage2) {
10005 return env->cp15.vttbr_el2;
10007 if (ttbrn == 0) {
10008 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10009 } else {
10010 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10014 #endif /* !CONFIG_USER_ONLY */
10016 /* Convert a possible stage1+2 MMU index into the appropriate
10017 * stage 1 MMU index
10019 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10021 switch (mmu_idx) {
10022 case ARMMMUIdx_E10_0:
10023 return ARMMMUIdx_Stage1_E0;
10024 case ARMMMUIdx_E10_1:
10025 return ARMMMUIdx_Stage1_E1;
10026 case ARMMMUIdx_E10_1_PAN:
10027 return ARMMMUIdx_Stage1_E1_PAN;
10028 default:
10029 return mmu_idx;
10033 /* Return true if the translation regime is using LPAE format page tables */
10034 static inline bool regime_using_lpae_format(CPUARMState *env,
10035 ARMMMUIdx mmu_idx)
10037 int el = regime_el(env, mmu_idx);
10038 if (el == 2 || arm_el_is_aa64(env, el)) {
10039 return true;
10041 if (arm_feature(env, ARM_FEATURE_LPAE)
10042 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10043 return true;
10045 return false;
10048 /* Returns true if the stage 1 translation regime is using LPAE format page
10049 * tables. Used when raising alignment exceptions, whose FSR changes depending
10050 * on whether the long or short descriptor format is in use. */
10051 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10053 mmu_idx = stage_1_mmu_idx(mmu_idx);
10055 return regime_using_lpae_format(env, mmu_idx);
10058 #ifndef CONFIG_USER_ONLY
10059 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10061 switch (mmu_idx) {
10062 case ARMMMUIdx_SE10_0:
10063 case ARMMMUIdx_E20_0:
10064 case ARMMMUIdx_Stage1_E0:
10065 case ARMMMUIdx_MUser:
10066 case ARMMMUIdx_MSUser:
10067 case ARMMMUIdx_MUserNegPri:
10068 case ARMMMUIdx_MSUserNegPri:
10069 return true;
10070 default:
10071 return false;
10072 case ARMMMUIdx_E10_0:
10073 case ARMMMUIdx_E10_1:
10074 case ARMMMUIdx_E10_1_PAN:
10075 g_assert_not_reached();
10079 /* Translate section/page access permissions to page
10080 * R/W protection flags
10082 * @env: CPUARMState
10083 * @mmu_idx: MMU index indicating required translation regime
10084 * @ap: The 3-bit access permissions (AP[2:0])
10085 * @domain_prot: The 2-bit domain access permissions
10087 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10088 int ap, int domain_prot)
10090 bool is_user = regime_is_user(env, mmu_idx);
10092 if (domain_prot == 3) {
10093 return PAGE_READ | PAGE_WRITE;
10096 switch (ap) {
10097 case 0:
10098 if (arm_feature(env, ARM_FEATURE_V7)) {
10099 return 0;
10101 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10102 case SCTLR_S:
10103 return is_user ? 0 : PAGE_READ;
10104 case SCTLR_R:
10105 return PAGE_READ;
10106 default:
10107 return 0;
10109 case 1:
10110 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10111 case 2:
10112 if (is_user) {
10113 return PAGE_READ;
10114 } else {
10115 return PAGE_READ | PAGE_WRITE;
10117 case 3:
10118 return PAGE_READ | PAGE_WRITE;
10119 case 4: /* Reserved. */
10120 return 0;
10121 case 5:
10122 return is_user ? 0 : PAGE_READ;
10123 case 6:
10124 return PAGE_READ;
10125 case 7:
10126 if (!arm_feature(env, ARM_FEATURE_V6K)) {
10127 return 0;
10129 return PAGE_READ;
10130 default:
10131 g_assert_not_reached();
10135 /* Translate section/page access permissions to page
10136 * R/W protection flags.
10138 * @ap: The 2-bit simple AP (AP[2:1])
10139 * @is_user: TRUE if accessing from PL0
10141 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10143 switch (ap) {
10144 case 0:
10145 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10146 case 1:
10147 return PAGE_READ | PAGE_WRITE;
10148 case 2:
10149 return is_user ? 0 : PAGE_READ;
10150 case 3:
10151 return PAGE_READ;
10152 default:
10153 g_assert_not_reached();
10157 static inline int
10158 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10160 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10163 /* Translate S2 section/page access permissions to protection flags
10165 * @env: CPUARMState
10166 * @s2ap: The 2-bit stage2 access permissions (S2AP)
10167 * @xn: XN (execute-never) bits
10168 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10170 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10172 int prot = 0;
10174 if (s2ap & 1) {
10175 prot |= PAGE_READ;
10177 if (s2ap & 2) {
10178 prot |= PAGE_WRITE;
10181 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10182 switch (xn) {
10183 case 0:
10184 prot |= PAGE_EXEC;
10185 break;
10186 case 1:
10187 if (s1_is_el0) {
10188 prot |= PAGE_EXEC;
10190 break;
10191 case 2:
10192 break;
10193 case 3:
10194 if (!s1_is_el0) {
10195 prot |= PAGE_EXEC;
10197 break;
10198 default:
10199 g_assert_not_reached();
10201 } else {
10202 if (!extract32(xn, 1, 1)) {
10203 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10204 prot |= PAGE_EXEC;
10208 return prot;
10211 /* Translate section/page access permissions to protection flags
10213 * @env: CPUARMState
10214 * @mmu_idx: MMU index indicating required translation regime
10215 * @is_aa64: TRUE if AArch64
10216 * @ap: The 2-bit simple AP (AP[2:1])
10217 * @ns: NS (non-secure) bit
10218 * @xn: XN (execute-never) bit
10219 * @pxn: PXN (privileged execute-never) bit
10221 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10222 int ap, int ns, int xn, int pxn)
10224 bool is_user = regime_is_user(env, mmu_idx);
10225 int prot_rw, user_rw;
10226 bool have_wxn;
10227 int wxn = 0;
10229 assert(mmu_idx != ARMMMUIdx_Stage2);
10231 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10232 if (is_user) {
10233 prot_rw = user_rw;
10234 } else {
10235 if (user_rw && regime_is_pan(env, mmu_idx)) {
10236 /* PAN forbids data accesses but doesn't affect insn fetch */
10237 prot_rw = 0;
10238 } else {
10239 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10243 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10244 return prot_rw;
10247 /* TODO have_wxn should be replaced with
10248 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10249 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10250 * compatible processors have EL2, which is required for [U]WXN.
10252 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10254 if (have_wxn) {
10255 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10258 if (is_aa64) {
10259 if (regime_has_2_ranges(mmu_idx) && !is_user) {
10260 xn = pxn || (user_rw & PAGE_WRITE);
10262 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10263 switch (regime_el(env, mmu_idx)) {
10264 case 1:
10265 case 3:
10266 if (is_user) {
10267 xn = xn || !(user_rw & PAGE_READ);
10268 } else {
10269 int uwxn = 0;
10270 if (have_wxn) {
10271 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10273 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10274 (uwxn && (user_rw & PAGE_WRITE));
10276 break;
10277 case 2:
10278 break;
10280 } else {
10281 xn = wxn = 0;
10284 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10285 return prot_rw;
10287 return prot_rw | PAGE_EXEC;
10290 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10291 uint32_t *table, uint32_t address)
10293 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10294 TCR *tcr = regime_tcr(env, mmu_idx);
10296 if (address & tcr->mask) {
10297 if (tcr->raw_tcr & TTBCR_PD1) {
10298 /* Translation table walk disabled for TTBR1 */
10299 return false;
10301 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10302 } else {
10303 if (tcr->raw_tcr & TTBCR_PD0) {
10304 /* Translation table walk disabled for TTBR0 */
10305 return false;
10307 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10309 *table |= (address >> 18) & 0x3ffc;
10310 return true;
10313 /* Translate a S1 pagetable walk through S2 if needed. */
10314 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10315 hwaddr addr, MemTxAttrs txattrs,
10316 ARMMMUFaultInfo *fi)
10318 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10319 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10320 target_ulong s2size;
10321 hwaddr s2pa;
10322 int s2prot;
10323 int ret;
10324 ARMCacheAttrs cacheattrs = {};
10326 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2,
10327 false,
10328 &s2pa, &txattrs, &s2prot, &s2size, fi,
10329 &cacheattrs);
10330 if (ret) {
10331 assert(fi->type != ARMFault_None);
10332 fi->s2addr = addr;
10333 fi->stage2 = true;
10334 fi->s1ptw = true;
10335 return ~0;
10337 if ((env->cp15.hcr_el2 & HCR_PTW) && (cacheattrs.attrs & 0xf0) == 0) {
10339 * PTW set and S1 walk touched S2 Device memory:
10340 * generate Permission fault.
