replay: describe reverse debugging in docs/replay.txt
[qemu/ar7.git] / target / arm / helper.c
blobcd0779ff5fa290a42cd33576207966e95bdb370d
1 /*
2 * ARM generic helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/tcg.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #endif
39 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
41 #ifndef CONFIG_USER_ONLY
43 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
44 MMUAccessType access_type, ARMMMUIdx mmu_idx,
45 bool s1_is_el0,
46 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
47 target_ulong *page_size_ptr,
48 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
49 __attribute__((nonnull));
50 #endif
52 static void switch_mode(CPUARMState *env, int mode);
54 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
56 ARMCPU *cpu = env_archcpu(env);
57 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
59 /* VFP data registers are always little-endian. */
60 if (reg < nregs) {
61 return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
63 if (arm_feature(env, ARM_FEATURE_NEON)) {
64 /* Aliases for Q regs. */
65 nregs += 16;
66 if (reg < nregs) {
67 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
68 return gdb_get_reg128(buf, q[0], q[1]);
71 switch (reg - nregs) {
72 case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
73 case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
74 case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
76 return 0;
79 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
81 ARMCPU *cpu = env_archcpu(env);
82 int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
84 if (reg < nregs) {
85 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
86 return 8;
88 if (arm_feature(env, ARM_FEATURE_NEON)) {
89 nregs += 16;
90 if (reg < nregs) {
91 uint64_t *q = aa32_vfp_qreg(env, reg - 32);
92 q[0] = ldq_le_p(buf);
93 q[1] = ldq_le_p(buf + 8);
94 return 16;
97 switch (reg - nregs) {
98 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
99 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
100 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
102 return 0;
105 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
107 switch (reg) {
108 case 0 ... 31:
110 /* 128 bit FP register - quads are in LE order */
111 uint64_t *q = aa64_vfp_qreg(env, reg);
112 return gdb_get_reg128(buf, q[1], q[0]);
114 case 32:
115 /* FPSR */
116 return gdb_get_reg32(buf, vfp_get_fpsr(env));
117 case 33:
118 /* FPCR */
119 return gdb_get_reg32(buf,vfp_get_fpcr(env));
120 default:
121 return 0;
125 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
127 switch (reg) {
128 case 0 ... 31:
129 /* 128 bit FP register */
131 uint64_t *q = aa64_vfp_qreg(env, reg);
132 q[0] = ldq_le_p(buf);
133 q[1] = ldq_le_p(buf + 8);
134 return 16;
136 case 32:
137 /* FPSR */
138 vfp_set_fpsr(env, ldl_p(buf));
139 return 4;
140 case 33:
141 /* FPCR */
142 vfp_set_fpcr(env, ldl_p(buf));
143 return 4;
144 default:
145 return 0;
149 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
151 assert(ri->fieldoffset);
152 if (cpreg_field_is_64bit(ri)) {
153 return CPREG_FIELD64(env, ri);
154 } else {
155 return CPREG_FIELD32(env, ri);
159 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
160 uint64_t value)
162 assert(ri->fieldoffset);
163 if (cpreg_field_is_64bit(ri)) {
164 CPREG_FIELD64(env, ri) = value;
165 } else {
166 CPREG_FIELD32(env, ri) = value;
170 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
172 return (char *)env + ri->fieldoffset;
175 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
177 /* Raw read of a coprocessor register (as needed for migration, etc). */
178 if (ri->type & ARM_CP_CONST) {
179 return ri->resetvalue;
180 } else if (ri->raw_readfn) {
181 return ri->raw_readfn(env, ri);
182 } else if (ri->readfn) {
183 return ri->readfn(env, ri);
184 } else {
185 return raw_read(env, ri);
189 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
190 uint64_t v)
192 /* Raw write of a coprocessor register (as needed for migration, etc).
193 * Note that constant registers are treated as write-ignored; the
194 * caller should check for success by whether a readback gives the
195 * value written.
197 if (ri->type & ARM_CP_CONST) {
198 return;
199 } else if (ri->raw_writefn) {
200 ri->raw_writefn(env, ri, v);
201 } else if (ri->writefn) {
202 ri->writefn(env, ri, v);
203 } else {
204 raw_write(env, ri, v);
209 * arm_get/set_gdb_*: get/set a gdb register
210 * @env: the CPU state
211 * @buf: a buffer to copy to/from
212 * @reg: register number (offset from start of group)
214 * We return the number of bytes copied
217 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
219 ARMCPU *cpu = env_archcpu(env);
220 const ARMCPRegInfo *ri;
221 uint32_t key;
223 key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
224 ri = get_arm_cp_reginfo(cpu->cp_regs, key);
225 if (ri) {
226 if (cpreg_field_is_64bit(ri)) {
227 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
228 } else {
229 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
232 return 0;
235 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
237 return 0;
240 #ifdef TARGET_AARCH64
241 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
243 ARMCPU *cpu = env_archcpu(env);
245 switch (reg) {
246 /* The first 32 registers are the zregs */
247 case 0 ... 31:
249 int vq, len = 0;
250 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
251 len += gdb_get_reg128(buf,
252 env->vfp.zregs[reg].d[vq * 2 + 1],
253 env->vfp.zregs[reg].d[vq * 2]);
255 return len;
257 case 32:
258 return gdb_get_reg32(buf, vfp_get_fpsr(env));
259 case 33:
260 return gdb_get_reg32(buf, vfp_get_fpcr(env));
261 /* then 16 predicates and the ffr */
262 case 34 ... 50:
264 int preg = reg - 34;
265 int vq, len = 0;
266 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
267 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
269 return len;
271 case 51:
274 * We report in Vector Granules (VG) which is 64bit in a Z reg
275 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
277 int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
278 return gdb_get_reg32(buf, vq * 2);
280 default:
281 /* gdbstub asked for something out our range */
282 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
283 break;
286 return 0;
289 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
291 ARMCPU *cpu = env_archcpu(env);
293 /* The first 32 registers are the zregs */
294 switch (reg) {
295 /* The first 32 registers are the zregs */
296 case 0 ... 31:
298 int vq, len = 0;
299 uint64_t *p = (uint64_t *) buf;
300 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
301 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
302 env->vfp.zregs[reg].d[vq * 2] = *p++;
303 len += 16;
305 return len;
307 case 32:
308 vfp_set_fpsr(env, *(uint32_t *)buf);
309 return 4;
310 case 33:
311 vfp_set_fpcr(env, *(uint32_t *)buf);
312 return 4;
313 case 34 ... 50:
315 int preg = reg - 34;
316 int vq, len = 0;
317 uint64_t *p = (uint64_t *) buf;
318 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
319 env->vfp.pregs[preg].p[vq / 4] = *p++;
320 len += 8;
322 return len;
324 case 51:
325 /* cannot set vg via gdbstub */
326 return 0;
327 default:
328 /* gdbstub asked for something out our range */
329 break;
332 return 0;
334 #endif /* TARGET_AARCH64 */
336 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
338 /* Return true if the regdef would cause an assertion if you called
339 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
340 * program bug for it not to have the NO_RAW flag).
341 * NB that returning false here doesn't necessarily mean that calling
342 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
343 * read/write access functions which are safe for raw use" from "has
344 * read/write access functions which have side effects but has forgotten
345 * to provide raw access functions".
346 * The tests here line up with the conditions in read/write_raw_cp_reg()
347 * and assertions in raw_read()/raw_write().
349 if ((ri->type & ARM_CP_CONST) ||
350 ri->fieldoffset ||
351 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
352 return false;
354 return true;
357 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
359 /* Write the coprocessor state from cpu->env to the (index,value) list. */
360 int i;
361 bool ok = true;
363 for (i = 0; i < cpu->cpreg_array_len; i++) {
364 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
365 const ARMCPRegInfo *ri;
366 uint64_t newval;
368 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
369 if (!ri) {
370 ok = false;
371 continue;
373 if (ri->type & ARM_CP_NO_RAW) {
374 continue;
377 newval = read_raw_cp_reg(&cpu->env, ri);
378 if (kvm_sync) {
380 * Only sync if the previous list->cpustate sync succeeded.
381 * Rather than tracking the success/failure state for every
382 * item in the list, we just recheck "does the raw write we must
383 * have made in write_list_to_cpustate() read back OK" here.
385 uint64_t oldval = cpu->cpreg_values[i];
387 if (oldval == newval) {
388 continue;
391 write_raw_cp_reg(&cpu->env, ri, oldval);
392 if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
393 continue;
396 write_raw_cp_reg(&cpu->env, ri, newval);
398 cpu->cpreg_values[i] = newval;
400 return ok;
403 bool write_list_to_cpustate(ARMCPU *cpu)
405 int i;
406 bool ok = true;
408 for (i = 0; i < cpu->cpreg_array_len; i++) {
409 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
410 uint64_t v = cpu->cpreg_values[i];
411 const ARMCPRegInfo *ri;
413 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
414 if (!ri) {
415 ok = false;
416 continue;
418 if (ri->type & ARM_CP_NO_RAW) {
419 continue;
421 /* Write value and confirm it reads back as written
422 * (to catch read-only registers and partially read-only
423 * registers where the incoming migration value doesn't match)
425 write_raw_cp_reg(&cpu->env, ri, v);
426 if (read_raw_cp_reg(&cpu->env, ri) != v) {
427 ok = false;
430 return ok;
433 static void add_cpreg_to_list(gpointer key, gpointer opaque)
435 ARMCPU *cpu = opaque;
436 uint64_t regidx;
437 const ARMCPRegInfo *ri;
439 regidx = *(uint32_t *)key;
440 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
442 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
443 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
444 /* The value array need not be initialized at this point */
445 cpu->cpreg_array_len++;
449 static void count_cpreg(gpointer key, gpointer opaque)
451 ARMCPU *cpu = opaque;
452 uint64_t regidx;
453 const ARMCPRegInfo *ri;
455 regidx = *(uint32_t *)key;
456 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
458 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
459 cpu->cpreg_array_len++;
463 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
465 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
466 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
468 if (aidx > bidx) {
469 return 1;
471 if (aidx < bidx) {
472 return -1;
474 return 0;
477 void init_cpreg_list(ARMCPU *cpu)
479 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
480 * Note that we require cpreg_tuples[] to be sorted by key ID.
482 GList *keys;
483 int arraylen;
485 keys = g_hash_table_get_keys(cpu->cp_regs);
486 keys = g_list_sort(keys, cpreg_key_compare);
488 cpu->cpreg_array_len = 0;
490 g_list_foreach(keys, count_cpreg, cpu);
492 arraylen = cpu->cpreg_array_len;
493 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
494 cpu->cpreg_values = g_new(uint64_t, arraylen);
495 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
496 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
497 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
498 cpu->cpreg_array_len = 0;
500 g_list_foreach(keys, add_cpreg_to_list, cpu);
502 assert(cpu->cpreg_array_len == arraylen);
504 g_list_free(keys);
508 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
510 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
511 const ARMCPRegInfo *ri,
512 bool isread)
514 if (!is_a64(env) && arm_current_el(env) == 3 &&
515 arm_is_secure_below_el3(env)) {
516 return CP_ACCESS_TRAP_UNCATEGORIZED;
518 return CP_ACCESS_OK;
521 /* Some secure-only AArch32 registers trap to EL3 if used from
522 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
523 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
524 * We assume that the .access field is set to PL1_RW.
526 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
527 const ARMCPRegInfo *ri,
528 bool isread)
530 if (arm_current_el(env) == 3) {
531 return CP_ACCESS_OK;
533 if (arm_is_secure_below_el3(env)) {
534 return CP_ACCESS_TRAP_EL3;
536 /* This will be EL1 NS and EL2 NS, which just UNDEF */
537 return CP_ACCESS_TRAP_UNCATEGORIZED;
540 /* Check for traps to "powerdown debug" registers, which are controlled
541 * by MDCR.TDOSA
543 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
544 bool isread)
546 int el = arm_current_el(env);
547 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
548 (env->cp15.mdcr_el2 & MDCR_TDE) ||
549 (arm_hcr_el2_eff(env) & HCR_TGE);
551 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
552 return CP_ACCESS_TRAP_EL2;
554 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
555 return CP_ACCESS_TRAP_EL3;
557 return CP_ACCESS_OK;
560 /* Check for traps to "debug ROM" registers, which are controlled
561 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
563 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
564 bool isread)
566 int el = arm_current_el(env);
567 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
568 (env->cp15.mdcr_el2 & MDCR_TDE) ||
569 (arm_hcr_el2_eff(env) & HCR_TGE);
571 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
572 return CP_ACCESS_TRAP_EL2;
574 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
575 return CP_ACCESS_TRAP_EL3;
577 return CP_ACCESS_OK;
580 /* Check for traps to general debug registers, which are controlled
581 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
583 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
584 bool isread)
586 int el = arm_current_el(env);
587 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
588 (env->cp15.mdcr_el2 & MDCR_TDE) ||
589 (arm_hcr_el2_eff(env) & HCR_TGE);
591 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
592 return CP_ACCESS_TRAP_EL2;
594 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
595 return CP_ACCESS_TRAP_EL3;
597 return CP_ACCESS_OK;
600 /* Check for traps to performance monitor registers, which are controlled
601 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
603 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
604 bool isread)
606 int el = arm_current_el(env);
608 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
609 && !arm_is_secure_below_el3(env)) {
610 return CP_ACCESS_TRAP_EL2;
612 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
613 return CP_ACCESS_TRAP_EL3;
615 return CP_ACCESS_OK;
618 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
619 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
620 bool isread)
622 if (arm_current_el(env) == 1) {
623 uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
624 if (arm_hcr_el2_eff(env) & trap) {
625 return CP_ACCESS_TRAP_EL2;
628 return CP_ACCESS_OK;
631 /* Check for traps from EL1 due to HCR_EL2.TSW. */
632 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
633 bool isread)
635 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
636 return CP_ACCESS_TRAP_EL2;
638 return CP_ACCESS_OK;
641 /* Check for traps from EL1 due to HCR_EL2.TACR. */
642 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
643 bool isread)
645 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
646 return CP_ACCESS_TRAP_EL2;
648 return CP_ACCESS_OK;
651 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
652 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
653 bool isread)
655 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
656 return CP_ACCESS_TRAP_EL2;
658 return CP_ACCESS_OK;
661 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
663 ARMCPU *cpu = env_archcpu(env);
665 raw_write(env, ri, value);
666 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
669 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
671 ARMCPU *cpu = env_archcpu(env);
673 if (raw_read(env, ri) != value) {
674 /* Unlike real hardware the qemu TLB uses virtual addresses,
675 * not modified virtual addresses, so this causes a TLB flush.
677 tlb_flush(CPU(cpu));
678 raw_write(env, ri, value);
682 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
683 uint64_t value)
685 ARMCPU *cpu = env_archcpu(env);
687 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
688 && !extended_addresses_enabled(env)) {
689 /* For VMSA (when not using the LPAE long descriptor page table
690 * format) this register includes the ASID, so do a TLB flush.
691 * For PMSA it is purely a process ID and no action is needed.
693 tlb_flush(CPU(cpu));
695 raw_write(env, ri, value);
698 /* IS variants of TLB operations must affect all cores */
699 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
700 uint64_t value)
702 CPUState *cs = env_cpu(env);
704 tlb_flush_all_cpus_synced(cs);
707 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
708 uint64_t value)
710 CPUState *cs = env_cpu(env);
712 tlb_flush_all_cpus_synced(cs);
715 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
716 uint64_t value)
718 CPUState *cs = env_cpu(env);
720 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
723 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
724 uint64_t value)
726 CPUState *cs = env_cpu(env);
728 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
732 * Non-IS variants of TLB operations are upgraded to
733 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
734 * force broadcast of these operations.
736 static bool tlb_force_broadcast(CPUARMState *env)
738 return (env->cp15.hcr_el2 & HCR_FB) &&
739 arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
742 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
743 uint64_t value)
745 /* Invalidate all (TLBIALL) */
746 CPUState *cs = env_cpu(env);
748 if (tlb_force_broadcast(env)) {
749 tlb_flush_all_cpus_synced(cs);
750 } else {
751 tlb_flush(cs);
755 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
756 uint64_t value)
758 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
759 CPUState *cs = env_cpu(env);
761 value &= TARGET_PAGE_MASK;
762 if (tlb_force_broadcast(env)) {
763 tlb_flush_page_all_cpus_synced(cs, value);
764 } else {
765 tlb_flush_page(cs, value);
769 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
770 uint64_t value)
772 /* Invalidate by ASID (TLBIASID) */
773 CPUState *cs = env_cpu(env);
775 if (tlb_force_broadcast(env)) {
776 tlb_flush_all_cpus_synced(cs);
777 } else {
778 tlb_flush(cs);
782 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
783 uint64_t value)
785 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
786 CPUState *cs = env_cpu(env);
788 value &= TARGET_PAGE_MASK;
789 if (tlb_force_broadcast(env)) {
790 tlb_flush_page_all_cpus_synced(cs, value);
791 } else {
792 tlb_flush_page(cs, value);
796 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
797 uint64_t value)
799 CPUState *cs = env_cpu(env);
801 tlb_flush_by_mmuidx(cs,
802 ARMMMUIdxBit_E10_1 |
803 ARMMMUIdxBit_E10_1_PAN |
804 ARMMMUIdxBit_E10_0);
807 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
808 uint64_t value)
810 CPUState *cs = env_cpu(env);
812 tlb_flush_by_mmuidx_all_cpus_synced(cs,
813 ARMMMUIdxBit_E10_1 |
814 ARMMMUIdxBit_E10_1_PAN |
815 ARMMMUIdxBit_E10_0);
819 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
820 uint64_t value)
822 CPUState *cs = env_cpu(env);
824 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
827 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
828 uint64_t value)
830 CPUState *cs = env_cpu(env);
832 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
835 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
836 uint64_t value)
838 CPUState *cs = env_cpu(env);
839 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
841 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
844 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
845 uint64_t value)
847 CPUState *cs = env_cpu(env);
848 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
850 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
851 ARMMMUIdxBit_E2);
854 static const ARMCPRegInfo cp_reginfo[] = {
855 /* Define the secure and non-secure FCSE identifier CP registers
856 * separately because there is no secure bank in V8 (no _EL3). This allows
857 * the secure register to be properly reset and migrated. There is also no
858 * v8 EL1 version of the register so the non-secure instance stands alone.
860 { .name = "FCSEIDR",
861 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
862 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
863 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
864 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
865 { .name = "FCSEIDR_S",
866 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
867 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
868 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
869 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
870 /* Define the secure and non-secure context identifier CP registers
871 * separately because there is no secure bank in V8 (no _EL3). This allows
872 * the secure register to be properly reset and migrated. In the
873 * non-secure case, the 32-bit register will have reset and migration
874 * disabled during registration as it is handled by the 64-bit instance.
876 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
877 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
878 .access = PL1_RW, .accessfn = access_tvm_trvm,
879 .secure = ARM_CP_SECSTATE_NS,
880 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
881 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
882 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
883 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
884 .access = PL1_RW, .accessfn = access_tvm_trvm,
885 .secure = ARM_CP_SECSTATE_S,
886 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
887 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
888 REGINFO_SENTINEL
891 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
892 /* NB: Some of these registers exist in v8 but with more precise
893 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
895 /* MMU Domain access control / MPU write buffer control */
896 { .name = "DACR",
897 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
898 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
899 .writefn = dacr_write, .raw_writefn = raw_write,
900 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
901 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
902 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
903 * For v6 and v5, these mappings are overly broad.
905 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
906 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
907 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
908 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
909 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
910 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
911 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
912 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
913 /* Cache maintenance ops; some of this space may be overridden later. */
914 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
915 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
916 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
917 REGINFO_SENTINEL
920 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
921 /* Not all pre-v6 cores implemented this WFI, so this is slightly
922 * over-broad.
924 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
925 .access = PL1_W, .type = ARM_CP_WFI },
926 REGINFO_SENTINEL
929 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
930 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
931 * is UNPREDICTABLE; we choose to NOP as most implementations do).
933 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
934 .access = PL1_W, .type = ARM_CP_WFI },
935 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
936 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
937 * OMAPCP will override this space.
939 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
940 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
941 .resetvalue = 0 },
942 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
943 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
944 .resetvalue = 0 },
945 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
946 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
947 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
948 .resetvalue = 0 },
949 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
950 * implementing it as RAZ means the "debug architecture version" bits
951 * will read as a reserved value, which should cause Linux to not try
952 * to use the debug hardware.
954 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
955 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
956 /* MMU TLB control. Note that the wildcarding means we cover not just
957 * the unified TLB ops but also the dside/iside/inner-shareable variants.
959 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
960 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
961 .type = ARM_CP_NO_RAW },
962 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
963 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
964 .type = ARM_CP_NO_RAW },
965 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
966 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
967 .type = ARM_CP_NO_RAW },
968 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
969 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
970 .type = ARM_CP_NO_RAW },
971 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
972 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
973 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
974 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
975 REGINFO_SENTINEL
978 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
979 uint64_t value)
981 uint32_t mask = 0;
983 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
984 if (!arm_feature(env, ARM_FEATURE_V8)) {
985 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
986 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
987 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
989 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
990 /* VFP coprocessor: cp10 & cp11 [23:20] */
991 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
993 if (!arm_feature(env, ARM_FEATURE_NEON)) {
994 /* ASEDIS [31] bit is RAO/WI */
995 value |= (1 << 31);
998 /* VFPv3 and upwards with NEON implement 32 double precision
999 * registers (D0-D31).
1001 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1002 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1003 value |= (1 << 30);
1006 value &= mask;
1010 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1011 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1013 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1014 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1015 value &= ~(0xf << 20);
1016 value |= env->cp15.cpacr_el1 & (0xf << 20);
1019 env->cp15.cpacr_el1 = value;
1022 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1025 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1026 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1028 uint64_t value = env->cp15.cpacr_el1;
1030 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1031 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1032 value &= ~(0xf << 20);
1034 return value;
1038 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1040 /* Call cpacr_write() so that we reset with the correct RAO bits set
1041 * for our CPU features.
1043 cpacr_write(env, ri, 0);
1046 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1047 bool isread)
1049 if (arm_feature(env, ARM_FEATURE_V8)) {
1050 /* Check if CPACR accesses are to be trapped to EL2 */
1051 if (arm_current_el(env) == 1 &&
1052 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
1053 return CP_ACCESS_TRAP_EL2;
1054 /* Check if CPACR accesses are to be trapped to EL3 */
1055 } else if (arm_current_el(env) < 3 &&
1056 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1057 return CP_ACCESS_TRAP_EL3;
1061 return CP_ACCESS_OK;
1064 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1065 bool isread)
1067 /* Check if CPTR accesses are set to trap to EL3 */
1068 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1069 return CP_ACCESS_TRAP_EL3;
1072 return CP_ACCESS_OK;
1075 static const ARMCPRegInfo v6_cp_reginfo[] = {
1076 /* prefetch by MVA in v6, NOP in v7 */
1077 { .name = "MVA_prefetch",
1078 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1079 .access = PL1_W, .type = ARM_CP_NOP },
1080 /* We need to break the TB after ISB to execute self-modifying code
1081 * correctly and also to take any pending interrupts immediately.
1082 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1084 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1085 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1086 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1087 .access = PL0_W, .type = ARM_CP_NOP },
1088 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1089 .access = PL0_W, .type = ARM_CP_NOP },
1090 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1091 .access = PL1_RW, .accessfn = access_tvm_trvm,
1092 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1093 offsetof(CPUARMState, cp15.ifar_ns) },
1094 .resetvalue = 0, },
1095 /* Watchpoint Fault Address Register : should actually only be present
1096 * for 1136, 1176, 11MPCore.
1098 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1099 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1100 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1101 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1102 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1103 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1104 REGINFO_SENTINEL
1107 /* Definitions for the PMU registers */
1108 #define PMCRN_MASK 0xf800
1109 #define PMCRN_SHIFT 11
1110 #define PMCRLC 0x40
1111 #define PMCRDP 0x20
1112 #define PMCRX 0x10
1113 #define PMCRD 0x8
1114 #define PMCRC 0x4
1115 #define PMCRP 0x2
1116 #define PMCRE 0x1
1118 * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1119 * which can be written as 1 to trigger behaviour but which stay RAZ).
1121 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1123 #define PMXEVTYPER_P 0x80000000
1124 #define PMXEVTYPER_U 0x40000000
1125 #define PMXEVTYPER_NSK 0x20000000
1126 #define PMXEVTYPER_NSU 0x10000000
1127 #define PMXEVTYPER_NSH 0x08000000
1128 #define PMXEVTYPER_M 0x04000000
1129 #define PMXEVTYPER_MT 0x02000000
1130 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
1131 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1132 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1133 PMXEVTYPER_M | PMXEVTYPER_MT | \
1134 PMXEVTYPER_EVTCOUNT)
1136 #define PMCCFILTR 0xf8000000
1137 #define PMCCFILTR_M PMXEVTYPER_M
1138 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1140 static inline uint32_t pmu_num_counters(CPUARMState *env)
1142 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1145 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1146 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1148 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1151 typedef struct pm_event {
1152 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1153 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1154 bool (*supported)(CPUARMState *);
1156 * Retrieve the current count of the underlying event. The programmed
1157 * counters hold a difference from the return value from this function
1159 uint64_t (*get_count)(CPUARMState *);
1161 * Return how many nanoseconds it will take (at a minimum) for count events
1162 * to occur. A negative value indicates the counter will never overflow, or
1163 * that the counter has otherwise arranged for the overflow bit to be set
1164 * and the PMU interrupt to be raised on overflow.
1166 int64_t (*ns_per_count)(uint64_t);
1167 } pm_event;
1169 static bool event_always_supported(CPUARMState *env)
1171 return true;
1174 static uint64_t swinc_get_count(CPUARMState *env)
1177 * SW_INCR events are written directly to the pmevcntr's by writes to
1178 * PMSWINC, so there is no underlying count maintained by the PMU itself
1180 return 0;
1183 static int64_t swinc_ns_per(uint64_t ignored)
1185 return -1;
1189 * Return the underlying cycle count for the PMU cycle counters. If we're in
1190 * usermode, simply return 0.
1192 static uint64_t cycles_get_count(CPUARMState *env)
1194 #ifndef CONFIG_USER_ONLY
1195 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1196 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1197 #else
1198 return cpu_get_host_ticks();
1199 #endif
1202 #ifndef CONFIG_USER_ONLY
1203 static int64_t cycles_ns_per(uint64_t cycles)
1205 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1208 static bool instructions_supported(CPUARMState *env)
1210 return icount_enabled() == 1; /* Precise instruction counting */
1213 static uint64_t instructions_get_count(CPUARMState *env)
1215 return (uint64_t)icount_get_raw();
1218 static int64_t instructions_ns_per(uint64_t icount)
1220 return icount_to_ns((int64_t)icount);
1222 #endif
1224 static bool pmu_8_1_events_supported(CPUARMState *env)
1226 /* For events which are supported in any v8.1 PMU */
1227 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1230 static bool pmu_8_4_events_supported(CPUARMState *env)
1232 /* For events which are supported in any v8.1 PMU */
1233 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1236 static uint64_t zero_event_get_count(CPUARMState *env)
1238 /* For events which on QEMU never fire, so their count is always zero */
1239 return 0;
1242 static int64_t zero_event_ns_per(uint64_t cycles)
1244 /* An event which never fires can never overflow */
1245 return -1;
1248 static const pm_event pm_events[] = {
1249 { .number = 0x000, /* SW_INCR */
1250 .supported = event_always_supported,
1251 .get_count = swinc_get_count,
1252 .ns_per_count = swinc_ns_per,
1254 #ifndef CONFIG_USER_ONLY
1255 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1256 .supported = instructions_supported,
1257 .get_count = instructions_get_count,
1258 .ns_per_count = instructions_ns_per,
1260 { .number = 0x011, /* CPU_CYCLES, Cycle */
1261 .supported = event_always_supported,
1262 .get_count = cycles_get_count,
1263 .ns_per_count = cycles_ns_per,
1265 #endif
1266 { .number = 0x023, /* STALL_FRONTEND */
1267 .supported = pmu_8_1_events_supported,
1268 .get_count = zero_event_get_count,
1269 .ns_per_count = zero_event_ns_per,
1271 { .number = 0x024, /* STALL_BACKEND */
1272 .supported = pmu_8_1_events_supported,
1273 .get_count = zero_event_get_count,
1274 .ns_per_count = zero_event_ns_per,
1276 { .number = 0x03c, /* STALL */
1277 .supported = pmu_8_4_events_supported,
1278 .get_count = zero_event_get_count,
1279 .ns_per_count = zero_event_ns_per,
1284 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1285 * events (i.e. the statistical profiling extension), this implementation
1286 * should first be updated to something sparse instead of the current
1287 * supported_event_map[] array.
1289 #define MAX_EVENT_ID 0x3c
1290 #define UNSUPPORTED_EVENT UINT16_MAX
1291 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1294 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1295 * of ARM event numbers to indices in our pm_events array.
1297 * Note: Events in the 0x40XX range are not currently supported.
1299 void pmu_init(ARMCPU *cpu)
1301 unsigned int i;
1304 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1305 * events to them
1307 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1308 supported_event_map[i] = UNSUPPORTED_EVENT;
1310 cpu->pmceid0 = 0;
1311 cpu->pmceid1 = 0;
1313 for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1314 const pm_event *cnt = &pm_events[i];
1315 assert(cnt->number <= MAX_EVENT_ID);
1316 /* We do not currently support events in the 0x40xx range */
1317 assert(cnt->number <= 0x3f);
1319 if (cnt->supported(&cpu->env)) {
1320 supported_event_map[cnt->number] = i;
1321 uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1322 if (cnt->number & 0x20) {
1323 cpu->pmceid1 |= event_mask;
1324 } else {
1325 cpu->pmceid0 |= event_mask;
1332 * Check at runtime whether a PMU event is supported for the current machine
1334 static bool event_supported(uint16_t number)
1336 if (number > MAX_EVENT_ID) {
1337 return false;
1339 return supported_event_map[number] != UNSUPPORTED_EVENT;
1342 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1343 bool isread)
1345 /* Performance monitor registers user accessibility is controlled
1346 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1347 * trapping to EL2 or EL3 for other accesses.
1349 int el = arm_current_el(env);
1351 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1352 return CP_ACCESS_TRAP;
1354 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1355 && !arm_is_secure_below_el3(env)) {
1356 return CP_ACCESS_TRAP_EL2;
1358 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1359 return CP_ACCESS_TRAP_EL3;
1362 return CP_ACCESS_OK;
1365 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1366 const ARMCPRegInfo *ri,
1367 bool isread)
1369 /* ER: event counter read trap control */
1370 if (arm_feature(env, ARM_FEATURE_V8)
1371 && arm_current_el(env) == 0
1372 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1373 && isread) {
1374 return CP_ACCESS_OK;
1377 return pmreg_access(env, ri, isread);
1380 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1381 const ARMCPRegInfo *ri,
1382 bool isread)
1384 /* SW: software increment write trap control */
1385 if (arm_feature(env, ARM_FEATURE_V8)
1386 && arm_current_el(env) == 0
1387 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1388 && !isread) {
1389 return CP_ACCESS_OK;
1392 return pmreg_access(env, ri, isread);
1395 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1396 const ARMCPRegInfo *ri,
1397 bool isread)
1399 /* ER: event counter read trap control */
1400 if (arm_feature(env, ARM_FEATURE_V8)
1401 && arm_current_el(env) == 0
1402 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1403 return CP_ACCESS_OK;
1406 return pmreg_access(env, ri, isread);
1409 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1410 const ARMCPRegInfo *ri,
1411 bool isread)
1413 /* CR: cycle counter read trap control */
1414 if (arm_feature(env, ARM_FEATURE_V8)
1415 && arm_current_el(env) == 0
1416 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1417 && isread) {
1418 return CP_ACCESS_OK;
1421 return pmreg_access(env, ri, isread);
1424 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1425 * the current EL, security state, and register configuration.
1427 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1429 uint64_t filter;
1430 bool e, p, u, nsk, nsu, nsh, m;
1431 bool enabled, prohibited, filtered;
1432 bool secure = arm_is_secure(env);
1433 int el = arm_current_el(env);
1434 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1436 if (!arm_feature(env, ARM_FEATURE_PMU)) {
1437 return false;
1440 if (!arm_feature(env, ARM_FEATURE_EL2) ||
1441 (counter < hpmn || counter == 31)) {
1442 e = env->cp15.c9_pmcr & PMCRE;
1443 } else {
1444 e = env->cp15.mdcr_el2 & MDCR_HPME;
1446 enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1448 if (!secure) {
1449 if (el == 2 && (counter < hpmn || counter == 31)) {
1450 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1451 } else {
1452 prohibited = false;
1454 } else {
1455 prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1456 !(env->cp15.mdcr_el3 & MDCR_SPME);
1459 if (prohibited && counter == 31) {
1460 prohibited = env->cp15.c9_pmcr & PMCRDP;
1463 if (counter == 31) {
1464 filter = env->cp15.pmccfiltr_el0;
1465 } else {
1466 filter = env->cp15.c14_pmevtyper[counter];
1469 p = filter & PMXEVTYPER_P;
1470 u = filter & PMXEVTYPER_U;
1471 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1472 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1473 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1474 m = arm_el_is_aa64(env, 1) &&
1475 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1477 if (el == 0) {
1478 filtered = secure ? u : u != nsu;
1479 } else if (el == 1) {
1480 filtered = secure ? p : p != nsk;
1481 } else if (el == 2) {
1482 filtered = !nsh;
1483 } else { /* EL3 */
1484 filtered = m != p;
1487 if (counter != 31) {
1489 * If not checking PMCCNTR, ensure the counter is setup to an event we
1490 * support
1492 uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1493 if (!event_supported(event)) {
1494 return false;
1498 return enabled && !prohibited && !filtered;
1501 static void pmu_update_irq(CPUARMState *env)
1503 ARMCPU *cpu = env_archcpu(env);
1504 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1505 (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1509 * Ensure c15_ccnt is the guest-visible count so that operations such as
1510 * enabling/disabling the counter or filtering, modifying the count itself,
1511 * etc. can be done logically. This is essentially a no-op if the counter is
1512 * not enabled at the time of the call.
1514 static void pmccntr_op_start(CPUARMState *env)
1516 uint64_t cycles = cycles_get_count(env);
1518 if (pmu_counter_enabled(env, 31)) {
1519 uint64_t eff_cycles = cycles;
1520 if (env->cp15.c9_pmcr & PMCRD) {
1521 /* Increment once every 64 processor clock cycles */
1522 eff_cycles /= 64;
1525 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1527 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1528 1ull << 63 : 1ull << 31;
1529 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1530 env->cp15.c9_pmovsr |= (1 << 31);
1531 pmu_update_irq(env);
1534 env->cp15.c15_ccnt = new_pmccntr;
1536 env->cp15.c15_ccnt_delta = cycles;
1540 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1541 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1542 * pmccntr_op_start.
1544 static void pmccntr_op_finish(CPUARMState *env)
1546 if (pmu_counter_enabled(env, 31)) {
1547 #ifndef CONFIG_USER_ONLY
1548 /* Calculate when the counter will next overflow */
1549 uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1550 if (!(env->cp15.c9_pmcr & PMCRLC)) {
1551 remaining_cycles = (uint32_t)remaining_cycles;
1553 int64_t overflow_in = cycles_ns_per(remaining_cycles);
1555 if (overflow_in > 0) {
1556 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1557 overflow_in;
1558 ARMCPU *cpu = env_archcpu(env);
1559 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1561 #endif
1563 uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1564 if (env->cp15.c9_pmcr & PMCRD) {
1565 /* Increment once every 64 processor clock cycles */
1566 prev_cycles /= 64;
1568 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1572 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1575 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1576 uint64_t count = 0;
1577 if (event_supported(event)) {
1578 uint16_t event_idx = supported_event_map[event];
1579 count = pm_events[event_idx].get_count(env);
1582 if (pmu_counter_enabled(env, counter)) {
1583 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1585 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1586 env->cp15.c9_pmovsr |= (1 << counter);
1587 pmu_update_irq(env);
1589 env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1591 env->cp15.c14_pmevcntr_delta[counter] = count;
1594 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1596 if (pmu_counter_enabled(env, counter)) {
1597 #ifndef CONFIG_USER_ONLY
1598 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1599 uint16_t event_idx = supported_event_map[event];
1600 uint64_t delta = UINT32_MAX -
1601 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1602 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1604 if (overflow_in > 0) {
1605 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1606 overflow_in;
1607 ARMCPU *cpu = env_archcpu(env);
1608 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1610 #endif
1612 env->cp15.c14_pmevcntr_delta[counter] -=
1613 env->cp15.c14_pmevcntr[counter];
1617 void pmu_op_start(CPUARMState *env)
1619 unsigned int i;
1620 pmccntr_op_start(env);
1621 for (i = 0; i < pmu_num_counters(env); i++) {
1622 pmevcntr_op_start(env, i);
1626 void pmu_op_finish(CPUARMState *env)
1628 unsigned int i;
1629 pmccntr_op_finish(env);
1630 for (i = 0; i < pmu_num_counters(env); i++) {
1631 pmevcntr_op_finish(env, i);
1635 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1637 pmu_op_start(&cpu->env);
1640 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1642 pmu_op_finish(&cpu->env);
1645 void arm_pmu_timer_cb(void *opaque)
1647 ARMCPU *cpu = opaque;
1650 * Update all the counter values based on the current underlying counts,
1651 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1652 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1653 * counter may expire.
1655 pmu_op_start(&cpu->env);
1656 pmu_op_finish(&cpu->env);
1659 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1660 uint64_t value)
1662 pmu_op_start(env);
1664 if (value & PMCRC) {
1665 /* The counter has been reset */
1666 env->cp15.c15_ccnt = 0;
1669 if (value & PMCRP) {
1670 unsigned int i;
1671 for (i = 0; i < pmu_num_counters(env); i++) {
1672 env->cp15.c14_pmevcntr[i] = 0;
1676 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1677 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1679 pmu_op_finish(env);
1682 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1683 uint64_t value)
1685 unsigned int i;
1686 for (i = 0; i < pmu_num_counters(env); i++) {
1687 /* Increment a counter's count iff: */
1688 if ((value & (1 << i)) && /* counter's bit is set */
1689 /* counter is enabled and not filtered */
1690 pmu_counter_enabled(env, i) &&
1691 /* counter is SW_INCR */
1692 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1693 pmevcntr_op_start(env, i);
1696 * Detect if this write causes an overflow since we can't predict
1697 * PMSWINC overflows like we can for other events
1699 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1701 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1702 env->cp15.c9_pmovsr |= (1 << i);
1703 pmu_update_irq(env);
1706 env->cp15.c14_pmevcntr[i] = new_pmswinc;
1708 pmevcntr_op_finish(env, i);
1713 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1715 uint64_t ret;
1716 pmccntr_op_start(env);
1717 ret = env->cp15.c15_ccnt;
1718 pmccntr_op_finish(env);
1719 return ret;
1722 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1723 uint64_t value)
1725 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1726 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1727 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1728 * accessed.