10342 fi->type = ARMFault_Permission;
10343 fi->s2addr = addr;
10344 fi->stage2 = true;
10345 fi->s1ptw = true;
10346 return ~0;
10348 addr = s2pa;
10350 return addr;
10353 /* All loads done in the course of a page table walk go through here. */
10354 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10355 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10357 ARMCPU *cpu = ARM_CPU(cs);
10358 CPUARMState *env = &cpu->env;
10359 MemTxAttrs attrs = {};
10360 MemTxResult result = MEMTX_OK;
10361 AddressSpace *as;
10362 uint32_t data;
10364 attrs.secure = is_secure;
10365 as = arm_addressspace(cs, attrs);
10366 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10367 if (fi->s1ptw) {
10368 return 0;
10370 if (regime_translation_big_endian(env, mmu_idx)) {
10371 data = address_space_ldl_be(as, addr, attrs, &result);
10372 } else {
10373 data = address_space_ldl_le(as, addr, attrs, &result);
10375 if (result == MEMTX_OK) {
10376 return data;
10378 fi->type = ARMFault_SyncExternalOnWalk;
10379 fi->ea = arm_extabort_type(result);
10380 return 0;
10383 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10384 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10386 ARMCPU *cpu = ARM_CPU(cs);
10387 CPUARMState *env = &cpu->env;
10388 MemTxAttrs attrs = {};
10389 MemTxResult result = MEMTX_OK;
10390 AddressSpace *as;
10391 uint64_t data;
10393 attrs.secure = is_secure;
10394 as = arm_addressspace(cs, attrs);
10395 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10396 if (fi->s1ptw) {
10397 return 0;
10399 if (regime_translation_big_endian(env, mmu_idx)) {
10400 data = address_space_ldq_be(as, addr, attrs, &result);
10401 } else {
10402 data = address_space_ldq_le(as, addr, attrs, &result);
10404 if (result == MEMTX_OK) {
10405 return data;
10407 fi->type = ARMFault_SyncExternalOnWalk;
10408 fi->ea = arm_extabort_type(result);
10409 return 0;
10412 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10413 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10414 hwaddr *phys_ptr, int *prot,
10415 target_ulong *page_size,
10416 ARMMMUFaultInfo *fi)
10418 CPUState *cs = env_cpu(env);
10419 int level = 1;
10420 uint32_t table;
10421 uint32_t desc;
10422 int type;
10423 int ap;
10424 int domain = 0;
10425 int domain_prot;
10426 hwaddr phys_addr;
10427 uint32_t dacr;
10429 /* Pagetable walk. */
10430 /* Lookup l1 descriptor. */
10431 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10432 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10433 fi->type = ARMFault_Translation;
10434 goto do_fault;
10436 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10437 mmu_idx, fi);
10438 if (fi->type != ARMFault_None) {
10439 goto do_fault;
10441 type = (desc & 3);
10442 domain = (desc >> 5) & 0x0f;
10443 if (regime_el(env, mmu_idx) == 1) {
10444 dacr = env->cp15.dacr_ns;
10445 } else {
10446 dacr = env->cp15.dacr_s;
10448 domain_prot = (dacr >> (domain * 2)) & 3;
10449 if (type == 0) {
10450 /* Section translation fault. */
10451 fi->type = ARMFault_Translation;
10452 goto do_fault;
10454 if (type != 2) {
10455 level = 2;
10457 if (domain_prot == 0 || domain_prot == 2) {
10458 fi->type = ARMFault_Domain;
10459 goto do_fault;
10461 if (type == 2) {
10462 /* 1Mb section. */
10463 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10464 ap = (desc >> 10) & 3;
10465 *page_size = 1024 * 1024;
10466 } else {
10467 /* Lookup l2 entry. */
10468 if (type == 1) {
10469 /* Coarse pagetable. */
10470 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10471 } else {
10472 /* Fine pagetable. */
10473 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10475 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10476 mmu_idx, fi);
10477 if (fi->type != ARMFault_None) {
10478 goto do_fault;
10480 switch (desc & 3) {
10481 case 0: /* Page translation fault. */
10482 fi->type = ARMFault_Translation;
10483 goto do_fault;
10484 case 1: /* 64k page. */
10485 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10486 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10487 *page_size = 0x10000;
10488 break;
10489 case 2: /* 4k page. */
10490 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10491 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10492 *page_size = 0x1000;
10493 break;
10494 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10495 if (type == 1) {
10496 /* ARMv6/XScale extended small page format */
10497 if (arm_feature(env, ARM_FEATURE_XSCALE)
10498 || arm_feature(env, ARM_FEATURE_V6)) {
10499 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10500 *page_size = 0x1000;
10501 } else {
10502 /* UNPREDICTABLE in ARMv5; we choose to take a
10503 * page translation fault.
10505 fi->type = ARMFault_Translation;
10506 goto do_fault;
10508 } else {
10509 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10510 *page_size = 0x400;
10512 ap = (desc >> 4) & 3;
10513 break;
10514 default:
10515 /* Never happens, but compiler isn't smart enough to tell. */
10516 abort();
10519 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10520 *prot |= *prot ? PAGE_EXEC : 0;
10521 if (!(*prot & (1 << access_type))) {
10522 /* Access permission fault. */
10523 fi->type = ARMFault_Permission;
10524 goto do_fault;
10526 *phys_ptr = phys_addr;
10527 return false;
10528 do_fault:
10529 fi->domain = domain;
10530 fi->level = level;
10531 return true;
10534 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10535 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10536 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10537 target_ulong *page_size, ARMMMUFaultInfo *fi)
10539 CPUState *cs = env_cpu(env);
10540 ARMCPU *cpu = env_archcpu(env);
10541 int level = 1;
10542 uint32_t table;
10543 uint32_t desc;
10544 uint32_t xn;
10545 uint32_t pxn = 0;
10546 int type;
10547 int ap;
10548 int domain = 0;
10549 int domain_prot;
10550 hwaddr phys_addr;
10551 uint32_t dacr;
10552 bool ns;
10554 /* Pagetable walk. */
10555 /* Lookup l1 descriptor. */
10556 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10557 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10558 fi->type = ARMFault_Translation;
10559 goto do_fault;
10561 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10562 mmu_idx, fi);
10563 if (fi->type != ARMFault_None) {
10564 goto do_fault;
10566 type = (desc & 3);
10567 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10568 /* Section translation fault, or attempt to use the encoding
10569 * which is Reserved on implementations without PXN.
10571 fi->type = ARMFault_Translation;
10572 goto do_fault;
10574 if ((type == 1) || !(desc & (1 << 18))) {
10575 /* Page or Section. */
10576 domain = (desc >> 5) & 0x0f;
10578 if (regime_el(env, mmu_idx) == 1) {
10579 dacr = env->cp15.dacr_ns;
10580 } else {
10581 dacr = env->cp15.dacr_s;
10583 if (type == 1) {
10584 level = 2;
10586 domain_prot = (dacr >> (domain * 2)) & 3;
10587 if (domain_prot == 0 || domain_prot == 2) {
10588 /* Section or Page domain fault */
10589 fi->type = ARMFault_Domain;
10590 goto do_fault;
10592 if (type != 1) {
10593 if (desc & (1 << 18)) {
10594 /* Supersection. */
10595 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10596 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10597 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10598 *page_size = 0x1000000;
10599 } else {
10600 /* Section. */
10601 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10602 *page_size = 0x100000;
10604 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10605 xn = desc & (1 << 4);
10606 pxn = desc & 1;
10607 ns = extract32(desc, 19, 1);
10608 } else {
10609 if (cpu_isar_feature(aa32_pxn, cpu)) {
10610 pxn = (desc >> 2) & 1;
10612 ns = extract32(desc, 3, 1);
10613 /* Lookup l2 entry. */
10614 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10615 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10616 mmu_idx, fi);
10617 if (fi->type != ARMFault_None) {
10618 goto do_fault;
10620 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10621 switch (desc & 3) {
10622 case 0: /* Page translation fault. */
10623 fi->type = ARMFault_Translation;
10624 goto do_fault;
10625 case 1: /* 64k page. */
10626 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10627 xn = desc & (1 << 15);
10628 *page_size = 0x10000;
10629 break;
10630 case 2: case 3: /* 4k page. */
10631 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10632 xn = desc & 1;
10633 *page_size = 0x1000;
10634 break;
10635 default:
10636 /* Never happens, but compiler isn't smart enough to tell. */
10637 abort();
10640 if (domain_prot == 3) {
10641 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10642 } else {
10643 if (pxn && !regime_is_user(env, mmu_idx)) {
10644 xn = 1;
10646 if (xn && access_type == MMU_INST_FETCH) {
10647 fi->type = ARMFault_Permission;
10648 goto do_fault;
10651 if (arm_feature(env, ARM_FEATURE_V6K) &&
10652 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10653 /* The simplified model uses AP[0] as an access control bit. */
10654 if ((ap & 1) == 0) {
10655 /* Access flag fault. */
10656 fi->type = ARMFault_AccessFlag;
10657 goto do_fault;
10659 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10660 } else {
10661 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10663 if (*prot && !xn) {
10664 *prot |= PAGE_EXEC;
10666 if (!(*prot & (1 << access_type))) {
10667 /* Access permission fault. */
10668 fi->type = ARMFault_Permission;
10669 goto do_fault;
10672 if (ns) {
10673 /* The NS bit will (as required by the architecture) have no effect if
10674 * the CPU doesn't support TZ or this is a non-secure translation
10675 * regime, because the attribute will already be non-secure.
10677 attrs->secure = false;
10679 *phys_ptr = phys_addr;
10680 return false;
10681 do_fault:
10682 fi->domain = domain;
10683 fi->level = level;
10684 return true;
10688 * check_s2_mmu_setup
10689 * @cpu: ARMCPU
10690 * @is_aa64: True if the translation regime is in AArch64 state
10691 * @startlevel: Suggested starting level
10692 * @inputsize: Bitsize of IPAs
10693 * @stride: Page-table stride (See the ARM ARM)
10695 * Returns true if the suggested S2 translation parameters are OK and
10696 * false otherwise.
10698 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10699 int inputsize, int stride)
10701 const int grainsize = stride + 3;
10702 int startsizecheck;
10704 /* Negative levels are never allowed. */
10705 if (level < 0) {
10706 return false;
10709 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10710 if (startsizecheck < 1 || startsizecheck > stride + 4) {
10711 return false;
10714 if (is_aa64) {
10715 CPUARMState *env = &cpu->env;
10716 unsigned int pamax = arm_pamax(cpu);
10718 switch (stride) {
10719 case 13: /* 64KB Pages. */
10720 if (level == 0 || (level == 1 && pamax <= 42)) {
10721 return false;
10723 break;
10724 case 11: /* 16KB Pages. */
10725 if (level == 0 || (level == 1 && pamax <= 40)) {
10726 return false;
10728 break;
10729 case 9: /* 4KB Pages. */
10730 if (level == 0 && pamax <= 42) {
10731 return false;
10733 break;
10734 default:
10735 g_assert_not_reached();
10738 /* Inputsize checks. */
10739 if (inputsize > pamax &&
10740 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10741 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10742 return false;
10744 } else {
10745 /* AArch32 only supports 4KB pages. Assert on that. */
10746 assert(stride == 9);
10748 if (level == 0) {
10749 return false;
10752 return true;
10755 /* Translate from the 4-bit stage 2 representation of
10756 * memory attributes (without cache-allocation hints) to
10757 * the 8-bit representation of the stage 1 MAIR registers
10758 * (which includes allocation hints).
10760 * ref: shared/translation/attrs/S2AttrDecode()
10761 * .../S2ConvertAttrsHints()
10763 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10765 uint8_t hiattr = extract32(s2attrs, 2, 2);
10766 uint8_t loattr = extract32(s2attrs, 0, 2);
10767 uint8_t hihint = 0, lohint = 0;
10769 if (hiattr != 0) { /* normal memory */
10770 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10771 hiattr = loattr = 1; /* non-cacheable */
10772 } else {
10773 if (hiattr != 1) { /* Write-through or write-back */
10774 hihint = 3; /* RW allocate */
10776 if (loattr != 1) { /* Write-through or write-back */
10777 lohint = 3; /* RW allocate */
10782 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10784 #endif /* !CONFIG_USER_ONLY */
10786 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10788 if (regime_has_2_ranges(mmu_idx)) {
10789 return extract64(tcr, 37, 2);
10790 } else if (mmu_idx == ARMMMUIdx_Stage2) {
10791 return 0; /* VTCR_EL2 */
10792 } else {
10793 /* Replicate the single TBI bit so we always have 2 bits. */
10794 return extract32(tcr, 20, 1) * 3;
10798 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10800 if (regime_has_2_ranges(mmu_idx)) {
10801 return extract64(tcr, 51, 2);
10802 } else if (mmu_idx == ARMMMUIdx_Stage2) {
10803 return 0; /* VTCR_EL2 */
10804 } else {
10805 /* Replicate the single TBID bit so we always have 2 bits. */
10806 return extract32(tcr, 29, 1) * 3;
10810 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
10812 if (regime_has_2_ranges(mmu_idx)) {
10813 return extract64(tcr, 57, 2);
10814 } else {
10815 /* Replicate the single TCMA bit so we always have 2 bits. */
10816 return extract32(tcr, 30, 1) * 3;
10820 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10821 ARMMMUIdx mmu_idx, bool data)
10823 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10824 bool epd, hpd, using16k, using64k;
10825 int select, tsz, tbi;
10827 if (!regime_has_2_ranges(mmu_idx)) {
10828 select = 0;
10829 tsz = extract32(tcr, 0, 6);
10830 using64k = extract32(tcr, 14, 1);
10831 using16k = extract32(tcr, 15, 1);
10832 if (mmu_idx == ARMMMUIdx_Stage2) {
10833 /* VTCR_EL2 */
10834 hpd = false;
10835 } else {
10836 hpd = extract32(tcr, 24, 1);
10838 epd = false;
10839 } else {
10841 * Bit 55 is always between the two regions, and is canonical for
10842 * determining if address tagging is enabled.
10844 select = extract64(va, 55, 1);
10845 if (!select) {
10846 tsz = extract32(tcr, 0, 6);
10847 epd = extract32(tcr, 7, 1);
10848 using64k = extract32(tcr, 14, 1);
10849 using16k = extract32(tcr, 15, 1);
10850 hpd = extract64(tcr, 41, 1);
10851 } else {
10852 int tg = extract32(tcr, 30, 2);
10853 using16k = tg == 1;
10854 using64k = tg == 3;
10855 tsz = extract32(tcr, 16, 6);
10856 epd = extract32(tcr, 23, 1);
10857 hpd = extract64(tcr, 42, 1);
10860 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
10861 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
10863 /* Present TBI as a composite with TBID. */
10864 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10865 if (!data) {
10866 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10868 tbi = (tbi >> select) & 1;
10870 return (ARMVAParameters) {
10871 .tsz = tsz,
10872 .select = select,
10873 .tbi = tbi,
10874 .epd = epd,
10875 .hpd = hpd,
10876 .using16k = using16k,
10877 .using64k = using64k,
10881 #ifndef CONFIG_USER_ONLY
10882 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10883 ARMMMUIdx mmu_idx)
10885 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10886 uint32_t el = regime_el(env, mmu_idx);
10887 int select, tsz;
10888 bool epd, hpd;
10890 if (mmu_idx == ARMMMUIdx_Stage2) {
10891 /* VTCR */
10892 bool sext = extract32(tcr, 4, 1);
10893 bool sign = extract32(tcr, 3, 1);
10896 * If the sign-extend bit is not the same as t0sz[3], the result
10897 * is unpredictable. Flag this as a guest error.
10899 if (sign != sext) {
10900 qemu_log_mask(LOG_GUEST_ERROR,
10901 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10903 tsz = sextract32(tcr, 0, 4) + 8;
10904 select = 0;
10905 hpd = false;
10906 epd = false;
10907 } else if (el == 2) {
10908 /* HTCR */
10909 tsz = extract32(tcr, 0, 3);
10910 select = 0;
10911 hpd = extract64(tcr, 24, 1);
10912 epd = false;
10913 } else {
10914 int t0sz = extract32(tcr, 0, 3);
10915 int t1sz = extract32(tcr, 16, 3);
10917 if (t1sz == 0) {
10918 select = va > (0xffffffffu >> t0sz);
10919 } else {
10920 /* Note that we will detect errors later. */
10921 select = va >= ~(0xffffffffu >> t1sz);
10923 if (!select) {
10924 tsz = t0sz;
10925 epd = extract32(tcr, 7, 1);
10926 hpd = extract64(tcr, 41, 1);
10927 } else {
10928 tsz = t1sz;
10929 epd = extract32(tcr, 23, 1);
10930 hpd = extract64(tcr, 42, 1);
10932 /* For aarch32, hpd0 is not enabled without t2e as well. */
10933 hpd &= extract32(tcr, 6, 1);
10936 return (ARMVAParameters) {
10937 .tsz = tsz,
10938 .select = select,
10939 .epd = epd,
10940 .hpd = hpd,
10945 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
10947 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10948 * prot and page_size may not be filled in, and the populated fsr value provides
10949 * information on why the translation aborted, in the format of a long-format
10950 * DFSR/IFSR fault register, with the following caveats:
10951 * * the WnR bit is never set (the caller must do this).
10953 * @env: CPUARMState
10954 * @address: virtual address to get physical address for
10955 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
10956 * @mmu_idx: MMU index indicating required translation regime
10957 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
10958 * walk), must be true if this is stage 2 of a stage 1+2 walk for an
10959 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
10960 * @phys_ptr: set to the physical address corresponding to the virtual address
10961 * @attrs: set to the memory transaction attributes to use
10962 * @prot: set to the permissions for the page containing phys_ptr
10963 * @page_size_ptr: set to the size of the page containing phys_ptr
10964 * @fi: set to fault info if the translation fails
10965 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10967 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10968 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10969 bool s1_is_el0,
10970 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10971 target_ulong *page_size_ptr,
10972 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10974 ARMCPU *cpu = env_archcpu(env);
10975 CPUState *cs = CPU(cpu);
10976 /* Read an LPAE long-descriptor translation table. */
10977 ARMFaultType fault_type = ARMFault_Translation;
10978 uint32_t level;
10979 ARMVAParameters param;
10980 uint64_t ttbr;
10981 hwaddr descaddr, indexmask, indexmask_grainsize;
10982 uint32_t tableattrs;
10983 target_ulong page_size;
10984 uint32_t attrs;
10985 int32_t stride;
10986 int addrsize, inputsize;
10987 TCR *tcr = regime_tcr(env, mmu_idx);
10988 int ap, ns, xn, pxn;
10989 uint32_t el = regime_el(env, mmu_idx);
10990 uint64_t descaddrmask;
10991 bool aarch64 = arm_el_is_aa64(env, el);
10992 bool guarded = false;
10994 /* TODO: This code does not support shareability levels. */
10995 if (aarch64) {
10996 param = aa64_va_parameters(env, address, mmu_idx,
10997 access_type != MMU_INST_FETCH);
10998 level = 0;
10999 addrsize = 64 - 8 * param.tbi;
11000 inputsize = 64 - param.tsz;
11001 } else {
11002 param = aa32_va_parameters(env, address, mmu_idx);
11003 level = 1;
11004 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11005 inputsize = addrsize - param.tsz;
11009 * We determined the region when collecting the parameters, but we
11010 * have not yet validated that the address is valid for the region.
11011 * Extract the top bits and verify that they all match select.
11013 * For aa32, if inputsize == addrsize, then we have selected the
11014 * region by exclusion in aa32_va_parameters and there is no more
11015 * validation to do here.
11017 if (inputsize < addrsize) {
11018 target_ulong top_bits = sextract64(address, inputsize,
11019 addrsize - inputsize);
11020 if (-top_bits != param.select) {
11021 /* The gap between the two regions is a Translation fault */
11022 fault_type = ARMFault_Translation;
11023 goto do_fault;
11027 if (param.using64k) {
11028 stride = 13;
11029 } else if (param.using16k) {
11030 stride = 11;
11031 } else {
11032 stride = 9;
11035 /* Note that QEMU ignores shareability and cacheability attributes,
11036 * so we don't need to do anything with the SH, ORGN, IRGN fields
11037 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
11038 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11039 * implement any ASID-like capability so we can ignore it (instead
11040 * we will always flush the TLB any time the ASID is changed).
11042 ttbr = regime_ttbr(env, mmu_idx, param.select);
11044 /* Here we should have set up all the parameters for the translation:
11045 * inputsize, ttbr, epd, stride, tbi
11048 if (param.epd) {
11049 /* Translation table walk disabled => Translation fault on TLB miss
11050 * Note: This is always 0 on 64-bit EL2 and EL3.
11052 goto do_fault;
11055 if (mmu_idx != ARMMMUIdx_Stage2) {
11056 /* The starting level depends on the virtual address size (which can
11057 * be up to 48 bits) and the translation granule size. It indicates
11058 * the number of strides (stride bits at a time) needed to
11059 * consume the bits of the input address. In the pseudocode this is:
11060 * level = 4 - RoundUp((inputsize - grainsize) / stride)
11061 * where their 'inputsize' is our 'inputsize', 'grainsize' is
11062 * our 'stride + 3' and 'stride' is our 'stride'.
11063 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11064 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11065 * = 4 - (inputsize - 4) / stride;
11067 level = 4 - (inputsize - 4) / stride;
11068 } else {
11069 /* For stage 2 translations the starting level is specified by the
11070 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11072 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11073 uint32_t startlevel;
11074 bool ok;
11076 if (!aarch64 || stride == 9) {
11077 /* AArch32 or 4KB pages */
11078 startlevel = 2 - sl0;
11079 } else {
11080 /* 16KB or 64KB pages */
11081 startlevel = 3 - sl0;
11084 /* Check that the starting level is valid. */
11085 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11086 inputsize, stride);
11087 if (!ok) {
11088 fault_type = ARMFault_Translation;
11089 goto do_fault;
11091 level = startlevel;
11094 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11095 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11097 /* Now we can extract the actual base address from the TTBR */
11098 descaddr = extract64(ttbr, 0, 48);
11100 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11101 * and also to mask out CnP (bit 0) which could validly be non-zero.
11103 descaddr &= ~indexmask;
11105 /* The address field in the descriptor goes up to bit 39 for ARMv7
11106 * but up to bit 47 for ARMv8, but we use the descaddrmask
11107 * up to bit 39 for AArch32, because we don't need other bits in that case
11108 * to construct next descriptor address (anyway they should be all zeroes).
11110 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11111 ~indexmask_grainsize;
11113 /* Secure accesses start with the page table in secure memory and
11114 * can be downgraded to non-secure at any step. Non-secure accesses
11115 * remain non-secure. We implement this by just ORing in the NSTable/NS
11116 * bits at each step.
11118 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11119 for (;;) {
11120 uint64_t descriptor;
11121 bool nstable;
11123 descaddr |= (address >> (stride * (4 - level))) & indexmask;
11124 descaddr &= ~7ULL;
11125 nstable = extract32(tableattrs, 4, 1);
11126 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11127 if (fi->type != ARMFault_None) {
11128 goto do_fault;
11131 if (!(descriptor & 1) ||
11132 (!(descriptor & 2) && (level == 3))) {
11133 /* Invalid, or the Reserved level 3 encoding */
11134 goto do_fault;
11136 descaddr = descriptor & descaddrmask;
11138 if ((descriptor & 2) && (level < 3)) {
11139 /* Table entry. The top five bits are attributes which may
11140 * propagate down through lower levels of the table (and
11141 * which are all arranged so that 0 means "no effect", so
11142 * we can gather them up by ORing in the bits at each level).