1730 env->cp15.c9_pmselr = value & 0x1f;
1733 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734 uint64_t value)
1736 pmccntr_op_start(env);
1737 env->cp15.c15_ccnt = value;
1738 pmccntr_op_finish(env);
1741 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1742 uint64_t value)
1744 uint64_t cur_val = pmccntr_read(env, NULL);
1746 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1749 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1750 uint64_t value)
1752 pmccntr_op_start(env);
1753 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1754 pmccntr_op_finish(env);
1757 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1758 uint64_t value)
1760 pmccntr_op_start(env);
1761 /* M is not accessible from AArch32 */
1762 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1763 (value & PMCCFILTR);
1764 pmccntr_op_finish(env);
1767 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1769 /* M is not visible in AArch32 */
1770 return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1773 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1774 uint64_t value)
1776 value &= pmu_counter_mask(env);
1777 env->cp15.c9_pmcnten |= value;
1780 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1781 uint64_t value)
1783 value &= pmu_counter_mask(env);
1784 env->cp15.c9_pmcnten &= ~value;
1787 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1788 uint64_t value)
1790 value &= pmu_counter_mask(env);
1791 env->cp15.c9_pmovsr &= ~value;
1792 pmu_update_irq(env);
1795 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1796 uint64_t value)
1798 value &= pmu_counter_mask(env);
1799 env->cp15.c9_pmovsr |= value;
1800 pmu_update_irq(env);
1803 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1804 uint64_t value, const uint8_t counter)
1806 if (counter == 31) {
1807 pmccfiltr_write(env, ri, value);
1808 } else if (counter < pmu_num_counters(env)) {
1809 pmevcntr_op_start(env, counter);
1812 * If this counter's event type is changing, store the current
1813 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1814 * pmevcntr_op_finish has the correct baseline when it converts back to
1815 * a delta.
1817 uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1818 PMXEVTYPER_EVTCOUNT;
1819 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1820 if (old_event != new_event) {
1821 uint64_t count = 0;
1822 if (event_supported(new_event)) {
1823 uint16_t event_idx = supported_event_map[new_event];
1824 count = pm_events[event_idx].get_count(env);
1826 env->cp15.c14_pmevcntr_delta[counter] = count;
1829 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1830 pmevcntr_op_finish(env, counter);
1832 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1833 * PMSELR value is equal to or greater than the number of implemented
1834 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1838 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1839 const uint8_t counter)
1841 if (counter == 31) {
1842 return env->cp15.pmccfiltr_el0;
1843 } else if (counter < pmu_num_counters(env)) {
1844 return env->cp15.c14_pmevtyper[counter];
1845 } else {
1847 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1848 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1850 return 0;
1854 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1855 uint64_t value)
1857 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1858 pmevtyper_write(env, ri, value, counter);
1861 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1862 uint64_t value)
1864 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1865 env->cp15.c14_pmevtyper[counter] = value;
1868 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1869 * pmu_op_finish calls when loading saved state for a migration. Because
1870 * we're potentially updating the type of event here, the value written to
1871 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1872 * different counter type. Therefore, we need to set this value to the
1873 * current count for the counter type we're writing so that pmu_op_finish
1874 * has the correct count for its calculation.
1876 uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1877 if (event_supported(event)) {
1878 uint16_t event_idx = supported_event_map[event];
1879 env->cp15.c14_pmevcntr_delta[counter] =
1880 pm_events[event_idx].get_count(env);
1884 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1886 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1887 return pmevtyper_read(env, ri, counter);
1890 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1891 uint64_t value)
1893 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1896 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1898 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1901 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1902 uint64_t value, uint8_t counter)
1904 if (counter < pmu_num_counters(env)) {
1905 pmevcntr_op_start(env, counter);
1906 env->cp15.c14_pmevcntr[counter] = value;
1907 pmevcntr_op_finish(env, counter);
1910 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1911 * are CONSTRAINED UNPREDICTABLE.
1915 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1916 uint8_t counter)
1918 if (counter < pmu_num_counters(env)) {
1919 uint64_t ret;
1920 pmevcntr_op_start(env, counter);
1921 ret = env->cp15.c14_pmevcntr[counter];
1922 pmevcntr_op_finish(env, counter);
1923 return ret;
1924 } else {
1925 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1926 * are CONSTRAINED UNPREDICTABLE. */
1927 return 0;
1931 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1932 uint64_t value)
1934 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1935 pmevcntr_write(env, ri, value, counter);
1938 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1940 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1941 return pmevcntr_read(env, ri, counter);
1944 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1945 uint64_t value)
1947 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1948 assert(counter < pmu_num_counters(env));
1949 env->cp15.c14_pmevcntr[counter] = value;
1950 pmevcntr_write(env, ri, value, counter);
1953 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1955 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1956 assert(counter < pmu_num_counters(env));
1957 return env->cp15.c14_pmevcntr[counter];
1960 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1961 uint64_t value)
1963 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1966 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1968 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1971 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972 uint64_t value)
1974 if (arm_feature(env, ARM_FEATURE_V8)) {
1975 env->cp15.c9_pmuserenr = value & 0xf;
1976 } else {
1977 env->cp15.c9_pmuserenr = value & 1;
1981 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1982 uint64_t value)
1984 /* We have no event counters so only the C bit can be changed */
1985 value &= pmu_counter_mask(env);
1986 env->cp15.c9_pminten |= value;
1987 pmu_update_irq(env);
1990 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1991 uint64_t value)
1993 value &= pmu_counter_mask(env);
1994 env->cp15.c9_pminten &= ~value;
1995 pmu_update_irq(env);
1998 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1999 uint64_t value)
2001 /* Note that even though the AArch64 view of this register has bits
2002 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2003 * architectural requirements for bits which are RES0 only in some
2004 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2005 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2007 raw_write(env, ri, value & ~0x1FULL);
2010 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2012 /* Begin with base v8.0 state. */
2013 uint32_t valid_mask = 0x3fff;
2014 ARMCPU *cpu = env_archcpu(env);
2016 if (ri->state == ARM_CP_STATE_AA64) {
2017 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */
2018 valid_mask &= ~SCR_NET;
2020 if (cpu_isar_feature(aa64_lor, cpu)) {
2021 valid_mask |= SCR_TLOR;
2023 if (cpu_isar_feature(aa64_pauth, cpu)) {
2024 valid_mask |= SCR_API | SCR_APK;
2026 if (cpu_isar_feature(aa64_mte, cpu)) {
2027 valid_mask |= SCR_ATA;
2029 } else {
2030 valid_mask &= ~(SCR_RW | SCR_ST);
2033 if (!arm_feature(env, ARM_FEATURE_EL2)) {
2034 valid_mask &= ~SCR_HCE;
2036 /* On ARMv7, SMD (or SCD as it is called in v7) is only
2037 * supported if EL2 exists. The bit is UNK/SBZP when
2038 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2039 * when EL2 is unavailable.
2040 * On ARMv8, this bit is always available.
2042 if (arm_feature(env, ARM_FEATURE_V7) &&
2043 !arm_feature(env, ARM_FEATURE_V8)) {
2044 valid_mask &= ~SCR_SMD;
2048 /* Clear all-context RES0 bits. */
2049 value &= valid_mask;
2050 raw_write(env, ri, value);
2053 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2054 const ARMCPRegInfo *ri,
2055 bool isread)
2057 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2058 return CP_ACCESS_TRAP_EL2;
2061 return CP_ACCESS_OK;
2064 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2066 ARMCPU *cpu = env_archcpu(env);
2068 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2069 * bank
2071 uint32_t index = A32_BANKED_REG_GET(env, csselr,
2072 ri->secure & ARM_CP_SECSTATE_S);
2074 return cpu->ccsidr[index];
2077 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2078 uint64_t value)
2080 raw_write(env, ri, value & 0xf);
2083 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2085 CPUState *cs = env_cpu(env);
2086 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
2087 uint64_t ret = 0;
2088 bool allow_virt = (arm_current_el(env) == 1 &&
2089 (!arm_is_secure_below_el3(env) ||
2090 (env->cp15.scr_el3 & SCR_EEL2)));
2092 if (allow_virt && (hcr_el2 & HCR_IMO)) {
2093 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2094 ret |= CPSR_I;
2096 } else {
2097 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2098 ret |= CPSR_I;
2102 if (allow_virt && (hcr_el2 & HCR_FMO)) {
2103 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2104 ret |= CPSR_F;
2106 } else {
2107 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2108 ret |= CPSR_F;
2112 /* External aborts are not possible in QEMU so A bit is always clear */
2113 return ret;
2116 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2117 bool isread)
2119 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2120 return CP_ACCESS_TRAP_EL2;
2123 return CP_ACCESS_OK;
2126 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2127 bool isread)
2129 if (arm_feature(env, ARM_FEATURE_V8)) {
2130 return access_aa64_tid1(env, ri, isread);
2133 return CP_ACCESS_OK;
2136 static const ARMCPRegInfo v7_cp_reginfo[] = {
2137 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2138 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2139 .access = PL1_W, .type = ARM_CP_NOP },
2140 /* Performance monitors are implementation defined in v7,
2141 * but with an ARM recommended set of registers, which we
2142 * follow.
2144 * Performance registers fall into three categories:
2145 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2146 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2147 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2148 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2149 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2151 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2152 .access = PL0_RW, .type = ARM_CP_ALIAS,
2153 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2154 .writefn = pmcntenset_write,
2155 .accessfn = pmreg_access,
2156 .raw_writefn = raw_write },
2157 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2158 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2159 .access = PL0_RW, .accessfn = pmreg_access,
2160 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2161 .writefn = pmcntenset_write, .raw_writefn = raw_write },
2162 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2163 .access = PL0_RW,
2164 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2165 .accessfn = pmreg_access,
2166 .writefn = pmcntenclr_write,
2167 .type = ARM_CP_ALIAS },
2168 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2169 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2170 .access = PL0_RW, .accessfn = pmreg_access,
2171 .type = ARM_CP_ALIAS,
2172 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2173 .writefn = pmcntenclr_write },
2174 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2175 .access = PL0_RW, .type = ARM_CP_IO,
2176 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2177 .accessfn = pmreg_access,
2178 .writefn = pmovsr_write,
2179 .raw_writefn = raw_write },
2180 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2181 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2182 .access = PL0_RW, .accessfn = pmreg_access,
2183 .type = ARM_CP_ALIAS | ARM_CP_IO,
2184 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2185 .writefn = pmovsr_write,
2186 .raw_writefn = raw_write },
2187 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2188 .access = PL0_W, .accessfn = pmreg_access_swinc,
2189 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2190 .writefn = pmswinc_write },
2191 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2192 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2193 .access = PL0_W, .accessfn = pmreg_access_swinc,
2194 .type = ARM_CP_NO_RAW | ARM_CP_IO,
2195 .writefn = pmswinc_write },
2196 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2197 .access = PL0_RW, .type = ARM_CP_ALIAS,
2198 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2199 .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2200 .raw_writefn = raw_write},
2201 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2202 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2203 .access = PL0_RW, .accessfn = pmreg_access_selr,
2204 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2205 .writefn = pmselr_write, .raw_writefn = raw_write, },
2206 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2207 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2208 .readfn = pmccntr_read, .writefn = pmccntr_write32,
2209 .accessfn = pmreg_access_ccntr },
2210 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2211 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2212 .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2213 .type = ARM_CP_IO,
2214 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2215 .readfn = pmccntr_read, .writefn = pmccntr_write,
2216 .raw_readfn = raw_read, .raw_writefn = raw_write, },
2217 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2218 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2219 .access = PL0_RW, .accessfn = pmreg_access,
2220 .type = ARM_CP_ALIAS | ARM_CP_IO,
2221 .resetvalue = 0, },
2222 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2223 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2224 .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2225 .access = PL0_RW, .accessfn = pmreg_access,
2226 .type = ARM_CP_IO,
2227 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2228 .resetvalue = 0, },
2229 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2230 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2231 .accessfn = pmreg_access,
2232 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2233 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2234 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2235 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2236 .accessfn = pmreg_access,
2237 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2238 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2239 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2240 .accessfn = pmreg_access_xevcntr,
2241 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2242 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2243 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2244 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2245 .accessfn = pmreg_access_xevcntr,
2246 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2247 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2248 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2249 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2250 .resetvalue = 0,
2251 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2252 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2253 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2254 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2255 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2256 .resetvalue = 0,
2257 .writefn = pmuserenr_write, .raw_writefn = raw_write },
2258 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2259 .access = PL1_RW, .accessfn = access_tpm,
2260 .type = ARM_CP_ALIAS | ARM_CP_IO,
2261 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2262 .resetvalue = 0,
2263 .writefn = pmintenset_write, .raw_writefn = raw_write },
2264 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2265 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2266 .access = PL1_RW, .accessfn = access_tpm,
2267 .type = ARM_CP_IO,
2268 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2269 .writefn = pmintenset_write, .raw_writefn = raw_write,
2270 .resetvalue = 0x0 },
2271 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2272 .access = PL1_RW, .accessfn = access_tpm,
2273 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2274 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2275 .writefn = pmintenclr_write, },
2276 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2277 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2278 .access = PL1_RW, .accessfn = access_tpm,
2279 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2280 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2281 .writefn = pmintenclr_write },
2282 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2283 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2284 .access = PL1_R,
2285 .accessfn = access_aa64_tid2,
2286 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2287 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2288 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2289 .access = PL1_RW,
2290 .accessfn = access_aa64_tid2,
2291 .writefn = csselr_write, .resetvalue = 0,
2292 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2293 offsetof(CPUARMState, cp15.csselr_ns) } },
2294 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2295 * just RAZ for all cores:
2297 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2298 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2299 .access = PL1_R, .type = ARM_CP_CONST,
2300 .accessfn = access_aa64_tid1,
2301 .resetvalue = 0 },
2302 /* Auxiliary fault status registers: these also are IMPDEF, and we
2303 * choose to RAZ/WI for all cores.
2305 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2306 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2307 .access = PL1_RW, .accessfn = access_tvm_trvm,
2308 .type = ARM_CP_CONST, .resetvalue = 0 },
2309 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2310 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2311 .access = PL1_RW, .accessfn = access_tvm_trvm,
2312 .type = ARM_CP_CONST, .resetvalue = 0 },
2313 /* MAIR can just read-as-written because we don't implement caches
2314 * and so don't need to care about memory attributes.
2316 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2317 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2318 .access = PL1_RW, .accessfn = access_tvm_trvm,
2319 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2320 .resetvalue = 0 },
2321 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2322 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2323 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2324 .resetvalue = 0 },
2325 /* For non-long-descriptor page tables these are PRRR and NMRR;
2326 * regardless they still act as reads-as-written for QEMU.
2328 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2329 * allows them to assign the correct fieldoffset based on the endianness
2330 * handled in the field definitions.
2332 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2333 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2334 .access = PL1_RW, .accessfn = access_tvm_trvm,
2335 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2336 offsetof(CPUARMState, cp15.mair0_ns) },
2337 .resetfn = arm_cp_reset_ignore },
2338 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2339 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2340 .access = PL1_RW, .accessfn = access_tvm_trvm,
2341 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2342 offsetof(CPUARMState, cp15.mair1_ns) },
2343 .resetfn = arm_cp_reset_ignore },
2344 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2345 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2346 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2347 /* 32 bit ITLB invalidates */
2348 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2349 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2350 .writefn = tlbiall_write },
2351 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2352 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2353 .writefn = tlbimva_write },
2354 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2355 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2356 .writefn = tlbiasid_write },
2357 /* 32 bit DTLB invalidates */
2358 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2360 .writefn = tlbiall_write },
2361 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2362 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2363 .writefn = tlbimva_write },
2364 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2365 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2366 .writefn = tlbiasid_write },
2367 /* 32 bit TLB invalidates */
2368 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2369 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2370 .writefn = tlbiall_write },
2371 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2372 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2373 .writefn = tlbimva_write },
2374 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2375 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2376 .writefn = tlbiasid_write },
2377 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2378 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2379 .writefn = tlbimvaa_write },
2380 REGINFO_SENTINEL
2383 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2384 /* 32 bit TLB invalidates, Inner Shareable */
2385 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2386 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2387 .writefn = tlbiall_is_write },
2388 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2389 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2390 .writefn = tlbimva_is_write },
2391 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2392 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2393 .writefn = tlbiasid_is_write },
2394 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2395 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2396 .writefn = tlbimvaa_is_write },
2397 REGINFO_SENTINEL
2400 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2401 /* PMOVSSET is not implemented in v7 before v7ve */
2402 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2403 .access = PL0_RW, .accessfn = pmreg_access,
2404 .type = ARM_CP_ALIAS | ARM_CP_IO,
2405 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2406 .writefn = pmovsset_write,
2407 .raw_writefn = raw_write },
2408 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2409 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2410 .access = PL0_RW, .accessfn = pmreg_access,
2411 .type = ARM_CP_ALIAS | ARM_CP_IO,
2412 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2413 .writefn = pmovsset_write,
2414 .raw_writefn = raw_write },
2415 REGINFO_SENTINEL
2418 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2419 uint64_t value)
2421 value &= 1;
2422 env->teecr = value;
2425 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2426 bool isread)
2428 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2429 return CP_ACCESS_TRAP;
2431 return CP_ACCESS_OK;
2434 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2435 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2436 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2437 .resetvalue = 0,
2438 .writefn = teecr_write },
2439 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2440 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2441 .accessfn = teehbr_access, .resetvalue = 0 },
2442 REGINFO_SENTINEL
2445 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2446 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2447 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2448 .access = PL0_RW,
2449 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2450 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2451 .access = PL0_RW,
2452 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2453 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2454 .resetfn = arm_cp_reset_ignore },
2455 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2456 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2457 .access = PL0_R|PL1_W,
2458 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2459 .resetvalue = 0},
2460 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2461 .access = PL0_R|PL1_W,
2462 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2463 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2464 .resetfn = arm_cp_reset_ignore },
2465 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2466 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2467 .access = PL1_RW,
2468 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2469 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2470 .access = PL1_RW,
2471 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2472 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2473 .resetvalue = 0 },
2474 REGINFO_SENTINEL
2477 #ifndef CONFIG_USER_ONLY
2479 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2480 bool isread)
2482 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2483 * Writable only at the highest implemented exception level.
2485 int el = arm_current_el(env);
2486 uint64_t hcr;
2487 uint32_t cntkctl;
2489 switch (el) {
2490 case 0:
2491 hcr = arm_hcr_el2_eff(env);
2492 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2493 cntkctl = env->cp15.cnthctl_el2;
2494 } else {
2495 cntkctl = env->cp15.c14_cntkctl;
2497 if (!extract32(cntkctl, 0, 2)) {
2498 return CP_ACCESS_TRAP;
2500 break;
2501 case 1:
2502 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2503 arm_is_secure_below_el3(env)) {
2504 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2505 return CP_ACCESS_TRAP_UNCATEGORIZED;
2507 break;
2508 case 2:
2509 case 3:
2510 break;
2513 if (!isread && el < arm_highest_el(env)) {
2514 return CP_ACCESS_TRAP_UNCATEGORIZED;
2517 return CP_ACCESS_OK;
2520 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2521 bool isread)
2523 unsigned int cur_el = arm_current_el(env);
2524 bool secure = arm_is_secure(env);
2525 uint64_t hcr = arm_hcr_el2_eff(env);
2527 switch (cur_el) {
2528 case 0:
2529 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2530 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2531 return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2532 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2535 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2536 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2537 return CP_ACCESS_TRAP;
2540 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2541 if (hcr & HCR_E2H) {
2542 if (timeridx == GTIMER_PHYS &&
2543 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2544 return CP_ACCESS_TRAP_EL2;
2546 } else {
2547 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2548 if (arm_feature(env, ARM_FEATURE_EL2) &&
2549 timeridx == GTIMER_PHYS && !secure &&
2550 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2551 return CP_ACCESS_TRAP_EL2;
2554 break;
2556 case 1:
2557 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2558 if (arm_feature(env, ARM_FEATURE_EL2) &&
2559 timeridx == GTIMER_PHYS && !secure &&
2560 (hcr & HCR_E2H
2561 ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2562 : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2563 return CP_ACCESS_TRAP_EL2;
2565 break;
2567 return CP_ACCESS_OK;
2570 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2571 bool isread)
2573 unsigned int cur_el = arm_current_el(env);
2574 bool secure = arm_is_secure(env);
2575 uint64_t hcr = arm_hcr_el2_eff(env);
2577 switch (cur_el) {
2578 case 0:
2579 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2580 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2581 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2582 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2586 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2587 * EL0 if EL0[PV]TEN is zero.
2589 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2590 return CP_ACCESS_TRAP;
2592 /* fall through */
2594 case 1:
2595 if (arm_feature(env, ARM_FEATURE_EL2) &&
2596 timeridx == GTIMER_PHYS && !secure) {
2597 if (hcr & HCR_E2H) {
2598 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2599 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2600 return CP_ACCESS_TRAP_EL2;
2602 } else {
2603 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2604 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2605 return CP_ACCESS_TRAP_EL2;
2609 break;
2611 return CP_ACCESS_OK;
2614 static CPAccessResult gt_pct_access(CPUARMState *env,
2615 const ARMCPRegInfo *ri,
2616 bool isread)
2618 return gt_counter_access(env, GTIMER_PHYS, isread);
2621 static CPAccessResult gt_vct_access(CPUARMState *env,
2622 const ARMCPRegInfo *ri,
2623 bool isread)
2625 return gt_counter_access(env, GTIMER_VIRT, isread);
2628 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2629 bool isread)
2631 return gt_timer_access(env, GTIMER_PHYS, isread);
2634 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2635 bool isread)
2637 return gt_timer_access(env, GTIMER_VIRT, isread);
2640 static CPAccessResult gt_stimer_access(CPUARMState *env,
2641 const ARMCPRegInfo *ri,
2642 bool isread)
2644 /* The AArch64 register view of the secure physical timer is
2645 * always accessible from EL3, and configurably accessible from
2646 * Secure EL1.
2648 switch (arm_current_el(env)) {
2649 case 1:
2650 if (!arm_is_secure(env)) {
2651 return CP_ACCESS_TRAP;
2653 if (!(env->cp15.scr_el3 & SCR_ST)) {
2654 return CP_ACCESS_TRAP_EL3;
2656 return CP_ACCESS_OK;
2657 case 0:
2658 case 2:
2659 return CP_ACCESS_TRAP;
2660 case 3:
2661 return CP_ACCESS_OK;
2662 default:
2663 g_assert_not_reached();
2667 static uint64_t gt_get_countervalue(CPUARMState *env)
2669 ARMCPU *cpu = env_archcpu(env);
2671 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2674 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2676 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2678 if (gt->ctl & 1) {
2679 /* Timer enabled: calculate and set current ISTATUS, irq, and
2680 * reset timer to when ISTATUS next has to change
2682 uint64_t offset = timeridx == GTIMER_VIRT ?
2683 cpu->env.cp15.cntvoff_el2 : 0;
2684 uint64_t count = gt_get_countervalue(&cpu->env);
2685 /* Note that this must be unsigned 64 bit arithmetic: */
2686 int istatus = count - offset >= gt->cval;
2687 uint64_t nexttick;
2688 int irqstate;
2690 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2692 irqstate = (istatus && !(gt->ctl & 2));
2693 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2695 if (istatus) {
2696 /* Next transition is when count rolls back over to zero */
2697 nexttick = UINT64_MAX;
2698 } else {
2699 /* Next transition is when we hit cval */
2700 nexttick = gt->cval + offset;
2702 /* Note that the desired next expiry time might be beyond the
2703 * signed-64-bit range of a QEMUTimer -- in this case we just
2704 * set the timer for as far in the future as possible. When the
2705 * timer expires we will reset the timer for any remaining period.
2707 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2708 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2709 } else {
2710 timer_mod(cpu->gt_timer[timeridx], nexttick);
2712 trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2713 } else {
2714 /* Timer disabled: ISTATUS and timer output always clear */
2715 gt->ctl &= ~4;
2716 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2717 timer_del(cpu->gt_timer[timeridx]);
2718 trace_arm_gt_recalc_disabled(timeridx);
2722 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2723 int timeridx)
2725 ARMCPU *cpu = env_archcpu(env);
2727 timer_del(cpu->gt_timer[timeridx]);
2730 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2732 return gt_get_countervalue(env);
2735 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2737 uint64_t hcr;
2739 switch (arm_current_el(env)) {
2740 case 2:
2741 hcr = arm_hcr_el2_eff(env);
2742 if (hcr & HCR_E2H) {
2743 return 0;
2745 break;
2746 case 0:
2747 hcr = arm_hcr_el2_eff(env);
2748 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2749 return 0;
2751 break;
2754 return env->cp15.cntvoff_el2;
2757 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2759 return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2762 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2763 int timeridx,
2764 uint64_t value)
2766 trace_arm_gt_cval_write(timeridx, value);
2767 env->cp15.c14_timer[timeridx].cval = value;
2768 gt_recalc_timer(env_archcpu(env), timeridx);
2771 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2772 int timeridx)
2774 uint64_t offset = 0;
2776 switch (timeridx) {
2777 case GTIMER_VIRT:
2778 case GTIMER_HYPVIRT:
2779 offset = gt_virt_cnt_offset(env);
2780 break;
2783 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2784 (gt_get_countervalue(env) - offset));
2787 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2788 int timeridx,
2789 uint64_t value)
2791 uint64_t offset = 0;
2793 switch (timeridx) {
2794 case GTIMER_VIRT:
2795 case GTIMER_HYPVIRT:
2796 offset = gt_virt_cnt_offset(env);
2797 break;
2800 trace_arm_gt_tval_write(timeridx, value);
2801 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2802 sextract64(value, 0, 32);
2803 gt_recalc_timer(env_archcpu(env), timeridx);
2806 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2807 int timeridx,
2808 uint64_t value)
2810 ARMCPU *cpu = env_archcpu(env);
2811 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2813 trace_arm_gt_ctl_write(timeridx, value);
2814 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2815 if ((oldval ^ value) & 1) {
2816 /* Enable toggled */
2817 gt_recalc_timer(cpu, timeridx);
2818 } else if ((oldval ^ value) & 2) {
2819 /* IMASK toggled: don't need to recalculate,
2820 * just set the interrupt line based on ISTATUS
2822 int irqstate = (oldval & 4) && !(value & 2);
2824 trace_arm_gt_imask_toggle(timeridx, irqstate);
2825 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2829 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2831 gt_timer_reset(env, ri, GTIMER_PHYS);
2834 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2835 uint64_t value)
2837 gt_cval_write(env, ri, GTIMER_PHYS, value);
2840 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2842 return gt_tval_read(env, ri, GTIMER_PHYS);
2845 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2846 uint64_t value)
2848 gt_tval_write(env, ri, GTIMER_PHYS, value);
2851 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2852 uint64_t value)
2854 gt_ctl_write(env, ri, GTIMER_PHYS, value);
2857 static int gt_phys_redir_timeridx(CPUARMState *env)
2859 switch (arm_mmu_idx(env)) {
2860 case ARMMMUIdx_E20_0:
2861 case ARMMMUIdx_E20_2:
2862 case ARMMMUIdx_E20_2_PAN:
2863 return GTIMER_HYP;
2864 default:
2865 return GTIMER_PHYS;
2869 static int gt_virt_redir_timeridx(CPUARMState *env)
2871 switch (arm_mmu_idx(env)) {
2872 case ARMMMUIdx_E20_0:
2873 case ARMMMUIdx_E20_2:
2874 case ARMMMUIdx_E20_2_PAN:
2875 return GTIMER_HYPVIRT;
2876 default:
2877 return GTIMER_VIRT;
2881 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2882 const ARMCPRegInfo *ri)
2884 int timeridx = gt_phys_redir_timeridx(env);
2885 return env->cp15.c14_timer[timeridx].cval;
2888 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2889 uint64_t value)
2891 int timeridx = gt_phys_redir_timeridx(env);
2892 gt_cval_write(env, ri, timeridx, value);
2895 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2896 const ARMCPRegInfo *ri)
2898 int timeridx = gt_phys_redir_timeridx(env);
2899 return gt_tval_read(env, ri, timeridx);
2902 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2903 uint64_t value)
2905 int timeridx = gt_phys_redir_timeridx(env);
2906 gt_tval_write(env, ri, timeridx, value);
2909 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2910 const ARMCPRegInfo *ri)
2912 int timeridx = gt_phys_redir_timeridx(env);
2913 return env->cp15.c14_timer[timeridx].ctl;
2916 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2917 uint64_t value)
2919 int timeridx = gt_phys_redir_timeridx(env);
2920 gt_ctl_write(env, ri, timeridx, value);
2923 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2925 gt_timer_reset(env, ri, GTIMER_VIRT);
2928 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2929 uint64_t value)
2931 gt_cval_write(env, ri, GTIMER_VIRT, value);
2934 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2936 return gt_tval_read(env, ri, GTIMER_VIRT);
2939 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2940 uint64_t value)
2942 gt_tval_write(env, ri, GTIMER_VIRT, value);
2945 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2946 uint64_t value)
2948 gt_ctl_write(env, ri, GTIMER_VIRT, value);
2951 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2952 uint64_t value)
2954 ARMCPU *cpu = env_archcpu(env);
2956 trace_arm_gt_cntvoff_write(value);
2957 raw_write(env, ri, value);
2958 gt_recalc_timer(cpu, GTIMER_VIRT);
2961 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2962 const ARMCPRegInfo *ri)
2964 int timeridx = gt_virt_redir_timeridx(env);
2965 return env->cp15.c14_timer[timeridx].cval;
2968 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2969 uint64_t value)
2971 int timeridx = gt_virt_redir_timeridx(env);
2972 gt_cval_write(env, ri, timeridx, value);
2975 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2976 const ARMCPRegInfo *ri)
2978 int timeridx = gt_virt_redir_timeridx(env);
2979 return gt_tval_read(env, ri, timeridx);
2982 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2983 uint64_t value)
2985 int timeridx = gt_virt_redir_timeridx(env);
2986 gt_tval_write(env, ri, timeridx, value);
2989 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2990 const ARMCPRegInfo *ri)
2992 int timeridx = gt_virt_redir_timeridx(env);
2993 return env->cp15.c14_timer[timeridx].ctl;
2996 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2997 uint64_t value)
2999 int timeridx = gt_virt_redir_timeridx(env);
3000 gt_ctl_write(env, ri, timeridx, value);
3003 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3005 gt_timer_reset(env, ri, GTIMER_HYP);
3008 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3009 uint64_t value)
3011 gt_cval_write(env, ri, GTIMER_HYP, value);
3014 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3016 return gt_tval_read(env, ri, GTIMER_HYP);
3019 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3020 uint64_t value)
3022 gt_tval_write(env, ri, GTIMER_HYP, value);
3025 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3026 uint64_t value)
3028 gt_ctl_write(env, ri, GTIMER_HYP, value);
3031 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3033 gt_timer_reset(env, ri, GTIMER_SEC);
3036 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3037 uint64_t value)
3039 gt_cval_write(env, ri, GTIMER_SEC, value);
3042 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3044 return gt_tval_read(env, ri, GTIMER_SEC);
3047 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3048 uint64_t value)
3050 gt_tval_write(env, ri, GTIMER_SEC, value);
3053 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3054 uint64_t value)
3056 gt_ctl_write(env, ri, GTIMER_SEC, value);
3059 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3061 gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3064 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3065 uint64_t value)
3067 gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3070 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3072 return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3075 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3076 uint64_t value)
3078 gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3081 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3082 uint64_t value)
3084 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3087 void arm_gt_ptimer_cb(void *opaque)
3089 ARMCPU *cpu = opaque;
3091 gt_recalc_timer(cpu, GTIMER_PHYS);
3094 void arm_gt_vtimer_cb(void *opaque)
3096 ARMCPU *cpu = opaque;
3098 gt_recalc_timer(cpu, GTIMER_VIRT);
3101 void arm_gt_htimer_cb(void *opaque)
3103 ARMCPU *cpu = opaque;
3105 gt_recalc_timer(cpu, GTIMER_HYP);
3108 void arm_gt_stimer_cb(void *opaque)
3110 ARMCPU *cpu = opaque;
3112 gt_recalc_timer(cpu, GTIMER_SEC);
3115 void arm_gt_hvtimer_cb(void *opaque)
3117 ARMCPU *cpu = opaque;
3119 gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3122 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3124 ARMCPU *cpu = env_archcpu(env);
3126 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3129 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3130 /* Note that CNTFRQ is purely reads-as-written for the benefit
3131 * of software; writing it doesn't actually change the timer frequency.
3132 * Our reset value matches the fixed frequency we implement the timer at.
3134 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3135 .type = ARM_CP_ALIAS,
3136 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3137 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3139 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3140 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3141 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3142 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3143 .resetfn = arm_gt_cntfrq_reset,
3145 /* overall control: mostly access permissions */
3146 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3147 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3148 .access = PL1_RW,
3149 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3150 .resetvalue = 0,
3152 /* per-timer control */
3153 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3154 .secure = ARM_CP_SECSTATE_NS,
3155 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3156 .accessfn = gt_ptimer_access,
3157 .fieldoffset = offsetoflow32(CPUARMState,
3158 cp15.c14_timer[GTIMER_PHYS].ctl),
3159 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3160 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3162 { .name = "CNTP_CTL_S",
3163 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3164 .secure = ARM_CP_SECSTATE_S,
3165 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3166 .accessfn = gt_ptimer_access,
3167 .fieldoffset = offsetoflow32(CPUARMState,
3168 cp15.c14_timer[GTIMER_SEC].ctl),
3169 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3171 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3172 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3173 .type = ARM_CP_IO, .access = PL0_RW,
3174 .accessfn = gt_ptimer_access,
3175 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3176 .resetvalue = 0,
3177 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3178 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3180 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3181 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3182 .accessfn = gt_vtimer_access,
3183 .fieldoffset = offsetoflow32(CPUARMState,
3184 cp15.c14_timer[GTIMER_VIRT].ctl),
3185 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3186 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3188 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3189 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3190 .type = ARM_CP_IO, .access = PL0_RW,
3191 .accessfn = gt_vtimer_access,
3192 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3193 .resetvalue = 0,
3194 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3195 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3197 /* TimerValue views: a 32 bit downcounting view of the underlying state */
3198 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3199 .secure = ARM_CP_SECSTATE_NS,
3200 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3201 .accessfn = gt_ptimer_access,
3202 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3204 { .name = "CNTP_TVAL_S",
3205 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3206 .secure = ARM_CP_SECSTATE_S,
3207 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3208 .accessfn = gt_ptimer_access,
3209 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3211 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3212 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3213 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3214 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3215 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3217 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3218 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3219 .accessfn = gt_vtimer_access,
3220 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3222 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3223 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3224 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3225 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3226 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3228 /* The counter itself */
3229 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3230 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3231 .accessfn = gt_pct_access,
3232 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3234 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3235 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3236 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3237 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3239 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3240 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3241 .accessfn = gt_vct_access,
3242 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3244 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3245 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3246 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3247 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3249 /* Comparison value, indicating when the timer goes off */
3250 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3251 .secure = ARM_CP_SECSTATE_NS,
3252 .access = PL0_RW,
3253 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3254 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3255 .accessfn = gt_ptimer_access,
3256 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3257 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3259 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3260 .secure = ARM_CP_SECSTATE_S,
3261 .access = PL0_RW,
3262 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3263 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3264 .accessfn = gt_ptimer_access,
3265 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3267 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3268 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3269 .access = PL0_RW,
3270 .type = ARM_CP_IO,
3271 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3272 .resetvalue = 0, .accessfn = gt_ptimer_access,
3273 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3274 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3276 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3277 .access = PL0_RW,
3278 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3279 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3280 .accessfn = gt_vtimer_access,
3281 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3282 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3284 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3285 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3286 .access = PL0_RW,
3287 .type = ARM_CP_IO,
3288 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3289 .resetvalue = 0, .accessfn = gt_vtimer_access,
3290 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3291 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3293 /* Secure timer -- this is actually restricted to only EL3
3294 * and configurably Secure-EL1 via the accessfn.
3296 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3297 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3298 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3299 .accessfn = gt_stimer_access,
3300 .readfn = gt_sec_tval_read,
3301 .writefn = gt_sec_tval_write,
3302 .resetfn = gt_sec_timer_reset,
3304 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3305 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3306 .type = ARM_CP_IO, .access = PL1_RW,
3307 .accessfn = gt_stimer_access,
3308 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3309 .resetvalue = 0,
3310 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3312 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3313 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3314 .type = ARM_CP_IO, .access = PL1_RW,
3315 .accessfn = gt_stimer_access,
3316 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3317 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3319 REGINFO_SENTINEL
3322 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3323 bool isread)
3325 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3326 return CP_ACCESS_TRAP;
3328 return CP_ACCESS_OK;
3331 #else
3333 /* In user-mode most of the generic timer registers are inaccessible
3334 * however modern kernels (4.12+) allow access to cntvct_el0
3337 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3339 ARMCPU *cpu = env_archcpu(env);
3341 /* Currently we have no support for QEMUTimer in linux-user so we
3342 * can't call gt_get_countervalue(env), instead we directly
3343 * call the lower level functions.
3345 return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3348 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3349 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3350 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3351 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3352 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3353 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3355 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3356 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3357 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3358 .readfn = gt_virt_cnt_read,
3360 REGINFO_SENTINEL
3363 #endif
3365 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3367 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3368 raw_write(env, ri, value);
3369 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3370 raw_write(env, ri, value & 0xfffff6ff);
3371 } else {
3372 raw_write(env, ri, value & 0xfffff1ff);
3376 #ifndef CONFIG_USER_ONLY
3377 /* get_phys_addr() isn't present for user-mode-only targets */
3379 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3380 bool isread)
3382 if (ri->opc2 & 4) {
3383 /* The ATS12NSO* operations must trap to EL3 if executed in
3384 * Secure EL1 (which can only happen if EL3 is AArch64).