11144 tableattrs |= extract64(descriptor, 59, 5);
11145 level++;
11146 indexmask = indexmask_grainsize;
11147 continue;
11149 /* Block entry at level 1 or 2, or page entry at level 3.
11150 * These are basically the same thing, although the number
11151 * of bits we pull in from the vaddr varies.
11153 page_size = (1ULL << ((stride * (4 - level)) + 3));
11154 descaddr |= (address & (page_size - 1));
11155 /* Extract attributes from the descriptor */
11156 attrs = extract64(descriptor, 2, 10)
11157 | (extract64(descriptor, 52, 12) << 10);
11159 if (mmu_idx == ARMMMUIdx_Stage2) {
11160 /* Stage 2 table descriptors do not include any attribute fields */
11161 break;
11163 /* Merge in attributes from table descriptors */
11164 attrs |= nstable << 3; /* NS */
11165 guarded = extract64(descriptor, 50, 1); /* GP */
11166 if (param.hpd) {
11167 /* HPD disables all the table attributes except NSTable. */
11168 break;
11170 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
11171 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11172 * means "force PL1 access only", which means forcing AP[1] to 0.
11174 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
11175 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
11176 break;
11178 /* Here descaddr is the final physical address, and attributes
11179 * are all in attrs.
11181 fault_type = ARMFault_AccessFlag;
11182 if ((attrs & (1 << 8)) == 0) {
11183 /* Access flag */
11184 goto do_fault;
11187 ap = extract32(attrs, 4, 2);
11189 if (mmu_idx == ARMMMUIdx_Stage2) {
11190 ns = true;
11191 xn = extract32(attrs, 11, 2);
11192 *prot = get_S2prot(env, ap, xn, s1_is_el0);
11193 } else {
11194 ns = extract32(attrs, 3, 1);
11195 xn = extract32(attrs, 12, 1);
11196 pxn = extract32(attrs, 11, 1);
11197 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11200 fault_type = ARMFault_Permission;
11201 if (!(*prot & (1 << access_type))) {
11202 goto do_fault;
11205 if (ns) {
11206 /* The NS bit will (as required by the architecture) have no effect if
11207 * the CPU doesn't support TZ or this is a non-secure translation
11208 * regime, because the attribute will already be non-secure.
11210 txattrs->secure = false;
11212 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
11213 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11214 arm_tlb_bti_gp(txattrs) = true;
11217 if (mmu_idx == ARMMMUIdx_Stage2) {
11218 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11219 } else {
11220 /* Index into MAIR registers for cache attributes */
11221 uint8_t attrindx = extract32(attrs, 0, 3);
11222 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11223 assert(attrindx <= 7);
11224 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11226 cacheattrs->shareability = extract32(attrs, 6, 2);
11228 *phys_ptr = descaddr;
11229 *page_size_ptr = page_size;
11230 return false;
11232 do_fault:
11233 fi->type = fault_type;
11234 fi->level = level;
11235 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
11236 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2);
11237 return true;
11240 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11241 ARMMMUIdx mmu_idx,
11242 int32_t address, int *prot)
11244 if (!arm_feature(env, ARM_FEATURE_M)) {
11245 *prot = PAGE_READ | PAGE_WRITE;
11246 switch (address) {
11247 case 0xF0000000 ... 0xFFFFFFFF:
11248 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11249 /* hivecs execing is ok */
11250 *prot |= PAGE_EXEC;
11252 break;
11253 case 0x00000000 ... 0x7FFFFFFF:
11254 *prot |= PAGE_EXEC;
11255 break;
11257 } else {
11258 /* Default system address map for M profile cores.
11259 * The architecture specifies which regions are execute-never;
11260 * at the MPU level no other checks are defined.
11262 switch (address) {
11263 case 0x00000000 ... 0x1fffffff: /* ROM */
11264 case 0x20000000 ... 0x3fffffff: /* SRAM */
11265 case 0x60000000 ... 0x7fffffff: /* RAM */
11266 case 0x80000000 ... 0x9fffffff: /* RAM */
11267 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11268 break;
11269 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11270 case 0xa0000000 ... 0xbfffffff: /* Device */
11271 case 0xc0000000 ... 0xdfffffff: /* Device */
11272 case 0xe0000000 ... 0xffffffff: /* System */
11273 *prot = PAGE_READ | PAGE_WRITE;
11274 break;
11275 default:
11276 g_assert_not_reached();
11281 static bool pmsav7_use_background_region(ARMCPU *cpu,
11282 ARMMMUIdx mmu_idx, bool is_user)
11284 /* Return true if we should use the default memory map as a
11285 * "background" region if there are no hits against any MPU regions.
11287 CPUARMState *env = &cpu->env;
11289 if (is_user) {
11290 return false;
11293 if (arm_feature(env, ARM_FEATURE_M)) {
11294 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11295 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11296 } else {
11297 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11301 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11303 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11304 return arm_feature(env, ARM_FEATURE_M) &&
11305 extract32(address, 20, 12) == 0xe00;
11308 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11310 /* True if address is in the M profile system region
11311 * 0xe0000000 - 0xffffffff
11313 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11316 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11317 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11318 hwaddr *phys_ptr, int *prot,
11319 target_ulong *page_size,
11320 ARMMMUFaultInfo *fi)
11322 ARMCPU *cpu = env_archcpu(env);
11323 int n;
11324 bool is_user = regime_is_user(env, mmu_idx);
11326 *phys_ptr = address;
11327 *page_size = TARGET_PAGE_SIZE;
11328 *prot = 0;
11330 if (regime_translation_disabled(env, mmu_idx) ||
11331 m_is_ppb_region(env, address)) {
11332 /* MPU disabled or M profile PPB access: use default memory map.
11333 * The other case which uses the default memory map in the
11334 * v7M ARM ARM pseudocode is exception vector reads from the vector
11335 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11336 * which always does a direct read using address_space_ldl(), rather
11337 * than going via this function, so we don't need to check that here.
11339 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11340 } else { /* MPU enabled */
11341 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11342 /* region search */
11343 uint32_t base = env->pmsav7.drbar[n];
11344 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11345 uint32_t rmask;
11346 bool srdis = false;
11348 if (!(env->pmsav7.drsr[n] & 0x1)) {
11349 continue;
11352 if (!rsize) {
11353 qemu_log_mask(LOG_GUEST_ERROR,
11354 "DRSR[%d]: Rsize field cannot be 0\n", n);
11355 continue;
11357 rsize++;
11358 rmask = (1ull << rsize) - 1;
11360 if (base & rmask) {
11361 qemu_log_mask(LOG_GUEST_ERROR,
11362 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11363 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11364 n, base, rmask);
11365 continue;
11368 if (address < base || address > base + rmask) {
11370 * Address not in this region. We must check whether the
11371 * region covers addresses in the same page as our address.
11372 * In that case we must not report a size that covers the
11373 * whole page for a subsequent hit against a different MPU
11374 * region or the background region, because it would result in
11375 * incorrect TLB hits for subsequent accesses to addresses that
11376 * are in this MPU region.
11378 if (ranges_overlap(base, rmask,
11379 address & TARGET_PAGE_MASK,
11380 TARGET_PAGE_SIZE)) {
11381 *page_size = 1;
11383 continue;
11386 /* Region matched */
11388 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11389 int i, snd;
11390 uint32_t srdis_mask;
11392 rsize -= 3; /* sub region size (power of 2) */
11393 snd = ((address - base) >> rsize) & 0x7;
11394 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11396 srdis_mask = srdis ? 0x3 : 0x0;
11397 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11398 /* This will check in groups of 2, 4 and then 8, whether
11399 * the subregion bits are consistent. rsize is incremented
11400 * back up to give the region size, considering consistent
11401 * adjacent subregions as one region. Stop testing if rsize
11402 * is already big enough for an entire QEMU page.
11404 int snd_rounded = snd & ~(i - 1);
11405 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11406 snd_rounded + 8, i);
11407 if (srdis_mask ^ srdis_multi) {
11408 break;
11410 srdis_mask = (srdis_mask << i) | srdis_mask;
11411 rsize++;
11414 if (srdis) {
11415 continue;
11417 if (rsize < TARGET_PAGE_BITS) {
11418 *page_size = 1 << rsize;
11420 break;
11423 if (n == -1) { /* no hits */
11424 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11425 /* background fault */
11426 fi->type = ARMFault_Background;
11427 return true;
11429 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11430 } else { /* a MPU hit! */
11431 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11432 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11434 if (m_is_system_region(env, address)) {
11435 /* System space is always execute never */
11436 xn = 1;
11439 if (is_user) { /* User mode AP bit decoding */
11440 switch (ap) {
11441 case 0:
11442 case 1:
11443 case 5:
11444 break; /* no access */
11445 case 3:
11446 *prot |= PAGE_WRITE;
11447 /* fall through */
11448 case 2:
11449 case 6:
11450 *prot |= PAGE_READ | PAGE_EXEC;
11451 break;
11452 case 7:
11453 /* for v7M, same as 6; for R profile a reserved value */
11454 if (arm_feature(env, ARM_FEATURE_M)) {
11455 *prot |= PAGE_READ | PAGE_EXEC;
11456 break;
11458 /* fall through */
11459 default:
11460 qemu_log_mask(LOG_GUEST_ERROR,
11461 "DRACR[%d]: Bad value for AP bits: 0x%"
11462 PRIx32 "\n", n, ap);
11464 } else { /* Priv. mode AP bits decoding */
11465 switch (ap) {
11466 case 0:
11467 break; /* no access */
11468 case 1:
11469 case 2:
11470 case 3:
11471 *prot |= PAGE_WRITE;
11472 /* fall through */
11473 case 5:
11474 case 6:
11475 *prot |= PAGE_READ | PAGE_EXEC;
11476 break;
11477 case 7:
11478 /* for v7M, same as 6; for R profile a reserved value */
11479 if (arm_feature(env, ARM_FEATURE_M)) {
11480 *prot |= PAGE_READ | PAGE_EXEC;
11481 break;
11483 /* fall through */
11484 default:
11485 qemu_log_mask(LOG_GUEST_ERROR,
11486 "DRACR[%d]: Bad value for AP bits: 0x%"
11487 PRIx32 "\n", n, ap);
11491 /* execute never */
11492 if (xn) {
11493 *prot &= ~PAGE_EXEC;
11498 fi->type = ARMFault_Permission;
11499 fi->level = 1;
11500 return !(*prot & (1 << access_type));
11503 static bool v8m_is_sau_exempt(CPUARMState *env,
11504 uint32_t address, MMUAccessType access_type)
11506 /* The architecture specifies that certain address ranges are
11507 * exempt from v8M SAU/IDAU checks.