3385 * They are simply UNDEF if executed from NS EL1.
3386 * They function normally from EL2 or EL3.
3388 if (arm_current_el(env) == 1) {
3389 if (arm_is_secure_below_el3(env)) {
3390 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3392 return CP_ACCESS_TRAP_UNCATEGORIZED;
3395 return CP_ACCESS_OK;
3398 #ifdef CONFIG_TCG
3399 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3400 MMUAccessType access_type, ARMMMUIdx mmu_idx)
3402 hwaddr phys_addr;
3403 target_ulong page_size;
3404 int prot;
3405 bool ret;
3406 uint64_t par64;
3407 bool format64 = false;
3408 MemTxAttrs attrs = {};
3409 ARMMMUFaultInfo fi = {};
3410 ARMCacheAttrs cacheattrs = {};
3412 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3413 &prot, &page_size, &fi, &cacheattrs);
3415 if (ret) {
3417 * Some kinds of translation fault must cause exceptions rather
3418 * than being reported in the PAR.
3420 int current_el = arm_current_el(env);
3421 int target_el;
3422 uint32_t syn, fsr, fsc;
3423 bool take_exc = false;
3425 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
3426 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3428 * Synchronous stage 2 fault on an access made as part of the
3429 * translation table walk for AT S1E0* or AT S1E1* insn
3430 * executed from NS EL1. If this is a synchronous external abort
3431 * and SCR_EL3.EA == 1, then we take a synchronous external abort
3432 * to EL3. Otherwise the fault is taken as an exception to EL2,
3433 * and HPFAR_EL2 holds the faulting IPA.
3435 if (fi.type == ARMFault_SyncExternalOnWalk &&
3436 (env->cp15.scr_el3 & SCR_EA)) {
3437 target_el = 3;
3438 } else {
3439 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3440 target_el = 2;
3442 take_exc = true;
3443 } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3445 * Synchronous external aborts during a translation table walk
3446 * are taken as Data Abort exceptions.
3448 if (fi.stage2) {
3449 if (current_el == 3) {
3450 target_el = 3;
3451 } else {
3452 target_el = 2;
3454 } else {
3455 target_el = exception_target_el(env);
3457 take_exc = true;
3460 if (take_exc) {
3461 /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3462 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3463 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3464 fsr = arm_fi_to_lfsc(&fi);
3465 fsc = extract32(fsr, 0, 6);
3466 } else {
3467 fsr = arm_fi_to_sfsc(&fi);
3468 fsc = 0x3f;
3471 * Report exception with ESR indicating a fault due to a
3472 * translation table walk for a cache maintenance instruction.
3474 syn = syn_data_abort_no_iss(current_el == target_el, 0,
3475 fi.ea, 1, fi.s1ptw, 1, fsc);
3476 env->exception.vaddress = value;
3477 env->exception.fsr = fsr;
3478 raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3482 if (is_a64(env)) {
3483 format64 = true;
3484 } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3486 * ATS1Cxx:
3487 * * TTBCR.EAE determines whether the result is returned using the
3488 * 32-bit or the 64-bit PAR format
3489 * * Instructions executed in Hyp mode always use the 64bit format
3491 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3492 * * The Non-secure TTBCR.EAE bit is set to 1
3493 * * The implementation includes EL2, and the value of HCR.VM is 1
3495 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3497 * ATS1Hx always uses the 64bit format.
3499 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3501 if (arm_feature(env, ARM_FEATURE_EL2)) {
3502 if (mmu_idx == ARMMMUIdx_E10_0 ||
3503 mmu_idx == ARMMMUIdx_E10_1 ||
3504 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3505 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3506 } else {
3507 format64 |= arm_current_el(env) == 2;
3512 if (format64) {
3513 /* Create a 64-bit PAR */
3514 par64 = (1 << 11); /* LPAE bit always set */
3515 if (!ret) {
3516 par64 |= phys_addr & ~0xfffULL;
3517 if (!attrs.secure) {
3518 par64 |= (1 << 9); /* NS */
3520 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3521 par64 |= cacheattrs.shareability << 7; /* SH */
3522 } else {
3523 uint32_t fsr = arm_fi_to_lfsc(&fi);
3525 par64 |= 1; /* F */
3526 par64 |= (fsr & 0x3f) << 1; /* FS */
3527 if (fi.stage2) {
3528 par64 |= (1 << 9); /* S */
3530 if (fi.s1ptw) {
3531 par64 |= (1 << 8); /* PTW */
3534 } else {
3535 /* fsr is a DFSR/IFSR value for the short descriptor
3536 * translation table format (with WnR always clear).
3537 * Convert it to a 32-bit PAR.
3539 if (!ret) {
3540 /* We do not set any attribute bits in the PAR */
3541 if (page_size == (1 << 24)
3542 && arm_feature(env, ARM_FEATURE_V7)) {
3543 par64 = (phys_addr & 0xff000000) | (1 << 1);
3544 } else {
3545 par64 = phys_addr & 0xfffff000;
3547 if (!attrs.secure) {
3548 par64 |= (1 << 9); /* NS */
3550 } else {
3551 uint32_t fsr = arm_fi_to_sfsc(&fi);
3553 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3554 ((fsr & 0xf) << 1) | 1;
3557 return par64;
3559 #endif /* CONFIG_TCG */
3561 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3563 #ifdef CONFIG_TCG
3564 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3565 uint64_t par64;
3566 ARMMMUIdx mmu_idx;
3567 int el = arm_current_el(env);
3568 bool secure = arm_is_secure_below_el3(env);
3570 switch (ri->opc2 & 6) {
3571 case 0:
3572 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3573 switch (el) {
3574 case 3:
3575 mmu_idx = ARMMMUIdx_SE3;
3576 break;
3577 case 2:
3578 g_assert(!secure); /* TODO: ARMv8.4-SecEL2 */
3579 /* fall through */
3580 case 1:
3581 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3582 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3583 : ARMMMUIdx_Stage1_E1_PAN);
3584 } else {
3585 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3587 break;
3588 default:
3589 g_assert_not_reached();
3591 break;
3592 case 2:
3593 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3594 switch (el) {
3595 case 3:
3596 mmu_idx = ARMMMUIdx_SE10_0;
3597 break;
3598 case 2:
3599 mmu_idx = ARMMMUIdx_Stage1_E0;
3600 break;
3601 case 1:
3602 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3603 break;
3604 default:
3605 g_assert_not_reached();
3607 break;
3608 case 4:
3609 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3610 mmu_idx = ARMMMUIdx_E10_1;
3611 break;
3612 case 6:
3613 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3614 mmu_idx = ARMMMUIdx_E10_0;
3615 break;
3616 default:
3617 g_assert_not_reached();
3620 par64 = do_ats_write(env, value, access_type, mmu_idx);
3622 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3623 #else
3624 /* Handled by hardware accelerator. */
3625 g_assert_not_reached();
3626 #endif /* CONFIG_TCG */
3629 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3630 uint64_t value)
3632 #ifdef CONFIG_TCG
3633 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3634 uint64_t par64;
3636 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3638 A32_BANKED_CURRENT_REG_SET(env, par, par64);
3639 #else
3640 /* Handled by hardware accelerator. */
3641 g_assert_not_reached();
3642 #endif /* CONFIG_TCG */
3645 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3646 bool isread)
3648 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3649 return CP_ACCESS_TRAP;
3651 return CP_ACCESS_OK;
3654 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3655 uint64_t value)
3657 #ifdef CONFIG_TCG
3658 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3659 ARMMMUIdx mmu_idx;
3660 int secure = arm_is_secure_below_el3(env);
3662 switch (ri->opc2 & 6) {
3663 case 0:
3664 switch (ri->opc1) {
3665 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3666 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3667 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3668 : ARMMMUIdx_Stage1_E1_PAN);
3669 } else {
3670 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3672 break;
3673 case 4: /* AT S1E2R, AT S1E2W */
3674 mmu_idx = ARMMMUIdx_E2;
3675 break;
3676 case 6: /* AT S1E3R, AT S1E3W */
3677 mmu_idx = ARMMMUIdx_SE3;
3678 break;
3679 default:
3680 g_assert_not_reached();
3682 break;
3683 case 2: /* AT S1E0R, AT S1E0W */
3684 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3685 break;
3686 case 4: /* AT S12E1R, AT S12E1W */
3687 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3688 break;
3689 case 6: /* AT S12E0R, AT S12E0W */
3690 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3691 break;
3692 default:
3693 g_assert_not_reached();
3696 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3697 #else
3698 /* Handled by hardware accelerator. */
3699 g_assert_not_reached();
3700 #endif /* CONFIG_TCG */
3702 #endif
3704 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3705 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3706 .access = PL1_RW, .resetvalue = 0,
3707 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3708 offsetoflow32(CPUARMState, cp15.par_ns) },
3709 .writefn = par_write },
3710 #ifndef CONFIG_USER_ONLY
3711 /* This underdecoding is safe because the reginfo is NO_RAW. */
3712 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3713 .access = PL1_W, .accessfn = ats_access,
3714 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3715 #endif
3716 REGINFO_SENTINEL
3719 /* Return basic MPU access permission bits. */
3720 static uint32_t simple_mpu_ap_bits(uint32_t val)
3722 uint32_t ret;
3723 uint32_t mask;
3724 int i;
3725 ret = 0;
3726 mask = 3;
3727 for (i = 0; i < 16; i += 2) {
3728 ret |= (val >> i) & mask;
3729 mask <<= 2;
3731 return ret;
3734 /* Pad basic MPU access permission bits to extended format. */
3735 static uint32_t extended_mpu_ap_bits(uint32_t val)
3737 uint32_t ret;
3738 uint32_t mask;
3739 int i;
3740 ret = 0;
3741 mask = 3;
3742 for (i = 0; i < 16; i += 2) {
3743 ret |= (val & mask) << i;
3744 mask <<= 2;
3746 return ret;
3749 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3750 uint64_t value)
3752 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3755 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3757 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3760 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3761 uint64_t value)
3763 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3766 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3768 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3771 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3773 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3775 if (!u32p) {
3776 return 0;
3779 u32p += env->pmsav7.rnr[M_REG_NS];
3780 return *u32p;
3783 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3784 uint64_t value)
3786 ARMCPU *cpu = env_archcpu(env);
3787 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3789 if (!u32p) {
3790 return;
3793 u32p += env->pmsav7.rnr[M_REG_NS];
3794 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3795 *u32p = value;
3798 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3799 uint64_t value)
3801 ARMCPU *cpu = env_archcpu(env);
3802 uint32_t nrgs = cpu->pmsav7_dregion;
3804 if (value >= nrgs) {
3805 qemu_log_mask(LOG_GUEST_ERROR,
3806 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3807 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3808 return;
3811 raw_write(env, ri, value);
3814 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3815 /* Reset for all these registers is handled in arm_cpu_reset(),
3816 * because the PMSAv7 is also used by M-profile CPUs, which do
3817 * not register cpregs but still need the state to be reset.
3819 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3820 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3821 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3822 .readfn = pmsav7_read, .writefn = pmsav7_write,
3823 .resetfn = arm_cp_reset_ignore },
3824 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3825 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3826 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3827 .readfn = pmsav7_read, .writefn = pmsav7_write,
3828 .resetfn = arm_cp_reset_ignore },
3829 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3830 .access = PL1_RW, .type = ARM_CP_NO_RAW,
3831 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3832 .readfn = pmsav7_read, .writefn = pmsav7_write,
3833 .resetfn = arm_cp_reset_ignore },
3834 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3835 .access = PL1_RW,
3836 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3837 .writefn = pmsav7_rgnr_write,
3838 .resetfn = arm_cp_reset_ignore },
3839 REGINFO_SENTINEL
3842 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3843 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3844 .access = PL1_RW, .type = ARM_CP_ALIAS,
3845 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3846 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3847 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3848 .access = PL1_RW, .type = ARM_CP_ALIAS,
3849 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3850 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3851 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3852 .access = PL1_RW,
3853 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3854 .resetvalue = 0, },
3855 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3856 .access = PL1_RW,
3857 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3858 .resetvalue = 0, },
3859 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3860 .access = PL1_RW,
3861 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3862 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3863 .access = PL1_RW,
3864 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3865 /* Protection region base and size registers */
3866 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3867 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3868 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3869 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3870 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3871 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3872 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3873 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3874 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3875 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3876 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3877 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3878 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3879 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3880 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3881 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3882 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3883 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3884 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3885 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3886 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3887 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3888 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3889 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3890 REGINFO_SENTINEL
3893 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3894 uint64_t value)
3896 TCR *tcr = raw_ptr(env, ri);
3897 int maskshift = extract32(value, 0, 3);
3899 if (!arm_feature(env, ARM_FEATURE_V8)) {
3900 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3901 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3902 * using Long-desciptor translation table format */
3903 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3904 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3905 /* In an implementation that includes the Security Extensions
3906 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3907 * Short-descriptor translation table format.
3909 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3910 } else {
3911 value &= TTBCR_N;
3915 /* Update the masks corresponding to the TCR bank being written
3916 * Note that we always calculate mask and base_mask, but
3917 * they are only used for short-descriptor tables (ie if EAE is 0);
3918 * for long-descriptor tables the TCR fields are used differently
3919 * and the mask and base_mask values are meaningless.
3921 tcr->raw_tcr = value;
3922 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3923 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3926 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3927 uint64_t value)
3929 ARMCPU *cpu = env_archcpu(env);
3930 TCR *tcr = raw_ptr(env, ri);
3932 if (arm_feature(env, ARM_FEATURE_LPAE)) {
3933 /* With LPAE the TTBCR could result in a change of ASID
3934 * via the TTBCR.A1 bit, so do a TLB flush.
3936 tlb_flush(CPU(cpu));
3938 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3939 value = deposit64(tcr->raw_tcr, 0, 32, value);
3940 vmsa_ttbcr_raw_write(env, ri, value);
3943 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3945 TCR *tcr = raw_ptr(env, ri);
3947 /* Reset both the TCR as well as the masks corresponding to the bank of
3948 * the TCR being reset.
3950 tcr->raw_tcr = 0;
3951 tcr->mask = 0;
3952 tcr->base_mask = 0xffffc000u;
3955 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3956 uint64_t value)
3958 ARMCPU *cpu = env_archcpu(env);
3959 TCR *tcr = raw_ptr(env, ri);
3961 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3962 tlb_flush(CPU(cpu));
3963 tcr->raw_tcr = value;
3966 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3967 uint64_t value)
3969 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3970 if (cpreg_field_is_64bit(ri) &&
3971 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3972 ARMCPU *cpu = env_archcpu(env);
3973 tlb_flush(CPU(cpu));
3975 raw_write(env, ri, value);
3978 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3979 uint64_t value)
3982 * If we are running with E2&0 regime, then an ASID is active.
3983 * Flush if that might be changing. Note we're not checking
3984 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3985 * holds the active ASID, only checking the field that might.
3987 if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3988 (arm_hcr_el2_eff(env) & HCR_E2H)) {
3989 tlb_flush_by_mmuidx(env_cpu(env),
3990 ARMMMUIdxBit_E20_2 |
3991 ARMMMUIdxBit_E20_2_PAN |
3992 ARMMMUIdxBit_E20_0);
3994 raw_write(env, ri, value);
3997 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3998 uint64_t value)
4000 ARMCPU *cpu = env_archcpu(env);
4001 CPUState *cs = CPU(cpu);
4004 * A change in VMID to the stage2 page table (Stage2) invalidates
4005 * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4007 if (raw_read(env, ri) != value) {
4008 tlb_flush_by_mmuidx(cs,
4009 ARMMMUIdxBit_E10_1 |
4010 ARMMMUIdxBit_E10_1_PAN |
4011 ARMMMUIdxBit_E10_0);
4012 raw_write(env, ri, value);
4016 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4017 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4018 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4019 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4020 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4021 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4022 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4023 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4024 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4025 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4026 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4027 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4028 offsetof(CPUARMState, cp15.dfar_ns) } },
4029 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4030 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4031 .access = PL1_RW, .accessfn = access_tvm_trvm,
4032 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4033 .resetvalue = 0, },
4034 REGINFO_SENTINEL
4037 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4038 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4039 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4040 .access = PL1_RW, .accessfn = access_tvm_trvm,
4041 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4042 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4043 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4044 .access = PL1_RW, .accessfn = access_tvm_trvm,
4045 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4046 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4047 offsetof(CPUARMState, cp15.ttbr0_ns) } },
4048 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4049 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4050 .access = PL1_RW, .accessfn = access_tvm_trvm,
4051 .writefn = vmsa_ttbr_write, .resetvalue = 0,
4052 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4053 offsetof(CPUARMState, cp15.ttbr1_ns) } },
4054 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4055 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4056 .access = PL1_RW, .accessfn = access_tvm_trvm,
4057 .writefn = vmsa_tcr_el12_write,
4058 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4059 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4060 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4061 .access = PL1_RW, .accessfn = access_tvm_trvm,
4062 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4063 .raw_writefn = vmsa_ttbcr_raw_write,
4064 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4065 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4066 REGINFO_SENTINEL
4069 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4070 * qemu tlbs nor adjusting cached masks.
4072 static const ARMCPRegInfo ttbcr2_reginfo = {
4073 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4074 .access = PL1_RW, .accessfn = access_tvm_trvm,
4075 .type = ARM_CP_ALIAS,
4076 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4077 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
4080 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4081 uint64_t value)
4083 env->cp15.c15_ticonfig = value & 0xe7;
4084 /* The OS_TYPE bit in this register changes the reported CPUID! */
4085 env->cp15.c0_cpuid = (value & (1 << 5)) ?
4086 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4089 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4090 uint64_t value)
4092 env->cp15.c15_threadid = value & 0xffff;
4095 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4096 uint64_t value)
4098 /* Wait-for-interrupt (deprecated) */
4099 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4102 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4103 uint64_t value)
4105 /* On OMAP there are registers indicating the max/min index of dcache lines
4106 * containing a dirty line; cache flush operations have to reset these.
4108 env->cp15.c15_i_max = 0x000;
4109 env->cp15.c15_i_min = 0xff0;
4112 static const ARMCPRegInfo omap_cp_reginfo[] = {
4113 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4114 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4115 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4116 .resetvalue = 0, },
4117 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4118 .access = PL1_RW, .type = ARM_CP_NOP },
4119 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4120 .access = PL1_RW,
4121 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4122 .writefn = omap_ticonfig_write },
4123 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4124 .access = PL1_RW,
4125 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4126 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4127 .access = PL1_RW, .resetvalue = 0xff0,
4128 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4129 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4130 .access = PL1_RW,
4131 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4132 .writefn = omap_threadid_write },
4133 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4134 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4135 .type = ARM_CP_NO_RAW,
4136 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4137 /* TODO: Peripheral port remap register:
4138 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4139 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4140 * when MMU is off.
4142 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4143 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4144 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4145 .writefn = omap_cachemaint_write },
4146 { .name = "C9", .cp = 15, .crn = 9,
4147 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4148 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4149 REGINFO_SENTINEL
4152 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4153 uint64_t value)
4155 env->cp15.c15_cpar = value & 0x3fff;
4158 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4159 { .name = "XSCALE_CPAR",
4160 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4161 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4162 .writefn = xscale_cpar_write, },
4163 { .name = "XSCALE_AUXCR",
4164 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4165 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4166 .resetvalue = 0, },
4167 /* XScale specific cache-lockdown: since we have no cache we NOP these
4168 * and hope the guest does not really rely on cache behaviour.
4170 { .name = "XSCALE_LOCK_ICACHE_LINE",
4171 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4172 .access = PL1_W, .type = ARM_CP_NOP },
4173 { .name = "XSCALE_UNLOCK_ICACHE",
4174 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4175 .access = PL1_W, .type = ARM_CP_NOP },
4176 { .name = "XSCALE_DCACHE_LOCK",
4177 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4178 .access = PL1_RW, .type = ARM_CP_NOP },
4179 { .name = "XSCALE_UNLOCK_DCACHE",
4180 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4181 .access = PL1_W, .type = ARM_CP_NOP },
4182 REGINFO_SENTINEL
4185 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4186 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4187 * implementation of this implementation-defined space.
4188 * Ideally this should eventually disappear in favour of actually
4189 * implementing the correct behaviour for all cores.
4191 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4192 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4193 .access = PL1_RW,
4194 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4195 .resetvalue = 0 },
4196 REGINFO_SENTINEL
4199 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4200 /* Cache status: RAZ because we have no cache so it's always clean */
4201 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4202 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4203 .resetvalue = 0 },
4204 REGINFO_SENTINEL
4207 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4208 /* We never have a a block transfer operation in progress */
4209 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4210 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4211 .resetvalue = 0 },
4212 /* The cache ops themselves: these all NOP for QEMU */
4213 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4214 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4215 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4216 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4217 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4218 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4219 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4220 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4221 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4222 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4223 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4224 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4225 REGINFO_SENTINEL
4228 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4229 /* The cache test-and-clean instructions always return (1 << 30)
4230 * to indicate that there are no dirty cache lines.
4232 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4233 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4234 .resetvalue = (1 << 30) },
4235 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4236 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4237 .resetvalue = (1 << 30) },
4238 REGINFO_SENTINEL
4241 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4242 /* Ignore ReadBuffer accesses */
4243 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4244 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4245 .access = PL1_RW, .resetvalue = 0,
4246 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4247 REGINFO_SENTINEL
4250 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4252 ARMCPU *cpu = env_archcpu(env);
4253 unsigned int cur_el = arm_current_el(env);
4254 bool secure = arm_is_secure(env);
4256 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4257 return env->cp15.vpidr_el2;
4259 return raw_read(env, ri);
4262 static uint64_t mpidr_read_val(CPUARMState *env)
4264 ARMCPU *cpu = env_archcpu(env);
4265 uint64_t mpidr = cpu->mp_affinity;
4267 if (arm_feature(env, ARM_FEATURE_V7MP)) {
4268 mpidr |= (1U << 31);
4269 /* Cores which are uniprocessor (non-coherent)
4270 * but still implement the MP extensions set
4271 * bit 30. (For instance, Cortex-R5).
4273 if (cpu->mp_is_up) {
4274 mpidr |= (1u << 30);
4277 return mpidr;
4280 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4282 unsigned int cur_el = arm_current_el(env);
4283 bool secure = arm_is_secure(env);
4285 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4286 return env->cp15.vmpidr_el2;
4288 return mpidr_read_val(env);
4291 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4292 /* NOP AMAIR0/1 */
4293 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4294 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4295 .access = PL1_RW, .accessfn = access_tvm_trvm,
4296 .type = ARM_CP_CONST, .resetvalue = 0 },
4297 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4298 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4299 .access = PL1_RW, .accessfn = access_tvm_trvm,
4300 .type = ARM_CP_CONST, .resetvalue = 0 },
4301 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4302 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4303 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4304 offsetof(CPUARMState, cp15.par_ns)} },
4305 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4306 .access = PL1_RW, .accessfn = access_tvm_trvm,
4307 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4308 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4309 offsetof(CPUARMState, cp15.ttbr0_ns) },
4310 .writefn = vmsa_ttbr_write, },
4311 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4312 .access = PL1_RW, .accessfn = access_tvm_trvm,
4313 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4314 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4315 offsetof(CPUARMState, cp15.ttbr1_ns) },
4316 .writefn = vmsa_ttbr_write, },
4317 REGINFO_SENTINEL
4320 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4322 return vfp_get_fpcr(env);
4325 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4326 uint64_t value)
4328 vfp_set_fpcr(env, value);
4331 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4333 return vfp_get_fpsr(env);
4336 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4337 uint64_t value)
4339 vfp_set_fpsr(env, value);
4342 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4343 bool isread)
4345 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4346 return CP_ACCESS_TRAP;
4348 return CP_ACCESS_OK;
4351 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4352 uint64_t value)
4354 env->daif = value & PSTATE_DAIF;
4357 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4359 return env->pstate & PSTATE_PAN;
4362 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4363 uint64_t value)
4365 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4368 static const ARMCPRegInfo pan_reginfo = {
4369 .name = "PAN", .state = ARM_CP_STATE_AA64,
4370 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4371 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4372 .readfn = aa64_pan_read, .writefn = aa64_pan_write
4375 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4377 return env->pstate & PSTATE_UAO;
4380 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4381 uint64_t value)
4383 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4386 static const ARMCPRegInfo uao_reginfo = {
4387 .name = "UAO", .state = ARM_CP_STATE_AA64,
4388 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4389 .type = ARM_CP_NO_RAW, .access = PL1_RW,
4390 .readfn = aa64_uao_read, .writefn = aa64_uao_write
4393 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4394 const ARMCPRegInfo *ri,
4395 bool isread)
4397 /* Cache invalidate/clean to Point of Coherency or Persistence... */
4398 switch (arm_current_el(env)) {
4399 case 0:
4400 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4401 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4402 return CP_ACCESS_TRAP;
4404 /* fall through */
4405 case 1:
4406 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
4407 if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4408 return CP_ACCESS_TRAP_EL2;
4410 break;
4412 return CP_ACCESS_OK;
4415 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4416 const ARMCPRegInfo *ri,
4417 bool isread)
4419 /* Cache invalidate/clean to Point of Unification... */
4420 switch (arm_current_el(env)) {
4421 case 0:
4422 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
4423 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4424 return CP_ACCESS_TRAP;
4426 /* fall through */
4427 case 1:
4428 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */
4429 if (arm_hcr_el2_eff(env) & HCR_TPU) {
4430 return CP_ACCESS_TRAP_EL2;
4432 break;
4434 return CP_ACCESS_OK;
4437 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4438 * Page D4-1736 (DDI0487A.b)
4441 static int vae1_tlbmask(CPUARMState *env)
4443 /* Since we exclude secure first, we may read HCR_EL2 directly. */
4444 if (arm_is_secure_below_el3(env)) {
4445 return ARMMMUIdxBit_SE10_1 |
4446 ARMMMUIdxBit_SE10_1_PAN |
4447 ARMMMUIdxBit_SE10_0;
4448 } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
4449 == (HCR_E2H | HCR_TGE)) {
4450 return ARMMMUIdxBit_E20_2 |
4451 ARMMMUIdxBit_E20_2_PAN |
4452 ARMMMUIdxBit_E20_0;
4453 } else {
4454 return ARMMMUIdxBit_E10_1 |
4455 ARMMMUIdxBit_E10_1_PAN |
4456 ARMMMUIdxBit_E10_0;
4460 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4461 uint64_t value)
4463 CPUState *cs = env_cpu(env);
4464 int mask = vae1_tlbmask(env);
4466 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4469 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4470 uint64_t value)
4472 CPUState *cs = env_cpu(env);
4473 int mask = vae1_tlbmask(env);
4475 if (tlb_force_broadcast(env)) {
4476 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4477 } else {
4478 tlb_flush_by_mmuidx(cs, mask);
4482 static int alle1_tlbmask(CPUARMState *env)
4485 * Note that the 'ALL' scope must invalidate both stage 1 and
4486 * stage 2 translations, whereas most other scopes only invalidate
4487 * stage 1 translations.
4489 if (arm_is_secure_below_el3(env)) {
4490 return ARMMMUIdxBit_SE10_1 |
4491 ARMMMUIdxBit_SE10_1_PAN |
4492 ARMMMUIdxBit_SE10_0;
4493 } else {
4494 return ARMMMUIdxBit_E10_1 |
4495 ARMMMUIdxBit_E10_1_PAN |
4496 ARMMMUIdxBit_E10_0;
4500 static int e2_tlbmask(CPUARMState *env)
4502 /* TODO: ARMv8.4-SecEL2 */
4503 return ARMMMUIdxBit_E20_0 |
4504 ARMMMUIdxBit_E20_2 |
4505 ARMMMUIdxBit_E20_2_PAN |
4506 ARMMMUIdxBit_E2;
4509 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4510 uint64_t value)
4512 CPUState *cs = env_cpu(env);
4513 int mask = alle1_tlbmask(env);
4515 tlb_flush_by_mmuidx(cs, mask);
4518 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4519 uint64_t value)
4521 CPUState *cs = env_cpu(env);
4522 int mask = e2_tlbmask(env);
4524 tlb_flush_by_mmuidx(cs, mask);
4527 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4528 uint64_t value)
4530 ARMCPU *cpu = env_archcpu(env);
4531 CPUState *cs = CPU(cpu);
4533 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4536 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4537 uint64_t value)
4539 CPUState *cs = env_cpu(env);
4540 int mask = alle1_tlbmask(env);
4542 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4545 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4546 uint64_t value)
4548 CPUState *cs = env_cpu(env);
4549 int mask = e2_tlbmask(env);
4551 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4554 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4555 uint64_t value)
4557 CPUState *cs = env_cpu(env);
4559 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4562 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4563 uint64_t value)
4565 /* Invalidate by VA, EL2
4566 * Currently handles both VAE2 and VALE2, since we don't support
4567 * flush-last-level-only.
4569 CPUState *cs = env_cpu(env);
4570 int mask = e2_tlbmask(env);
4571 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4573 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4576 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4577 uint64_t value)
4579 /* Invalidate by VA, EL3
4580 * Currently handles both VAE3 and VALE3, since we don't support
4581 * flush-last-level-only.
4583 ARMCPU *cpu = env_archcpu(env);
4584 CPUState *cs = CPU(cpu);
4585 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4587 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4590 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4591 uint64_t value)
4593 CPUState *cs = env_cpu(env);
4594 int mask = vae1_tlbmask(env);
4595 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4597 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4600 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4601 uint64_t value)
4603 /* Invalidate by VA, EL1&0 (AArch64 version).
4604 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4605 * since we don't support flush-for-specific-ASID-only or
4606 * flush-last-level-only.
4608 CPUState *cs = env_cpu(env);
4609 int mask = vae1_tlbmask(env);
4610 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4612 if (tlb_force_broadcast(env)) {
4613 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4614 } else {
4615 tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4619 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4620 uint64_t value)
4622 CPUState *cs = env_cpu(env);
4623 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4625 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4626 ARMMMUIdxBit_E2);
4629 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4630 uint64_t value)
4632 CPUState *cs = env_cpu(env);
4633 uint64_t pageaddr = sextract64(value << 12, 0, 56);
4635 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4636 ARMMMUIdxBit_SE3);
4639 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4640 bool isread)
4642 int cur_el = arm_current_el(env);
4644 if (cur_el < 2) {
4645 uint64_t hcr = arm_hcr_el2_eff(env);
4647 if (cur_el == 0) {
4648 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4649 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4650 return CP_ACCESS_TRAP_EL2;
4652 } else {
4653 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4654 return CP_ACCESS_TRAP;
4656 if (hcr & HCR_TDZ) {
4657 return CP_ACCESS_TRAP_EL2;
4660 } else if (hcr & HCR_TDZ) {
4661 return CP_ACCESS_TRAP_EL2;
4664 return CP_ACCESS_OK;
4667 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4669 ARMCPU *cpu = env_archcpu(env);
4670 int dzp_bit = 1 << 4;
4672 /* DZP indicates whether DC ZVA access is allowed */
4673 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4674 dzp_bit = 0;
4676 return cpu->dcz_blocksize | dzp_bit;
4679 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4680 bool isread)
4682 if (!(env->pstate & PSTATE_SP)) {
4683 /* Access to SP_EL0 is undefined if it's being used as
4684 * the stack pointer.
4686 return CP_ACCESS_TRAP_UNCATEGORIZED;
4688 return CP_ACCESS_OK;
4691 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4693 return env->pstate & PSTATE_SP;
4696 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4698 update_spsel(env, val);
4701 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4702 uint64_t value)
4704 ARMCPU *cpu = env_archcpu(env);
4706 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4707 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4708 value &= ~SCTLR_M;
4711 /* ??? Lots of these bits are not implemented. */
4713 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4714 if (ri->opc1 == 6) { /* SCTLR_EL3 */
4715 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4716 } else {
4717 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4718 SCTLR_ATA0 | SCTLR_ATA);
4722 if (raw_read(env, ri) == value) {
4723 /* Skip the TLB flush if nothing actually changed; Linux likes
4724 * to do a lot of pointless SCTLR writes.
4726 return;
4729 raw_write(env, ri, value);
4731 /* This may enable/disable the MMU, so do a TLB flush. */
4732 tlb_flush(CPU(cpu));
4734 if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4736 * Normally we would always end the TB on an SCTLR write; see the
4737 * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4738 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4739 * of hflags from the translator, so do it here.
4741 arm_rebuild_hflags(env);
4745 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4746 bool isread)
4748 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4749 return CP_ACCESS_TRAP_FP_EL2;
4751 if (env->cp15.cptr_el[3] & CPTR_TFP) {
4752 return CP_ACCESS_TRAP_FP_EL3;
4754 return CP_ACCESS_OK;
4757 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4758 uint64_t value)
4760 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4763 static const ARMCPRegInfo v8_cp_reginfo[] = {
4764 /* Minimal set of EL0-visible registers. This will need to be expanded
4765 * significantly for system emulation of AArch64 CPUs.
4767 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4768 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4769 .access = PL0_RW, .type = ARM_CP_NZCV },
4770 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4771 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4772 .type = ARM_CP_NO_RAW,
4773 .access = PL0_RW, .accessfn = aa64_daif_access,
4774 .fieldoffset = offsetof(CPUARMState, daif),
4775 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4776 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4777 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4778 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4779 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4780 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4781 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4782 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4783 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4784 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4785 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4786 .access = PL0_R, .type = ARM_CP_NO_RAW,
4787 .readfn = aa64_dczid_read },
4788 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4789 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4790 .access = PL0_W, .type = ARM_CP_DC_ZVA,
4791 #ifndef CONFIG_USER_ONLY
4792 /* Avoid overhead of an access check that always passes in user-mode */
4793 .accessfn = aa64_zva_access,
4794 #endif
4796 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4797 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4798 .access = PL1_R, .type = ARM_CP_CURRENTEL },
4799 /* Cache ops: all NOPs since we don't emulate caches */
4800 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4801 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4802 .access = PL1_W, .type = ARM_CP_NOP,
4803 .accessfn = aa64_cacheop_pou_access },
4804 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4805 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4806 .access = PL1_W, .type = ARM_CP_NOP,
4807 .accessfn = aa64_cacheop_pou_access },
4808 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4809 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4810 .access = PL0_W, .type = ARM_CP_NOP,
4811 .accessfn = aa64_cacheop_pou_access },
4812 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4813 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4814 .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4815 .type = ARM_CP_NOP },
4816 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4817 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4818 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4819 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4820 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4821 .access = PL0_W, .type = ARM_CP_NOP,
4822 .accessfn = aa64_cacheop_poc_access },
4823 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4824 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4825 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4826 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4827 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4828 .access = PL0_W, .type = ARM_CP_NOP,
4829 .accessfn = aa64_cacheop_pou_access },
4830 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4831 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4832 .access = PL0_W, .type = ARM_CP_NOP,
4833 .accessfn = aa64_cacheop_poc_access },
4834 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4835 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4836 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4837 /* TLBI operations */
4838 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4839 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4840 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4841 .writefn = tlbi_aa64_vmalle1is_write },
4842 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4843 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4844 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4845 .writefn = tlbi_aa64_vae1is_write },
4846 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4847 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4848 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4849 .writefn = tlbi_aa64_vmalle1is_write },
4850 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4851 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4852 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4853 .writefn = tlbi_aa64_vae1is_write },
4854 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4855 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4856 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4857 .writefn = tlbi_aa64_vae1is_write },
4858 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4859 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4860 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4861 .writefn = tlbi_aa64_vae1is_write },
4862 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4863 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4864 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4865 .writefn = tlbi_aa64_vmalle1_write },
4866 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4867 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4868 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4869 .writefn = tlbi_aa64_vae1_write },
4870 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4871 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4872 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4873 .writefn = tlbi_aa64_vmalle1_write },
4874 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4875 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4876 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4877 .writefn = tlbi_aa64_vae1_write },
4878 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4879 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4880 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4881 .writefn = tlbi_aa64_vae1_write },
4882 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4883 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4884 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4885 .writefn = tlbi_aa64_vae1_write },
4886 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4887 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4888 .access = PL2_W, .type = ARM_CP_NOP },
4889 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4890 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4891 .access = PL2_W, .type = ARM_CP_NOP },
4892 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4893 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4894 .access = PL2_W, .type = ARM_CP_NO_RAW,
4895 .writefn = tlbi_aa64_alle1is_write },
4896 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4897 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4898 .access = PL2_W, .type = ARM_CP_NO_RAW,
4899 .writefn = tlbi_aa64_alle1is_write },
4900 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4901 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4902 .access = PL2_W, .type = ARM_CP_NOP },
4903 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4904 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4905 .access = PL2_W, .type = ARM_CP_NOP },
4906 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4907 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4908 .access = PL2_W, .type = ARM_CP_NO_RAW,
4909 .writefn = tlbi_aa64_alle1_write },
4910 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4911 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4912 .access = PL2_W, .type = ARM_CP_NO_RAW,
4913 .writefn = tlbi_aa64_alle1is_write },
4914 #ifndef CONFIG_USER_ONLY
4915 /* 64 bit address translation operations */
4916 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4917 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4918 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4919 .writefn = ats_write64 },
4920 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4921 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4922 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4923 .writefn = ats_write64 },
4924 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4925 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4926 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4927 .writefn = ats_write64 },
4928 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4929 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4930 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4931 .writefn = ats_write64 },
4932 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4933 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4934 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4935 .writefn = ats_write64 },
4936 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4937 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4938 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4939 .writefn = ats_write64 },
4940 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4941 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4942 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4943 .writefn = ats_write64 },
4944 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4945 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4946 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4947 .writefn = ats_write64 },
4948 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4949 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4950 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4951 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4952 .writefn = ats_write64 },
4953 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4954 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4955 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4956 .writefn = ats_write64 },
4957 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4958 .type = ARM_CP_ALIAS,
4959 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4960 .access = PL1_RW, .resetvalue = 0,
4961 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4962 .writefn = par_write },
4963 #endif
4964 /* TLB invalidate last level of translation table walk */
4965 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4966 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4967 .writefn = tlbimva_is_write },
4968 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4969 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4970 .writefn = tlbimvaa_is_write },
4971 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4972 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4973 .writefn = tlbimva_write },
4974 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4975 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4976 .writefn = tlbimvaa_write },
4977 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4978 .type = ARM_CP_NO_RAW, .access = PL2_W,
4979 .writefn = tlbimva_hyp_write },
4980 { .name = "TLBIMVALHIS",
4981 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4982 .type = ARM_CP_NO_RAW, .access = PL2_W,
4983 .writefn = tlbimva_hyp_is_write },
4984 { .name = "TLBIIPAS2",
4985 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4986 .type = ARM_CP_NOP, .access = PL2_W },
4987 { .name = "TLBIIPAS2IS",
4988 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4989 .type = ARM_CP_NOP, .access = PL2_W },
4990 { .name = "TLBIIPAS2L",
4991 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4992 .type = ARM_CP_NOP, .access = PL2_W },
4993 { .name = "TLBIIPAS2LIS",
4994 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4995 .type = ARM_CP_NOP, .access = PL2_W },
4996 /* 32 bit cache operations */
4997 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4998 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
4999 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5000 .type = ARM_CP_NOP, .access = PL1_W },
5001 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5002 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5003 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5004 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5005 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5006 .type = ARM_CP_NOP, .access = PL1_W },
5007 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5008 .type = ARM_CP_NOP, .access = PL1_W },
5009 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5010 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5011 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5012 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5013 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5014 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5015 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5016 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5017 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5018 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5019 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5020 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5021 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5022 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5023 /* MMU Domain access control / MPU write buffer control */
5024 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5025 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5026 .writefn = dacr_write, .raw_writefn = raw_write,
5027 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5028 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5029 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5030 .type = ARM_CP_ALIAS,
5031 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5032 .access = PL1_RW,
5033 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5034 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5035 .type = ARM_CP_ALIAS,
5036 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5037 .access = PL1_RW,
5038 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5039 /* We rely on the access checks not allowing the guest to write to the
5040 * state field when SPSel indicates that it's being used as the stack
5041 * pointer.
5043 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5044 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5045 .access = PL1_RW, .accessfn = sp_el0_access,
5046 .type = ARM_CP_ALIAS,
5047 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5048 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5049 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5050 .access = PL2_RW, .type = ARM_CP_ALIAS,
5051 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5052 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5053 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5054 .type = ARM_CP_NO_RAW,
5055 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5056 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5057 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5058 .type = ARM_CP_ALIAS,
5059 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5060 .access = PL2_RW, .accessfn = fpexc32_access },
5061 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5062 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5063 .access = PL2_RW, .resetvalue = 0,
5064 .writefn = dacr_write, .raw_writefn = raw_write,
5065 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5066 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5067 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5068 .access = PL2_RW, .resetvalue = 0,
5069 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5070 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5071 .type = ARM_CP_ALIAS,
5072 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5073 .access = PL2_RW,
5074 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5075 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5076 .type = ARM_CP_ALIAS,
5077 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5078 .access = PL2_RW,
5079 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5080 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5081 .type = ARM_CP_ALIAS,
5082 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5083 .access = PL2_RW,
5084 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5085 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5086 .type = ARM_CP_ALIAS,
5087 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5088 .access = PL2_RW,
5089 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5090 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5091 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5092 .resetvalue = 0,
5093 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5094 { .name = "SDCR", .type = ARM_CP_ALIAS,
5095 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5096 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5097 .writefn = sdcr_write,
5098 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5099 REGINFO_SENTINEL
5102 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
5103 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5104 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5105 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5106 .access = PL2_RW,
5107 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5108 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5109 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5110 .access = PL2_RW,
5111 .type = ARM_CP_CONST, .resetvalue = 0 },
5112 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5113 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5114 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5115 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5116 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5117 .access = PL2_RW,
5118 .type = ARM_CP_CONST, .resetvalue = 0 },
5119 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5120 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5121 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5122 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5123 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5124 .access = PL2_RW, .type = ARM_CP_CONST,
5125 .resetvalue = 0 },
5126 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5127 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5128 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5129 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5130 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5131 .access = PL2_RW, .type = ARM_CP_CONST,
5132 .resetvalue = 0 },
5133 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5134 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5135 .access = PL2_RW, .type = ARM_CP_CONST,
5136 .resetvalue = 0 },
5137 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5138 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5139 .access = PL2_RW, .type = ARM_CP_CONST,
5140 .resetvalue = 0 },
5141 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5142 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5143 .access = PL2_RW, .type = ARM_CP_CONST,
5144 .resetvalue = 0 },
5145 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5146 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5147 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5148 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5149 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5150 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5151 .type = ARM_CP_CONST, .resetvalue = 0 },
5152 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5153 .cp = 15, .opc1 = 6, .crm = 2,
5154 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5155 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5156 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5157 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5158 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5159 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5160 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5161 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5162 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5163 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5164 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5165 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5166 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5167 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5168 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5169 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5170 .resetvalue = 0 },
5171 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5172 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5173 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5174 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5175 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5176 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5177 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5178 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5179 .resetvalue = 0 },
5180 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5181 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5182 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5183 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5184 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5185 .resetvalue = 0 },
5186 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5187 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5188 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5189 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5190 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5191 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5192 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5193 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5194 .access = PL2_RW, .accessfn = access_tda,
5195 .type = ARM_CP_CONST, .resetvalue = 0 },
5196 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5197 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5198 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5199 .type = ARM_CP_CONST, .resetvalue = 0 },
5200 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5201 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5202 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5203 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5204 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5205 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5206 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5207 .type = ARM_CP_CONST,
5208 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5209 .access = PL2_RW, .resetvalue = 0 },
5210 REGINFO_SENTINEL
5213 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5214 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5215 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5216 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5217 .access = PL2_RW,
5218 .type = ARM_CP_CONST, .resetvalue = 0 },
5219 REGINFO_SENTINEL
5222 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5224 ARMCPU *cpu = env_archcpu(env);
5226 if (arm_feature(env, ARM_FEATURE_V8)) {
5227 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
5228 } else {
5229 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
5232 if (arm_feature(env, ARM_FEATURE_EL3)) {
5233 valid_mask &= ~HCR_HCD;
5234 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5235 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5236 * However, if we're using the SMC PSCI conduit then QEMU is
5237 * effectively acting like EL3 firmware and so the guest at
5238 * EL2 should retain the ability to prevent EL1 from being
5239 * able to make SMC calls into the ersatz firmware, so in
5240 * that case HCR.TSC should be read/write.
5242 valid_mask &= ~HCR_TSC;
5245 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5246 if (cpu_isar_feature(aa64_vh, cpu)) {
5247 valid_mask |= HCR_E2H;
5249 if (cpu_isar_feature(aa64_lor, cpu)) {
5250 valid_mask |= HCR_TLOR;
5252 if (cpu_isar_feature(aa64_pauth, cpu)) {
5253 valid_mask |= HCR_API | HCR_APK;
5255 if (cpu_isar_feature(aa64_mte, cpu)) {
5256 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5260 /* Clear RES0 bits. */
5261 value &= valid_mask;
5264 * These bits change the MMU setup:
5265 * HCR_VM enables stage 2 translation
5266 * HCR_PTW forbids certain page-table setups
5267 * HCR_DC disables stage1 and enables stage2 translation
5268 * HCR_DCT enables tagging on (disabled) stage1 translation
5270 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5271 tlb_flush(CPU(cpu));
5273 env->cp15.hcr_el2 = value;
5276 * Updates to VI and VF require us to update the status of
5277 * virtual interrupts, which are the logical OR of these bits
5278 * and the state of the input lines from the GIC. (This requires
5279 * that we have the iothread lock, which is done by marking the
5280 * reginfo structs as ARM_CP_IO.)
5281 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5282 * possible for it to be taken immediately, because VIRQ and
5283 * VFIQ are masked unless running at EL0 or EL1, and HCR
5284 * can only be written at EL2.
5286 g_assert(qemu_mutex_iothread_locked());
5287 arm_cpu_update_virq(cpu);
5288 arm_cpu_update_vfiq(cpu);
5291 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5293 do_hcr_write(env, value, 0);
5296 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5297 uint64_t value)
5299 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5300 value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5301 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5304 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5305 uint64_t value)
5307 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5308 value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5309 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5313 * Return the effective value of HCR_EL2.
5314 * Bits that are not included here:
5315 * RW (read from SCR_EL3.RW as needed)
5317 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5319 uint64_t ret = env->cp15.hcr_el2;
5321 if (arm_is_secure_below_el3(env)) {
5323 * "This register has no effect if EL2 is not enabled in the
5324 * current Security state". This is ARMv8.4-SecEL2 speak for
5325 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5327 * Prior to that, the language was "In an implementation that
5328 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5329 * as if this field is 0 for all purposes other than a direct
5330 * read or write access of HCR_EL2". With lots of enumeration
5331 * on a per-field basis. In current QEMU, this is condition
5332 * is arm_is_secure_below_el3.
5334 * Since the v8.4 language applies to the entire register, and
5335 * appears to be backward compatible, use that.
5337 return 0;
5341 * For a cpu that supports both aarch64 and aarch32, we can set bits
5342 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5343 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5345 if (!arm_el_is_aa64(env, 2)) {
5346 uint64_t aa32_valid;
5349 * These bits are up-to-date as of ARMv8.6.
5350 * For HCR, it's easiest to list just the 2 bits that are invalid.
5351 * For HCR2, list those that are valid.
5353 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5354 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5355 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5356 ret &= aa32_valid;
5359 if (ret & HCR_TGE) {
5360 /* These bits are up-to-date as of ARMv8.6. */
5361 if (ret & HCR_E2H) {
5362 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5363 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5364 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5365 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5366 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5367 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5368 } else {
5369 ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5371 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5372 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5373 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5374 HCR_TLOR);
5377 return ret;
5380 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5381 uint64_t value)
5384 * For A-profile AArch32 EL3, if NSACR.CP10
5385 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5387 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5388 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5389 value &= ~(0x3 << 10);
5390 value |= env->cp15.cptr_el[2] & (0x3 << 10);
5392 env->cp15.cptr_el[2] = value;
5395 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5398 * For A-profile AArch32 EL3, if NSACR.CP10
5399 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5401 uint64_t value = env->cp15.cptr_el[2];
5403 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5404 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5405 value |= 0x3 << 10;
5407 return value;
5410 static const ARMCPRegInfo el2_cp_reginfo[] = {
5411 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5412 .type = ARM_CP_IO,
5413 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5414 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5415 .writefn = hcr_write },
5416 { .name = "HCR", .state = ARM_CP_STATE_AA32,
5417 .type = ARM_CP_ALIAS | ARM_CP_IO,
5418 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5419 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5420 .writefn = hcr_writelow },
5421 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5422 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5423 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5424 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5425 .type = ARM_CP_ALIAS,
5426 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5427 .access = PL2_RW,
5428 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5429 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5430 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5431 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5432 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5433 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5434 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5435 { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5436 .type = ARM_CP_ALIAS,
5437 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5438 .access = PL2_RW,
5439 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5440 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5441 .type = ARM_CP_ALIAS,
5442 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5443 .access = PL2_RW,
5444 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5445 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5446 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5447 .access = PL2_RW, .writefn = vbar_write,
5448 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5449 .resetvalue = 0 },
5450 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5451 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5452 .access = PL3_RW, .type = ARM_CP_ALIAS,
5453 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5454 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5455 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5456 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5457 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5458 .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5459 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5460 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5461 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5462 .resetvalue = 0 },
5463 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5464 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5465 .access = PL2_RW, .type = ARM_CP_ALIAS,
5466 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5467 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5468 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5469 .access = PL2_RW, .type = ARM_CP_CONST,
5470 .resetvalue = 0 },
5471 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5472 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5473 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5474 .access = PL2_RW, .type = ARM_CP_CONST,
5475 .resetvalue = 0 },
5476 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5477 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5478 .access = PL2_RW, .type = ARM_CP_CONST,
5479 .resetvalue = 0 },
5480 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5481 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5482 .access = PL2_RW, .type = ARM_CP_CONST,
5483 .resetvalue = 0 },
5484 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5485 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5486 .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5487 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5488 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5489 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5490 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5491 .type = ARM_CP_ALIAS,
5492 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5493 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5494 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5495 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5496 .access = PL2_RW,
5497 /* no .writefn needed as this can't cause an ASID change;
5498 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5500 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5501 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5502 .cp = 15, .opc1 = 6, .crm = 2,
5503 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5504 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5505 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5506 .writefn = vttbr_write },
5507 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5508 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5509 .access = PL2_RW, .writefn = vttbr_write,
5510 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5511 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5512 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5513 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5514 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5515 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5516 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5517 .access = PL2_RW, .resetvalue = 0,
5518 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5519 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5520 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5521 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5522 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5523 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5524 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5525 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5526 { .name = "TLBIALLNSNH",
5527 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5528 .type = ARM_CP_NO_RAW, .access = PL2_W,
5529 .writefn = tlbiall_nsnh_write },
5530 { .name = "TLBIALLNSNHIS",
5531 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5532 .type = ARM_CP_NO_RAW, .access = PL2_W,
5533 .writefn = tlbiall_nsnh_is_write },
5534 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5535 .type = ARM_CP_NO_RAW, .access = PL2_W,
5536 .writefn = tlbiall_hyp_write },
5537 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5538 .type = ARM_CP_NO_RAW, .access = PL2_W,
5539 .writefn = tlbiall_hyp_is_write },
5540 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5541 .type = ARM_CP_NO_RAW, .access = PL2_W,
5542 .writefn = tlbimva_hyp_write },
5543 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5544 .type = ARM_CP_NO_RAW, .access = PL2_W,
5545 .writefn = tlbimva_hyp_is_write },
5546 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5547 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5548 .type = ARM_CP_NO_RAW, .access = PL2_W,
5549 .writefn = tlbi_aa64_alle2_write },
5550 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5551 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5552 .type = ARM_CP_NO_RAW, .access = PL2_W,
5553 .writefn = tlbi_aa64_vae2_write },
5554 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5555 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5556 .access = PL2_W, .type = ARM_CP_NO_RAW,
5557 .writefn = tlbi_aa64_vae2_write },
5558 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5559 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5560 .access = PL2_W, .type = ARM_CP_NO_RAW,
5561 .writefn = tlbi_aa64_alle2is_write },
5562 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5563 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5564 .type = ARM_CP_NO_RAW, .access = PL2_W,
5565 .writefn = tlbi_aa64_vae2is_write },
5566 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5567 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5568 .access = PL2_W, .type = ARM_CP_NO_RAW,
5569 .writefn = tlbi_aa64_vae2is_write },
5570 #ifndef CONFIG_USER_ONLY
5571 /* Unlike the other EL2-related AT operations, these must
5572 * UNDEF from EL3 if EL2 is not implemented, which is why we
5573 * define them here rather than with the rest of the AT ops.
5575 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5576 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5577 .access = PL2_W, .accessfn = at_s1e2_access,
5578 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5579 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5580 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5581 .access = PL2_W, .accessfn = at_s1e2_access,
5582 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5583 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5584 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5585 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5586 * to behave as if SCR.NS was 1.
5588 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5589 .access = PL2_W,
5590 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5591 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5592 .access = PL2_W,
5593 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5594 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5595 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5596 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5597 * reset values as IMPDEF. We choose to reset to 3 to comply with
5598 * both ARMv7 and ARMv8.
5600 .access = PL2_RW, .resetvalue = 3,
5601 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5602 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5603 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5604 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5605 .writefn = gt_cntvoff_write,
5606 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5607 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5608 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5609 .writefn = gt_cntvoff_write,
5610 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5611 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5612 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5613 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5614 .type = ARM_CP_IO, .access = PL2_RW,
5615 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5616 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5617 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5618 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5619 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5620 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5621 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5622 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5623 .resetfn = gt_hyp_timer_reset,
5624 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5625 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5626 .type = ARM_CP_IO,
5627 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5628 .access = PL2_RW,
5629 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5630 .resetvalue = 0,
5631 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5632 #endif
5633 /* The only field of MDCR_EL2 that has a defined architectural reset value
5634 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5635 * don't implement any PMU event counters, so using zero as a reset
5636 * value for MDCR_EL2 is okay
5638 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5639 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5640 .access = PL2_RW, .resetvalue = 0,
5641 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5642 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5643 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5644 .access = PL2_RW, .accessfn = access_el3_aa32ns,
5645 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5646 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5647 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5648 .access = PL2_RW,
5649 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5650 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5651 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5652 .access = PL2_RW,
5653 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5654 REGINFO_SENTINEL
5657 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5658 { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5659 .type = ARM_CP_ALIAS | ARM_CP_IO,
5660 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5661 .access = PL2_RW,
5662 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5663 .writefn = hcr_writehigh },
5664 REGINFO_SENTINEL
5667 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5668 bool isread)
5670 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5671 * At Secure EL1 it traps to EL3.
5673 if (arm_current_el(env) == 3) {
5674 return CP_ACCESS_OK;
5676 if (arm_is_secure_below_el3(env)) {
5677 return CP_ACCESS_TRAP_EL3;
5679 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5680 if (isread) {
5681 return CP_ACCESS_OK;
5683 return CP_ACCESS_TRAP_UNCATEGORIZED;
5686 static const ARMCPRegInfo el3_cp_reginfo[] = {
5687 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5688 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5689 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5690 .resetvalue = 0, .writefn = scr_write },
5691 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5692 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5693 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5694 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5695 .writefn = scr_write },
5696 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5697 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5698 .access = PL3_RW, .resetvalue = 0,
5699 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5700 { .name = "SDER",
5701 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5702 .access = PL3_RW, .resetvalue = 0,
5703 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5704 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5705 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5706 .writefn = vbar_write, .resetvalue = 0,
5707 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5708 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5709 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5710 .access = PL3_RW, .resetvalue = 0,
5711 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5712 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5713 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5714 .access = PL3_RW,
5715 /* no .writefn needed as this can't cause an ASID change;
5716 * we must provide a .raw_writefn and .resetfn because we handle
5717 * reset and migration for the AArch32 TTBCR(S), which might be
5718 * using mask and base_mask.
5720 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5721 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5722 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5723 .type = ARM_CP_ALIAS,
5724 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5725 .access = PL3_RW,
5726 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5727 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5728 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5729 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5730 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5731 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5732 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5733 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5734 .type = ARM_CP_ALIAS,
5735 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5736 .access = PL3_RW,
5737 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5738 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5739 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5740 .access = PL3_RW, .writefn = vbar_write,
5741 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5742 .resetvalue = 0 },
5743 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5744 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5745 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5746 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5747 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5748 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5749 .access = PL3_RW, .resetvalue = 0,
5750 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5751 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5752 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5753 .access = PL3_RW, .type = ARM_CP_CONST,
5754 .resetvalue = 0 },
5755 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5756 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5757 .access = PL3_RW, .type = ARM_CP_CONST,
5758 .resetvalue = 0 },
5759 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5760 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5761 .access = PL3_RW, .type = ARM_CP_CONST,
5762 .resetvalue = 0 },
5763 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5764 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5765 .access = PL3_W, .type = ARM_CP_NO_RAW,
5766 .writefn = tlbi_aa64_alle3is_write },
5767 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5768 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5769 .access = PL3_W, .type = ARM_CP_NO_RAW,
5770 .writefn = tlbi_aa64_vae3is_write },
5771 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5772 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5773 .access = PL3_W, .type = ARM_CP_NO_RAW,
5774 .writefn = tlbi_aa64_vae3is_write },
5775 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5776 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5777 .access = PL3_W, .type = ARM_CP_NO_RAW,
5778 .writefn = tlbi_aa64_alle3_write },
5779 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5780 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5781 .access = PL3_W, .type = ARM_CP_NO_RAW,
5782 .writefn = tlbi_aa64_vae3_write },
5783 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5784 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5785 .access = PL3_W, .type = ARM_CP_NO_RAW,
5786 .writefn = tlbi_aa64_vae3_write },
5787 REGINFO_SENTINEL
5790 #ifndef CONFIG_USER_ONLY
5791 /* Test if system register redirection is to occur in the current state. */
5792 static bool redirect_for_e2h(CPUARMState *env)
5794 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5797 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5799 CPReadFn *readfn;
5801 if (redirect_for_e2h(env)) {
5802 /* Switch to the saved EL2 version of the register. */
5803 ri = ri->opaque;
5804 readfn = ri->readfn;
5805 } else {
5806 readfn = ri->orig_readfn;
5808 if (readfn == NULL) {
5809 readfn = raw_read;
5811 return readfn(env, ri);
5814 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5815 uint64_t value)
5817 CPWriteFn *writefn;
5819 if (redirect_for_e2h(env)) {
5820 /* Switch to the saved EL2 version of the register. */
5821 ri = ri->opaque;
5822 writefn = ri->writefn;
5823 } else {
5824 writefn = ri->orig_writefn;
5826 if (writefn == NULL) {
5827 writefn = raw_write;
5829 writefn(env, ri, value);
5832 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5834 struct E2HAlias {
5835 uint32_t src_key, dst_key, new_key;
5836 const char *src_name, *dst_name, *new_name;
5837 bool (*feature)(const ARMISARegisters *id);
5840 #define K(op0, op1, crn, crm, op2) \
5841 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5843 static const struct E2HAlias aliases[] = {
5844 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
5845 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5846 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
5847 "CPACR", "CPTR_EL2", "CPACR_EL12" },
5848 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
5849 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5850 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
5851 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5852 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
5853 "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5854 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
5855 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5856 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
5857 "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5858 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
5859 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5860 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
5861 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5862 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
5863 "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5864 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
5865 "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5866 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5867 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5868 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5869 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5870 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5871 "VBAR", "VBAR_EL2", "VBAR_EL12" },
5872 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5873 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5874 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5875 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5878 * Note that redirection of ZCR is mentioned in the description
5879 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5880 * not in the summary table.
5882 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
5883 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5885 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
5886 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5888 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5889 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5891 #undef K
5893 size_t i;
5895 for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5896 const struct E2HAlias *a = &aliases[i];
5897 ARMCPRegInfo *src_reg, *dst_reg;
5899 if (a->feature && !a->feature(&cpu->isar)) {
5900 continue;
5903 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5904 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5905 g_assert(src_reg != NULL);
5906 g_assert(dst_reg != NULL);
5908 /* Cross-compare names to detect typos in the keys. */
5909 g_assert(strcmp(src_reg->name, a->src_name) == 0);
5910 g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5912 /* None of the core system registers use opaque; we will. */
5913 g_assert(src_reg->opaque == NULL);
5915 /* Create alias before redirection so we dup the right data. */
5916 if (a->new_key) {
5917 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5918 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5919 bool ok;
5921 new_reg->name = a->new_name;
5922 new_reg->type |= ARM_CP_ALIAS;
5923 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
5924 new_reg->access &= PL2_RW | PL3_RW;
5926 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5927 g_assert(ok);
5930 src_reg->opaque = dst_reg;
5931 src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5932 src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5933 if (!src_reg->raw_readfn) {
5934 src_reg->raw_readfn = raw_read;
5936 if (!src_reg->raw_writefn) {
5937 src_reg->raw_writefn = raw_write;
5939 src_reg->readfn = el2_e2h_read;
5940 src_reg->writefn = el2_e2h_write;
5943 #endif
5945 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5946 bool isread)
5948 int cur_el = arm_current_el(env);
5950 if (cur_el < 2) {
5951 uint64_t hcr = arm_hcr_el2_eff(env);
5953 if (cur_el == 0) {
5954 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5955 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5956 return CP_ACCESS_TRAP_EL2;
5958 } else {
5959 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5960 return CP_ACCESS_TRAP;
5962 if (hcr & HCR_TID2) {
5963 return CP_ACCESS_TRAP_EL2;
5966 } else if (hcr & HCR_TID2) {
5967 return CP_ACCESS_TRAP_EL2;
5971 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
5972 return CP_ACCESS_TRAP_EL2;
5975 return CP_ACCESS_OK;
5978 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5979 uint64_t value)
5981 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5982 * read via a bit in OSLSR_EL1.
5984 int oslock;
5986 if (ri->state == ARM_CP_STATE_AA32) {
5987 oslock = (value == 0xC5ACCE55);
5988 } else {
5989 oslock = value & 1;
5992 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5995 static const ARMCPRegInfo debug_cp_reginfo[] = {
5996 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5997 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5998 * unlike DBGDRAR it is never accessible from EL0.
5999 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6000 * accessor.
6002 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6003 .access = PL0_R, .accessfn = access_tdra,
6004 .type = ARM_CP_CONST, .resetvalue = 0 },
6005 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6006 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6007 .access = PL1_R, .accessfn = access_tdra,
6008 .type = ARM_CP_CONST, .resetvalue = 0 },
6009 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6010 .access = PL0_R, .accessfn = access_tdra,
6011 .type = ARM_CP_CONST, .resetvalue = 0 },
6012 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6013 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6014 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6015 .access = PL1_RW, .accessfn = access_tda,
6016 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6017 .resetvalue = 0 },
6018 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
6019 * We don't implement the configurable EL0 access.
6021 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
6022 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6023 .type = ARM_CP_ALIAS,
6024 .access = PL1_R, .accessfn = access_tda,
6025 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6026 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6027 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6028 .access = PL1_W, .type = ARM_CP_NO_RAW,
6029 .accessfn = access_tdosa,
6030 .writefn = oslar_write },
6031 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6032 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6033 .access = PL1_R, .resetvalue = 10,
6034 .accessfn = access_tdosa,
6035 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6036 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6037 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6038 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6039 .access = PL1_RW, .accessfn = access_tdosa,
6040 .type = ARM_CP_NOP },
6041 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6042 * implement vector catch debug events yet.
6044 { .name = "DBGVCR",
6045 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6046 .access = PL1_RW, .accessfn = access_tda,
6047 .type = ARM_CP_NOP },
6048 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6049 * to save and restore a 32-bit guest's DBGVCR)
6051 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6052 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6053 .access = PL2_RW, .accessfn = access_tda,
6054 .type = ARM_CP_NOP },
6055 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6056 * Channel but Linux may try to access this register. The 32-bit
6057 * alias is DBGDCCINT.
6059 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6060 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6061 .access = PL1_RW, .accessfn = access_tda,
6062 .type = ARM_CP_NOP },
6063 REGINFO_SENTINEL
6066 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6067 /* 64 bit access versions of the (dummy) debug registers */
6068 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6069 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6070 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6071 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6072 REGINFO_SENTINEL
6075 /* Return the exception level to which exceptions should be taken
6076 * via SVEAccessTrap. If an exception should be routed through
6077 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6078 * take care of raising that exception.
6079 * C.f. the ARM pseudocode function CheckSVEEnabled.
6081 int sve_exception_el(CPUARMState *env, int el)
6083 #ifndef CONFIG_USER_ONLY
6084 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6086 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6087 bool disabled = false;
6089 /* The CPACR.ZEN controls traps to EL1:
6090 * 0, 2 : trap EL0 and EL1 accesses
6091 * 1 : trap only EL0 accesses
6092 * 3 : trap no accesses
6094 if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6095 disabled = true;
6096 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6097 disabled = el == 0;
6099 if (disabled) {
6100 /* route_to_el2 */
6101 return hcr_el2 & HCR_TGE ? 2 : 1;
6104 /* Check CPACR.FPEN. */
6105 if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6106 disabled = true;
6107 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6108 disabled = el == 0;
6110 if (disabled) {
6111 return 0;
6115 /* CPTR_EL2. Since TZ and TFP are positive,
6116 * they will be zero when EL2 is not present.
6118 if (el <= 2 && !arm_is_secure_below_el3(env)) {
6119 if (env->cp15.cptr_el[2] & CPTR_TZ) {
6120 return 2;
6122 if (env->cp15.cptr_el[2] & CPTR_TFP) {
6123 return 0;
6127 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
6128 if (arm_feature(env, ARM_FEATURE_EL3)
6129 && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6130 return 3;
6132 #endif
6133 return 0;
6136 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6138 uint32_t end_len;
6140 end_len = start_len &= 0xf;
6141 if (!test_bit(start_len, cpu->sve_vq_map)) {
6142 end_len = find_last_bit(cpu->sve_vq_map, start_len);
6143 assert(end_len < start_len);
6145 return end_len;
6149 * Given that SVE is enabled, return the vector length for EL.
6151 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6153 ARMCPU *cpu = env_archcpu(env);
6154 uint32_t zcr_len = cpu->sve_max_vq - 1;
6156 if (el <= 1) {
6157 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6159 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6160 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6162 if (arm_feature(env, ARM_FEATURE_EL3)) {
6163 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6166 return sve_zcr_get_valid_len(cpu, zcr_len);
6169 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6170 uint64_t value)
6172 int cur_el = arm_current_el(env);
6173 int old_len = sve_zcr_len_for_el(env, cur_el);
6174 int new_len;
6176 /* Bits other than [3:0] are RAZ/WI. */
6177 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6178 raw_write(env, ri, value & 0xf);
6181 * Because we arrived here, we know both FP and SVE are enabled;
6182 * otherwise we would have trapped access to the ZCR_ELn register.
6184 new_len = sve_zcr_len_for_el(env, cur_el);
6185 if (new_len < old_len) {
6186 aarch64_sve_narrow_vq(env, new_len + 1);
6190 static const ARMCPRegInfo zcr_el1_reginfo = {
6191 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6192 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6193 .access = PL1_RW, .type = ARM_CP_SVE,
6194 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6195 .writefn = zcr_write, .raw_writefn = raw_write
6198 static const ARMCPRegInfo zcr_el2_reginfo = {
6199 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6200 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6201 .access = PL2_RW, .type = ARM_CP_SVE,
6202 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6203 .writefn = zcr_write, .raw_writefn = raw_write
6206 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6207 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6208 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6209 .access = PL2_RW, .type = ARM_CP_SVE,
6210 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6213 static const ARMCPRegInfo zcr_el3_reginfo = {
6214 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6215 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6216 .access = PL3_RW, .type = ARM_CP_SVE,
6217 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6218 .writefn = zcr_write, .raw_writefn = raw_write
6221 void hw_watchpoint_update(ARMCPU *cpu, int n)
6223 CPUARMState *env = &cpu->env;
6224 vaddr len = 0;
6225 vaddr wvr = env->cp15.dbgwvr[n];
6226 uint64_t wcr = env->cp15.dbgwcr[n];
6227 int mask;
6228 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6230 if (env->cpu_watchpoint[n]) {
6231 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6232 env->cpu_watchpoint[n] = NULL;
6235 if (!extract64(wcr, 0, 1)) {
6236 /* E bit clear : watchpoint disabled */
6237 return;
6240 switch (extract64(wcr, 3, 2)) {
6241 case 0:
6242 /* LSC 00 is reserved and must behave as if the wp is disabled */
6243 return;
6244 case 1:
6245 flags |= BP_MEM_READ;
6246 break;
6247 case 2:
6248 flags |= BP_MEM_WRITE;
6249 break;
6250 case 3:
6251 flags |= BP_MEM_ACCESS;
6252 break;
6255 /* Attempts to use both MASK and BAS fields simultaneously are
6256 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6257 * thus generating a watchpoint for every byte in the masked region.
6259 mask = extract64(wcr, 24, 4);
6260 if (mask == 1 || mask == 2) {
6261 /* Reserved values of MASK; we must act as if the mask value was
6262 * some non-reserved value, or as if the watchpoint were disabled.
6263 * We choose the latter.
6265 return;
6266 } else if (mask) {
6267 /* Watchpoint covers an aligned area up to 2GB in size */
6268 len = 1ULL << mask;
6269 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6270 * whether the watchpoint fires when the unmasked bits match; we opt
6271 * to generate the exceptions.
6273 wvr &= ~(len - 1);
6274 } else {
6275 /* Watchpoint covers bytes defined by the byte address select bits */
6276 int bas = extract64(wcr, 5, 8);
6277 int basstart;
6279 if (extract64(wvr, 2, 1)) {
6280 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6281 * ignored, and BAS[3:0] define which bytes to watch.
6283 bas &= 0xf;
6286 if (bas == 0) {
6287 /* This must act as if the watchpoint is disabled */
6288 return;
6291 /* The BAS bits are supposed to be programmed to indicate a contiguous
6292 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6293 * we fire for each byte in the word/doubleword addressed by the WVR.
6294 * We choose to ignore any non-zero bits after the first range of 1s.
6296 basstart = ctz32(bas);
6297 len = cto32(bas >> basstart);
6298 wvr += basstart;
6301 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6302 &env->cpu_watchpoint[n]);
6305 void hw_watchpoint_update_all(ARMCPU *cpu)
6307 int i;
6308 CPUARMState *env = &cpu->env;
6310 /* Completely clear out existing QEMU watchpoints and our array, to
6311 * avoid possible stale entries following migration load.
6313 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6314 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6316 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6317 hw_watchpoint_update(cpu, i);
6321 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6322 uint64_t value)
6324 ARMCPU *cpu = env_archcpu(env);
6325 int i = ri->crm;
6327 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6328 * register reads and behaves as if values written are sign extended.
6329 * Bits [1:0] are RES0.
6331 value = sextract64(value, 0, 49) & ~3ULL;
6333 raw_write(env, ri, value);
6334 hw_watchpoint_update(cpu, i);
6337 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6338 uint64_t value)
6340 ARMCPU *cpu = env_archcpu(env);
6341 int i = ri->crm;
6343 raw_write(env, ri, value);
6344 hw_watchpoint_update(cpu, i);
6347 void hw_breakpoint_update(ARMCPU *cpu, int n)
6349 CPUARMState *env = &cpu->env;
6350 uint64_t bvr = env->cp15.dbgbvr[n];
6351 uint64_t bcr = env->cp15.dbgbcr[n];
6352 vaddr addr;
6353 int bt;
6354 int flags = BP_CPU;
6356 if (env->cpu_breakpoint[n]) {
6357 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6358 env->cpu_breakpoint[n] = NULL;
6361 if (!extract64(bcr, 0, 1)) {
6362 /* E bit clear : watchpoint disabled */
6363 return;
6366 bt = extract64(bcr, 20, 4);
6368 switch (bt) {
6369 case 4: /* unlinked address mismatch (reserved if AArch64) */
6370 case 5: /* linked address mismatch (reserved if AArch64) */
6371 qemu_log_mask(LOG_UNIMP,
6372 "arm: address mismatch breakpoint types not implemented\n");
6373 return;
6374 case 0: /* unlinked address match */
6375 case 1: /* linked address match */
6377 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6378 * we behave as if the register was sign extended. Bits [1:0] are
6379 * RES0. The BAS field is used to allow setting breakpoints on 16
6380 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6381 * a bp will fire if the addresses covered by the bp and the addresses
6382 * covered by the insn overlap but the insn doesn't start at the
6383 * start of the bp address range. We choose to require the insn and
6384 * the bp to have the same address. The constraints on writing to
6385 * BAS enforced in dbgbcr_write mean we have only four cases:
6386 * 0b0000 => no breakpoint
6387 * 0b0011 => breakpoint on addr
6388 * 0b1100 => breakpoint on addr + 2
6389 * 0b1111 => breakpoint on addr
6390 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6392 int bas = extract64(bcr, 5, 4);
6393 addr = sextract64(bvr, 0, 49) & ~3ULL;
6394 if (bas == 0) {
6395 return;
6397 if (bas == 0xc) {
6398 addr += 2;
6400 break;
6402 case 2: /* unlinked context ID match */
6403 case 8: /* unlinked VMID match (reserved if no EL2) */
6404 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6405 qemu_log_mask(LOG_UNIMP,
6406 "arm: unlinked context breakpoint types not implemented\n");
6407 return;
6408 case 9: /* linked VMID match (reserved if no EL2) */
6409 case 11: /* linked context ID and VMID match (reserved if no EL2) */
6410 case 3: /* linked context ID match */
6411 default:
6412 /* We must generate no events for Linked context matches (unless
6413 * they are linked to by some other bp/wp, which is handled in
6414 * updates for the linking bp/wp). We choose to also generate no events
6415 * for reserved values.
6417 return;
6420 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6423 void hw_breakpoint_update_all(ARMCPU *cpu)
6425 int i;
6426 CPUARMState *env = &cpu->env;
6428 /* Completely clear out existing QEMU breakpoints and our array, to
6429 * avoid possible stale entries following migration load.
6431 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6432 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6434 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6435 hw_breakpoint_update(cpu, i);
6439 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6440 uint64_t value)
6442 ARMCPU *cpu = env_archcpu(env);
6443 int i = ri->crm;
6445 raw_write(env, ri, value);
6446 hw_breakpoint_update(cpu, i);
6449 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6450 uint64_t value)
6452 ARMCPU *cpu = env_archcpu(env);
6453 int i = ri->crm;
6455 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6456 * copy of BAS[0].
6458 value = deposit64(value, 6, 1, extract64(value, 5, 1));
6459 value = deposit64(value, 8, 1, extract64(value, 7, 1));
6461 raw_write(env, ri, value);
6462 hw_breakpoint_update(cpu, i);
6465 static void define_debug_regs(ARMCPU *cpu)
6467 /* Define v7 and v8 architectural debug registers.
6468 * These are just dummy implementations for now.
6470 int i;
6471 int wrps, brps, ctx_cmps;
6472 ARMCPRegInfo dbgdidr = {
6473 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
6474 .access = PL0_R, .accessfn = access_tda,
6475 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6478 /* Note that all these register fields hold "number of Xs minus 1". */
6479 brps = arm_num_brps(cpu);
6480 wrps = arm_num_wrps(cpu);
6481 ctx_cmps = arm_num_ctx_cmps(cpu);
6483 assert(ctx_cmps <= brps);
6485 define_one_arm_cp_reg(cpu, &dbgdidr);
6486 define_arm_cp_regs(cpu, debug_cp_reginfo);
6488 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6489 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6492 for (i = 0; i < brps; i++) {
6493 ARMCPRegInfo dbgregs[] = {
6494 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6495 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6496 .access = PL1_RW, .accessfn = access_tda,
6497 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6498 .writefn = dbgbvr_write, .raw_writefn = raw_write
6500 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6501 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6502 .access = PL1_RW, .accessfn = access_tda,
6503 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6504 .writefn = dbgbcr_write, .raw_writefn = raw_write
6506 REGINFO_SENTINEL
6508 define_arm_cp_regs(cpu, dbgregs);
6511 for (i = 0; i < wrps; i++) {
6512 ARMCPRegInfo dbgregs[] = {
6513 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6514 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6515 .access = PL1_RW, .accessfn = access_tda,
6516 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6517 .writefn = dbgwvr_write, .raw_writefn = raw_write
6519 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6520 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6521 .access = PL1_RW, .accessfn = access_tda,
6522 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6523 .writefn = dbgwcr_write, .raw_writefn = raw_write
6525 REGINFO_SENTINEL
6527 define_arm_cp_regs(cpu, dbgregs);
6531 static void define_pmu_regs(ARMCPU *cpu)
6534 * v7 performance monitor control register: same implementor
6535 * field as main ID register, and we implement four counters in
6536 * addition to the cycle count register.