11509 return
11510 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11511 (address >= 0xe0000000 && address <= 0xe0002fff) ||
11512 (address >= 0xe000e000 && address <= 0xe000efff) ||
11513 (address >= 0xe002e000 && address <= 0xe002efff) ||
11514 (address >= 0xe0040000 && address <= 0xe0041fff) ||
11515 (address >= 0xe00ff000 && address <= 0xe00fffff);
11518 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11519 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11520 V8M_SAttributes *sattrs)
11522 /* Look up the security attributes for this address. Compare the
11523 * pseudocode SecurityCheck() function.
11524 * We assume the caller has zero-initialized *sattrs.
11526 ARMCPU *cpu = env_archcpu(env);
11527 int r;
11528 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11529 int idau_region = IREGION_NOTVALID;
11530 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11531 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11533 if (cpu->idau) {
11534 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11535 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11537 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11538 &idau_nsc);
11541 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11542 /* 0xf0000000..0xffffffff is always S for insn fetches */
11543 return;
11546 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11547 sattrs->ns = !regime_is_secure(env, mmu_idx);
11548 return;
11551 if (idau_region != IREGION_NOTVALID) {
11552 sattrs->irvalid = true;
11553 sattrs->iregion = idau_region;
11556 switch (env->sau.ctrl & 3) {
11557 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11558 break;
11559 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11560 sattrs->ns = true;
11561 break;
11562 default: /* SAU.ENABLE == 1 */
11563 for (r = 0; r < cpu->sau_sregion; r++) {
11564 if (env->sau.rlar[r] & 1) {
11565 uint32_t base = env->sau.rbar[r] & ~0x1f;
11566 uint32_t limit = env->sau.rlar[r] | 0x1f;
11568 if (base <= address && limit >= address) {
11569 if (base > addr_page_base || limit < addr_page_limit) {
11570 sattrs->subpage = true;
11572 if (sattrs->srvalid) {
11573 /* If we hit in more than one region then we must report
11574 * as Secure, not NS-Callable, with no valid region
11575 * number info.
11577 sattrs->ns = false;
11578 sattrs->nsc = false;
11579 sattrs->sregion = 0;
11580 sattrs->srvalid = false;
11581 break;
11582 } else {
11583 if (env->sau.rlar[r] & 2) {
11584 sattrs->nsc = true;
11585 } else {
11586 sattrs->ns = true;
11588 sattrs->srvalid = true;
11589 sattrs->sregion = r;
11591 } else {
11593 * Address not in this region. We must check whether the
11594 * region covers addresses in the same page as our address.
11595 * In that case we must not report a size that covers the
11596 * whole page for a subsequent hit against a different MPU
11597 * region or the background region, because it would result
11598 * in incorrect TLB hits for subsequent accesses to
11599 * addresses that are in this MPU region.
11601 if (limit >= base &&
11602 ranges_overlap(base, limit - base + 1,
11603 addr_page_base,
11604 TARGET_PAGE_SIZE)) {
11605 sattrs->subpage = true;
11610 break;
11614 * The IDAU will override the SAU lookup results if it specifies
11615 * higher security than the SAU does.
11617 if (!idau_ns) {
11618 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11619 sattrs->ns = false;
11620 sattrs->nsc = idau_nsc;
11625 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11626 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11627 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11628 int *prot, bool *is_subpage,
11629 ARMMMUFaultInfo *fi, uint32_t *mregion)
11631 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11632 * that a full phys-to-virt translation does).
11633 * mregion is (if not NULL) set to the region number which matched,
11634 * or -1 if no region number is returned (MPU off, address did not
11635 * hit a region, address hit in multiple regions).
11636 * We set is_subpage to true if the region hit doesn't cover the
11637 * entire TARGET_PAGE the address is within.
11639 ARMCPU *cpu = env_archcpu(env);
11640 bool is_user = regime_is_user(env, mmu_idx);
11641 uint32_t secure = regime_is_secure(env, mmu_idx);
11642 int n;
11643 int matchregion = -1;
11644 bool hit = false;
11645 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11646 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11648 *is_subpage = false;
11649 *phys_ptr = address;
11650 *prot = 0;
11651 if (mregion) {
11652 *mregion = -1;
11655 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11656 * was an exception vector read from the vector table (which is always
11657 * done using the default system address map), because those accesses
11658 * are done in arm_v7m_load_vector(), which always does a direct
11659 * read using address_space_ldl(), rather than going via this function.
11661 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11662 hit = true;
11663 } else if (m_is_ppb_region(env, address)) {
11664 hit = true;
11665 } else {
11666 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11667 hit = true;
11670 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11671 /* region search */
11672 /* Note that the base address is bits [31:5] from the register
11673 * with bits [4:0] all zeroes, but the limit address is bits
11674 * [31:5] from the register with bits [4:0] all ones.
11676 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11677 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11679 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11680 /* Region disabled */
11681 continue;
11684 if (address < base || address > limit) {
11686 * Address not in this region. We must check whether the
11687 * region covers addresses in the same page as our address.
11688 * In that case we must not report a size that covers the
11689 * whole page for a subsequent hit against a different MPU
11690 * region or the background region, because it would result in
11691 * incorrect TLB hits for subsequent accesses to addresses that
11692 * are in this MPU region.
11694 if (limit >= base &&
11695 ranges_overlap(base, limit - base + 1,
11696 addr_page_base,
11697 TARGET_PAGE_SIZE)) {
11698 *is_subpage = true;
11700 continue;
11703 if (base > addr_page_base || limit < addr_page_limit) {
11704 *is_subpage = true;
11707 if (matchregion != -1) {
11708 /* Multiple regions match -- always a failure (unlike
11709 * PMSAv7 where highest-numbered-region wins)
11711 fi->type = ARMFault_Permission;
11712 fi->level = 1;
11713 return true;
11716 matchregion = n;
11717 hit = true;
11721 if (!hit) {
11722 /* background fault */
11723 fi->type = ARMFault_Background;
11724 return true;
11727 if (matchregion == -1) {
11728 /* hit using the background region */
11729 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11730 } else {
11731 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11732 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11734 if (m_is_system_region(env, address)) {
11735 /* System space is always execute never */
11736 xn = 1;
11739 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11740 if (*prot && !xn) {
11741 *prot |= PAGE_EXEC;
11743 /* We don't need to look the attribute up in the MAIR0/MAIR1
11744 * registers because that only tells us about cacheability.
11746 if (mregion) {
11747 *mregion = matchregion;
11751 fi->type = ARMFault_Permission;
11752 fi->level = 1;
11753 return !(*prot & (1 << access_type));
11757 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11758 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11759 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11760 int *prot, target_ulong *page_size,
11761 ARMMMUFaultInfo *fi)
11763 uint32_t secure = regime_is_secure(env, mmu_idx);
11764 V8M_SAttributes sattrs = {};
11765 bool ret;
11766 bool mpu_is_subpage;
11768 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11769 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11770 if (access_type == MMU_INST_FETCH) {
11771 /* Instruction fetches always use the MMU bank and the
11772 * transaction attribute determined by the fetch address,
11773 * regardless of CPU state. This is painful for QEMU
11774 * to handle, because it would mean we need to encode
11775 * into the mmu_idx not just the (user, negpri) information
11776 * for the current security state but also that for the
11777 * other security state, which would balloon the number
11778 * of mmu_idx values needed alarmingly.
11779 * Fortunately we can avoid this because it's not actually
11780 * possible to arbitrarily execute code from memory with
11781 * the wrong security attribute: it will always generate
11782 * an exception of some kind or another, apart from the
11783 * special case of an NS CPU executing an SG instruction
11784 * in S&NSC memory. So we always just fail the translation
11785 * here and sort things out in the exception handler
11786 * (including possibly emulating an SG instruction).
11788 if (sattrs.ns != !secure) {
11789 if (sattrs.nsc) {
11790 fi->type = ARMFault_QEMU_NSCExec;
11791 } else {
11792 fi->type = ARMFault_QEMU_SFault;
11794 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11795 *phys_ptr = address;
11796 *prot = 0;
11797 return true;
11799 } else {
11800 /* For data accesses we always use the MMU bank indicated
11801 * by the current CPU state, but the security attributes
11802 * might downgrade a secure access to nonsecure.
11804 if (sattrs.ns) {
11805 txattrs->secure = false;
11806 } else if (!secure) {
11807 /* NS access to S memory must fault.
11808 * Architecturally we should first check whether the
11809 * MPU information for this address indicates that we
11810 * are doing an unaligned access to Device memory, which
11811 * should generate a UsageFault instead. QEMU does not
11812 * currently check for that kind of unaligned access though.
11813 * If we added it we would need to do so as a special case
11814 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11816 fi->type = ARMFault_QEMU_SFault;
11817 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11818 *phys_ptr = address;
11819 *prot = 0;
11820 return true;
11825 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11826 txattrs, prot, &mpu_is_subpage, fi, NULL);
11827 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11828 return ret;
11831 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11832 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11833 hwaddr *phys_ptr, int *prot,
11834 ARMMMUFaultInfo *fi)
11836 int n;
11837 uint32_t mask;
11838 uint32_t base;
11839 bool is_user = regime_is_user(env, mmu_idx);
11841 if (regime_translation_disabled(env, mmu_idx)) {
11842 /* MPU disabled. */
11843 *phys_ptr = address;
11844 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11845 return false;
11848 *phys_ptr = address;
11849 for (n = 7; n >= 0; n--) {
11850 base = env->cp15.c6_region[n];
11851 if ((base & 1) == 0) {
11852 continue;
11854 mask = 1 << ((base >> 1) & 0x1f);
11855 /* Keep this shift separate from the above to avoid an
11856 (undefined) << 32. */
11857 mask = (mask << 1) - 1;
11858 if (((base ^ address) & ~mask) == 0) {
11859 break;
11862 if (n < 0) {
11863 fi->type = ARMFault_Background;
11864 return true;
11867 if (access_type == MMU_INST_FETCH) {
11868 mask = env->cp15.pmsav5_insn_ap;
11869 } else {
11870 mask = env->cp15.pmsav5_data_ap;
11872 mask = (mask >> (n * 4)) & 0xf;
11873 switch (mask) {
11874 case 0:
11875 fi->type = ARMFault_Permission;
11876 fi->level = 1;
11877 return true;
11878 case 1:
11879 if (is_user) {
11880 fi->type = ARMFault_Permission;
11881 fi->level = 1;
11882 return true;
11884 *prot = PAGE_READ | PAGE_WRITE;
11885 break;
11886 case 2:
11887 *prot = PAGE_READ;
11888 if (!is_user) {
11889 *prot |= PAGE_WRITE;
11891 break;
11892 case 3:
11893 *prot = PAGE_READ | PAGE_WRITE;
11894 break;
11895 case 5:
11896 if (is_user) {
11897 fi->type = ARMFault_Permission;
11898 fi->level = 1;
11899 return true;
11901 *prot = PAGE_READ;
11902 break;
11903 case 6:
11904 *prot = PAGE_READ;
11905 break;
11906 default:
11907 /* Bad permission. */
11908 fi->type = ARMFault_Permission;
11909 fi->level = 1;
11910 return true;
11912 *prot |= PAGE_EXEC;
11913 return false;
11916 /* Combine either inner or outer cacheability attributes for normal
11917 * memory, according to table D4-42 and pseudocode procedure
11918 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11920 * NB: only stage 1 includes allocation hints (RW bits), leading to
11921 * some asymmetry.
11923 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11925 if (s1 == 4 || s2 == 4) {
11926 /* non-cacheable has precedence */
11927 return 4;
11928 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11929 /* stage 1 write-through takes precedence */
11930 return s1;
11931 } else if (extract32(s2, 2, 2) == 2) {
11932 /* stage 2 write-through takes precedence, but the allocation hint
11933 * is still taken from stage 1
11935 return (2 << 2) | extract32(s1, 0, 2);
11936 } else { /* write-back */
11937 return s1;
11941 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11942 * and CombineS1S2Desc()
11944 * @s1: Attributes from stage 1 walk
11945 * @s2: Attributes from stage 2 walk
11947 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11949 uint8_t s1lo, s2lo, s1hi, s2hi;
11950 ARMCacheAttrs ret;
11951 bool tagged = false;
11953 if (s1.attrs == 0xf0) {
11954 tagged = true;
11955 s1.attrs = 0xff;
11958 s1lo = extract32(s1.attrs, 0, 4);
11959 s2lo = extract32(s2.attrs, 0, 4);
11960 s1hi = extract32(s1.attrs, 4, 4);
11961 s2hi = extract32(s2.attrs, 4, 4);
11963 /* Combine shareability attributes (table D4-43) */
11964 if (s1.shareability == 2 || s2.shareability == 2) {
11965 /* if either are outer-shareable, the result is outer-shareable */
11966 ret.shareability = 2;
11967 } else if (s1.shareability == 3 || s2.shareability == 3) {
11968 /* if either are inner-shareable, the result is inner-shareable */
11969 ret.shareability = 3;
11970 } else {
11971 /* both non-shareable */
11972 ret.shareability = 0;
11975 /* Combine memory type and cacheability attributes */
11976 if (s1hi == 0 || s2hi == 0) {
11977 /* Device has precedence over normal */
11978 if (s1lo == 0 || s2lo == 0) {
11979 /* nGnRnE has precedence over anything */
11980 ret.attrs = 0;
11981 } else if (s1lo == 4 || s2lo == 4) {
11982 /* non-Reordering has precedence over Reordering */
11983 ret.attrs = 4; /* nGnRE */
11984 } else if (s1lo == 8 || s2lo == 8) {
11985 /* non-Gathering has precedence over Gathering */
11986 ret.attrs = 8; /* nGRE */
11987 } else {
11988 ret.attrs = 0xc; /* GRE */
11991 /* Any location for which the resultant memory type is any
11992 * type of Device memory is always treated as Outer Shareable.
11994 ret.shareability = 2;
11995 } else { /* Normal memory */
11996 /* Outer/inner cacheability combine independently */
11997 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11998 | combine_cacheattr_nibble(s1lo, s2lo);
12000 if (ret.attrs == 0x44) {
12001 /* Any location for which the resultant memory type is Normal
12002 * Inner Non-cacheable, Outer Non-cacheable is always treated
12003 * as Outer Shareable.
12005 ret.shareability = 2;
12009 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12010 if (tagged && ret.attrs == 0xff) {
12011 ret.attrs = 0xf0;
12014 return ret;
12018 /* get_phys_addr - get the physical address for this virtual address
12020 * Find the physical address corresponding to the given virtual address,
12021 * by doing a translation table walk on MMU based systems or using the
12022 * MPU state on MPU based systems.
12024 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12025 * prot and page_size may not be filled in, and the populated fsr value provides
12026 * information on why the translation aborted, in the format of a
12027 * DFSR/IFSR fault register, with the following caveats:
12028 * * we honour the short vs long DFSR format differences.
12029 * * the WnR bit is never set (the caller must do this).
12030 * * for PSMAv5 based systems we don't bother to return a full FSR format
12031 * value.
12033 * @env: CPUARMState
12034 * @address: virtual address to get physical address for
12035 * @access_type: 0 for read, 1 for write, 2 for execute
12036 * @mmu_idx: MMU index indicating required translation regime
12037 * @phys_ptr: set to the physical address corresponding to the virtual address
12038 * @attrs: set to the memory transaction attributes to use
12039 * @prot: set to the permissions for the page containing phys_ptr
12040 * @page_size: set to the size of the page containing phys_ptr
12041 * @fi: set to fault info if the translation fails
12042 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12044 bool get_phys_addr(CPUARMState *env, target_ulong address,
12045 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12046 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12047 target_ulong *page_size,
12048 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12050 if (mmu_idx == ARMMMUIdx_E10_0 ||
12051 mmu_idx == ARMMMUIdx_E10_1 ||
12052 mmu_idx == ARMMMUIdx_E10_1_PAN) {
12053 /* Call ourselves recursively to do the stage 1 and then stage 2
12054 * translations.
12056 if (arm_feature(env, ARM_FEATURE_EL2)) {
12057 hwaddr ipa;
12058 int s2_prot;
12059 int ret;
12060 ARMCacheAttrs cacheattrs2 = {};
12062 ret = get_phys_addr(env, address, access_type,
12063 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
12064 prot, page_size, fi, cacheattrs);
12066 /* If S1 fails or S2 is disabled, return early. */
12067 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12068 *phys_ptr = ipa;
12069 return ret;
12072 /* S1 is done. Now do S2 translation. */
12073 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2,
12074 mmu_idx == ARMMMUIdx_E10_0,
12075 phys_ptr, attrs, &s2_prot,
12076 page_size, fi, &cacheattrs2);
12077 fi->s2addr = ipa;
12078 /* Combine the S1 and S2 perms. */
12079 *prot &= s2_prot;
12081 /* If S2 fails, return early. */
12082 if (ret) {
12083 return ret;
12086 /* Combine the S1 and S2 cache attributes. */
12087 if (env->cp15.hcr_el2 & HCR_DC) {
12089 * HCR.DC forces the first stage attributes to
12090 * Normal Non-Shareable,
12091 * Inner Write-Back Read-Allocate Write-Allocate,
12092 * Outer Write-Back Read-Allocate Write-Allocate.
12093 * Do not overwrite Tagged within attrs.
12095 if (cacheattrs->attrs != 0xf0) {
12096 cacheattrs->attrs = 0xff;
12098 cacheattrs->shareability = 0;
12100 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12101 return 0;
12102 } else {
12104 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12106 mmu_idx = stage_1_mmu_idx(mmu_idx);
12110 /* The page table entries may downgrade secure to non-secure, but
12111 * cannot upgrade an non-secure translation regime's attributes
12112 * to secure.
12114 attrs->secure = regime_is_secure(env, mmu_idx);
12115 attrs->user = regime_is_user(env, mmu_idx);
12117 /* Fast Context Switch Extension. This doesn't exist at all in v8.
12118 * In v7 and earlier it affects all stage 1 translations.
12120 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12121 && !arm_feature(env, ARM_FEATURE_V8)) {
12122 if (regime_el(env, mmu_idx) == 3) {
12123 address += env->cp15.fcseidr_s;
12124 } else {
12125 address += env->cp15.fcseidr_ns;
12129 if (arm_feature(env, ARM_FEATURE_PMSA)) {
12130 bool ret;
12131 *page_size = TARGET_PAGE_SIZE;
12133 if (arm_feature(env, ARM_FEATURE_V8)) {
12134 /* PMSAv8 */
12135 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12136 phys_ptr, attrs, prot, page_size, fi);
12137 } else if (arm_feature(env, ARM_FEATURE_V7)) {
12138 /* PMSAv7 */
12139 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12140 phys_ptr, prot, page_size, fi);
12141 } else {
12142 /* Pre-v7 MPU */
12143 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12144 phys_ptr, prot, fi);
12146 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12147 " mmu_idx %u -> %s (prot %c%c%c)\n",
12148 access_type == MMU_DATA_LOAD ? "reading" :
12149 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12150 (uint32_t)address, mmu_idx,
12151 ret ? "Miss" : "Hit",
12152 *prot & PAGE_READ ? 'r' : '-',
12153 *prot & PAGE_WRITE ? 'w' : '-',
12154 *prot & PAGE_EXEC ? 'x' : '-');
12156 return ret;
12159 /* Definitely a real MMU, not an MPU */
12161 if (regime_translation_disabled(env, mmu_idx)) {
12162 uint64_t hcr;
12163 uint8_t memattr;
12166 * MMU disabled. S1 addresses within aa64 translation regimes are
12167 * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12169 if (mmu_idx != ARMMMUIdx_Stage2) {
12170 int r_el = regime_el(env, mmu_idx);
12171 if (arm_el_is_aa64(env, r_el)) {
12172 int pamax = arm_pamax(env_archcpu(env));
12173 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12174 int addrtop, tbi;
12176 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12177 if (access_type == MMU_INST_FETCH) {
12178 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12180 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12181 addrtop = (tbi ? 55 : 63);
12183 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12184 fi->type = ARMFault_AddressSize;
12185 fi->level = 0;
12186 fi->stage2 = false;
12187 return 1;
12191 * When TBI is disabled, we've just validated that all of the
12192 * bits above PAMax are zero, so logically we only need to
12193 * clear the top byte for TBI. But it's clearer to follow
12194 * the pseudocode set of addrdesc.paddress.