6538 unsigned int i, pmcrn = 4;
6539 ARMCPRegInfo pmcr = {
6540 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6541 .access = PL0_RW,
6542 .type = ARM_CP_IO | ARM_CP_ALIAS,
6543 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6544 .accessfn = pmreg_access, .writefn = pmcr_write,
6545 .raw_writefn = raw_write,
6547 ARMCPRegInfo pmcr64 = {
6548 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6549 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6550 .access = PL0_RW, .accessfn = pmreg_access,
6551 .type = ARM_CP_IO,
6552 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6553 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6554 PMCRLC,
6555 .writefn = pmcr_write, .raw_writefn = raw_write,
6557 define_one_arm_cp_reg(cpu, &pmcr);
6558 define_one_arm_cp_reg(cpu, &pmcr64);
6559 for (i = 0; i < pmcrn; i++) {
6560 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6561 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6562 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6563 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6564 ARMCPRegInfo pmev_regs[] = {
6565 { .name = pmevcntr_name, .cp = 15, .crn = 14,
6566 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6567 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6568 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6569 .accessfn = pmreg_access },
6570 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6571 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6572 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6573 .type = ARM_CP_IO,
6574 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6575 .raw_readfn = pmevcntr_rawread,
6576 .raw_writefn = pmevcntr_rawwrite },
6577 { .name = pmevtyper_name, .cp = 15, .crn = 14,
6578 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6579 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6580 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6581 .accessfn = pmreg_access },
6582 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6583 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6584 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6585 .type = ARM_CP_IO,
6586 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6587 .raw_writefn = pmevtyper_rawwrite },
6588 REGINFO_SENTINEL
6590 define_arm_cp_regs(cpu, pmev_regs);
6591 g_free(pmevcntr_name);
6592 g_free(pmevcntr_el0_name);
6593 g_free(pmevtyper_name);
6594 g_free(pmevtyper_el0_name);
6596 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6597 ARMCPRegInfo v81_pmu_regs[] = {
6598 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6599 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6600 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6601 .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6602 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6603 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6604 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6605 .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6606 REGINFO_SENTINEL
6608 define_arm_cp_regs(cpu, v81_pmu_regs);
6610 if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6611 static const ARMCPRegInfo v84_pmmir = {
6612 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6613 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6614 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6615 .resetvalue = 0
6617 define_one_arm_cp_reg(cpu, &v84_pmmir);
6621 /* We don't know until after realize whether there's a GICv3
6622 * attached, and that is what registers the gicv3 sysregs.
6623 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6624 * at runtime.
6626 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6628 ARMCPU *cpu = env_archcpu(env);
6629 uint64_t pfr1 = cpu->isar.id_pfr1;
6631 if (env->gicv3state) {
6632 pfr1 |= 1 << 28;
6634 return pfr1;
6637 #ifndef CONFIG_USER_ONLY
6638 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6640 ARMCPU *cpu = env_archcpu(env);
6641 uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6643 if (env->gicv3state) {
6644 pfr0 |= 1 << 24;
6646 return pfr0;
6648 #endif
6650 /* Shared logic between LORID and the rest of the LOR* registers.
6651 * Secure state has already been delt with.
6653 static CPAccessResult access_lor_ns(CPUARMState *env)
6655 int el = arm_current_el(env);
6657 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6658 return CP_ACCESS_TRAP_EL2;
6660 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6661 return CP_ACCESS_TRAP_EL3;
6663 return CP_ACCESS_OK;
6666 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
6667 bool isread)
6669 if (arm_is_secure_below_el3(env)) {
6670 /* Access ok in secure mode. */
6671 return CP_ACCESS_OK;
6673 return access_lor_ns(env);
6676 static CPAccessResult access_lor_other(CPUARMState *env,
6677 const ARMCPRegInfo *ri, bool isread)
6679 if (arm_is_secure_below_el3(env)) {
6680 /* Access denied in secure mode. */
6681 return CP_ACCESS_TRAP;
6683 return access_lor_ns(env);
6687 * A trivial implementation of ARMv8.1-LOR leaves all of these
6688 * registers fixed at 0, which indicates that there are zero
6689 * supported Limited Ordering regions.
6691 static const ARMCPRegInfo lor_reginfo[] = {
6692 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6693 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6694 .access = PL1_RW, .accessfn = access_lor_other,
6695 .type = ARM_CP_CONST, .resetvalue = 0 },
6696 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6697 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6698 .access = PL1_RW, .accessfn = access_lor_other,
6699 .type = ARM_CP_CONST, .resetvalue = 0 },
6700 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6701 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6702 .access = PL1_RW, .accessfn = access_lor_other,
6703 .type = ARM_CP_CONST, .resetvalue = 0 },
6704 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6705 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6706 .access = PL1_RW, .accessfn = access_lor_other,
6707 .type = ARM_CP_CONST, .resetvalue = 0 },
6708 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6709 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6710 .access = PL1_R, .accessfn = access_lorid,
6711 .type = ARM_CP_CONST, .resetvalue = 0 },
6712 REGINFO_SENTINEL
6715 #ifdef TARGET_AARCH64
6716 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6717 bool isread)
6719 int el = arm_current_el(env);
6721 if (el < 2 &&
6722 arm_feature(env, ARM_FEATURE_EL2) &&
6723 !(arm_hcr_el2_eff(env) & HCR_APK)) {
6724 return CP_ACCESS_TRAP_EL2;
6726 if (el < 3 &&
6727 arm_feature(env, ARM_FEATURE_EL3) &&
6728 !(env->cp15.scr_el3 & SCR_APK)) {
6729 return CP_ACCESS_TRAP_EL3;
6731 return CP_ACCESS_OK;
6734 static const ARMCPRegInfo pauth_reginfo[] = {
6735 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6736 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6737 .access = PL1_RW, .accessfn = access_pauth,
6738 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6739 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6740 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6741 .access = PL1_RW, .accessfn = access_pauth,
6742 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6743 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6744 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6745 .access = PL1_RW, .accessfn = access_pauth,
6746 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6747 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6748 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6749 .access = PL1_RW, .accessfn = access_pauth,
6750 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6751 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6752 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6753 .access = PL1_RW, .accessfn = access_pauth,
6754 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6755 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6756 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6757 .access = PL1_RW, .accessfn = access_pauth,
6758 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6759 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6760 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6761 .access = PL1_RW, .accessfn = access_pauth,
6762 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6763 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6764 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6765 .access = PL1_RW, .accessfn = access_pauth,
6766 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6767 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6768 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6769 .access = PL1_RW, .accessfn = access_pauth,
6770 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6771 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6772 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6773 .access = PL1_RW, .accessfn = access_pauth,
6774 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6775 REGINFO_SENTINEL
6778 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6780 Error *err = NULL;
6781 uint64_t ret;
6783 /* Success sets NZCV = 0000. */
6784 env->NF = env->CF = env->VF = 0, env->ZF = 1;
6786 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6788 * ??? Failed, for unknown reasons in the crypto subsystem.
6789 * The best we can do is log the reason and return the
6790 * timed-out indication to the guest. There is no reason
6791 * we know to expect this failure to be transitory, so the
6792 * guest may well hang retrying the operation.
6794 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6795 ri->name, error_get_pretty(err));
6796 error_free(err);
6798 env->ZF = 0; /* NZCF = 0100 */
6799 return 0;
6801 return ret;
6804 /* We do not support re-seeding, so the two registers operate the same. */
6805 static const ARMCPRegInfo rndr_reginfo[] = {
6806 { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6807 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6808 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6809 .access = PL0_R, .readfn = rndr_readfn },
6810 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6811 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6812 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6813 .access = PL0_R, .readfn = rndr_readfn },
6814 REGINFO_SENTINEL
6817 #ifndef CONFIG_USER_ONLY
6818 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6819 uint64_t value)
6821 ARMCPU *cpu = env_archcpu(env);
6822 /* CTR_EL0 System register -> DminLine, bits [19:16] */
6823 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6824 uint64_t vaddr_in = (uint64_t) value;
6825 uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6826 void *haddr;
6827 int mem_idx = cpu_mmu_index(env, false);
6829 /* This won't be crossing page boundaries */
6830 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6831 if (haddr) {
6833 ram_addr_t offset;
6834 MemoryRegion *mr;
6836 /* RCU lock is already being held */
6837 mr = memory_region_from_host(haddr, &offset);
6839 if (mr) {
6840 memory_region_writeback(mr, offset, dline_size);
6845 static const ARMCPRegInfo dcpop_reg[] = {
6846 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6847 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6848 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6849 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6850 REGINFO_SENTINEL
6853 static const ARMCPRegInfo dcpodp_reg[] = {
6854 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6855 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6856 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6857 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6858 REGINFO_SENTINEL
6860 #endif /*CONFIG_USER_ONLY*/
6862 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
6863 bool isread)
6865 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
6866 return CP_ACCESS_TRAP_EL2;
6869 return CP_ACCESS_OK;
6872 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
6873 bool isread)
6875 int el = arm_current_el(env);
6877 if (el < 2 &&
6878 arm_feature(env, ARM_FEATURE_EL2) &&
6879 !(arm_hcr_el2_eff(env) & HCR_ATA)) {
6880 return CP_ACCESS_TRAP_EL2;
6882 if (el < 3 &&
6883 arm_feature(env, ARM_FEATURE_EL3) &&
6884 !(env->cp15.scr_el3 & SCR_ATA)) {
6885 return CP_ACCESS_TRAP_EL3;
6887 return CP_ACCESS_OK;
6890 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
6892 return env->pstate & PSTATE_TCO;
6895 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6897 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
6900 static const ARMCPRegInfo mte_reginfo[] = {
6901 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
6902 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
6903 .access = PL1_RW, .accessfn = access_mte,
6904 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
6905 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
6906 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
6907 .access = PL1_RW, .accessfn = access_mte,
6908 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
6909 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
6910 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
6911 .access = PL2_RW, .accessfn = access_mte,
6912 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
6913 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
6914 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
6915 .access = PL3_RW,
6916 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
6917 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
6918 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
6919 .access = PL1_RW, .accessfn = access_mte,
6920 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
6921 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
6922 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
6923 .access = PL1_RW, .accessfn = access_mte,
6924 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
6925 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
6926 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
6927 .access = PL1_R, .accessfn = access_aa64_tid5,
6928 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
6929 { .name = "TCO", .state = ARM_CP_STATE_AA64,
6930 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6931 .type = ARM_CP_NO_RAW,
6932 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
6933 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
6934 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
6935 .type = ARM_CP_NOP, .access = PL1_W,
6936 .accessfn = aa64_cacheop_poc_access },
6937 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
6938 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
6939 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6940 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
6941 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
6942 .type = ARM_CP_NOP, .access = PL1_W,
6943 .accessfn = aa64_cacheop_poc_access },
6944 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
6945 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
6946 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6947 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
6948 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
6949 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6950 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
6951 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
6952 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6953 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
6954 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
6955 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6956 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
6957 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
6958 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6959 REGINFO_SENTINEL
6962 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
6963 { .name = "TCO", .state = ARM_CP_STATE_AA64,
6964 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6965 .type = ARM_CP_CONST, .access = PL0_RW, },
6966 REGINFO_SENTINEL
6969 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
6970 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
6971 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
6972 .type = ARM_CP_NOP, .access = PL0_W,
6973 .accessfn = aa64_cacheop_poc_access },
6974 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
6975 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
6976 .type = ARM_CP_NOP, .access = PL0_W,
6977 .accessfn = aa64_cacheop_poc_access },
6978 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
6979 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
6980 .type = ARM_CP_NOP, .access = PL0_W,
6981 .accessfn = aa64_cacheop_poc_access },
6982 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
6983 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
6984 .type = ARM_CP_NOP, .access = PL0_W,
6985 .accessfn = aa64_cacheop_poc_access },
6986 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
6987 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
6988 .type = ARM_CP_NOP, .access = PL0_W,
6989 .accessfn = aa64_cacheop_poc_access },
6990 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
6991 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
6992 .type = ARM_CP_NOP, .access = PL0_W,
6993 .accessfn = aa64_cacheop_poc_access },
6994 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
6995 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
6996 .type = ARM_CP_NOP, .access = PL0_W,
6997 .accessfn = aa64_cacheop_poc_access },
6998 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
6999 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7000 .type = ARM_CP_NOP, .access = PL0_W,
7001 .accessfn = aa64_cacheop_poc_access },
7002 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7003 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7004 .access = PL0_W, .type = ARM_CP_DC_GVA,
7005 #ifndef CONFIG_USER_ONLY
7006 /* Avoid overhead of an access check that always passes in user-mode */
7007 .accessfn = aa64_zva_access,
7008 #endif
7010 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7011 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7012 .access = PL0_W, .type = ARM_CP_DC_GZVA,
7013 #ifndef CONFIG_USER_ONLY
7014 /* Avoid overhead of an access check that always passes in user-mode */
7015 .accessfn = aa64_zva_access,
7016 #endif
7018 REGINFO_SENTINEL
7021 #endif
7023 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7024 bool isread)
7026 int el = arm_current_el(env);
7028 if (el == 0) {
7029 uint64_t sctlr = arm_sctlr(env, el);
7030 if (!(sctlr & SCTLR_EnRCTX)) {
7031 return CP_ACCESS_TRAP;
7033 } else if (el == 1) {
7034 uint64_t hcr = arm_hcr_el2_eff(env);
7035 if (hcr & HCR_NV) {
7036 return CP_ACCESS_TRAP_EL2;
7039 return CP_ACCESS_OK;
7042 static const ARMCPRegInfo predinv_reginfo[] = {
7043 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7044 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7045 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7046 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7047 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7048 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7049 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7050 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7051 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7053 * Note the AArch32 opcodes have a different OPC1.
7055 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7056 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7057 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7058 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7059 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7060 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7061 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7062 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7063 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7064 REGINFO_SENTINEL
7067 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7069 /* Read the high 32 bits of the current CCSIDR */
7070 return extract64(ccsidr_read(env, ri), 32, 32);
7073 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7074 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7075 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7076 .access = PL1_R,
7077 .accessfn = access_aa64_tid2,
7078 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7079 REGINFO_SENTINEL
7082 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7083 bool isread)
7085 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7086 return CP_ACCESS_TRAP_EL2;
7089 return CP_ACCESS_OK;
7092 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7093 bool isread)
7095 if (arm_feature(env, ARM_FEATURE_V8)) {
7096 return access_aa64_tid3(env, ri, isread);
7099 return CP_ACCESS_OK;
7102 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7103 bool isread)
7105 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7106 return CP_ACCESS_TRAP_EL2;
7109 return CP_ACCESS_OK;
7112 static const ARMCPRegInfo jazelle_regs[] = {
7113 { .name = "JIDR",
7114 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7115 .access = PL1_R, .accessfn = access_jazelle,
7116 .type = ARM_CP_CONST, .resetvalue = 0 },
7117 { .name = "JOSCR",
7118 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7119 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7120 { .name = "JMCR",
7121 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7122 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7123 REGINFO_SENTINEL
7126 static const ARMCPRegInfo vhe_reginfo[] = {
7127 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7128 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7129 .access = PL2_RW,
7130 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7131 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7132 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7133 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7134 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7135 #ifndef CONFIG_USER_ONLY
7136 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7137 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7138 .fieldoffset =
7139 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7140 .type = ARM_CP_IO, .access = PL2_RW,
7141 .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7142 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7143 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7144 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7145 .resetfn = gt_hv_timer_reset,
7146 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7147 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7148 .type = ARM_CP_IO,
7149 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7150 .access = PL2_RW,
7151 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7152 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7153 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7154 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7155 .type = ARM_CP_IO | ARM_CP_ALIAS,
7156 .access = PL2_RW, .accessfn = e2h_access,
7157 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7158 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7159 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7160 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7161 .type = ARM_CP_IO | ARM_CP_ALIAS,
7162 .access = PL2_RW, .accessfn = e2h_access,
7163 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7164 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7165 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7166 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7167 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7168 .access = PL2_RW, .accessfn = e2h_access,
7169 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7170 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7171 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7172 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7173 .access = PL2_RW, .accessfn = e2h_access,
7174 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7175 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7176 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7177 .type = ARM_CP_IO | ARM_CP_ALIAS,
7178 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7179 .access = PL2_RW, .accessfn = e2h_access,
7180 .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7181 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7182 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7183 .type = ARM_CP_IO | ARM_CP_ALIAS,
7184 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7185 .access = PL2_RW, .accessfn = e2h_access,
7186 .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7187 #endif
7188 REGINFO_SENTINEL
7191 #ifndef CONFIG_USER_ONLY
7192 static const ARMCPRegInfo ats1e1_reginfo[] = {
7193 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7194 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7195 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7196 .writefn = ats_write64 },
7197 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7198 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7199 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7200 .writefn = ats_write64 },
7201 REGINFO_SENTINEL
7204 static const ARMCPRegInfo ats1cp_reginfo[] = {
7205 { .name = "ATS1CPRP",
7206 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7207 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7208 .writefn = ats_write },
7209 { .name = "ATS1CPWP",
7210 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7211 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7212 .writefn = ats_write },
7213 REGINFO_SENTINEL
7215 #endif
7218 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7219 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7220 * is non-zero, which is never for ARMv7, optionally in ARMv8
7221 * and mandatorily for ARMv8.2 and up.
7222 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7223 * implementation is RAZ/WI we can ignore this detail, as we
7224 * do for ACTLR.
7226 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7227 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7228 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7229 .access = PL1_RW, .accessfn = access_tacr,
7230 .type = ARM_CP_CONST, .resetvalue = 0 },
7231 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7232 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7233 .access = PL2_RW, .type = ARM_CP_CONST,
7234 .resetvalue = 0 },
7235 REGINFO_SENTINEL
7238 void register_cp_regs_for_features(ARMCPU *cpu)
7240 /* Register all the coprocessor registers based on feature bits */
7241 CPUARMState *env = &cpu->env;
7242 if (arm_feature(env, ARM_FEATURE_M)) {
7243 /* M profile has no coprocessor registers */
7244 return;
7247 define_arm_cp_regs(cpu, cp_reginfo);
7248 if (!arm_feature(env, ARM_FEATURE_V8)) {
7249 /* Must go early as it is full of wildcards that may be
7250 * overridden by later definitions.
7252 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7255 if (arm_feature(env, ARM_FEATURE_V6)) {
7256 /* The ID registers all have impdef reset values */
7257 ARMCPRegInfo v6_idregs[] = {
7258 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7259 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7260 .access = PL1_R, .type = ARM_CP_CONST,
7261 .accessfn = access_aa32_tid3,
7262 .resetvalue = cpu->isar.id_pfr0 },
7263 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7264 * the value of the GIC field until after we define these regs.
7266 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7267 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7268 .access = PL1_R, .type = ARM_CP_NO_RAW,
7269 .accessfn = access_aa32_tid3,
7270 .readfn = id_pfr1_read,
7271 .writefn = arm_cp_write_ignore },
7272 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7273 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7274 .access = PL1_R, .type = ARM_CP_CONST,
7275 .accessfn = access_aa32_tid3,
7276 .resetvalue = cpu->isar.id_dfr0 },
7277 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7278 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7279 .access = PL1_R, .type = ARM_CP_CONST,
7280 .accessfn = access_aa32_tid3,
7281 .resetvalue = cpu->id_afr0 },
7282 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7283 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7284 .access = PL1_R, .type = ARM_CP_CONST,
7285 .accessfn = access_aa32_tid3,
7286 .resetvalue = cpu->isar.id_mmfr0 },
7287 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7288 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7289 .access = PL1_R, .type = ARM_CP_CONST,
7290 .accessfn = access_aa32_tid3,
7291 .resetvalue = cpu->isar.id_mmfr1 },
7292 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7293 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7294 .access = PL1_R, .type = ARM_CP_CONST,
7295 .accessfn = access_aa32_tid3,
7296 .resetvalue = cpu->isar.id_mmfr2 },
7297 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7298 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7299 .access = PL1_R, .type = ARM_CP_CONST,
7300 .accessfn = access_aa32_tid3,
7301 .resetvalue = cpu->isar.id_mmfr3 },
7302 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7303 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7304 .access = PL1_R, .type = ARM_CP_CONST,
7305 .accessfn = access_aa32_tid3,
7306 .resetvalue = cpu->isar.id_isar0 },
7307 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7308 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7309 .access = PL1_R, .type = ARM_CP_CONST,
7310 .accessfn = access_aa32_tid3,
7311 .resetvalue = cpu->isar.id_isar1 },
7312 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7313 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7314 .access = PL1_R, .type = ARM_CP_CONST,
7315 .accessfn = access_aa32_tid3,
7316 .resetvalue = cpu->isar.id_isar2 },
7317 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7318 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7319 .access = PL1_R, .type = ARM_CP_CONST,
7320 .accessfn = access_aa32_tid3,
7321 .resetvalue = cpu->isar.id_isar3 },
7322 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7323 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7324 .access = PL1_R, .type = ARM_CP_CONST,
7325 .accessfn = access_aa32_tid3,
7326 .resetvalue = cpu->isar.id_isar4 },
7327 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7328 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7329 .access = PL1_R, .type = ARM_CP_CONST,
7330 .accessfn = access_aa32_tid3,
7331 .resetvalue = cpu->isar.id_isar5 },
7332 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7333 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7334 .access = PL1_R, .type = ARM_CP_CONST,
7335 .accessfn = access_aa32_tid3,
7336 .resetvalue = cpu->isar.id_mmfr4 },
7337 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7338 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7339 .access = PL1_R, .type = ARM_CP_CONST,
7340 .accessfn = access_aa32_tid3,
7341 .resetvalue = cpu->isar.id_isar6 },
7342 REGINFO_SENTINEL
7344 define_arm_cp_regs(cpu, v6_idregs);
7345 define_arm_cp_regs(cpu, v6_cp_reginfo);
7346 } else {
7347 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7349 if (arm_feature(env, ARM_FEATURE_V6K)) {
7350 define_arm_cp_regs(cpu, v6k_cp_reginfo);
7352 if (arm_feature(env, ARM_FEATURE_V7MP) &&
7353 !arm_feature(env, ARM_FEATURE_PMSA)) {
7354 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7356 if (arm_feature(env, ARM_FEATURE_V7VE)) {
7357 define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7359 if (arm_feature(env, ARM_FEATURE_V7)) {
7360 ARMCPRegInfo clidr = {
7361 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7362 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7363 .access = PL1_R, .type = ARM_CP_CONST,
7364 .accessfn = access_aa64_tid2,
7365 .resetvalue = cpu->clidr
7367 define_one_arm_cp_reg(cpu, &clidr);
7368 define_arm_cp_regs(cpu, v7_cp_reginfo);
7369 define_debug_regs(cpu);
7370 define_pmu_regs(cpu);
7371 } else {
7372 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7374 if (arm_feature(env, ARM_FEATURE_V8)) {
7375 /* AArch64 ID registers, which all have impdef reset values.
7376 * Note that within the ID register ranges the unused slots
7377 * must all RAZ, not UNDEF; future architecture versions may
7378 * define new registers here.
7380 ARMCPRegInfo v8_idregs[] = {
7382 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7383 * emulation because we don't know the right value for the
7384 * GIC field until after we define these regs.
7386 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7387 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7388 .access = PL1_R,
7389 #ifdef CONFIG_USER_ONLY
7390 .type = ARM_CP_CONST,
7391 .resetvalue = cpu->isar.id_aa64pfr0
7392 #else
7393 .type = ARM_CP_NO_RAW,
7394 .accessfn = access_aa64_tid3,
7395 .readfn = id_aa64pfr0_read,
7396 .writefn = arm_cp_write_ignore
7397 #endif
7399 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7400 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7401 .access = PL1_R, .type = ARM_CP_CONST,
7402 .accessfn = access_aa64_tid3,
7403 .resetvalue = cpu->isar.id_aa64pfr1},
7404 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7405 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7406 .access = PL1_R, .type = ARM_CP_CONST,
7407 .accessfn = access_aa64_tid3,
7408 .resetvalue = 0 },
7409 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7410 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7411 .access = PL1_R, .type = ARM_CP_CONST,
7412 .accessfn = access_aa64_tid3,
7413 .resetvalue = 0 },
7414 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7415 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7416 .access = PL1_R, .type = ARM_CP_CONST,
7417 .accessfn = access_aa64_tid3,
7418 /* At present, only SVEver == 0 is defined anyway. */
7419 .resetvalue = 0 },
7420 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7421 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7422 .access = PL1_R, .type = ARM_CP_CONST,
7423 .accessfn = access_aa64_tid3,
7424 .resetvalue = 0 },
7425 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7426 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7427 .access = PL1_R, .type = ARM_CP_CONST,
7428 .accessfn = access_aa64_tid3,
7429 .resetvalue = 0 },
7430 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7431 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7432 .access = PL1_R, .type = ARM_CP_CONST,
7433 .accessfn = access_aa64_tid3,
7434 .resetvalue = 0 },
7435 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7436 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7437 .access = PL1_R, .type = ARM_CP_CONST,
7438 .accessfn = access_aa64_tid3,
7439 .resetvalue = cpu->isar.id_aa64dfr0 },
7440 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7441 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7442 .access = PL1_R, .type = ARM_CP_CONST,
7443 .accessfn = access_aa64_tid3,
7444 .resetvalue = cpu->isar.id_aa64dfr1 },
7445 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7446 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7447 .access = PL1_R, .type = ARM_CP_CONST,
7448 .accessfn = access_aa64_tid3,
7449 .resetvalue = 0 },
7450 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7451 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7452 .access = PL1_R, .type = ARM_CP_CONST,
7453 .accessfn = access_aa64_tid3,
7454 .resetvalue = 0 },
7455 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7456 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7457 .access = PL1_R, .type = ARM_CP_CONST,
7458 .accessfn = access_aa64_tid3,
7459 .resetvalue = cpu->id_aa64afr0 },
7460 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7461 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7462 .access = PL1_R, .type = ARM_CP_CONST,
7463 .accessfn = access_aa64_tid3,
7464 .resetvalue = cpu->id_aa64afr1 },
7465 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7466 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7467 .access = PL1_R, .type = ARM_CP_CONST,
7468 .accessfn = access_aa64_tid3,
7469 .resetvalue = 0 },
7470 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7471 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7472 .access = PL1_R, .type = ARM_CP_CONST,
7473 .accessfn = access_aa64_tid3,
7474 .resetvalue = 0 },
7475 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7476 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7477 .access = PL1_R, .type = ARM_CP_CONST,
7478 .accessfn = access_aa64_tid3,
7479 .resetvalue = cpu->isar.id_aa64isar0 },
7480 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7481 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7482 .access = PL1_R, .type = ARM_CP_CONST,
7483 .accessfn = access_aa64_tid3,
7484 .resetvalue = cpu->isar.id_aa64isar1 },
7485 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7486 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7487 .access = PL1_R, .type = ARM_CP_CONST,
7488 .accessfn = access_aa64_tid3,
7489 .resetvalue = 0 },
7490 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7492 .access = PL1_R, .type = ARM_CP_CONST,
7493 .accessfn = access_aa64_tid3,
7494 .resetvalue = 0 },
7495 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7496 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7497 .access = PL1_R, .type = ARM_CP_CONST,
7498 .accessfn = access_aa64_tid3,
7499 .resetvalue = 0 },
7500 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7501 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7502 .access = PL1_R, .type = ARM_CP_CONST,
7503 .accessfn = access_aa64_tid3,
7504 .resetvalue = 0 },
7505 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7506 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7507 .access = PL1_R, .type = ARM_CP_CONST,
7508 .accessfn = access_aa64_tid3,
7509 .resetvalue = 0 },
7510 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7511 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7512 .access = PL1_R, .type = ARM_CP_CONST,
7513 .accessfn = access_aa64_tid3,
7514 .resetvalue = 0 },
7515 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7516 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7517 .access = PL1_R, .type = ARM_CP_CONST,
7518 .accessfn = access_aa64_tid3,
7519 .resetvalue = cpu->isar.id_aa64mmfr0 },
7520 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7521 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7522 .access = PL1_R, .type = ARM_CP_CONST,
7523 .accessfn = access_aa64_tid3,
7524 .resetvalue = cpu->isar.id_aa64mmfr1 },
7525 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7526 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7527 .access = PL1_R, .type = ARM_CP_CONST,
7528 .accessfn = access_aa64_tid3,
7529 .resetvalue = cpu->isar.id_aa64mmfr2 },
7530 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7531 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7532 .access = PL1_R, .type = ARM_CP_CONST,
7533 .accessfn = access_aa64_tid3,
7534 .resetvalue = 0 },
7535 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7536 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7537 .access = PL1_R, .type = ARM_CP_CONST,
7538 .accessfn = access_aa64_tid3,
7539 .resetvalue = 0 },
7540 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7541 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7542 .access = PL1_R, .type = ARM_CP_CONST,
7543 .accessfn = access_aa64_tid3,
7544 .resetvalue = 0 },
7545 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7546 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7547 .access = PL1_R, .type = ARM_CP_CONST,
7548 .accessfn = access_aa64_tid3,
7549 .resetvalue = 0 },
7550 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7551 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7552 .access = PL1_R, .type = ARM_CP_CONST,
7553 .accessfn = access_aa64_tid3,
7554 .resetvalue = 0 },
7555 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7556 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7557 .access = PL1_R, .type = ARM_CP_CONST,
7558 .accessfn = access_aa64_tid3,
7559 .resetvalue = cpu->isar.mvfr0 },
7560 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7561 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7562 .access = PL1_R, .type = ARM_CP_CONST,
7563 .accessfn = access_aa64_tid3,
7564 .resetvalue = cpu->isar.mvfr1 },
7565 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7567 .access = PL1_R, .type = ARM_CP_CONST,
7568 .accessfn = access_aa64_tid3,
7569 .resetvalue = cpu->isar.mvfr2 },
7570 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7571 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7572 .access = PL1_R, .type = ARM_CP_CONST,
7573 .accessfn = access_aa64_tid3,
7574 .resetvalue = 0 },
7575 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7576 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7577 .access = PL1_R, .type = ARM_CP_CONST,
7578 .accessfn = access_aa64_tid3,
7579 .resetvalue = 0 },
7580 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7581 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7582 .access = PL1_R, .type = ARM_CP_CONST,
7583 .accessfn = access_aa64_tid3,
7584 .resetvalue = 0 },
7585 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7586 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7587 .access = PL1_R, .type = ARM_CP_CONST,
7588 .accessfn = access_aa64_tid3,
7589 .resetvalue = 0 },
7590 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7592 .access = PL1_R, .type = ARM_CP_CONST,
7593 .accessfn = access_aa64_tid3,
7594 .resetvalue = 0 },
7595 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7596 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7597 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7598 .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7599 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7600 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7601 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7602 .resetvalue = cpu->pmceid0 },
7603 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7604 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7605 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7606 .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7607 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7608 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7609 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7610 .resetvalue = cpu->pmceid1 },
7611 REGINFO_SENTINEL
7613 #ifdef CONFIG_USER_ONLY
7614 ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7615 { .name = "ID_AA64PFR0_EL1",
7616 .exported_bits = 0x000f000f00ff0000,
7617 .fixed_bits = 0x0000000000000011 },
7618 { .name = "ID_AA64PFR1_EL1",
7619 .exported_bits = 0x00000000000000f0 },
7620 { .name = "ID_AA64PFR*_EL1_RESERVED",
7621 .is_glob = true },
7622 { .name = "ID_AA64ZFR0_EL1" },
7623 { .name = "ID_AA64MMFR0_EL1",
7624 .fixed_bits = 0x00000000ff000000 },
7625 { .name = "ID_AA64MMFR1_EL1" },
7626 { .name = "ID_AA64MMFR*_EL1_RESERVED",
7627 .is_glob = true },
7628 { .name = "ID_AA64DFR0_EL1",
7629 .fixed_bits = 0x0000000000000006 },
7630 { .name = "ID_AA64DFR1_EL1" },
7631 { .name = "ID_AA64DFR*_EL1_RESERVED",
7632 .is_glob = true },
7633 { .name = "ID_AA64AFR*",
7634 .is_glob = true },
7635 { .name = "ID_AA64ISAR0_EL1",
7636 .exported_bits = 0x00fffffff0fffff0 },
7637 { .name = "ID_AA64ISAR1_EL1",
7638 .exported_bits = 0x000000f0ffffffff },
7639 { .name = "ID_AA64ISAR*_EL1_RESERVED",
7640 .is_glob = true },
7641 REGUSERINFO_SENTINEL
7643 modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7644 #endif
7645 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7646 if (!arm_feature(env, ARM_FEATURE_EL3) &&
7647 !arm_feature(env, ARM_FEATURE_EL2)) {
7648 ARMCPRegInfo rvbar = {
7649 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7650 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7651 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7653 define_one_arm_cp_reg(cpu, &rvbar);
7655 define_arm_cp_regs(cpu, v8_idregs);
7656 define_arm_cp_regs(cpu, v8_cp_reginfo);
7658 if (arm_feature(env, ARM_FEATURE_EL2)) {
7659 uint64_t vmpidr_def = mpidr_read_val(env);
7660 ARMCPRegInfo vpidr_regs[] = {
7661 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7662 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7663 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7664 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7665 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7666 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7667 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7668 .access = PL2_RW, .resetvalue = cpu->midr,
7669 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7670 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7671 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7672 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7673 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7674 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7675 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7676 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7677 .access = PL2_RW,
7678 .resetvalue = vmpidr_def,
7679 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7680 REGINFO_SENTINEL
7682 define_arm_cp_regs(cpu, vpidr_regs);
7683 define_arm_cp_regs(cpu, el2_cp_reginfo);
7684 if (arm_feature(env, ARM_FEATURE_V8)) {
7685 define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7687 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7688 if (!arm_feature(env, ARM_FEATURE_EL3)) {
7689 ARMCPRegInfo rvbar = {
7690 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7691 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7692 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7694 define_one_arm_cp_reg(cpu, &rvbar);
7696 } else {
7697 /* If EL2 is missing but higher ELs are enabled, we need to
7698 * register the no_el2 reginfos.
7700 if (arm_feature(env, ARM_FEATURE_EL3)) {
7701 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7702 * of MIDR_EL1 and MPIDR_EL1.
7704 ARMCPRegInfo vpidr_regs[] = {
7705 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7706 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7707 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7708 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7709 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7710 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7711 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7712 .access = PL2_RW, .accessfn = access_el3_aa32ns,
7713 .type = ARM_CP_NO_RAW,
7714 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7715 REGINFO_SENTINEL
7717 define_arm_cp_regs(cpu, vpidr_regs);
7718 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7719 if (arm_feature(env, ARM_FEATURE_V8)) {
7720 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7724 if (arm_feature(env, ARM_FEATURE_EL3)) {
7725 define_arm_cp_regs(cpu, el3_cp_reginfo);
7726 ARMCPRegInfo el3_regs[] = {
7727 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7728 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7729 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7730 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7731 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7732 .access = PL3_RW,
7733 .raw_writefn = raw_write, .writefn = sctlr_write,
7734 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7735 .resetvalue = cpu->reset_sctlr },
7736 REGINFO_SENTINEL
7739 define_arm_cp_regs(cpu, el3_regs);
7741 /* The behaviour of NSACR is sufficiently various that we don't
7742 * try to describe it in a single reginfo:
7743 * if EL3 is 64 bit, then trap to EL3 from S EL1,
7744 * reads as constant 0xc00 from NS EL1 and NS EL2
7745 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7746 * if v7 without EL3, register doesn't exist
7747 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7749 if (arm_feature(env, ARM_FEATURE_EL3)) {
7750 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7751 ARMCPRegInfo nsacr = {
7752 .name = "NSACR", .type = ARM_CP_CONST,
7753 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7754 .access = PL1_RW, .accessfn = nsacr_access,
7755 .resetvalue = 0xc00
7757 define_one_arm_cp_reg(cpu, &nsacr);
7758 } else {
7759 ARMCPRegInfo nsacr = {
7760 .name = "NSACR",
7761 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7762 .access = PL3_RW | PL1_R,
7763 .resetvalue = 0,
7764 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7766 define_one_arm_cp_reg(cpu, &nsacr);
7768 } else {
7769 if (arm_feature(env, ARM_FEATURE_V8)) {
7770 ARMCPRegInfo nsacr = {
7771 .name = "NSACR", .type = ARM_CP_CONST,
7772 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7773 .access = PL1_R,
7774 .resetvalue = 0xc00
7776 define_one_arm_cp_reg(cpu, &nsacr);
7780 if (arm_feature(env, ARM_FEATURE_PMSA)) {
7781 if (arm_feature(env, ARM_FEATURE_V6)) {
7782 /* PMSAv6 not implemented */
7783 assert(arm_feature(env, ARM_FEATURE_V7));
7784 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7785 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7786 } else {
7787 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7789 } else {
7790 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7791 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7792 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
7793 if (cpu_isar_feature(aa32_hpd, cpu)) {
7794 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7797 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7798 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7800 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7801 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7803 if (arm_feature(env, ARM_FEATURE_VAPA)) {
7804 define_arm_cp_regs(cpu, vapa_cp_reginfo);
7806 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7807 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7809 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7810 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7812 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7813 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7815 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7816 define_arm_cp_regs(cpu, omap_cp_reginfo);
7818 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7819 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7821 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7822 define_arm_cp_regs(cpu, xscale_cp_reginfo);
7824 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7825 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7827 if (arm_feature(env, ARM_FEATURE_LPAE)) {
7828 define_arm_cp_regs(cpu, lpae_cp_reginfo);
7830 if (cpu_isar_feature(aa32_jazelle, cpu)) {
7831 define_arm_cp_regs(cpu, jazelle_regs);
7833 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7834 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7835 * be read-only (ie write causes UNDEF exception).
7838 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7839 /* Pre-v8 MIDR space.
7840 * Note that the MIDR isn't a simple constant register because
7841 * of the TI925 behaviour where writes to another register can
7842 * cause the MIDR value to change.
7844 * Unimplemented registers in the c15 0 0 0 space default to
7845 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7846 * and friends override accordingly.