12196 address = extract64(address, 0, 52);
12199 *phys_ptr = address;
12200 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12201 *page_size = TARGET_PAGE_SIZE;
12203 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12204 hcr = arm_hcr_el2_eff(env);
12205 cacheattrs->shareability = 0;
12206 if (hcr & HCR_DC) {
12207 if (hcr & HCR_DCT) {
12208 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
12209 } else {
12210 memattr = 0xff; /* Normal, WB, RWA */
12212 } else if (access_type == MMU_INST_FETCH) {
12213 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12214 memattr = 0xee; /* Normal, WT, RA, NT */
12215 } else {
12216 memattr = 0x44; /* Normal, NC, No */
12218 cacheattrs->shareability = 2; /* outer sharable */
12219 } else {
12220 memattr = 0x00; /* Device, nGnRnE */
12222 cacheattrs->attrs = memattr;
12223 return 0;
12226 if (regime_using_lpae_format(env, mmu_idx)) {
12227 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12228 phys_ptr, attrs, prot, page_size,
12229 fi, cacheattrs);
12230 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12231 return get_phys_addr_v6(env, address, access_type, mmu_idx,
12232 phys_ptr, attrs, prot, page_size, fi);
12233 } else {
12234 return get_phys_addr_v5(env, address, access_type, mmu_idx,
12235 phys_ptr, prot, page_size, fi);
12239 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12240 MemTxAttrs *attrs)
12242 ARMCPU *cpu = ARM_CPU(cs);
12243 CPUARMState *env = &cpu->env;
12244 hwaddr phys_addr;
12245 target_ulong page_size;
12246 int prot;
12247 bool ret;
12248 ARMMMUFaultInfo fi = {};
12249 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12250 ARMCacheAttrs cacheattrs = {};
12252 *attrs = (MemTxAttrs) {};
12254 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
12255 attrs, &prot, &page_size, &fi, &cacheattrs);
12257 if (ret) {
12258 return -1;
12260 return phys_addr;
12263 #endif
12265 /* Note that signed overflow is undefined in C. The following routines are
12266 careful to use unsigned types where modulo arithmetic is required.
12267 Failure to do so _will_ break on newer gcc. */
12269 /* Signed saturating arithmetic. */
12271 /* Perform 16-bit signed saturating addition. */
12272 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12274 uint16_t res;
12276 res = a + b;
12277 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12278 if (a & 0x8000)
12279 res = 0x8000;
12280 else
12281 res = 0x7fff;
12283 return res;
12286 /* Perform 8-bit signed saturating addition. */
12287 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12289 uint8_t res;
12291 res = a + b;
12292 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12293 if (a & 0x80)
12294 res = 0x80;
12295 else
12296 res = 0x7f;
12298 return res;
12301 /* Perform 16-bit signed saturating subtraction. */
12302 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12304 uint16_t res;
12306 res = a - b;
12307 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12308 if (a & 0x8000)
12309 res = 0x8000;
12310 else
12311 res = 0x7fff;
12313 return res;
12316 /* Perform 8-bit signed saturating subtraction. */
12317 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12319 uint8_t res;
12321 res = a - b;
12322 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12323 if (a & 0x80)
12324 res = 0x80;
12325 else
12326 res = 0x7f;
12328 return res;
12331 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12332 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12333 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12334 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12335 #define PFX q
12337 #include "op_addsub.h"
12339 /* Unsigned saturating arithmetic. */
12340 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12342 uint16_t res;
12343 res = a + b;
12344 if (res < a)
12345 res = 0xffff;
12346 return res;
12349 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12351 if (a > b)
12352 return a - b;
12353 else
12354 return 0;
12357 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12359 uint8_t res;
12360 res = a + b;
12361 if (res < a)
12362 res = 0xff;
12363 return res;
12366 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12368 if (a > b)
12369 return a - b;
12370 else
12371 return 0;
12374 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12375 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12376 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12377 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12378 #define PFX uq
12380 #include "op_addsub.h"
12382 /* Signed modulo arithmetic. */
12383 #define SARITH16(a, b, n, op) do { \
12384 int32_t sum; \
12385 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12386 RESULT(sum, n, 16); \
12387 if (sum >= 0) \
12388 ge |= 3 << (n * 2); \
12389 } while(0)
12391 #define SARITH8(a, b, n, op) do { \
12392 int32_t sum; \
12393 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12394 RESULT(sum, n, 8); \
12395 if (sum >= 0) \
12396 ge |= 1 << n; \
12397 } while(0)
12400 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12401 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12402 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12403 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12404 #define PFX s
12405 #define ARITH_GE
12407 #include "op_addsub.h"
12409 /* Unsigned modulo arithmetic. */
12410 #define ADD16(a, b, n) do { \
12411 uint32_t sum; \
12412 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12413 RESULT(sum, n, 16); \
12414 if ((sum >> 16) == 1) \
12415 ge |= 3 << (n * 2); \
12416 } while(0)
12418 #define ADD8(a, b, n) do { \
12419 uint32_t sum; \
12420 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12421 RESULT(sum, n, 8); \
12422 if ((sum >> 8) == 1) \
12423 ge |= 1 << n; \
12424 } while(0)
12426 #define SUB16(a, b, n) do { \
12427 uint32_t sum; \
12428 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12429 RESULT(sum, n, 16); \
12430 if ((sum >> 16) == 0) \
12431 ge |= 3 << (n * 2); \
12432 } while(0)
12434 #define SUB8(a, b, n) do { \
12435 uint32_t sum; \
12436 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12437 RESULT(sum, n, 8); \
12438 if ((sum >> 8) == 0) \
12439 ge |= 1 << n; \
12440 } while(0)
12442 #define PFX u
12443 #define ARITH_GE
12445 #include "op_addsub.h"
12447 /* Halved signed arithmetic. */
12448 #define ADD16(a, b, n) \
12449 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12450 #define SUB16(a, b, n) \
12451 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12452 #define ADD8(a, b, n) \
12453 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12454 #define SUB8(a, b, n) \
12455 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12456 #define PFX sh
12458 #include "op_addsub.h"
12460 /* Halved unsigned arithmetic. */
12461 #define ADD16(a, b, n) \
12462 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12463 #define SUB16(a, b, n) \
12464 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12465 #define ADD8(a, b, n) \
12466 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12467 #define SUB8(a, b, n) \
12468 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12469 #define PFX uh
12471 #include "op_addsub.h"
12473 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12475 if (a > b)
12476 return a - b;
12477 else
12478 return b - a;
12481 /* Unsigned sum of absolute byte differences. */
12482 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12484 uint32_t sum;
12485 sum = do_usad(a, b);
12486 sum += do_usad(a >> 8, b >> 8);
12487 sum += do_usad(a >> 16, b >>16);
12488 sum += do_usad(a >> 24, b >> 24);
12489 return sum;
12492 /* For ARMv6 SEL instruction. */
12493 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12495 uint32_t mask;
12497 mask = 0;
12498 if (flags & 1)
12499 mask |= 0xff;
12500 if (flags & 2)
12501 mask |= 0xff00;
12502 if (flags & 4)
12503 mask |= 0xff0000;
12504 if (flags & 8)
12505 mask |= 0xff000000;
12506 return (a & mask) | (b & ~mask);
12509 /* CRC helpers.
12510 * The upper bytes of val (above the number specified by 'bytes') must have
12511 * been zeroed out by the caller.
12513 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12515 uint8_t buf[4];
12517 stl_le_p(buf, val);
12519 /* zlib crc32 converts the accumulator and output to one's complement. */
12520 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12523 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12525 uint8_t buf[4];
12527 stl_le_p(buf, val);
12529 /* Linux crc32c converts the output to one's complement. */
12530 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12533 /* Return the exception level to which FP-disabled exceptions should
12534 * be taken, or 0 if FP is enabled.
12536 int fp_exception_el(CPUARMState *env, int cur_el)
12538 #ifndef CONFIG_USER_ONLY
12539 /* CPACR and the CPTR registers don't exist before v6, so FP is
12540 * always accessible
12542 if (!arm_feature(env, ARM_FEATURE_V6)) {
12543 return 0;
12546 if (arm_feature(env, ARM_FEATURE_M)) {
12547 /* CPACR can cause a NOCP UsageFault taken to current security state */
12548 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12549 return 1;
12552 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12553 if (!extract32(env->v7m.nsacr, 10, 1)) {
12554 /* FP insns cause a NOCP UsageFault taken to Secure */
12555 return 3;
12559 return 0;
12562 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12563 * 0, 2 : trap EL0 and EL1/PL1 accesses
12564 * 1 : trap only EL0 accesses
12565 * 3 : trap no accesses
12566 * This register is ignored if E2H+TGE are both set.
12568 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12569 int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12571 switch (fpen) {
12572 case 0:
12573 case 2:
12574 if (cur_el == 0 || cur_el == 1) {
12575 /* Trap to PL1, which might be EL1 or EL3 */
12576 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12577 return 3;
12579 return 1;
12581 if (cur_el == 3 && !is_a64(env)) {
12582 /* Secure PL1 running at EL3 */
12583 return 3;
12585 break;
12586 case 1:
12587 if (cur_el == 0) {
12588 return 1;
12590 break;
12591 case 3:
12592 break;
12597 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12598 * to control non-secure access to the FPU. It doesn't have any
12599 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12601 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12602 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12603 if (!extract32(env->cp15.nsacr, 10, 1)) {
12604 /* FP insns act as UNDEF */
12605 return cur_el == 2 ? 2 : 1;
12609 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12610 * check because zero bits in the registers mean "don't trap".
12613 /* CPTR_EL2 : present in v7VE or v8 */
12614 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12615 && !arm_is_secure_below_el3(env)) {
12616 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12617 return 2;
12620 /* CPTR_EL3 : present in v8 */
12621 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12622 /* Trap all FP ops to EL3 */
12623 return 3;
12625 #endif
12626 return 0;
12629 /* Return the exception level we're running at if this is our mmu_idx */
12630 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12632 if (mmu_idx & ARM_MMU_IDX_M) {
12633 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12636 switch (mmu_idx) {
12637 case ARMMMUIdx_E10_0:
12638 case ARMMMUIdx_E20_0:
12639 case ARMMMUIdx_SE10_0:
12640 return 0;
12641 case ARMMMUIdx_E10_1:
12642 case ARMMMUIdx_E10_1_PAN:
12643 case ARMMMUIdx_SE10_1:
12644 case ARMMMUIdx_SE10_1_PAN:
12645 return 1;
12646 case ARMMMUIdx_E2:
12647 case ARMMMUIdx_E20_2:
12648 case ARMMMUIdx_E20_2_PAN:
12649 return 2;
12650 case ARMMMUIdx_SE3:
12651 return 3;
12652 default:
12653 g_assert_not_reached();
12657 #ifndef CONFIG_TCG
12658 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12660 g_assert_not_reached();
12662 #endif
12664 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12666 if (arm_feature(env, ARM_FEATURE_M)) {
12667 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12670 /* See ARM pseudo-function ELIsInHost. */
12671 switch (el) {
12672 case 0:
12673 if (arm_is_secure_below_el3(env)) {
12674 return ARMMMUIdx_SE10_0;
12676 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)
12677 && arm_el_is_aa64(env, 2)) {
12678 return ARMMMUIdx_E20_0;
12680 return ARMMMUIdx_E10_0;
12681 case 1:
12682 if (arm_is_secure_below_el3(env)) {
12683 if (env->pstate & PSTATE_PAN) {
12684 return ARMMMUIdx_SE10_1_PAN;
12686 return ARMMMUIdx_SE10_1;
12688 if (env->pstate & PSTATE_PAN) {
12689 return ARMMMUIdx_E10_1_PAN;
12691 return ARMMMUIdx_E10_1;
12692 case 2:
12693 /* TODO: ARMv8.4-SecEL2 */
12694 /* Note that TGE does not apply at EL2. */
12695 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) {
12696 if (env->pstate & PSTATE_PAN) {
12697 return ARMMMUIdx_E20_2_PAN;
12699 return ARMMMUIdx_E20_2;
12701 return ARMMMUIdx_E2;
12702 case 3:
12703 return ARMMMUIdx_SE3;
12704 default:
12705 g_assert_not_reached();
12709 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12711 return arm_mmu_idx_el(env, arm_current_el(env));
12714 #ifndef CONFIG_USER_ONLY
12715 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12717 return stage_1_mmu_idx(arm_mmu_idx(env));
12719 #endif
12721 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
12722 ARMMMUIdx mmu_idx, uint32_t flags)
12724 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12725 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
12726 arm_to_core_mmu_idx(mmu_idx));
12728 if (arm_singlestep_active(env)) {
12729 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12731 return flags;
12734 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
12735 ARMMMUIdx mmu_idx, uint32_t flags)
12737 bool sctlr_b = arm_sctlr_b(env);
12739 if (sctlr_b) {
12740 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
12742 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
12743 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12745 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12747 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12750 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
12751 ARMMMUIdx mmu_idx)
12753 uint32_t flags = 0;
12755 if (arm_v7m_is_handler_mode(env)) {
12756 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
12760 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
12761 * is suppressing them because the requested execution priority
12762 * is less than 0.
12764 if (arm_feature(env, ARM_FEATURE_V8) &&
12765 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12766 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12767 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
12770 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12773 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
12775 int flags = 0;
12777 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
12778 arm_debug_target_el(env));
12779 return flags;
12782 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
12783 ARMMMUIdx mmu_idx)
12785 uint32_t flags = rebuild_hflags_aprofile(env);
12787 if (arm_el_is_aa64(env, 1)) {
12788 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12791 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
12792 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12793 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
12796 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12799 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
12800 ARMMMUIdx mmu_idx)
12802 uint32_t flags = rebuild_hflags_aprofile(env);
12803 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
12804 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
12805 uint64_t sctlr;
12806 int tbii, tbid;
12808 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12810 /* Get control bits for tagged addresses. */
12811 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
12812 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
12814 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
12815 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
12817 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
12818 int sve_el = sve_exception_el(env, el);
12819 uint32_t zcr_len;
12822 * If SVE is disabled, but FP is enabled,
12823 * then the effective len is 0.
12825 if (sve_el != 0 && fp_el == 0) {
12826 zcr_len = 0;
12827 } else {
12828 zcr_len = sve_zcr_len_for_el(env, el);
12830 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12831 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
12834 sctlr = regime_sctlr(env, stage1);
12836 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
12837 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12840 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
12842 * In order to save space in flags, we record only whether
12843 * pauth is "inactive", meaning all insns are implemented as
12844 * a nop, or "active" when some action must be performed.
12845 * The decision of which action to take is left to a helper.
12847 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12848 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
12852 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12853 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
12854 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12855 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
12859 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
12860 if (!(env->pstate & PSTATE_UAO)) {
12861 switch (mmu_idx) {
12862 case ARMMMUIdx_E10_1:
12863 case ARMMMUIdx_E10_1_PAN:
12864 case ARMMMUIdx_SE10_1:
12865 case ARMMMUIdx_SE10_1_PAN:
12866 /* TODO: ARMv8.3-NV */
12867 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12868 break;
12869 case ARMMMUIdx_E20_2:
12870 case ARMMMUIdx_E20_2_PAN:
12871 /* TODO: ARMv8.4-SecEL2 */
12873 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
12874 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
12876 if (env->cp15.hcr_el2 & HCR_TGE) {
12877 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12879 break;
12880 default:
12881 break;
12885 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
12887 * Set MTE_ACTIVE if any access may be Checked, and leave clear
12888 * if all accesses must be Unchecked:
12889 * 1) If no TBI, then there are no tags in the address to check,
12890 * 2) If Tag Check Override, then all accesses are Unchecked,
12891 * 3) If Tag Check Fail == 0, then Checked access have no effect,
12892 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
12894 if (allocation_tag_access_enabled(env, el, sctlr)) {
12895 flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1);
12896 if (tbid
12897 && !(env->pstate & PSTATE_TCO)
12898 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
12899 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1);
12902 /* And again for unprivileged accesses, if required. */
12903 if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV)
12904 && tbid
12905 && !(env->pstate & PSTATE_TCO)
12906 && (sctlr & SCTLR_TCF0)
12907 && allocation_tag_access_enabled(env, 0, sctlr)) {
12908 flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1);
12910 /* Cache TCMA as well as TBI. */
12911 flags = FIELD_DP32(flags, TBFLAG_A64, TCMA,
12912 aa64_va_parameter_tcma(tcr, mmu_idx));
12915 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12918 static uint32_t rebuild_hflags_internal(CPUARMState *env)
12920 int el = arm_current_el(env);
12921 int fp_el = fp_exception_el(env, el);
12922 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12924 if (is_a64(env)) {
12925 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12926 } else if (arm_feature(env, ARM_FEATURE_M)) {
12927 return rebuild_hflags_m32(env, fp_el, mmu_idx);
12928 } else {
12929 return rebuild_hflags_a32(env, fp_el, mmu_idx);
12933 void arm_rebuild_hflags(CPUARMState *env)
12935 env->hflags = rebuild_hflags_internal(env);
12939 * If we have triggered a EL state change we can't rely on the
12940 * translator having passed it to us, we need to recompute.
12942 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
12944 int el = arm_current_el(env);
12945 int fp_el = fp_exception_el(env, el);
12946 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12947 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12950 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12952 int fp_el = fp_exception_el(env, el);
12953 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12955 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12959 * If we have triggered a EL state change we can't rely on the
12960 * translator having passed it to us, we need to recompute.
12962 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
12964 int el = arm_current_el(env);
12965 int fp_el = fp_exception_el(env, el);
12966 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12967 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12970 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
12972 int fp_el = fp_exception_el(env, el);
12973 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12975 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12978 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
12980 int fp_el = fp_exception_el(env, el);
12981 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12983 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12986 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
12988 #ifdef CONFIG_DEBUG_TCG
12989 uint32_t env_flags_current = env->hflags;
12990 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
12992 if (unlikely(env_flags_current != env_flags_rebuilt)) {
12993 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
12994 env_flags_current, env_flags_rebuilt);
12995 abort();
12997 #endif
13000 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13001 target_ulong *cs_base, uint32_t *pflags)
13003 uint32_t flags = env->hflags;
13004 uint32_t pstate_for_ss;
13006 *cs_base = 0;
13007 assert_hflags_rebuild_correctly(env);
13009 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
13010 *pc = env->pc;
13011 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13012 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13014 pstate_for_ss = env->pstate;
13015 } else {
13016 *pc = env->regs[15];
13018 if (arm_feature(env, ARM_FEATURE_M)) {
13019 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13020 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13021 != env->v7m.secure) {
13022 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
13025 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13026 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13027 (env->v7m.secure &&
13028 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13030 * ASPEN is set, but FPCA/SFPA indicate that there is no
13031 * active FP context; we must create a new FP context before
13032 * executing any FP insn.
13034 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
13037 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13038 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13039 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
13041 } else {
13043 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13044 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13046 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13047 flags = FIELD_DP32(flags, TBFLAG_A32,
13048 XSCALE_CPAR, env->cp15.c15_cpar);
13049 } else {
13050 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
13051 env->vfp.vec_len);
13052 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
13053 env->vfp.vec_stride);
13055 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13056 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13060 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
13061 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
13062 pstate_for_ss = env->uncached_cpsr;
13066 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13067 * states defined in the ARM ARM for software singlestep:
13068 * SS_ACTIVE PSTATE.SS State
13069 * 0 x Inactive (the TB flag for SS is always 0)
13070 * 1 0 Active-pending
13071 * 1 1 Active-not-pending
13072 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
13074 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
13075 (pstate_for_ss & PSTATE_SS)) {
13076 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13079 *pflags = flags;
13082 #ifdef TARGET_AARCH64
13084 * The manual says that when SVE is enabled and VQ is widened the
13085 * implementation is allowed to zero the previously inaccessible
13086 * portion of the registers. The corollary to that is that when
13087 * SVE is enabled and VQ is narrowed we are also allowed to zero
13088 * the now inaccessible portion of the registers.
13090 * The intent of this is that no predicate bit beyond VQ is ever set.
13091 * Which means that some operations on predicate registers themselves
13092 * may operate on full uint64_t or even unrolled across the maximum
13093 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13094 * may well be cheaper than conditionals to restrict the operation
13095 * to the relevant portion of a uint16_t[16].
13097 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13099 int i, j;
13100 uint64_t pmask;
13102 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13103 assert(vq <= env_archcpu(env)->sve_max_vq);
13105 /* Zap the high bits of the zregs. */
13106 for (i = 0; i < 32; i++) {
13107 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13110 /* Zap the high bits of the pregs and ffr. */
13111 pmask = 0;
13112 if (vq & 3) {
13113 pmask = ~(-1ULL << (16 * (vq & 3)));
13115 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13116 for (i = 0; i < 17; ++i) {
13117 env->vfp.pregs[i].p[j] &= pmask;
13119 pmask = 0;
13124 * Notice a change in SVE vector size when changing EL.
13126 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13127 int new_el, bool el0_a64)
13129 ARMCPU *cpu = env_archcpu(env);
13130 int old_len, new_len;
13131 bool old_a64, new_a64;
13133 /* Nothing to do if no SVE. */
13134 if (!cpu_isar_feature(aa64_sve, cpu)) {
13135 return;
13138 /* Nothing to do if FP is disabled in either EL. */
13139 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13140 return;
13144 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13145 * at ELx, or not available because the EL is in AArch32 state, then
13146 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13147 * has an effective value of 0".
13149 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13150 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13151 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13152 * we already have the correct register contents when encountering the
13153 * vq0->vq0 transition between EL0->EL1.
13155 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13156 old_len = (old_a64 && !sve_exception_el(env, old_el)
13157 ? sve_zcr_len_for_el(env, old_el) : 0);
13158 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13159 new_len = (new_a64 && !sve_exception_el(env, new_el)
13160 ? sve_zcr_len_for_el(env, new_el) : 0);
13162 /* When changing vector length, clear inaccessible state. */
13163 if (new_len < old_len) {
13164 aarch64_sve_narrow_vq(env, new_len + 1);
13167 #endif