7848 { .name = "MIDR",
7849 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7850 .access = PL1_R, .resetvalue = cpu->midr,
7851 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7852 .readfn = midr_read,
7853 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7854 .type = ARM_CP_OVERRIDE },
7855 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7856 { .name = "DUMMY",
7857 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7858 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7859 { .name = "DUMMY",
7860 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7861 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7862 { .name = "DUMMY",
7863 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7864 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7865 { .name = "DUMMY",
7866 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7867 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7868 { .name = "DUMMY",
7869 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
7870 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7871 REGINFO_SENTINEL
7873 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
7874 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
7875 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
7876 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
7877 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7878 .readfn = midr_read },
7879 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
7880 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7881 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7882 .access = PL1_R, .resetvalue = cpu->midr },
7883 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7884 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
7885 .access = PL1_R, .resetvalue = cpu->midr },
7886 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
7887 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
7888 .access = PL1_R,
7889 .accessfn = access_aa64_tid1,
7890 .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
7891 REGINFO_SENTINEL
7893 ARMCPRegInfo id_cp_reginfo[] = {
7894 /* These are common to v8 and pre-v8 */
7895 { .name = "CTR",
7896 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
7897 .access = PL1_R, .accessfn = ctr_el0_access,
7898 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7899 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
7900 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
7901 .access = PL0_R, .accessfn = ctr_el0_access,
7902 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7903 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
7904 { .name = "TCMTR",
7905 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
7906 .access = PL1_R,
7907 .accessfn = access_aa32_tid1,
7908 .type = ARM_CP_CONST, .resetvalue = 0 },
7909 REGINFO_SENTINEL
7911 /* TLBTR is specific to VMSA */
7912 ARMCPRegInfo id_tlbtr_reginfo = {
7913 .name = "TLBTR",
7914 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
7915 .access = PL1_R,
7916 .accessfn = access_aa32_tid1,
7917 .type = ARM_CP_CONST, .resetvalue = 0,
7919 /* MPUIR is specific to PMSA V6+ */
7920 ARMCPRegInfo id_mpuir_reginfo = {
7921 .name = "MPUIR",
7922 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7923 .access = PL1_R, .type = ARM_CP_CONST,
7924 .resetvalue = cpu->pmsav7_dregion << 8
7926 ARMCPRegInfo crn0_wi_reginfo = {
7927 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
7928 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
7929 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
7931 #ifdef CONFIG_USER_ONLY
7932 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
7933 { .name = "MIDR_EL1",
7934 .exported_bits = 0x00000000ffffffff },
7935 { .name = "REVIDR_EL1" },
7936 REGUSERINFO_SENTINEL
7938 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
7939 #endif
7940 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
7941 arm_feature(env, ARM_FEATURE_STRONGARM)) {
7942 ARMCPRegInfo *r;
7943 /* Register the blanket "writes ignored" value first to cover the
7944 * whole space. Then update the specific ID registers to allow write
7945 * access, so that they ignore writes rather than causing them to
7946 * UNDEF.
7948 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
7949 for (r = id_pre_v8_midr_cp_reginfo;
7950 r->type != ARM_CP_SENTINEL; r++) {
7951 r->access = PL1_RW;
7953 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
7954 r->access = PL1_RW;
7956 id_mpuir_reginfo.access = PL1_RW;
7957 id_tlbtr_reginfo.access = PL1_RW;
7959 if (arm_feature(env, ARM_FEATURE_V8)) {
7960 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
7961 } else {
7962 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
7964 define_arm_cp_regs(cpu, id_cp_reginfo);
7965 if (!arm_feature(env, ARM_FEATURE_PMSA)) {
7966 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
7967 } else if (arm_feature(env, ARM_FEATURE_V7)) {
7968 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
7972 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
7973 ARMCPRegInfo mpidr_cp_reginfo[] = {
7974 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
7975 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7976 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
7977 REGINFO_SENTINEL
7979 #ifdef CONFIG_USER_ONLY
7980 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
7981 { .name = "MPIDR_EL1",
7982 .fixed_bits = 0x0000000080000000 },
7983 REGUSERINFO_SENTINEL
7985 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
7986 #endif
7987 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
7990 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
7991 ARMCPRegInfo auxcr_reginfo[] = {
7992 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
7993 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
7994 .access = PL1_RW, .accessfn = access_tacr,
7995 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
7996 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
7997 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
7998 .access = PL2_RW, .type = ARM_CP_CONST,
7999 .resetvalue = 0 },
8000 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8001 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8002 .access = PL3_RW, .type = ARM_CP_CONST,
8003 .resetvalue = 0 },
8004 REGINFO_SENTINEL
8006 define_arm_cp_regs(cpu, auxcr_reginfo);
8007 if (cpu_isar_feature(aa32_ac2, cpu)) {
8008 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8012 if (arm_feature(env, ARM_FEATURE_CBAR)) {
8014 * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8015 * There are two flavours:
8016 * (1) older 32-bit only cores have a simple 32-bit CBAR
8017 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8018 * 32-bit register visible to AArch32 at a different encoding
8019 * to the "flavour 1" register and with the bits rearranged to
8020 * be able to squash a 64-bit address into the 32-bit view.
8021 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8022 * in future if we support AArch32-only configs of some of the
8023 * AArch64 cores we might need to add a specific feature flag
8024 * to indicate cores with "flavour 2" CBAR.
8026 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8027 /* 32 bit view is [31:18] 0...0 [43:32]. */
8028 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8029 | extract64(cpu->reset_cbar, 32, 12);
8030 ARMCPRegInfo cbar_reginfo[] = {
8031 { .name = "CBAR",
8032 .type = ARM_CP_CONST,
8033 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8034 .access = PL1_R, .resetvalue = cbar32 },
8035 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8036 .type = ARM_CP_CONST,
8037 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8038 .access = PL1_R, .resetvalue = cpu->reset_cbar },
8039 REGINFO_SENTINEL
8041 /* We don't implement a r/w 64 bit CBAR currently */
8042 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8043 define_arm_cp_regs(cpu, cbar_reginfo);
8044 } else {
8045 ARMCPRegInfo cbar = {
8046 .name = "CBAR",
8047 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8048 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8049 .fieldoffset = offsetof(CPUARMState,
8050 cp15.c15_config_base_address)
8052 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8053 cbar.access = PL1_R;
8054 cbar.fieldoffset = 0;
8055 cbar.type = ARM_CP_CONST;
8057 define_one_arm_cp_reg(cpu, &cbar);
8061 if (arm_feature(env, ARM_FEATURE_VBAR)) {
8062 ARMCPRegInfo vbar_cp_reginfo[] = {
8063 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8064 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8065 .access = PL1_RW, .writefn = vbar_write,
8066 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8067 offsetof(CPUARMState, cp15.vbar_ns) },
8068 .resetvalue = 0 },
8069 REGINFO_SENTINEL
8071 define_arm_cp_regs(cpu, vbar_cp_reginfo);
8074 /* Generic registers whose values depend on the implementation */
8076 ARMCPRegInfo sctlr = {
8077 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8078 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8079 .access = PL1_RW, .accessfn = access_tvm_trvm,
8080 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8081 offsetof(CPUARMState, cp15.sctlr_ns) },
8082 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8083 .raw_writefn = raw_write,
8085 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8086 /* Normally we would always end the TB on an SCTLR write, but Linux
8087 * arch/arm/mach-pxa/sleep.S expects two instructions following
8088 * an MMU enable to execute from cache. Imitate this behaviour.
8090 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8092 define_one_arm_cp_reg(cpu, &sctlr);
8095 if (cpu_isar_feature(aa64_lor, cpu)) {
8096 define_arm_cp_regs(cpu, lor_reginfo);
8098 if (cpu_isar_feature(aa64_pan, cpu)) {
8099 define_one_arm_cp_reg(cpu, &pan_reginfo);
8101 #ifndef CONFIG_USER_ONLY
8102 if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8103 define_arm_cp_regs(cpu, ats1e1_reginfo);
8105 if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8106 define_arm_cp_regs(cpu, ats1cp_reginfo);
8108 #endif
8109 if (cpu_isar_feature(aa64_uao, cpu)) {
8110 define_one_arm_cp_reg(cpu, &uao_reginfo);
8113 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8114 define_arm_cp_regs(cpu, vhe_reginfo);
8117 if (cpu_isar_feature(aa64_sve, cpu)) {
8118 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8119 if (arm_feature(env, ARM_FEATURE_EL2)) {
8120 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8121 } else {
8122 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8124 if (arm_feature(env, ARM_FEATURE_EL3)) {
8125 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8129 #ifdef TARGET_AARCH64
8130 if (cpu_isar_feature(aa64_pauth, cpu)) {
8131 define_arm_cp_regs(cpu, pauth_reginfo);
8133 if (cpu_isar_feature(aa64_rndr, cpu)) {
8134 define_arm_cp_regs(cpu, rndr_reginfo);
8136 #ifndef CONFIG_USER_ONLY
8137 /* Data Cache clean instructions up to PoP */
8138 if (cpu_isar_feature(aa64_dcpop, cpu)) {
8139 define_one_arm_cp_reg(cpu, dcpop_reg);
8141 if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8142 define_one_arm_cp_reg(cpu, dcpodp_reg);
8145 #endif /*CONFIG_USER_ONLY*/
8148 * If full MTE is enabled, add all of the system registers.
8149 * If only "instructions available at EL0" are enabled,
8150 * then define only a RAZ/WI version of PSTATE.TCO.
8152 if (cpu_isar_feature(aa64_mte, cpu)) {
8153 define_arm_cp_regs(cpu, mte_reginfo);
8154 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8155 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8156 define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8157 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8159 #endif
8161 if (cpu_isar_feature(any_predinv, cpu)) {
8162 define_arm_cp_regs(cpu, predinv_reginfo);
8165 if (cpu_isar_feature(any_ccidx, cpu)) {
8166 define_arm_cp_regs(cpu, ccsidr2_reginfo);
8169 #ifndef CONFIG_USER_ONLY
8171 * Register redirections and aliases must be done last,
8172 * after the registers from the other extensions have been defined.
8174 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8175 define_arm_vh_e2h_redirects_aliases(cpu);
8177 #endif
8180 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8182 CPUState *cs = CPU(cpu);
8183 CPUARMState *env = &cpu->env;
8185 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8187 * The lower part of each SVE register aliases to the FPU
8188 * registers so we don't need to include both.
8190 #ifdef TARGET_AARCH64
8191 if (isar_feature_aa64_sve(&cpu->isar)) {
8192 gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8193 arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8194 "sve-registers.xml", 0);
8195 } else
8196 #endif
8198 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8199 aarch64_fpu_gdb_set_reg,
8200 34, "aarch64-fpu.xml", 0);
8202 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8203 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8204 51, "arm-neon.xml", 0);
8205 } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8206 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8207 35, "arm-vfp3.xml", 0);
8208 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8209 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8210 19, "arm-vfp.xml", 0);
8212 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8213 arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8214 "system-registers.xml", 0);
8218 /* Sort alphabetically by type name, except for "any". */
8219 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8221 ObjectClass *class_a = (ObjectClass *)a;
8222 ObjectClass *class_b = (ObjectClass *)b;
8223 const char *name_a, *name_b;
8225 name_a = object_class_get_name(class_a);
8226 name_b = object_class_get_name(class_b);
8227 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8228 return 1;
8229 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8230 return -1;
8231 } else {
8232 return strcmp(name_a, name_b);
8236 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8238 ObjectClass *oc = data;
8239 const char *typename;
8240 char *name;
8242 typename = object_class_get_name(oc);
8243 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8244 qemu_printf(" %s\n", name);
8245 g_free(name);
8248 void arm_cpu_list(void)
8250 GSList *list;
8252 list = object_class_get_list(TYPE_ARM_CPU, false);
8253 list = g_slist_sort(list, arm_cpu_list_compare);
8254 qemu_printf("Available CPUs:\n");
8255 g_slist_foreach(list, arm_cpu_list_entry, NULL);
8256 g_slist_free(list);
8259 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8261 ObjectClass *oc = data;
8262 CpuDefinitionInfoList **cpu_list = user_data;
8263 CpuDefinitionInfoList *entry;
8264 CpuDefinitionInfo *info;
8265 const char *typename;
8267 typename = object_class_get_name(oc);
8268 info = g_malloc0(sizeof(*info));
8269 info->name = g_strndup(typename,
8270 strlen(typename) - strlen("-" TYPE_ARM_CPU));
8271 info->q_typename = g_strdup(typename);
8273 entry = g_malloc0(sizeof(*entry));
8274 entry->value = info;
8275 entry->next = *cpu_list;
8276 *cpu_list = entry;
8279 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8281 CpuDefinitionInfoList *cpu_list = NULL;
8282 GSList *list;
8284 list = object_class_get_list(TYPE_ARM_CPU, false);
8285 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8286 g_slist_free(list);
8288 return cpu_list;
8291 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8292 void *opaque, int state, int secstate,
8293 int crm, int opc1, int opc2,
8294 const char *name)
8296 /* Private utility function for define_one_arm_cp_reg_with_opaque():
8297 * add a single reginfo struct to the hash table.
8299 uint32_t *key = g_new(uint32_t, 1);
8300 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8301 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8302 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8304 r2->name = g_strdup(name);
8305 /* Reset the secure state to the specific incoming state. This is
8306 * necessary as the register may have been defined with both states.
8308 r2->secure = secstate;
8310 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8311 /* Register is banked (using both entries in array).
8312 * Overwriting fieldoffset as the array is only used to define
8313 * banked registers but later only fieldoffset is used.
8315 r2->fieldoffset = r->bank_fieldoffsets[ns];
8318 if (state == ARM_CP_STATE_AA32) {
8319 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8320 /* If the register is banked then we don't need to migrate or
8321 * reset the 32-bit instance in certain cases:
8323 * 1) If the register has both 32-bit and 64-bit instances then we
8324 * can count on the 64-bit instance taking care of the
8325 * non-secure bank.
8326 * 2) If ARMv8 is enabled then we can count on a 64-bit version
8327 * taking care of the secure bank. This requires that separate
8328 * 32 and 64-bit definitions are provided.
8330 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8331 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8332 r2->type |= ARM_CP_ALIAS;
8334 } else if ((secstate != r->secure) && !ns) {
8335 /* The register is not banked so we only want to allow migration of
8336 * the non-secure instance.
8338 r2->type |= ARM_CP_ALIAS;
8341 if (r->state == ARM_CP_STATE_BOTH) {
8342 /* We assume it is a cp15 register if the .cp field is left unset.
8344 if (r2->cp == 0) {
8345 r2->cp = 15;
8348 #ifdef HOST_WORDS_BIGENDIAN
8349 if (r2->fieldoffset) {
8350 r2->fieldoffset += sizeof(uint32_t);
8352 #endif
8355 if (state == ARM_CP_STATE_AA64) {
8356 /* To allow abbreviation of ARMCPRegInfo
8357 * definitions, we treat cp == 0 as equivalent to
8358 * the value for "standard guest-visible sysreg".
8359 * STATE_BOTH definitions are also always "standard
8360 * sysreg" in their AArch64 view (the .cp value may
8361 * be non-zero for the benefit of the AArch32 view).
8363 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8364 r2->cp = CP_REG_ARM64_SYSREG_CP;
8366 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8367 r2->opc0, opc1, opc2);
8368 } else {
8369 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8371 if (opaque) {
8372 r2->opaque = opaque;
8374 /* reginfo passed to helpers is correct for the actual access,
8375 * and is never ARM_CP_STATE_BOTH:
8377 r2->state = state;
8378 /* Make sure reginfo passed to helpers for wildcarded regs
8379 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8381 r2->crm = crm;
8382 r2->opc1 = opc1;
8383 r2->opc2 = opc2;
8384 /* By convention, for wildcarded registers only the first
8385 * entry is used for migration; the others are marked as
8386 * ALIAS so we don't try to transfer the register
8387 * multiple times. Special registers (ie NOP/WFI) are
8388 * never migratable and not even raw-accessible.
8390 if ((r->type & ARM_CP_SPECIAL)) {
8391 r2->type |= ARM_CP_NO_RAW;
8393 if (((r->crm == CP_ANY) && crm != 0) ||
8394 ((r->opc1 == CP_ANY) && opc1 != 0) ||
8395 ((r->opc2 == CP_ANY) && opc2 != 0)) {
8396 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8399 /* Check that raw accesses are either forbidden or handled. Note that
8400 * we can't assert this earlier because the setup of fieldoffset for
8401 * banked registers has to be done first.
8403 if (!(r2->type & ARM_CP_NO_RAW)) {
8404 assert(!raw_accessors_invalid(r2));
8407 /* Overriding of an existing definition must be explicitly
8408 * requested.
8410 if (!(r->type & ARM_CP_OVERRIDE)) {
8411 ARMCPRegInfo *oldreg;
8412 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8413 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8414 fprintf(stderr, "Register redefined: cp=%d %d bit "
8415 "crn=%d crm=%d opc1=%d opc2=%d, "
8416 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8417 r2->crn, r2->crm, r2->opc1, r2->opc2,
8418 oldreg->name, r2->name);
8419 g_assert_not_reached();
8422 g_hash_table_insert(cpu->cp_regs, key, r2);
8426 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8427 const ARMCPRegInfo *r, void *opaque)
8429 /* Define implementations of coprocessor registers.
8430 * We store these in a hashtable because typically
8431 * there are less than 150 registers in a space which
8432 * is 16*16*16*8*8 = 262144 in size.
8433 * Wildcarding is supported for the crm, opc1 and opc2 fields.
8434 * If a register is defined twice then the second definition is
8435 * used, so this can be used to define some generic registers and
8436 * then override them with implementation specific variations.
8437 * At least one of the original and the second definition should
8438 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8439 * against accidental use.
8441 * The state field defines whether the register is to be
8442 * visible in the AArch32 or AArch64 execution state. If the
8443 * state is set to ARM_CP_STATE_BOTH then we synthesise a
8444 * reginfo structure for the AArch32 view, which sees the lower
8445 * 32 bits of the 64 bit register.
8447 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8448 * be wildcarded. AArch64 registers are always considered to be 64
8449 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8450 * the register, if any.
8452 int crm, opc1, opc2, state;
8453 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8454 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8455 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8456 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8457 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8458 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8459 /* 64 bit registers have only CRm and Opc1 fields */
8460 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8461 /* op0 only exists in the AArch64 encodings */
8462 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8463 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8464 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8466 * This API is only for Arm's system coprocessors (14 and 15) or
8467 * (M-profile or v7A-and-earlier only) for implementation defined
8468 * coprocessors in the range 0..7. Our decode assumes this, since
8469 * 8..13 can be used for other insns including VFP and Neon. See
8470 * valid_cp() in translate.c. Assert here that we haven't tried
8471 * to use an invalid coprocessor number.
8473 switch (r->state) {
8474 case ARM_CP_STATE_BOTH:
8475 /* 0 has a special meaning, but otherwise the same rules as AA32. */
8476 if (r->cp == 0) {
8477 break;
8479 /* fall through */
8480 case ARM_CP_STATE_AA32:
8481 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8482 !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8483 assert(r->cp >= 14 && r->cp <= 15);
8484 } else {
8485 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8487 break;
8488 case ARM_CP_STATE_AA64:
8489 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8490 break;
8491 default:
8492 g_assert_not_reached();
8494 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8495 * encodes a minimum access level for the register. We roll this
8496 * runtime check into our general permission check code, so check
8497 * here that the reginfo's specified permissions are strict enough
8498 * to encompass the generic architectural permission check.
8500 if (r->state != ARM_CP_STATE_AA32) {
8501 int mask = 0;
8502 switch (r->opc1) {
8503 case 0:
8504 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8505 mask = PL0U_R | PL1_RW;
8506 break;
8507 case 1: case 2:
8508 /* min_EL EL1 */
8509 mask = PL1_RW;
8510 break;
8511 case 3:
8512 /* min_EL EL0 */
8513 mask = PL0_RW;
8514 break;
8515 case 4:
8516 case 5:
8517 /* min_EL EL2 */
8518 mask = PL2_RW;
8519 break;
8520 case 6:
8521 /* min_EL EL3 */
8522 mask = PL3_RW;
8523 break;
8524 case 7:
8525 /* min_EL EL1, secure mode only (we don't check the latter) */
8526 mask = PL1_RW;
8527 break;
8528 default:
8529 /* broken reginfo with out-of-range opc1 */
8530 assert(false);
8531 break;
8533 /* assert our permissions are not too lax (stricter is fine) */
8534 assert((r->access & ~mask) == 0);
8537 /* Check that the register definition has enough info to handle
8538 * reads and writes if they are permitted.
8540 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8541 if (r->access & PL3_R) {
8542 assert((r->fieldoffset ||
8543 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8544 r->readfn);
8546 if (r->access & PL3_W) {
8547 assert((r->fieldoffset ||
8548 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8549 r->writefn);
8552 /* Bad type field probably means missing sentinel at end of reg list */
8553 assert(cptype_valid(r->type));
8554 for (crm = crmmin; crm <= crmmax; crm++) {
8555 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8556 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8557 for (state = ARM_CP_STATE_AA32;
8558 state <= ARM_CP_STATE_AA64; state++) {
8559 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8560 continue;
8562 if (state == ARM_CP_STATE_AA32) {
8563 /* Under AArch32 CP registers can be common
8564 * (same for secure and non-secure world) or banked.
8566 char *name;
8568 switch (r->secure) {
8569 case ARM_CP_SECSTATE_S:
8570 case ARM_CP_SECSTATE_NS:
8571 add_cpreg_to_hashtable(cpu, r, opaque, state,
8572 r->secure, crm, opc1, opc2,
8573 r->name);
8574 break;
8575 default:
8576 name = g_strdup_printf("%s_S", r->name);
8577 add_cpreg_to_hashtable(cpu, r, opaque, state,
8578 ARM_CP_SECSTATE_S,
8579 crm, opc1, opc2, name);
8580 g_free(name);
8581 add_cpreg_to_hashtable(cpu, r, opaque, state,
8582 ARM_CP_SECSTATE_NS,
8583 crm, opc1, opc2, r->name);
8584 break;
8586 } else {
8587 /* AArch64 registers get mapped to non-secure instance
8588 * of AArch32 */
8589 add_cpreg_to_hashtable(cpu, r, opaque, state,
8590 ARM_CP_SECSTATE_NS,
8591 crm, opc1, opc2, r->name);
8599 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8600 const ARMCPRegInfo *regs, void *opaque)
8602 /* Define a whole list of registers */
8603 const ARMCPRegInfo *r;
8604 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8605 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8610 * Modify ARMCPRegInfo for access from userspace.
8612 * This is a data driven modification directed by
8613 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8614 * user-space cannot alter any values and dynamic values pertaining to
8615 * execution state are hidden from user space view anyway.
8617 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8619 const ARMCPRegUserSpaceInfo *m;
8620 ARMCPRegInfo *r;
8622 for (m = mods; m->name; m++) {
8623 GPatternSpec *pat = NULL;
8624 if (m->is_glob) {
8625 pat = g_pattern_spec_new(m->name);
8627 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8628 if (pat && g_pattern_match_string(pat, r->name)) {
8629 r->type = ARM_CP_CONST;
8630 r->access = PL0U_R;
8631 r->resetvalue = 0;
8632 /* continue */
8633 } else if (strcmp(r->name, m->name) == 0) {
8634 r->type = ARM_CP_CONST;
8635 r->access = PL0U_R;
8636 r->resetvalue &= m->exported_bits;
8637 r->resetvalue |= m->fixed_bits;
8638 break;
8641 if (pat) {
8642 g_pattern_spec_free(pat);
8647 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8649 return g_hash_table_lookup(cpregs, &encoded_cp);
8652 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8653 uint64_t value)
8655 /* Helper coprocessor write function for write-ignore registers */
8658 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8660 /* Helper coprocessor write function for read-as-zero registers */
8661 return 0;
8664 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8666 /* Helper coprocessor reset function for do-nothing-on-reset registers */
8669 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8671 /* Return true if it is not valid for us to switch to
8672 * this CPU mode (ie all the UNPREDICTABLE cases in
8673 * the ARM ARM CPSRWriteByInstr pseudocode).
8676 /* Changes to or from Hyp via MSR and CPS are illegal. */
8677 if (write_type == CPSRWriteByInstr &&
8678 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8679 mode == ARM_CPU_MODE_HYP)) {
8680 return 1;
8683 switch (mode) {
8684 case ARM_CPU_MODE_USR:
8685 return 0;
8686 case ARM_CPU_MODE_SYS:
8687 case ARM_CPU_MODE_SVC:
8688 case ARM_CPU_MODE_ABT:
8689 case ARM_CPU_MODE_UND:
8690 case ARM_CPU_MODE_IRQ:
8691 case ARM_CPU_MODE_FIQ:
8692 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8693 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8695 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8696 * and CPS are treated as illegal mode changes.
8698 if (write_type == CPSRWriteByInstr &&
8699 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8700 (arm_hcr_el2_eff(env) & HCR_TGE)) {
8701 return 1;
8703 return 0;
8704 case ARM_CPU_MODE_HYP:
8705 return !arm_feature(env, ARM_FEATURE_EL2)
8706 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
8707 case ARM_CPU_MODE_MON:
8708 return arm_current_el(env) < 3;
8709 default:
8710 return 1;
8714 uint32_t cpsr_read(CPUARMState *env)
8716 int ZF;
8717 ZF = (env->ZF == 0);
8718 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8719 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8720 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8721 | ((env->condexec_bits & 0xfc) << 8)
8722 | (env->GE << 16) | (env->daif & CPSR_AIF);
8725 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8726 CPSRWriteType write_type)
8728 uint32_t changed_daif;
8730 if (mask & CPSR_NZCV) {
8731 env->ZF = (~val) & CPSR_Z;
8732 env->NF = val;
8733 env->CF = (val >> 29) & 1;
8734 env->VF = (val << 3) & 0x80000000;
8736 if (mask & CPSR_Q)
8737 env->QF = ((val & CPSR_Q) != 0);
8738 if (mask & CPSR_T)
8739 env->thumb = ((val & CPSR_T) != 0);
8740 if (mask & CPSR_IT_0_1) {
8741 env->condexec_bits &= ~3;
8742 env->condexec_bits |= (val >> 25) & 3;
8744 if (mask & CPSR_IT_2_7) {
8745 env->condexec_bits &= 3;
8746 env->condexec_bits |= (val >> 8) & 0xfc;
8748 if (mask & CPSR_GE) {
8749 env->GE = (val >> 16) & 0xf;
8752 /* In a V7 implementation that includes the security extensions but does
8753 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8754 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8755 * bits respectively.
8757 * In a V8 implementation, it is permitted for privileged software to
8758 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8760 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8761 arm_feature(env, ARM_FEATURE_EL3) &&
8762 !arm_feature(env, ARM_FEATURE_EL2) &&
8763 !arm_is_secure(env)) {
8765 changed_daif = (env->daif ^ val) & mask;
8767 if (changed_daif & CPSR_A) {
8768 /* Check to see if we are allowed to change the masking of async
8769 * abort exceptions from a non-secure state.
8771 if (!(env->cp15.scr_el3 & SCR_AW)) {
8772 qemu_log_mask(LOG_GUEST_ERROR,
8773 "Ignoring attempt to switch CPSR_A flag from "
8774 "non-secure world with SCR.AW bit clear\n");
8775 mask &= ~CPSR_A;
8779 if (changed_daif & CPSR_F) {
8780 /* Check to see if we are allowed to change the masking of FIQ
8781 * exceptions from a non-secure state.
8783 if (!(env->cp15.scr_el3 & SCR_FW)) {
8784 qemu_log_mask(LOG_GUEST_ERROR,
8785 "Ignoring attempt to switch CPSR_F flag from "
8786 "non-secure world with SCR.FW bit clear\n");
8787 mask &= ~CPSR_F;
8790 /* Check whether non-maskable FIQ (NMFI) support is enabled.
8791 * If this bit is set software is not allowed to mask
8792 * FIQs, but is allowed to set CPSR_F to 0.
8794 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8795 (val & CPSR_F)) {
8796 qemu_log_mask(LOG_GUEST_ERROR,
8797 "Ignoring attempt to enable CPSR_F flag "
8798 "(non-maskable FIQ [NMFI] support enabled)\n");
8799 mask &= ~CPSR_F;
8804 env->daif &= ~(CPSR_AIF & mask);
8805 env->daif |= val & CPSR_AIF & mask;
8807 if (write_type != CPSRWriteRaw &&
8808 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8809 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8810 /* Note that we can only get here in USR mode if this is a
8811 * gdb stub write; for this case we follow the architectural
8812 * behaviour for guest writes in USR mode of ignoring an attempt
8813 * to switch mode. (Those are caught by translate.c for writes
8814 * triggered by guest instructions.)
8816 mask &= ~CPSR_M;
8817 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8818 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8819 * v7, and has defined behaviour in v8:
8820 * + leave CPSR.M untouched
8821 * + allow changes to the other CPSR fields
8822 * + set PSTATE.IL
8823 * For user changes via the GDB stub, we don't set PSTATE.IL,
8824 * as this would be unnecessarily harsh for a user error.
8826 mask &= ~CPSR_M;
8827 if (write_type != CPSRWriteByGDBStub &&
8828 arm_feature(env, ARM_FEATURE_V8)) {
8829 mask |= CPSR_IL;
8830 val |= CPSR_IL;
8832 qemu_log_mask(LOG_GUEST_ERROR,
8833 "Illegal AArch32 mode switch attempt from %s to %s\n",
8834 aarch32_mode_name(env->uncached_cpsr),
8835 aarch32_mode_name(val));
8836 } else {
8837 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8838 write_type == CPSRWriteExceptionReturn ?
8839 "Exception return from AArch32" :
8840 "AArch32 mode switch from",
8841 aarch32_mode_name(env->uncached_cpsr),
8842 aarch32_mode_name(val), env->regs[15]);
8843 switch_mode(env, val & CPSR_M);
8846 mask &= ~CACHED_CPSR_BITS;
8847 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8850 /* Sign/zero extend */
8851 uint32_t HELPER(sxtb16)(uint32_t x)
8853 uint32_t res;
8854 res = (uint16_t)(int8_t)x;
8855 res |= (uint32_t)(int8_t)(x >> 16) << 16;
8856 return res;
8859 uint32_t HELPER(uxtb16)(uint32_t x)
8861 uint32_t res;
8862 res = (uint16_t)(uint8_t)x;
8863 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
8864 return res;
8867 int32_t HELPER(sdiv)(int32_t num, int32_t den)
8869 if (den == 0)
8870 return 0;
8871 if (num == INT_MIN && den == -1)
8872 return INT_MIN;
8873 return num / den;
8876 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
8878 if (den == 0)
8879 return 0;
8880 return num / den;
8883 uint32_t HELPER(rbit)(uint32_t x)
8885 return revbit32(x);
8888 #ifdef CONFIG_USER_ONLY
8890 static void switch_mode(CPUARMState *env, int mode)
8892 ARMCPU *cpu = env_archcpu(env);
8894 if (mode != ARM_CPU_MODE_USR) {
8895 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
8899 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8900 uint32_t cur_el, bool secure)
8902 return 1;
8905 void aarch64_sync_64_to_32(CPUARMState *env)
8907 g_assert_not_reached();
8910 #else
8912 static void switch_mode(CPUARMState *env, int mode)
8914 int old_mode;
8915 int i;
8917 old_mode = env->uncached_cpsr & CPSR_M;
8918 if (mode == old_mode)
8919 return;
8921 if (old_mode == ARM_CPU_MODE_FIQ) {
8922 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8923 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
8924 } else if (mode == ARM_CPU_MODE_FIQ) {
8925 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8926 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
8929 i = bank_number(old_mode);
8930 env->banked_r13[i] = env->regs[13];
8931 env->banked_spsr[i] = env->spsr;
8933 i = bank_number(mode);
8934 env->regs[13] = env->banked_r13[i];
8935 env->spsr = env->banked_spsr[i];
8937 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
8938 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
8941 /* Physical Interrupt Target EL Lookup Table
8943 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
8945 * The below multi-dimensional table is used for looking up the target
8946 * exception level given numerous condition criteria. Specifically, the
8947 * target EL is based on SCR and HCR routing controls as well as the
8948 * currently executing EL and secure state.
8950 * Dimensions:
8951 * target_el_table[2][2][2][2][2][4]
8952 * | | | | | +--- Current EL
8953 * | | | | +------ Non-secure(0)/Secure(1)
8954 * | | | +--------- HCR mask override
8955 * | | +------------ SCR exec state control
8956 * | +--------------- SCR mask override
8957 * +------------------ 32-bit(0)/64-bit(1) EL3
8959 * The table values are as such:
8960 * 0-3 = EL0-EL3
8961 * -1 = Cannot occur
8963 * The ARM ARM target EL table includes entries indicating that an "exception
8964 * is not taken". The two cases where this is applicable are:
8965 * 1) An exception is taken from EL3 but the SCR does not have the exception
8966 * routed to EL3.
8967 * 2) An exception is taken from EL2 but the HCR does not have the exception
8968 * routed to EL2.
8969 * In these two cases, the below table contain a target of EL1. This value is
8970 * returned as it is expected that the consumer of the table data will check
8971 * for "target EL >= current EL" to ensure the exception is not taken.
8973 * SCR HCR
8974 * 64 EA AMO From
8975 * BIT IRQ IMO Non-secure Secure
8976 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
8978 static const int8_t target_el_table[2][2][2][2][2][4] = {
8979 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
8980 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
8981 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
8982 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
8983 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
8984 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
8985 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
8986 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
8987 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
8988 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
8989 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
8990 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
8991 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
8992 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
8993 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
8994 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
8998 * Determine the target EL for physical exceptions
9000 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9001 uint32_t cur_el, bool secure)
9003 CPUARMState *env = cs->env_ptr;
9004 bool rw;
9005 bool scr;
9006 bool hcr;
9007 int target_el;
9008 /* Is the highest EL AArch64? */
9009 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9010 uint64_t hcr_el2;
9012 if (arm_feature(env, ARM_FEATURE_EL3)) {
9013 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9014 } else {
9015 /* Either EL2 is the highest EL (and so the EL2 register width
9016 * is given by is64); or there is no EL2 or EL3, in which case
9017 * the value of 'rw' does not affect the table lookup anyway.
9019 rw = is64;
9022 hcr_el2 = arm_hcr_el2_eff(env);
9023 switch (excp_idx) {
9024 case EXCP_IRQ:
9025 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9026 hcr = hcr_el2 & HCR_IMO;
9027 break;
9028 case EXCP_FIQ:
9029 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9030 hcr = hcr_el2 & HCR_FMO;
9031 break;
9032 default:
9033 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9034 hcr = hcr_el2 & HCR_AMO;
9035 break;
9039 * For these purposes, TGE and AMO/IMO/FMO both force the
9040 * interrupt to EL2. Fold TGE into the bit extracted above.
9042 hcr |= (hcr_el2 & HCR_TGE) != 0;
9044 /* Perform a table-lookup for the target EL given the current state */
9045 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9047 assert(target_el > 0);
9049 return target_el;
9052 void arm_log_exception(int idx)
9054 if (qemu_loglevel_mask(CPU_LOG_INT)) {
9055 const char *exc = NULL;
9056 static const char * const excnames[] = {
9057 [EXCP_UDEF] = "Undefined Instruction",
9058 [EXCP_SWI] = "SVC",
9059 [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9060 [EXCP_DATA_ABORT] = "Data Abort",
9061 [EXCP_IRQ] = "IRQ",
9062 [EXCP_FIQ] = "FIQ",
9063 [EXCP_BKPT] = "Breakpoint",
9064 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9065 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9066 [EXCP_HVC] = "Hypervisor Call",
9067 [EXCP_HYP_TRAP] = "Hypervisor Trap",
9068 [EXCP_SMC] = "Secure Monitor Call",
9069 [EXCP_VIRQ] = "Virtual IRQ",
9070 [EXCP_VFIQ] = "Virtual FIQ",
9071 [EXCP_SEMIHOST] = "Semihosting call",
9072 [EXCP_NOCP] = "v7M NOCP UsageFault",
9073 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9074 [EXCP_STKOF] = "v8M STKOF UsageFault",
9075 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9076 [EXCP_LSERR] = "v8M LSERR UsageFault",
9077 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9080 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9081 exc = excnames[idx];
9083 if (!exc) {
9084 exc = "unknown";
9086 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9091 * Function used to synchronize QEMU's AArch64 register set with AArch32
9092 * register set. This is necessary when switching between AArch32 and AArch64
9093 * execution state.
9095 void aarch64_sync_32_to_64(CPUARMState *env)
9097 int i;
9098 uint32_t mode = env->uncached_cpsr & CPSR_M;
9100 /* We can blanket copy R[0:7] to X[0:7] */
9101 for (i = 0; i < 8; i++) {
9102 env->xregs[i] = env->regs[i];
9106 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9107 * Otherwise, they come from the banked user regs.
9109 if (mode == ARM_CPU_MODE_FIQ) {
9110 for (i = 8; i < 13; i++) {
9111 env->xregs[i] = env->usr_regs[i - 8];
9113 } else {
9114 for (i = 8; i < 13; i++) {
9115 env->xregs[i] = env->regs[i];
9120 * Registers x13-x23 are the various mode SP and FP registers. Registers
9121 * r13 and r14 are only copied if we are in that mode, otherwise we copy
9122 * from the mode banked register.
9124 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9125 env->xregs[13] = env->regs[13];
9126 env->xregs[14] = env->regs[14];
9127 } else {
9128 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9129 /* HYP is an exception in that it is copied from r14 */
9130 if (mode == ARM_CPU_MODE_HYP) {
9131 env->xregs[14] = env->regs[14];
9132 } else {
9133 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9137 if (mode == ARM_CPU_MODE_HYP) {
9138 env->xregs[15] = env->regs[13];
9139 } else {
9140 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9143 if (mode == ARM_CPU_MODE_IRQ) {
9144 env->xregs[16] = env->regs[14];
9145 env->xregs[17] = env->regs[13];
9146 } else {
9147 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9148 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9151 if (mode == ARM_CPU_MODE_SVC) {
9152 env->xregs[18] = env->regs[14];
9153 env->xregs[19] = env->regs[13];
9154 } else {
9155 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9156 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9159 if (mode == ARM_CPU_MODE_ABT) {
9160 env->xregs[20] = env->regs[14];
9161 env->xregs[21] = env->regs[13];
9162 } else {
9163 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9164 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9167 if (mode == ARM_CPU_MODE_UND) {
9168 env->xregs[22] = env->regs[14];
9169 env->xregs[23] = env->regs[13];
9170 } else {
9171 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9172 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9176 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9177 * mode, then we can copy from r8-r14. Otherwise, we copy from the
9178 * FIQ bank for r8-r14.
9180 if (mode == ARM_CPU_MODE_FIQ) {
9181 for (i = 24; i < 31; i++) {
9182 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
9184 } else {
9185 for (i = 24; i < 29; i++) {
9186 env->xregs[i] = env->fiq_regs[i - 24];
9188 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9189 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9192 env->pc = env->regs[15];
9196 * Function used to synchronize QEMU's AArch32 register set with AArch64
9197 * register set. This is necessary when switching between AArch32 and AArch64
9198 * execution state.
9200 void aarch64_sync_64_to_32(CPUARMState *env)
9202 int i;
9203 uint32_t mode = env->uncached_cpsr & CPSR_M;
9205 /* We can blanket copy X[0:7] to R[0:7] */
9206 for (i = 0; i < 8; i++) {
9207 env->regs[i] = env->xregs[i];
9211 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9212 * Otherwise, we copy x8-x12 into the banked user regs.
9214 if (mode == ARM_CPU_MODE_FIQ) {
9215 for (i = 8; i < 13; i++) {
9216 env->usr_regs[i - 8] = env->xregs[i];
9218 } else {
9219 for (i = 8; i < 13; i++) {
9220 env->regs[i] = env->xregs[i];
9225 * Registers r13 & r14 depend on the current mode.
9226 * If we are in a given mode, we copy the corresponding x registers to r13
9227 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9228 * for the mode.
9230 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9231 env->regs[13] = env->xregs[13];
9232 env->regs[14] = env->xregs[14];
9233 } else {
9234 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9237 * HYP is an exception in that it does not have its own banked r14 but
9238 * shares the USR r14
9240 if (mode == ARM_CPU_MODE_HYP) {
9241 env->regs[14] = env->xregs[14];
9242 } else {
9243 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9247 if (mode == ARM_CPU_MODE_HYP) {
9248 env->regs[13] = env->xregs[15];
9249 } else {
9250 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9253 if (mode == ARM_CPU_MODE_IRQ) {
9254 env->regs[14] = env->xregs[16];
9255 env->regs[13] = env->xregs[17];
9256 } else {
9257 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9258 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9261 if (mode == ARM_CPU_MODE_SVC) {
9262 env->regs[14] = env->xregs[18];
9263 env->regs[13] = env->xregs[19];
9264 } else {
9265 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9266 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9269 if (mode == ARM_CPU_MODE_ABT) {
9270 env->regs[14] = env->xregs[20];
9271 env->regs[13] = env->xregs[21];
9272 } else {
9273 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9274 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9277 if (mode == ARM_CPU_MODE_UND) {
9278 env->regs[14] = env->xregs[22];
9279 env->regs[13] = env->xregs[23];
9280 } else {
9281 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9282 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9285 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9286 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9287 * FIQ bank for r8-r14.
9289 if (mode == ARM_CPU_MODE_FIQ) {
9290 for (i = 24; i < 31; i++) {
9291 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
9293 } else {
9294 for (i = 24; i < 29; i++) {
9295 env->fiq_regs[i - 24] = env->xregs[i];
9297 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9298 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9301 env->regs[15] = env->pc;
9304 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9305 uint32_t mask, uint32_t offset,
9306 uint32_t newpc)
9308 int new_el;
9310 /* Change the CPU state so as to actually take the exception. */
9311 switch_mode(env, new_mode);
9314 * For exceptions taken to AArch32 we must clear the SS bit in both
9315 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9317 env->uncached_cpsr &= ~PSTATE_SS;
9318 env->spsr = cpsr_read(env);
9319 /* Clear IT bits. */
9320 env->condexec_bits = 0;
9321 /* Switch to the new mode, and to the correct instruction set. */
9322 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9324 /* This must be after mode switching. */
9325 new_el = arm_current_el(env);
9327 /* Set new mode endianness */
9328 env->uncached_cpsr &= ~CPSR_E;
9329 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9330 env->uncached_cpsr |= CPSR_E;
9332 /* J and IL must always be cleared for exception entry */
9333 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9334 env->daif |= mask;
9336 if (new_mode == ARM_CPU_MODE_HYP) {
9337 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9338 env->elr_el[2] = env->regs[15];
9339 } else {
9340 /* CPSR.PAN is normally preserved preserved unless... */
9341 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9342 switch (new_el) {
9343 case 3:
9344 if (!arm_is_secure_below_el3(env)) {
9345 /* ... the target is EL3, from non-secure state. */
9346 env->uncached_cpsr &= ~CPSR_PAN;
9347 break;
9349 /* ... the target is EL3, from secure state ... */
9350 /* fall through */
9351 case 1:
9352 /* ... the target is EL1 and SCTLR.SPAN is 0. */
9353 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9354 env->uncached_cpsr |= CPSR_PAN;
9356 break;
9360 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9361 * and we should just guard the thumb mode on V4
9363 if (arm_feature(env, ARM_FEATURE_V4T)) {
9364 env->thumb =
9365 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9367 env->regs[14] = env->regs[15] + offset;
9369 env->regs[15] = newpc;
9370 arm_rebuild_hflags(env);
9373 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9376 * Handle exception entry to Hyp mode; this is sufficiently
9377 * different to entry to other AArch32 modes that we handle it
9378 * separately here.
9380 * The vector table entry used is always the 0x14 Hyp mode entry point,
9381 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9382 * The offset applied to the preferred return address is always zero
9383 * (see DDI0487C.a section G1.12.3).
9384 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9386 uint32_t addr, mask;
9387 ARMCPU *cpu = ARM_CPU(cs);
9388 CPUARMState *env = &cpu->env;
9390 switch (cs->exception_index) {
9391 case EXCP_UDEF:
9392 addr = 0x04;
9393 break;
9394 case EXCP_SWI:
9395 addr = 0x14;
9396 break;
9397 case EXCP_BKPT:
9398 /* Fall through to prefetch abort. */
9399 case EXCP_PREFETCH_ABORT:
9400 env->cp15.ifar_s = env->exception.vaddress;
9401 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9402 (uint32_t)env->exception.vaddress);
9403 addr = 0x0c;
9404 break;
9405 case EXCP_DATA_ABORT:
9406 env->cp15.dfar_s = env->exception.vaddress;
9407 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9408 (uint32_t)env->exception.vaddress);
9409 addr = 0x10;
9410 break;
9411 case EXCP_IRQ:
9412 addr = 0x18;
9413 break;
9414 case EXCP_FIQ:
9415 addr = 0x1c;
9416 break;
9417 case EXCP_HVC:
9418 addr = 0x08;
9419 break;
9420 case EXCP_HYP_TRAP:
9421 addr = 0x14;
9422 break;
9423 default:
9424 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9427 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9428 if (!arm_feature(env, ARM_FEATURE_V8)) {
9430 * QEMU syndrome values are v8-style. v7 has the IL bit
9431 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9432 * If this is a v7 CPU, squash the IL bit in those cases.
9434 if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9435 (cs->exception_index == EXCP_DATA_ABORT &&
9436 !(env->exception.syndrome & ARM_EL_ISV)) ||
9437 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9438 env->exception.syndrome &= ~ARM_EL_IL;
9441 env->cp15.esr_el[2] = env->exception.syndrome;
9444 if (arm_current_el(env) != 2 && addr < 0x14) {
9445 addr = 0x14;
9448 mask = 0;
9449 if (!(env->cp15.scr_el3 & SCR_EA)) {
9450 mask |= CPSR_A;
9452 if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9453 mask |= CPSR_I;
9455 if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9456 mask |= CPSR_F;
9459 addr += env->cp15.hvbar;
9461 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9464 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9466 ARMCPU *cpu = ARM_CPU(cs);
9467 CPUARMState *env = &cpu->env;
9468 uint32_t addr;
9469 uint32_t mask;
9470 int new_mode;
9471 uint32_t offset;
9472 uint32_t moe;
9474 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9475 switch (syn_get_ec(env->exception.syndrome)) {
9476 case EC_BREAKPOINT:
9477 case EC_BREAKPOINT_SAME_EL:
9478 moe = 1;
9479 break;
9480 case EC_WATCHPOINT:
9481 case EC_WATCHPOINT_SAME_EL:
9482 moe = 10;
9483 break;
9484 case EC_AA32_BKPT:
9485 moe = 3;
9486 break;
9487 case EC_VECTORCATCH:
9488 moe = 5;
9489 break;
9490 default:
9491 moe = 0;
9492 break;
9495 if (moe) {
9496 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9499 if (env->exception.target_el == 2) {
9500 arm_cpu_do_interrupt_aarch32_hyp(cs);
9501 return;
9504 switch (cs->exception_index) {
9505 case EXCP_UDEF:
9506 new_mode = ARM_CPU_MODE_UND;
9507 addr = 0x04;
9508 mask = CPSR_I;
9509 if (env->thumb)
9510 offset = 2;
9511 else
9512 offset = 4;
9513 break;
9514 case EXCP_SWI:
9515 new_mode = ARM_CPU_MODE_SVC;
9516 addr = 0x08;
9517 mask = CPSR_I;
9518 /* The PC already points to the next instruction. */
9519 offset = 0;
9520 break;
9521 case EXCP_BKPT:
9522 /* Fall through to prefetch abort. */
9523 case EXCP_PREFETCH_ABORT:
9524 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9525 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9526 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9527 env->exception.fsr, (uint32_t)env->exception.vaddress);
9528 new_mode = ARM_CPU_MODE_ABT;
9529 addr = 0x0c;
9530 mask = CPSR_A | CPSR_I;
9531 offset = 4;
9532 break;
9533 case EXCP_DATA_ABORT:
9534 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9535 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9536 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9537 env->exception.fsr,
9538 (uint32_t)env->exception.vaddress);
9539 new_mode = ARM_CPU_MODE_ABT;
9540 addr = 0x10;
9541 mask = CPSR_A | CPSR_I;
9542 offset = 8;
9543 break;
9544 case EXCP_IRQ:
9545 new_mode = ARM_CPU_MODE_IRQ;
9546 addr = 0x18;
9547 /* Disable IRQ and imprecise data aborts. */
9548 mask = CPSR_A | CPSR_I;
9549 offset = 4;
9550 if (env->cp15.scr_el3 & SCR_IRQ) {
9551 /* IRQ routed to monitor mode */
9552 new_mode = ARM_CPU_MODE_MON;
9553 mask |= CPSR_F;
9555 break;
9556 case EXCP_FIQ:
9557 new_mode = ARM_CPU_MODE_FIQ;
9558 addr = 0x1c;
9559 /* Disable FIQ, IRQ and imprecise data aborts. */
9560 mask = CPSR_A | CPSR_I | CPSR_F;
9561 if (env->cp15.scr_el3 & SCR_FIQ) {
9562 /* FIQ routed to monitor mode */
9563 new_mode = ARM_CPU_MODE_MON;
9565 offset = 4;
9566 break;
9567 case EXCP_VIRQ:
9568 new_mode = ARM_CPU_MODE_IRQ;
9569 addr = 0x18;
9570 /* Disable IRQ and imprecise data aborts. */
9571 mask = CPSR_A | CPSR_I;
9572 offset = 4;
9573 break;
9574 case EXCP_VFIQ:
9575 new_mode = ARM_CPU_MODE_FIQ;
9576 addr = 0x1c;
9577 /* Disable FIQ, IRQ and imprecise data aborts. */
9578 mask = CPSR_A | CPSR_I | CPSR_F;
9579 offset = 4;
9580 break;
9581 case EXCP_SMC:
9582 new_mode = ARM_CPU_MODE_MON;
9583 addr = 0x08;
9584 mask = CPSR_A | CPSR_I | CPSR_F;
9585 offset = 0;
9586 break;
9587 default:
9588 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9589 return; /* Never happens. Keep compiler happy. */
9592 if (new_mode == ARM_CPU_MODE_MON) {
9593 addr += env->cp15.mvbar;
9594 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9595 /* High vectors. When enabled, base address cannot be remapped. */
9596 addr += 0xffff0000;
9597 } else {
9598 /* ARM v7 architectures provide a vector base address register to remap
9599 * the interrupt vector table.
9600 * This register is only followed in non-monitor mode, and is banked.
9601 * Note: only bits 31:5 are valid.
9603 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9606 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9607 env->cp15.scr_el3 &= ~SCR_NS;
9610 take_aarch32_exception(env, new_mode, mask, offset, addr);
9613 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9616 * Return the register number of the AArch64 view of the AArch32
9617 * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9618 * be that of the AArch32 mode the exception came from.
9620 int mode = env->uncached_cpsr & CPSR_M;
9622 switch (aarch32_reg) {
9623 case 0 ... 7:
9624 return aarch32_reg;
9625 case 8 ... 12:
9626 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9627 case 13:
9628 switch (mode) {
9629 case ARM_CPU_MODE_USR:
9630 case ARM_CPU_MODE_SYS:
9631 return 13;
9632 case ARM_CPU_MODE_HYP:
9633 return 15;
9634 case ARM_CPU_MODE_IRQ:
9635 return 17;
9636 case ARM_CPU_MODE_SVC:
9637 return 19;
9638 case ARM_CPU_MODE_ABT:
9639 return 21;
9640 case ARM_CPU_MODE_UND:
9641 return 23;
9642 case ARM_CPU_MODE_FIQ:
9643 return 29;
9644 default:
9645 g_assert_not_reached();
9647 case 14:
9648 switch (mode) {
9649 case ARM_CPU_MODE_USR:
9650 case ARM_CPU_MODE_SYS:
9651 case ARM_CPU_MODE_HYP:
9652 return 14;
9653 case ARM_CPU_MODE_IRQ:
9654 return 16;
9655 case ARM_CPU_MODE_SVC:
9656 return 18;
9657 case ARM_CPU_MODE_ABT:
9658 return 20;
9659 case ARM_CPU_MODE_UND:
9660 return 22;
9661 case ARM_CPU_MODE_FIQ:
9662 return 30;
9663 default:
9664 g_assert_not_reached();
9666 case 15:
9667 return 31;
9668 default:
9669 g_assert_not_reached();
9673 /* Handle exception entry to a target EL which is using AArch64 */
9674 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9676 ARMCPU *cpu = ARM_CPU(cs);
9677 CPUARMState *env = &cpu->env;
9678 unsigned int new_el = env->exception.target_el;
9679 target_ulong addr = env->cp15.vbar_el[new_el];
9680 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9681 unsigned int old_mode;
9682 unsigned int cur_el = arm_current_el(env);
9683 int rt;
9686 * Note that new_el can never be 0. If cur_el is 0, then
9687 * el0_a64 is is_a64(), else el0_a64 is ignored.
9689 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9691 if (cur_el < new_el) {
9692 /* Entry vector offset depends on whether the implemented EL
9693 * immediately lower than the target level is using AArch32 or AArch64
9695 bool is_aa64;
9696 uint64_t hcr;
9698 switch (new_el) {
9699 case 3:
9700 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9701 break;
9702 case 2:
9703 hcr = arm_hcr_el2_eff(env);
9704 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9705 is_aa64 = (hcr & HCR_RW) != 0;
9706 break;
9708 /* fall through */
9709 case 1:
9710 is_aa64 = is_a64(env);
9711 break;
9712 default:
9713 g_assert_not_reached();
9716 if (is_aa64) {
9717 addr += 0x400;
9718 } else {
9719 addr += 0x600;
9721 } else if (pstate_read(env) & PSTATE_SP) {
9722 addr += 0x200;
9725 switch (cs->exception_index) {
9726 case EXCP_PREFETCH_ABORT:
9727 case EXCP_DATA_ABORT:
9728 env->cp15.far_el[new_el] = env->exception.vaddress;
9729 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9730 env->cp15.far_el[new_el]);
9731 /* fall through */
9732 case EXCP_BKPT:
9733 case EXCP_UDEF:
9734 case EXCP_SWI:
9735 case EXCP_HVC:
9736 case EXCP_HYP_TRAP:
9737 case EXCP_SMC:
9738 switch (syn_get_ec(env->exception.syndrome)) {
9739 case EC_ADVSIMDFPACCESSTRAP:
9741 * QEMU internal FP/SIMD syndromes from AArch32 include the
9742 * TA and coproc fields which are only exposed if the exception
9743 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9744 * AArch64 format syndrome.
9746 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9747 break;
9748 case EC_CP14RTTRAP:
9749 case EC_CP15RTTRAP:
9750 case EC_CP14DTTRAP:
9752 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
9753 * the raw register field from the insn; when taking this to
9754 * AArch64 we must convert it to the AArch64 view of the register
9755 * number. Notice that we read a 4-bit AArch32 register number and
9756 * write back a 5-bit AArch64 one.
9758 rt = extract32(env->exception.syndrome, 5, 4);
9759 rt = aarch64_regnum(env, rt);
9760 env->exception.syndrome = deposit32(env->exception.syndrome,
9761 5, 5, rt);
9762 break;
9763 case EC_CP15RRTTRAP:
9764 case EC_CP14RRTTRAP:
9765 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
9766 rt = extract32(env->exception.syndrome, 5, 4);
9767 rt = aarch64_regnum(env, rt);
9768 env->exception.syndrome = deposit32(env->exception.syndrome,
9769 5, 5, rt);
9770 rt = extract32(env->exception.syndrome, 10, 4);
9771 rt = aarch64_regnum(env, rt);
9772 env->exception.syndrome = deposit32(env->exception.syndrome,
9773 10, 5, rt);
9774 break;
9776 env->cp15.esr_el[new_el] = env->exception.syndrome;
9777 break;
9778 case EXCP_IRQ:
9779 case EXCP_VIRQ:
9780 addr += 0x80;
9781 break;
9782 case EXCP_FIQ:
9783 case EXCP_VFIQ:
9784 addr += 0x100;
9785 break;
9786 default:
9787 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9790 if (is_a64(env)) {
9791 old_mode = pstate_read(env);
9792 aarch64_save_sp(env, arm_current_el(env));
9793 env->elr_el[new_el] = env->pc;
9794 } else {
9795 old_mode = cpsr_read(env);
9796 env->elr_el[new_el] = env->regs[15];
9798 aarch64_sync_32_to_64(env);
9800 env->condexec_bits = 0;
9802 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9804 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9805 env->elr_el[new_el]);
9807 if (cpu_isar_feature(aa64_pan, cpu)) {
9808 /* The value of PSTATE.PAN is normally preserved, except when ... */
9809 new_mode |= old_mode & PSTATE_PAN;
9810 switch (new_el) {
9811 case 2:
9812 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
9813 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9814 != (HCR_E2H | HCR_TGE)) {
9815 break;
9817 /* fall through */
9818 case 1:
9819 /* ... the target is EL1 ... */
9820 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
9821 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9822 new_mode |= PSTATE_PAN;
9824 break;
9827 if (cpu_isar_feature(aa64_mte, cpu)) {
9828 new_mode |= PSTATE_TCO;
9831 pstate_write(env, PSTATE_DAIF | new_mode);
9832 env->aarch64 = 1;
9833 aarch64_restore_sp(env, new_el);
9834 helper_rebuild_hflags_a64(env, new_el);
9836 env->pc = addr;
9838 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9839 new_el, env->pc, pstate_read(env));
9843 * Do semihosting call and set the appropriate return value. All the
9844 * permission and validity checks have been done at translate time.
9846 * We only see semihosting exceptions in TCG only as they are not
9847 * trapped to the hypervisor in KVM.
9849 #ifdef CONFIG_TCG
9850 static void handle_semihosting(CPUState *cs)
9852 ARMCPU *cpu = ARM_CPU(cs);
9853 CPUARMState *env = &cpu->env;
9855 if (is_a64(env)) {
9856 qemu_log_mask(CPU_LOG_INT,
9857 "...handling as semihosting call 0x%" PRIx64 "\n",
9858 env->xregs[0]);
9859 env->xregs[0] = do_arm_semihosting(env);
9860 env->pc += 4;
9861 } else {
9862 qemu_log_mask(CPU_LOG_INT,
9863 "...handling as semihosting call 0x%x\n",
9864 env->regs[0]);
9865 env->regs[0] = do_arm_semihosting(env);
9866 env->regs[15] += env->thumb ? 2 : 4;
9869 #endif
9871 /* Handle a CPU exception for A and R profile CPUs.
9872 * Do any appropriate logging, handle PSCI calls, and then hand off
9873 * to the AArch64-entry or AArch32-entry function depending on the
9874 * target exception level's register width.
9876 void arm_cpu_do_interrupt(CPUState *cs)
9878 ARMCPU *cpu = ARM_CPU(cs);
9879 CPUARMState *env = &cpu->env;
9880 unsigned int new_el = env->exception.target_el;
9882 assert(!arm_feature(env, ARM_FEATURE_M));
9884 arm_log_exception(cs->exception_index);
9885 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9886 new_el);
9887 if (qemu_loglevel_mask(CPU_LOG_INT)
9888 && !excp_is_internal(cs->exception_index)) {
9889 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9890 syn_get_ec(env->exception.syndrome),
9891 env->exception.syndrome);
9894 if (arm_is_psci_call(cpu, cs->exception_index)) {
9895 arm_handle_psci_call(cpu);
9896 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9897 return;
9901 * Semihosting semantics depend on the register width of the code
9902 * that caused the exception, not the target exception level, so
9903 * must be handled here.
9905 #ifdef CONFIG_TCG
9906 if (cs->exception_index == EXCP_SEMIHOST) {
9907 handle_semihosting(cs);
9908 return;
9910 #endif
9912 /* Hooks may change global state so BQL should be held, also the
9913 * BQL needs to be held for any modification of
9914 * cs->interrupt_request.
9916 g_assert(qemu_mutex_iothread_locked());
9918 arm_call_pre_el_change_hook(cpu);
9920 assert(!excp_is_internal(cs->exception_index));
9921 if (arm_el_is_aa64(env, new_el)) {
9922 arm_cpu_do_interrupt_aarch64(cs);
9923 } else {
9924 arm_cpu_do_interrupt_aarch32(cs);
9927 arm_call_el_change_hook(cpu);
9929 if (!kvm_enabled()) {
9930 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9933 #endif /* !CONFIG_USER_ONLY */
9935 uint64_t arm_sctlr(CPUARMState *env, int el)
9937 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
9938 if (el == 0) {
9939 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
9940 el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1);
9942 return env->cp15.sctlr_el[el];
9945 /* Return the SCTLR value which controls this address translation regime */
9946 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9948 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9951 #ifndef CONFIG_USER_ONLY
9953 /* Return true if the specified stage of address translation is disabled */
9954 static inline bool regime_translation_disabled(CPUARMState *env,
9955 ARMMMUIdx mmu_idx)
9957 if (arm_feature(env, ARM_FEATURE_M)) {
9958 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9959 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9960 case R_V7M_MPU_CTRL_ENABLE_MASK:
9961 /* Enabled, but not for HardFault and NMI */
9962 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9963 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9964 /* Enabled for all cases */
9965 return false;
9966 case 0:
9967 default:
9968 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9969 * we warned about that in armv7m_nvic.c when the guest set it.
9971 return true;
9975 if (mmu_idx == ARMMMUIdx_Stage2) {
9976 /* HCR.DC means HCR.VM behaves as 1 */
9977 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9980 if (env->cp15.hcr_el2 & HCR_TGE) {
9981 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9982 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9983 return true;
9987 if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
9988 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9989 return true;
9992 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9995 static inline bool regime_translation_big_endian(CPUARMState *env,
9996 ARMMMUIdx mmu_idx)
9998 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10001 /* Return the TTBR associated with this translation regime */
10002 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10003 int ttbrn)
10005 if (mmu_idx == ARMMMUIdx_Stage2) {
10006 return env->cp15.vttbr_el2;
10008 if (ttbrn == 0) {
10009 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10010 } else {
10011 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10015 #endif /* !CONFIG_USER_ONLY */
10017 /* Convert a possible stage1+2 MMU index into the appropriate
10018 * stage 1 MMU index
10020 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10022 switch (mmu_idx) {
10023 case ARMMMUIdx_E10_0:
10024 return ARMMMUIdx_Stage1_E0;
10025 case ARMMMUIdx_E10_1:
10026 return ARMMMUIdx_Stage1_E1;
10027 case ARMMMUIdx_E10_1_PAN:
10028 return ARMMMUIdx_Stage1_E1_PAN;
10029 default:
10030 return mmu_idx;
10034 /* Return true if the translation regime is using LPAE format page tables */
10035 static inline bool regime_using_lpae_format(CPUARMState *env,
10036 ARMMMUIdx mmu_idx)
10038 int el = regime_el(env, mmu_idx);
10039 if (el == 2 || arm_el_is_aa64(env, el)) {
10040 return true;
10042 if (arm_feature(env, ARM_FEATURE_LPAE)
10043 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10044 return true;
10046 return false;
10049 /* Returns true if the stage 1 translation regime is using LPAE format page
10050 * tables. Used when raising alignment exceptions, whose FSR changes depending
10051 * on whether the long or short descriptor format is in use. */
10052 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10054 mmu_idx = stage_1_mmu_idx(mmu_idx);
10056 return regime_using_lpae_format(env, mmu_idx);
10059 #ifndef CONFIG_USER_ONLY
10060 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10062 switch (mmu_idx) {
10063 case ARMMMUIdx_SE10_0:
10064 case ARMMMUIdx_E20_0:
10065 case ARMMMUIdx_Stage1_E0:
10066 case ARMMMUIdx_MUser:
10067 case ARMMMUIdx_MSUser:
10068 case ARMMMUIdx_MUserNegPri:
10069 case ARMMMUIdx_MSUserNegPri:
10070 return true;
10071 default:
10072 return false;
10073 case ARMMMUIdx_E10_0:
10074 case ARMMMUIdx_E10_1:
10075 case ARMMMUIdx_E10_1_PAN:
10076 g_assert_not_reached();
10080 /* Translate section/page access permissions to page
10081 * R/W protection flags
10083 * @env: CPUARMState
10084 * @mmu_idx: MMU index indicating required translation regime
10085 * @ap: The 3-bit access permissions (AP[2:0])
10086 * @domain_prot: The 2-bit domain access permissions
10088 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10089 int ap, int domain_prot)
10091 bool is_user = regime_is_user(env, mmu_idx);
10093 if (domain_prot == 3) {
10094 return PAGE_READ | PAGE_WRITE;
10097 switch (ap) {
10098 case 0:
10099 if (arm_feature(env, ARM_FEATURE_V7)) {
10100 return 0;
10102 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10103 case SCTLR_S:
10104 return is_user ? 0 : PAGE_READ;
10105 case SCTLR_R:
10106 return PAGE_READ;
10107 default:
10108 return 0;
10110 case 1:
10111 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10112 case 2:
10113 if (is_user) {
10114 return PAGE_READ;
10115 } else {
10116 return PAGE_READ | PAGE_WRITE;
10118 case 3:
10119 return PAGE_READ | PAGE_WRITE;
10120 case 4: /* Reserved. */
10121 return 0;
10122 case 5:
10123 return is_user ? 0 : PAGE_READ;
10124 case 6:
10125 return PAGE_READ;
10126 case 7:
10127 if (!arm_feature(env, ARM_FEATURE_V6K)) {
10128 return 0;
10130 return PAGE_READ;
10131 default:
10132 g_assert_not_reached();
10136 /* Translate section/page access permissions to page
10137 * R/W protection flags.
10139 * @ap: The 2-bit simple AP (AP[2:1])
10140 * @is_user: TRUE if accessing from PL0
10142 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10144 switch (ap) {
10145 case 0:
10146 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10147 case 1:
10148 return PAGE_READ | PAGE_WRITE;
10149 case 2:
10150 return is_user ? 0 : PAGE_READ;
10151 case 3:
10152 return PAGE_READ;
10153 default:
10154 g_assert_not_reached();
10158 static inline int
10159 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10161 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10164 /* Translate S2 section/page access permissions to protection flags
10166 * @env: CPUARMState
10167 * @s2ap: The 2-bit stage2 access permissions (S2AP)
10168 * @xn: XN (execute-never) bits
10169 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10171 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10173 int prot = 0;
10175 if (s2ap & 1) {
10176 prot |= PAGE_READ;
10178 if (s2ap & 2) {
10179 prot |= PAGE_WRITE;
10182 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10183 switch (xn) {
10184 case 0:
10185 prot |= PAGE_EXEC;
10186 break;
10187 case 1:
10188 if (s1_is_el0) {
10189 prot |= PAGE_EXEC;
10191 break;
10192 case 2:
10193 break;
10194 case 3:
10195 if (!s1_is_el0) {
10196 prot |= PAGE_EXEC;
10198 break;
10199 default:
10200 g_assert_not_reached();
10202 } else {
10203 if (!extract32(xn, 1, 1)) {
10204 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10205 prot |= PAGE_EXEC;
10209 return prot;
10212 /* Translate section/page access permissions to protection flags
10214 * @env: CPUARMState
10215 * @mmu_idx: MMU index indicating required translation regime
10216 * @is_aa64: TRUE if AArch64
10217 * @ap: The 2-bit simple AP (AP[2:1])
10218 * @ns: NS (non-secure) bit
10219 * @xn: XN (execute-never) bit
10220 * @pxn: PXN (privileged execute-never) bit
10222 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10223 int ap, int ns, int xn, int pxn)
10225 bool is_user = regime_is_user(env, mmu_idx);
10226 int prot_rw, user_rw;
10227 bool have_wxn;
10228 int wxn = 0;
10230 assert(mmu_idx != ARMMMUIdx_Stage2);
10232 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10233 if (is_user) {
10234 prot_rw = user_rw;
10235 } else {
10236 if (user_rw && regime_is_pan(env, mmu_idx)) {
10237 /* PAN forbids data accesses but doesn't affect insn fetch */
10238 prot_rw = 0;
10239 } else {
10240 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10244 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10245 return prot_rw;
10248 /* TODO have_wxn should be replaced with
10249 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10250 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10251 * compatible processors have EL2, which is required for [U]WXN.
10253 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10255 if (have_wxn) {
10256 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10259 if (is_aa64) {
10260 if (regime_has_2_ranges(mmu_idx) && !is_user) {
10261 xn = pxn || (user_rw & PAGE_WRITE);
10263 } else if (arm_feature(env, ARM_FEATURE_V7)) {
10264 switch (regime_el(env, mmu_idx)) {
10265 case 1:
10266 case 3:
10267 if (is_user) {
10268 xn = xn || !(user_rw & PAGE_READ);
10269 } else {
10270 int uwxn = 0;
10271 if (have_wxn) {
10272 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10274 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10275 (uwxn && (user_rw & PAGE_WRITE));
10277 break;
10278 case 2:
10279 break;
10281 } else {
10282 xn = wxn = 0;
10285 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10286 return prot_rw;
10288 return prot_rw | PAGE_EXEC;
10291 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10292 uint32_t *table, uint32_t address)
10294 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10295 TCR *tcr = regime_tcr(env, mmu_idx);
10297 if (address & tcr->mask) {
10298 if (tcr->raw_tcr & TTBCR_PD1) {
10299 /* Translation table walk disabled for TTBR1 */
10300 return false;
10302 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10303 } else {
10304 if (tcr->raw_tcr & TTBCR_PD0) {
10305 /* Translation table walk disabled for TTBR0 */
10306 return false;
10308 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10310 *table |= (address >> 18) & 0x3ffc;
10311 return true;
10314 /* Translate a S1 pagetable walk through S2 if needed. */
10315 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10316 hwaddr addr, MemTxAttrs txattrs,
10317 ARMMMUFaultInfo *fi)
10319 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10320 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10321 target_ulong s2size;
10322 hwaddr s2pa;
10323 int s2prot;
10324 int ret;
10325 ARMCacheAttrs cacheattrs = {};
10327 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2,
10328 false,
10329 &s2pa, &txattrs, &s2prot, &s2size, fi,
10330 &cacheattrs);
10331 if (ret) {
10332 assert(fi->type != ARMFault_None);
10333 fi->s2addr = addr;
10334 fi->stage2 = true;
10335 fi->s1ptw = true;
10336 return ~0;
10338 if ((env->cp15.hcr_el2 & HCR_PTW) && (cacheattrs.attrs & 0xf0) == 0) {
10340 * PTW set and S1 walk touched S2 Device memory:
10341 * generate Permission fault.
10343 fi->type = ARMFault_Permission;
10344 fi->s2addr = addr;
10345 fi->stage2 = true;
10346 fi->s1ptw = true;
10347 return ~0;
10349 addr = s2pa;
10351 return addr;
10354 /* All loads done in the course of a page table walk go through here. */
10355 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10356 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10358 ARMCPU *cpu = ARM_CPU(cs);
10359 CPUARMState *env = &cpu->env;
10360 MemTxAttrs attrs = {};
10361 MemTxResult result = MEMTX_OK;
10362 AddressSpace *as;
10363 uint32_t data;
10365 attrs.secure = is_secure;
10366 as = arm_addressspace(cs, attrs);
10367 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10368 if (fi->s1ptw) {
10369 return 0;
10371 if (regime_translation_big_endian(env, mmu_idx)) {
10372 data = address_space_ldl_be(as, addr, attrs, &result);
10373 } else {
10374 data = address_space_ldl_le(as, addr, attrs, &result);
10376 if (result == MEMTX_OK) {
10377 return data;
10379 fi->type = ARMFault_SyncExternalOnWalk;
10380 fi->ea = arm_extabort_type(result);
10381 return 0;
10384 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10385 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10387 ARMCPU *cpu = ARM_CPU(cs);
10388 CPUARMState *env = &cpu->env;
10389 MemTxAttrs attrs = {};
10390 MemTxResult result = MEMTX_OK;
10391 AddressSpace *as;
10392 uint64_t data;
10394 attrs.secure = is_secure;
10395 as = arm_addressspace(cs, attrs);
10396 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10397 if (fi->s1ptw) {
10398 return 0;
10400 if (regime_translation_big_endian(env, mmu_idx)) {
10401 data = address_space_ldq_be(as, addr, attrs, &result);
10402 } else {
10403 data = address_space_ldq_le(as, addr, attrs, &result);
10405 if (result == MEMTX_OK) {
10406 return data;
10408 fi->type = ARMFault_SyncExternalOnWalk;
10409 fi->ea = arm_extabort_type(result);
10410 return 0;
10413 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10414 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10415 hwaddr *phys_ptr, int *prot,
10416 target_ulong *page_size,
10417 ARMMMUFaultInfo *fi)
10419 CPUState *cs = env_cpu(env);
10420 int level = 1;
10421 uint32_t table;
10422 uint32_t desc;
10423 int type;
10424 int ap;
10425 int domain = 0;
10426 int domain_prot;
10427 hwaddr phys_addr;
10428 uint32_t dacr;
10430 /* Pagetable walk. */
10431 /* Lookup l1 descriptor. */
10432 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10433 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10434 fi->type = ARMFault_Translation;
10435 goto do_fault;
10437 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10438 mmu_idx, fi);
10439 if (fi->type != ARMFault_None) {
10440 goto do_fault;
10442 type = (desc & 3);
10443 domain = (desc >> 5) & 0x0f;
10444 if (regime_el(env, mmu_idx) == 1) {
10445 dacr = env->cp15.dacr_ns;
10446 } else {
10447 dacr = env->cp15.dacr_s;
10449 domain_prot = (dacr >> (domain * 2)) & 3;
10450 if (type == 0) {
10451 /* Section translation fault. */
10452 fi->type = ARMFault_Translation;
10453 goto do_fault;
10455 if (type != 2) {
10456 level = 2;
10458 if (domain_prot == 0 || domain_prot == 2) {
10459 fi->type = ARMFault_Domain;
10460 goto do_fault;
10462 if (type == 2) {
10463 /* 1Mb section. */
10464 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10465 ap = (desc >> 10) & 3;
10466 *page_size = 1024 * 1024;
10467 } else {
10468 /* Lookup l2 entry. */
10469 if (type == 1) {
10470 /* Coarse pagetable. */
10471 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10472 } else {
10473 /* Fine pagetable. */
10474 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10476 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10477 mmu_idx, fi);
10478 if (fi->type != ARMFault_None) {
10479 goto do_fault;
10481 switch (desc & 3) {
10482 case 0: /* Page translation fault. */
10483 fi->type = ARMFault_Translation;
10484 goto do_fault;
10485 case 1: /* 64k page. */
10486 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10487 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10488 *page_size = 0x10000;
10489 break;
10490 case 2: /* 4k page. */
10491 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10492 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10493 *page_size = 0x1000;
10494 break;
10495 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10496 if (type == 1) {
10497 /* ARMv6/XScale extended small page format */
10498 if (arm_feature(env, ARM_FEATURE_XSCALE)
10499 || arm_feature(env, ARM_FEATURE_V6)) {
10500 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10501 *page_size = 0x1000;
10502 } else {
10503 /* UNPREDICTABLE in ARMv5; we choose to take a
10504 * page translation fault.
10506 fi->type = ARMFault_Translation;
10507 goto do_fault;
10509 } else {
10510 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10511 *page_size = 0x400;
10513 ap = (desc >> 4) & 3;
10514 break;
10515 default:
10516 /* Never happens, but compiler isn't smart enough to tell. */
10517 abort();
10520 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10521 *prot |= *prot ? PAGE_EXEC : 0;
10522 if (!(*prot & (1 << access_type))) {
10523 /* Access permission fault. */
10524 fi->type = ARMFault_Permission;
10525 goto do_fault;
10527 *phys_ptr = phys_addr;
10528 return false;
10529 do_fault:
10530 fi->domain = domain;
10531 fi->level = level;
10532 return true;
10535 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10536 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10537 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10538 target_ulong *page_size, ARMMMUFaultInfo *fi)
10540 CPUState *cs = env_cpu(env);
10541 ARMCPU *cpu = env_archcpu(env);
10542 int level = 1;
10543 uint32_t table;
10544 uint32_t desc;
10545 uint32_t xn;
10546 uint32_t pxn = 0;
10547 int type;
10548 int ap;
10549 int domain = 0;
10550 int domain_prot;
10551 hwaddr phys_addr;
10552 uint32_t dacr;
10553 bool ns;
10555 /* Pagetable walk. */
10556 /* Lookup l1 descriptor. */
10557 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10558 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10559 fi->type = ARMFault_Translation;
10560 goto do_fault;
10562 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10563 mmu_idx, fi);
10564 if (fi->type != ARMFault_None) {
10565 goto do_fault;
10567 type = (desc & 3);
10568 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10569 /* Section translation fault, or attempt to use the encoding
10570 * which is Reserved on implementations without PXN.
10572 fi->type = ARMFault_Translation;
10573 goto do_fault;
10575 if ((type == 1) || !(desc & (1 << 18))) {
10576 /* Page or Section. */
10577 domain = (desc >> 5) & 0x0f;
10579 if (regime_el(env, mmu_idx) == 1) {
10580 dacr = env->cp15.dacr_ns;
10581 } else {
10582 dacr = env->cp15.dacr_s;
10584 if (type == 1) {
10585 level = 2;
10587 domain_prot = (dacr >> (domain * 2)) & 3;
10588 if (domain_prot == 0 || domain_prot == 2) {
10589 /* Section or Page domain fault */
10590 fi->type = ARMFault_Domain;
10591 goto do_fault;
10593 if (type != 1) {
10594 if (desc & (1 << 18)) {
10595 /* Supersection. */
10596 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10597 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10598 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10599 *page_size = 0x1000000;
10600 } else {
10601 /* Section. */
10602 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10603 *page_size = 0x100000;
10605 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10606 xn = desc & (1 << 4);
10607 pxn = desc & 1;
10608 ns = extract32(desc, 19, 1);
10609 } else {
10610 if (cpu_isar_feature(aa32_pxn, cpu)) {
10611 pxn = (desc >> 2) & 1;
10613 ns = extract32(desc, 3, 1);
10614 /* Lookup l2 entry. */
10615 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10616 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10617 mmu_idx, fi);
10618 if (fi->type != ARMFault_None) {
10619 goto do_fault;
10621 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10622 switch (desc & 3) {
10623 case 0: /* Page translation fault. */
10624 fi->type = ARMFault_Translation;
10625 goto do_fault;
10626 case 1: /* 64k page. */
10627 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10628 xn = desc & (1 << 15);
10629 *page_size = 0x10000;
10630 break;
10631 case 2: case 3: /* 4k page. */
10632 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10633 xn = desc & 1;
10634 *page_size = 0x1000;
10635 break;
10636 default:
10637 /* Never happens, but compiler isn't smart enough to tell. */
10638 abort();
10641 if (domain_prot == 3) {
10642 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10643 } else {
10644 if (pxn && !regime_is_user(env, mmu_idx)) {
10645 xn = 1;
10647 if (xn && access_type == MMU_INST_FETCH) {
10648 fi->type = ARMFault_Permission;
10649 goto do_fault;
10652 if (arm_feature(env, ARM_FEATURE_V6K) &&
10653 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10654 /* The simplified model uses AP[0] as an access control bit. */
10655 if ((ap & 1) == 0) {
10656 /* Access flag fault. */
10657 fi->type = ARMFault_AccessFlag;
10658 goto do_fault;
10660 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10661 } else {
10662 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10664 if (*prot && !xn) {
10665 *prot |= PAGE_EXEC;
10667 if (!(*prot & (1 << access_type))) {
10668 /* Access permission fault. */
10669 fi->type = ARMFault_Permission;
10670 goto do_fault;
10673 if (ns) {
10674 /* The NS bit will (as required by the architecture) have no effect if
10675 * the CPU doesn't support TZ or this is a non-secure translation
10676 * regime, because the attribute will already be non-secure.
10678 attrs->secure = false;
10680 *phys_ptr = phys_addr;
10681 return false;
10682 do_fault:
10683 fi->domain = domain;
10684 fi->level = level;
10685 return true;
10689 * check_s2_mmu_setup
10690 * @cpu: ARMCPU
10691 * @is_aa64: True if the translation regime is in AArch64 state
10692 * @startlevel: Suggested starting level
10693 * @inputsize: Bitsize of IPAs
10694 * @stride: Page-table stride (See the ARM ARM)
10696 * Returns true if the suggested S2 translation parameters are OK and
10697 * false otherwise.
10699 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10700 int inputsize, int stride)
10702 const int grainsize = stride + 3;
10703 int startsizecheck;
10705 /* Negative levels are never allowed. */
10706 if (level < 0) {
10707 return false;
10710 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10711 if (startsizecheck < 1 || startsizecheck > stride + 4) {
10712 return false;
10715 if (is_aa64) {
10716 CPUARMState *env = &cpu->env;
10717 unsigned int pamax = arm_pamax(cpu);
10719 switch (stride) {
10720 case 13: /* 64KB Pages. */
10721 if (level == 0 || (level == 1 && pamax <= 42)) {
10722 return false;
10724 break;
10725 case 11: /* 16KB Pages. */
10726 if (level == 0 || (level == 1 && pamax <= 40)) {
10727 return false;
10729 break;
10730 case 9: /* 4KB Pages. */
10731 if (level == 0 && pamax <= 42) {
10732 return false;
10734 break;
10735 default:
10736 g_assert_not_reached();
10739 /* Inputsize checks. */
10740 if (inputsize > pamax &&
10741 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10742 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10743 return false;
10745 } else {
10746 /* AArch32 only supports 4KB pages. Assert on that. */
10747 assert(stride == 9);
10749 if (level == 0) {
10750 return false;
10753 return true;
10756 /* Translate from the 4-bit stage 2 representation of
10757 * memory attributes (without cache-allocation hints) to
10758 * the 8-bit representation of the stage 1 MAIR registers
10759 * (which includes allocation hints).
10761 * ref: shared/translation/attrs/S2AttrDecode()
10762 * .../S2ConvertAttrsHints()
10764 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10766 uint8_t hiattr = extract32(s2attrs, 2, 2);
10767 uint8_t loattr = extract32(s2attrs, 0, 2);
10768 uint8_t hihint = 0, lohint = 0;
10770 if (hiattr != 0) { /* normal memory */
10771 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10772 hiattr = loattr = 1; /* non-cacheable */
10773 } else {
10774 if (hiattr != 1) { /* Write-through or write-back */
10775 hihint = 3; /* RW allocate */
10777 if (loattr != 1) { /* Write-through or write-back */
10778 lohint = 3; /* RW allocate */
10783 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10785 #endif /* !CONFIG_USER_ONLY */
10787 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10789 if (regime_has_2_ranges(mmu_idx)) {
10790 return extract64(tcr, 37, 2);
10791 } else if (mmu_idx == ARMMMUIdx_Stage2) {
10792 return 0; /* VTCR_EL2 */
10793 } else {
10794 /* Replicate the single TBI bit so we always have 2 bits. */
10795 return extract32(tcr, 20, 1) * 3;
10799 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10801 if (regime_has_2_ranges(mmu_idx)) {
10802 return extract64(tcr, 51, 2);
10803 } else if (mmu_idx == ARMMMUIdx_Stage2) {
10804 return 0; /* VTCR_EL2 */
10805 } else {
10806 /* Replicate the single TBID bit so we always have 2 bits. */
10807 return extract32(tcr, 29, 1) * 3;
10811 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
10813 if (regime_has_2_ranges(mmu_idx)) {
10814 return extract64(tcr, 57, 2);
10815 } else {
10816 /* Replicate the single TCMA bit so we always have 2 bits. */
10817 return extract32(tcr, 30, 1) * 3;
10821 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10822 ARMMMUIdx mmu_idx, bool data)
10824 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10825 bool epd, hpd, using16k, using64k;
10826 int select, tsz, tbi;
10828 if (!regime_has_2_ranges(mmu_idx)) {
10829 select = 0;
10830 tsz = extract32(tcr, 0, 6);
10831 using64k = extract32(tcr, 14, 1);
10832 using16k = extract32(tcr, 15, 1);
10833 if (mmu_idx == ARMMMUIdx_Stage2) {
10834 /* VTCR_EL2 */
10835 hpd = false;
10836 } else {
10837 hpd = extract32(tcr, 24, 1);
10839 epd = false;
10840 } else {
10842 * Bit 55 is always between the two regions, and is canonical for
10843 * determining if address tagging is enabled.
10845 select = extract64(va, 55, 1);
10846 if (!select) {
10847 tsz = extract32(tcr, 0, 6);
10848 epd = extract32(tcr, 7, 1);
10849 using64k = extract32(tcr, 14, 1);
10850 using16k = extract32(tcr, 15, 1);
10851 hpd = extract64(tcr, 41, 1);
10852 } else {
10853 int tg = extract32(tcr, 30, 2);
10854 using16k = tg == 1;
10855 using64k = tg == 3;
10856 tsz = extract32(tcr, 16, 6);
10857 epd = extract32(tcr, 23, 1);
10858 hpd = extract64(tcr, 42, 1);
10861 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */
10862 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */
10864 /* Present TBI as a composite with TBID. */
10865 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10866 if (!data) {
10867 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10869 tbi = (tbi >> select) & 1;
10871 return (ARMVAParameters) {
10872 .tsz = tsz,
10873 .select = select,
10874 .tbi = tbi,
10875 .epd = epd,
10876 .hpd = hpd,
10877 .using16k = using16k,
10878 .using64k = using64k,
10882 #ifndef CONFIG_USER_ONLY
10883 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10884 ARMMMUIdx mmu_idx)
10886 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10887 uint32_t el = regime_el(env, mmu_idx);
10888 int select, tsz;
10889 bool epd, hpd;
10891 if (mmu_idx == ARMMMUIdx_Stage2) {
10892 /* VTCR */
10893 bool sext = extract32(tcr, 4, 1);
10894 bool sign = extract32(tcr, 3, 1);
10897 * If the sign-extend bit is not the same as t0sz[3], the result
10898 * is unpredictable. Flag this as a guest error.
10900 if (sign != sext) {
10901 qemu_log_mask(LOG_GUEST_ERROR,
10902 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10904 tsz = sextract32(tcr, 0, 4) + 8;
10905 select = 0;
10906 hpd = false;
10907 epd = false;
10908 } else if (el == 2) {
10909 /* HTCR */
10910 tsz = extract32(tcr, 0, 3);
10911 select = 0;
10912 hpd = extract64(tcr, 24, 1);
10913 epd = false;
10914 } else {
10915 int t0sz = extract32(tcr, 0, 3);
10916 int t1sz = extract32(tcr, 16, 3);
10918 if (t1sz == 0) {
10919 select = va > (0xffffffffu >> t0sz);
10920 } else {
10921 /* Note that we will detect errors later. */
10922 select = va >= ~(0xffffffffu >> t1sz);
10924 if (!select) {
10925 tsz = t0sz;
10926 epd = extract32(tcr, 7, 1);
10927 hpd = extract64(tcr, 41, 1);
10928 } else {
10929 tsz = t1sz;
10930 epd = extract32(tcr, 23, 1);
10931 hpd = extract64(tcr, 42, 1);
10933 /* For aarch32, hpd0 is not enabled without t2e as well. */
10934 hpd &= extract32(tcr, 6, 1);
10937 return (ARMVAParameters) {
10938 .tsz = tsz,
10939 .select = select,
10940 .epd = epd,
10941 .hpd = hpd,
10946 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
10948 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10949 * prot and page_size may not be filled in, and the populated fsr value provides
10950 * information on why the translation aborted, in the format of a long-format
10951 * DFSR/IFSR fault register, with the following caveats:
10952 * * the WnR bit is never set (the caller must do this).
10954 * @env: CPUARMState
10955 * @address: virtual address to get physical address for
10956 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
10957 * @mmu_idx: MMU index indicating required translation regime
10958 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
10959 * walk), must be true if this is stage 2 of a stage 1+2 walk for an
10960 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
10961 * @phys_ptr: set to the physical address corresponding to the virtual address
10962 * @attrs: set to the memory transaction attributes to use
10963 * @prot: set to the permissions for the page containing phys_ptr
10964 * @page_size_ptr: set to the size of the page containing phys_ptr
10965 * @fi: set to fault info if the translation fails
10966 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10968 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10969 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10970 bool s1_is_el0,
10971 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10972 target_ulong *page_size_ptr,
10973 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10975 ARMCPU *cpu = env_archcpu(env);
10976 CPUState *cs = CPU(cpu);
10977 /* Read an LPAE long-descriptor translation table. */
10978 ARMFaultType fault_type = ARMFault_Translation;
10979 uint32_t level;
10980 ARMVAParameters param;
10981 uint64_t ttbr;
10982 hwaddr descaddr, indexmask, indexmask_grainsize;
10983 uint32_t tableattrs;
10984 target_ulong page_size;
10985 uint32_t attrs;
10986 int32_t stride;
10987 int addrsize, inputsize;
10988 TCR *tcr = regime_tcr(env, mmu_idx);
10989 int ap, ns, xn, pxn;
10990 uint32_t el = regime_el(env, mmu_idx);
10991 uint64_t descaddrmask;
10992 bool aarch64 = arm_el_is_aa64(env, el);
10993 bool guarded = false;
10995 /* TODO: This code does not support shareability levels. */
10996 if (aarch64) {
10997 param = aa64_va_parameters(env, address, mmu_idx,
10998 access_type != MMU_INST_FETCH);
10999 level = 0;
11000 addrsize = 64 - 8 * param.tbi;
11001 inputsize = 64 - param.tsz;
11002 } else {
11003 param = aa32_va_parameters(env, address, mmu_idx);
11004 level = 1;
11005 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11006 inputsize = addrsize - param.tsz;
11010 * We determined the region when collecting the parameters, but we
11011 * have not yet validated that the address is valid for the region.
11012 * Extract the top bits and verify that they all match select.
11014 * For aa32, if inputsize == addrsize, then we have selected the
11015 * region by exclusion in aa32_va_parameters and there is no more
11016 * validation to do here.
11018 if (inputsize < addrsize) {
11019 target_ulong top_bits = sextract64(address, inputsize,
11020 addrsize - inputsize);
11021 if (-top_bits != param.select) {
11022 /* The gap between the two regions is a Translation fault */
11023 fault_type = ARMFault_Translation;
11024 goto do_fault;
11028 if (param.using64k) {
11029 stride = 13;
11030 } else if (param.using16k) {
11031 stride = 11;
11032 } else {
11033 stride = 9;
11036 /* Note that QEMU ignores shareability and cacheability attributes,
11037 * so we don't need to do anything with the SH, ORGN, IRGN fields
11038 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
11039 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11040 * implement any ASID-like capability so we can ignore it (instead
11041 * we will always flush the TLB any time the ASID is changed).
11043 ttbr = regime_ttbr(env, mmu_idx, param.select);
11045 /* Here we should have set up all the parameters for the translation:
11046 * inputsize, ttbr, epd, stride, tbi
11049 if (param.epd) {
11050 /* Translation table walk disabled => Translation fault on TLB miss
11051 * Note: This is always 0 on 64-bit EL2 and EL3.
11053 goto do_fault;
11056 if (mmu_idx != ARMMMUIdx_Stage2) {
11057 /* The starting level depends on the virtual address size (which can
11058 * be up to 48 bits) and the translation granule size. It indicates
11059 * the number of strides (stride bits at a time) needed to
11060 * consume the bits of the input address. In the pseudocode this is:
11061 * level = 4 - RoundUp((inputsize - grainsize) / stride)
11062 * where their 'inputsize' is our 'inputsize', 'grainsize' is
11063 * our 'stride + 3' and 'stride' is our 'stride'.
11064 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11065 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11066 * = 4 - (inputsize - 4) / stride;
11068 level = 4 - (inputsize - 4) / stride;
11069 } else {
11070 /* For stage 2 translations the starting level is specified by the
11071 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11073 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11074 uint32_t startlevel;
11075 bool ok;
11077 if (!aarch64 || stride == 9) {
11078 /* AArch32 or 4KB pages */
11079 startlevel = 2 - sl0;
11080 } else {
11081 /* 16KB or 64KB pages */
11082 startlevel = 3 - sl0;
11085 /* Check that the starting level is valid. */
11086 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11087 inputsize, stride);
11088 if (!ok) {
11089 fault_type = ARMFault_Translation;
11090 goto do_fault;
11092 level = startlevel;
11095 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11096 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11098 /* Now we can extract the actual base address from the TTBR */
11099 descaddr = extract64(ttbr, 0, 48);
11101 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11102 * and also to mask out CnP (bit 0) which could validly be non-zero.
11104 descaddr &= ~indexmask;
11106 /* The address field in the descriptor goes up to bit 39 for ARMv7
11107 * but up to bit 47 for ARMv8, but we use the descaddrmask
11108 * up to bit 39 for AArch32, because we don't need other bits in that case
11109 * to construct next descriptor address (anyway they should be all zeroes).
11111 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11112 ~indexmask_grainsize;
11114 /* Secure accesses start with the page table in secure memory and
11115 * can be downgraded to non-secure at any step. Non-secure accesses
11116 * remain non-secure. We implement this by just ORing in the NSTable/NS
11117 * bits at each step.
11119 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11120 for (;;) {
11121 uint64_t descriptor;
11122 bool nstable;
11124 descaddr |= (address >> (stride * (4 - level))) & indexmask;
11125 descaddr &= ~7ULL;
11126 nstable = extract32(tableattrs, 4, 1);
11127 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11128 if (fi->type != ARMFault_None) {
11129 goto do_fault;
11132 if (!(descriptor & 1) ||
11133 (!(descriptor & 2) && (level == 3))) {
11134 /* Invalid, or the Reserved level 3 encoding */
11135 goto do_fault;
11137 descaddr = descriptor & descaddrmask;
11139 if ((descriptor & 2) && (level < 3)) {
11140 /* Table entry. The top five bits are attributes which may
11141 * propagate down through lower levels of the table (and
11142 * which are all arranged so that 0 means "no effect", so
11143 * we can gather them up by ORing in the bits at each level).
11145 tableattrs |= extract64(descriptor, 59, 5);
11146 level++;
11147 indexmask = indexmask_grainsize;
11148 continue;
11150 /* Block entry at level 1 or 2, or page entry at level 3.
11151 * These are basically the same thing, although the number
11152 * of bits we pull in from the vaddr varies.
11154 page_size = (1ULL << ((stride * (4 - level)) + 3));
11155 descaddr |= (address & (page_size - 1));
11156 /* Extract attributes from the descriptor */
11157 attrs = extract64(descriptor, 2, 10)
11158 | (extract64(descriptor, 52, 12) << 10);
11160 if (mmu_idx == ARMMMUIdx_Stage2) {
11161 /* Stage 2 table descriptors do not include any attribute fields */
11162 break;
11164 /* Merge in attributes from table descriptors */
11165 attrs |= nstable << 3; /* NS */
11166 guarded = extract64(descriptor, 50, 1); /* GP */
11167 if (param.hpd) {
11168 /* HPD disables all the table attributes except NSTable. */
11169 break;
11171 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
11172 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11173 * means "force PL1 access only", which means forcing AP[1] to 0.
11175 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */
11176 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */
11177 break;
11179 /* Here descaddr is the final physical address, and attributes
11180 * are all in attrs.
11182 fault_type = ARMFault_AccessFlag;
11183 if ((attrs & (1 << 8)) == 0) {
11184 /* Access flag */
11185 goto do_fault;
11188 ap = extract32(attrs, 4, 2);
11190 if (mmu_idx == ARMMMUIdx_Stage2) {
11191 ns = true;
11192 xn = extract32(attrs, 11, 2);
11193 *prot = get_S2prot(env, ap, xn, s1_is_el0);
11194 } else {
11195 ns = extract32(attrs, 3, 1);
11196 xn = extract32(attrs, 12, 1);
11197 pxn = extract32(attrs, 11, 1);
11198 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11201 fault_type = ARMFault_Permission;
11202 if (!(*prot & (1 << access_type))) {
11203 goto do_fault;
11206 if (ns) {
11207 /* The NS bit will (as required by the architecture) have no effect if
11208 * the CPU doesn't support TZ or this is a non-secure translation
11209 * regime, because the attribute will already be non-secure.
11211 txattrs->secure = false;
11213 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
11214 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11215 arm_tlb_bti_gp(txattrs) = true;
11218 if (mmu_idx == ARMMMUIdx_Stage2) {
11219 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11220 } else {
11221 /* Index into MAIR registers for cache attributes */
11222 uint8_t attrindx = extract32(attrs, 0, 3);
11223 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11224 assert(attrindx <= 7);
11225 cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11227 cacheattrs->shareability = extract32(attrs, 6, 2);
11229 *phys_ptr = descaddr;
11230 *page_size_ptr = page_size;
11231 return false;
11233 do_fault:
11234 fi->type = fault_type;
11235 fi->level = level;
11236 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
11237 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2);
11238 return true;
11241 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11242 ARMMMUIdx mmu_idx,
11243 int32_t address, int *prot)
11245 if (!arm_feature(env, ARM_FEATURE_M)) {
11246 *prot = PAGE_READ | PAGE_WRITE;
11247 switch (address) {
11248 case 0xF0000000 ... 0xFFFFFFFF:
11249 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11250 /* hivecs execing is ok */
11251 *prot |= PAGE_EXEC;
11253 break;
11254 case 0x00000000 ... 0x7FFFFFFF:
11255 *prot |= PAGE_EXEC;
11256 break;
11258 } else {
11259 /* Default system address map for M profile cores.
11260 * The architecture specifies which regions are execute-never;
11261 * at the MPU level no other checks are defined.
11263 switch (address) {
11264 case 0x00000000 ... 0x1fffffff: /* ROM */
11265 case 0x20000000 ... 0x3fffffff: /* SRAM */
11266 case 0x60000000 ... 0x7fffffff: /* RAM */
11267 case 0x80000000 ... 0x9fffffff: /* RAM */
11268 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11269 break;
11270 case 0x40000000 ... 0x5fffffff: /* Peripheral */
11271 case 0xa0000000 ... 0xbfffffff: /* Device */
11272 case 0xc0000000 ... 0xdfffffff: /* Device */
11273 case 0xe0000000 ... 0xffffffff: /* System */
11274 *prot = PAGE_READ | PAGE_WRITE;
11275 break;
11276 default:
11277 g_assert_not_reached();
11282 static bool pmsav7_use_background_region(ARMCPU *cpu,
11283 ARMMMUIdx mmu_idx, bool is_user)
11285 /* Return true if we should use the default memory map as a
11286 * "background" region if there are no hits against any MPU regions.
11288 CPUARMState *env = &cpu->env;
11290 if (is_user) {
11291 return false;
11294 if (arm_feature(env, ARM_FEATURE_M)) {
11295 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11296 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11297 } else {
11298 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11302 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11304 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11305 return arm_feature(env, ARM_FEATURE_M) &&
11306 extract32(address, 20, 12) == 0xe00;
11309 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11311 /* True if address is in the M profile system region
11312 * 0xe0000000 - 0xffffffff
11314 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11317 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11318 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11319 hwaddr *phys_ptr, int *prot,
11320 target_ulong *page_size,
11321 ARMMMUFaultInfo *fi)
11323 ARMCPU *cpu = env_archcpu(env);
11324 int n;
11325 bool is_user = regime_is_user(env, mmu_idx);
11327 *phys_ptr = address;
11328 *page_size = TARGET_PAGE_SIZE;
11329 *prot = 0;
11331 if (regime_translation_disabled(env, mmu_idx) ||
11332 m_is_ppb_region(env, address)) {
11333 /* MPU disabled or M profile PPB access: use default memory map.
11334 * The other case which uses the default memory map in the
11335 * v7M ARM ARM pseudocode is exception vector reads from the vector
11336 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11337 * which always does a direct read using address_space_ldl(), rather
11338 * than going via this function, so we don't need to check that here.
11340 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11341 } else { /* MPU enabled */
11342 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11343 /* region search */
11344 uint32_t base = env->pmsav7.drbar[n];
11345 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11346 uint32_t rmask;
11347 bool srdis = false;
11349 if (!(env->pmsav7.drsr[n] & 0x1)) {
11350 continue;
11353 if (!rsize) {
11354 qemu_log_mask(LOG_GUEST_ERROR,
11355 "DRSR[%d]: Rsize field cannot be 0\n", n);
11356 continue;
11358 rsize++;
11359 rmask = (1ull << rsize) - 1;
11361 if (base & rmask) {
11362 qemu_log_mask(LOG_GUEST_ERROR,
11363 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11364 "to DRSR region size, mask = 0x%" PRIx32 "\n",
11365 n, base, rmask);
11366 continue;
11369 if (address < base || address > base + rmask) {
11371 * Address not in this region. We must check whether the
11372 * region covers addresses in the same page as our address.
11373 * In that case we must not report a size that covers the
11374 * whole page for a subsequent hit against a different MPU
11375 * region or the background region, because it would result in
11376 * incorrect TLB hits for subsequent accesses to addresses that
11377 * are in this MPU region.
11379 if (ranges_overlap(base, rmask,
11380 address & TARGET_PAGE_MASK,
11381 TARGET_PAGE_SIZE)) {
11382 *page_size = 1;
11384 continue;
11387 /* Region matched */
11389 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11390 int i, snd;
11391 uint32_t srdis_mask;
11393 rsize -= 3; /* sub region size (power of 2) */
11394 snd = ((address - base) >> rsize) & 0x7;
11395 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11397 srdis_mask = srdis ? 0x3 : 0x0;
11398 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11399 /* This will check in groups of 2, 4 and then 8, whether
11400 * the subregion bits are consistent. rsize is incremented
11401 * back up to give the region size, considering consistent
11402 * adjacent subregions as one region. Stop testing if rsize
11403 * is already big enough for an entire QEMU page.
11405 int snd_rounded = snd & ~(i - 1);
11406 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11407 snd_rounded + 8, i);
11408 if (srdis_mask ^ srdis_multi) {
11409 break;
11411 srdis_mask = (srdis_mask << i) | srdis_mask;
11412 rsize++;
11415 if (srdis) {
11416 continue;
11418 if (rsize < TARGET_PAGE_BITS) {
11419 *page_size = 1 << rsize;
11421 break;
11424 if (n == -1) { /* no hits */
11425 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11426 /* background fault */
11427 fi->type = ARMFault_Background;
11428 return true;
11430 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11431 } else { /* a MPU hit! */
11432 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11433 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11435 if (m_is_system_region(env, address)) {
11436 /* System space is always execute never */
11437 xn = 1;
11440 if (is_user) { /* User mode AP bit decoding */
11441 switch (ap) {
11442 case 0:
11443 case 1:
11444 case 5:
11445 break; /* no access */
11446 case 3:
11447 *prot |= PAGE_WRITE;
11448 /* fall through */
11449 case 2:
11450 case 6:
11451 *prot |= PAGE_READ | PAGE_EXEC;
11452 break;
11453 case 7:
11454 /* for v7M, same as 6; for R profile a reserved value */
11455 if (arm_feature(env, ARM_FEATURE_M)) {
11456 *prot |= PAGE_READ | PAGE_EXEC;
11457 break;
11459 /* fall through */
11460 default:
11461 qemu_log_mask(LOG_GUEST_ERROR,
11462 "DRACR[%d]: Bad value for AP bits: 0x%"
11463 PRIx32 "\n", n, ap);
11465 } else { /* Priv. mode AP bits decoding */
11466 switch (ap) {
11467 case 0:
11468 break; /* no access */
11469 case 1:
11470 case 2:
11471 case 3:
11472 *prot |= PAGE_WRITE;
11473 /* fall through */
11474 case 5:
11475 case 6:
11476 *prot |= PAGE_READ | PAGE_EXEC;
11477 break;
11478 case 7:
11479 /* for v7M, same as 6; for R profile a reserved value */
11480 if (arm_feature(env, ARM_FEATURE_M)) {
11481 *prot |= PAGE_READ | PAGE_EXEC;
11482 break;
11484 /* fall through */
11485 default:
11486 qemu_log_mask(LOG_GUEST_ERROR,
11487 "DRACR[%d]: Bad value for AP bits: 0x%"
11488 PRIx32 "\n", n, ap);
11492 /* execute never */
11493 if (xn) {
11494 *prot &= ~PAGE_EXEC;
11499 fi->type = ARMFault_Permission;
11500 fi->level = 1;
11501 return !(*prot & (1 << access_type));
11504 static bool v8m_is_sau_exempt(CPUARMState *env,
11505 uint32_t address, MMUAccessType access_type)
11507 /* The architecture specifies that certain address ranges are
11508 * exempt from v8M SAU/IDAU checks.
11510 return
11511 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11512 (address >= 0xe0000000 && address <= 0xe0002fff) ||
11513 (address >= 0xe000e000 && address <= 0xe000efff) ||
11514 (address >= 0xe002e000 && address <= 0xe002efff) ||
11515 (address >= 0xe0040000 && address <= 0xe0041fff) ||
11516 (address >= 0xe00ff000 && address <= 0xe00fffff);
11519 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11520 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11521 V8M_SAttributes *sattrs)
11523 /* Look up the security attributes for this address. Compare the
11524 * pseudocode SecurityCheck() function.
11525 * We assume the caller has zero-initialized *sattrs.
11527 ARMCPU *cpu = env_archcpu(env);
11528 int r;
11529 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11530 int idau_region = IREGION_NOTVALID;
11531 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11532 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11534 if (cpu->idau) {
11535 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11536 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11538 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11539 &idau_nsc);
11542 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11543 /* 0xf0000000..0xffffffff is always S for insn fetches */
11544 return;
11547 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11548 sattrs->ns = !regime_is_secure(env, mmu_idx);
11549 return;
11552 if (idau_region != IREGION_NOTVALID) {
11553 sattrs->irvalid = true;
11554 sattrs->iregion = idau_region;
11557 switch (env->sau.ctrl & 3) {
11558 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11559 break;
11560 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11561 sattrs->ns = true;
11562 break;
11563 default: /* SAU.ENABLE == 1 */
11564 for (r = 0; r < cpu->sau_sregion; r++) {
11565 if (env->sau.rlar[r] & 1) {
11566 uint32_t base = env->sau.rbar[r] & ~0x1f;
11567 uint32_t limit = env->sau.rlar[r] | 0x1f;
11569 if (base <= address && limit >= address) {
11570 if (base > addr_page_base || limit < addr_page_limit) {
11571 sattrs->subpage = true;
11573 if (sattrs->srvalid) {
11574 /* If we hit in more than one region then we must report
11575 * as Secure, not NS-Callable, with no valid region
11576 * number info.
11578 sattrs->ns = false;
11579 sattrs->nsc = false;
11580 sattrs->sregion = 0;
11581 sattrs->srvalid = false;
11582 break;
11583 } else {
11584 if (env->sau.rlar[r] & 2) {
11585 sattrs->nsc = true;
11586 } else {
11587 sattrs->ns = true;
11589 sattrs->srvalid = true;
11590 sattrs->sregion = r;
11592 } else {
11594 * Address not in this region. We must check whether the
11595 * region covers addresses in the same page as our address.
11596 * In that case we must not report a size that covers the
11597 * whole page for a subsequent hit against a different MPU
11598 * region or the background region, because it would result
11599 * in incorrect TLB hits for subsequent accesses to
11600 * addresses that are in this MPU region.
11602 if (limit >= base &&
11603 ranges_overlap(base, limit - base + 1,
11604 addr_page_base,
11605 TARGET_PAGE_SIZE)) {
11606 sattrs->subpage = true;
11611 break;
11615 * The IDAU will override the SAU lookup results if it specifies
11616 * higher security than the SAU does.
11618 if (!idau_ns) {
11619 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11620 sattrs->ns = false;
11621 sattrs->nsc = idau_nsc;
11626 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11627 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11628 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11629 int *prot, bool *is_subpage,
11630 ARMMMUFaultInfo *fi, uint32_t *mregion)
11632 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11633 * that a full phys-to-virt translation does).
11634 * mregion is (if not NULL) set to the region number which matched,
11635 * or -1 if no region number is returned (MPU off, address did not
11636 * hit a region, address hit in multiple regions).
11637 * We set is_subpage to true if the region hit doesn't cover the
11638 * entire TARGET_PAGE the address is within.
11640 ARMCPU *cpu = env_archcpu(env);
11641 bool is_user = regime_is_user(env, mmu_idx);
11642 uint32_t secure = regime_is_secure(env, mmu_idx);
11643 int n;
11644 int matchregion = -1;
11645 bool hit = false;
11646 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11647 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11649 *is_subpage = false;
11650 *phys_ptr = address;
11651 *prot = 0;
11652 if (mregion) {
11653 *mregion = -1;
11656 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11657 * was an exception vector read from the vector table (which is always
11658 * done using the default system address map), because those accesses
11659 * are done in arm_v7m_load_vector(), which always does a direct
11660 * read using address_space_ldl(), rather than going via this function.
11662 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11663 hit = true;
11664 } else if (m_is_ppb_region(env, address)) {
11665 hit = true;
11666 } else {
11667 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11668 hit = true;
11671 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11672 /* region search */
11673 /* Note that the base address is bits [31:5] from the register
11674 * with bits [4:0] all zeroes, but the limit address is bits
11675 * [31:5] from the register with bits [4:0] all ones.
11677 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11678 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11680 if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11681 /* Region disabled */
11682 continue;
11685 if (address < base || address > limit) {
11687 * Address not in this region. We must check whether the
11688 * region covers addresses in the same page as our address.
11689 * In that case we must not report a size that covers the
11690 * whole page for a subsequent hit against a different MPU
11691 * region or the background region, because it would result in
11692 * incorrect TLB hits for subsequent accesses to addresses that
11693 * are in this MPU region.
11695 if (limit >= base &&
11696 ranges_overlap(base, limit - base + 1,
11697 addr_page_base,
11698 TARGET_PAGE_SIZE)) {
11699 *is_subpage = true;
11701 continue;
11704 if (base > addr_page_base || limit < addr_page_limit) {
11705 *is_subpage = true;
11708 if (matchregion != -1) {
11709 /* Multiple regions match -- always a failure (unlike
11710 * PMSAv7 where highest-numbered-region wins)
11712 fi->type = ARMFault_Permission;
11713 fi->level = 1;
11714 return true;
11717 matchregion = n;
11718 hit = true;
11722 if (!hit) {
11723 /* background fault */
11724 fi->type = ARMFault_Background;
11725 return true;
11728 if (matchregion == -1) {
11729 /* hit using the background region */
11730 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11731 } else {
11732 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11733 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11735 if (m_is_system_region(env, address)) {
11736 /* System space is always execute never */
11737 xn = 1;
11740 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11741 if (*prot && !xn) {
11742 *prot |= PAGE_EXEC;
11744 /* We don't need to look the attribute up in the MAIR0/MAIR1
11745 * registers because that only tells us about cacheability.
11747 if (mregion) {
11748 *mregion = matchregion;
11752 fi->type = ARMFault_Permission;
11753 fi->level = 1;
11754 return !(*prot & (1 << access_type));
11758 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11759 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11760 hwaddr *phys_ptr, MemTxAttrs *txattrs,
11761 int *prot, target_ulong *page_size,
11762 ARMMMUFaultInfo *fi)
11764 uint32_t secure = regime_is_secure(env, mmu_idx);
11765 V8M_SAttributes sattrs = {};
11766 bool ret;
11767 bool mpu_is_subpage;
11769 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11770 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11771 if (access_type == MMU_INST_FETCH) {
11772 /* Instruction fetches always use the MMU bank and the
11773 * transaction attribute determined by the fetch address,
11774 * regardless of CPU state. This is painful for QEMU
11775 * to handle, because it would mean we need to encode
11776 * into the mmu_idx not just the (user, negpri) information
11777 * for the current security state but also that for the
11778 * other security state, which would balloon the number
11779 * of mmu_idx values needed alarmingly.
11780 * Fortunately we can avoid this because it's not actually
11781 * possible to arbitrarily execute code from memory with
11782 * the wrong security attribute: it will always generate
11783 * an exception of some kind or another, apart from the
11784 * special case of an NS CPU executing an SG instruction
11785 * in S&NSC memory. So we always just fail the translation
11786 * here and sort things out in the exception handler
11787 * (including possibly emulating an SG instruction).
11789 if (sattrs.ns != !secure) {
11790 if (sattrs.nsc) {
11791 fi->type = ARMFault_QEMU_NSCExec;
11792 } else {
11793 fi->type = ARMFault_QEMU_SFault;
11795 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11796 *phys_ptr = address;
11797 *prot = 0;
11798 return true;
11800 } else {
11801 /* For data accesses we always use the MMU bank indicated
11802 * by the current CPU state, but the security attributes
11803 * might downgrade a secure access to nonsecure.
11805 if (sattrs.ns) {
11806 txattrs->secure = false;
11807 } else if (!secure) {
11808 /* NS access to S memory must fault.
11809 * Architecturally we should first check whether the
11810 * MPU information for this address indicates that we
11811 * are doing an unaligned access to Device memory, which
11812 * should generate a UsageFault instead. QEMU does not
11813 * currently check for that kind of unaligned access though.
11814 * If we added it we would need to do so as a special case
11815 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11817 fi->type = ARMFault_QEMU_SFault;
11818 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11819 *phys_ptr = address;
11820 *prot = 0;
11821 return true;
11826 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11827 txattrs, prot, &mpu_is_subpage, fi, NULL);
11828 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11829 return ret;
11832 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11833 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11834 hwaddr *phys_ptr, int *prot,
11835 ARMMMUFaultInfo *fi)
11837 int n;
11838 uint32_t mask;
11839 uint32_t base;
11840 bool is_user = regime_is_user(env, mmu_idx);
11842 if (regime_translation_disabled(env, mmu_idx)) {
11843 /* MPU disabled. */
11844 *phys_ptr = address;
11845 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11846 return false;
11849 *phys_ptr = address;
11850 for (n = 7; n >= 0; n--) {
11851 base = env->cp15.c6_region[n];
11852 if ((base & 1) == 0) {
11853 continue;
11855 mask = 1 << ((base >> 1) & 0x1f);
11856 /* Keep this shift separate from the above to avoid an
11857 (undefined) << 32. */
11858 mask = (mask << 1) - 1;
11859 if (((base ^ address) & ~mask) == 0) {
11860 break;
11863 if (n < 0) {
11864 fi->type = ARMFault_Background;
11865 return true;
11868 if (access_type == MMU_INST_FETCH) {
11869 mask = env->cp15.pmsav5_insn_ap;
11870 } else {
11871 mask = env->cp15.pmsav5_data_ap;
11873 mask = (mask >> (n * 4)) & 0xf;
11874 switch (mask) {
11875 case 0:
11876 fi->type = ARMFault_Permission;
11877 fi->level = 1;
11878 return true;
11879 case 1:
11880 if (is_user) {
11881 fi->type = ARMFault_Permission;
11882 fi->level = 1;
11883 return true;
11885 *prot = PAGE_READ | PAGE_WRITE;
11886 break;
11887 case 2:
11888 *prot = PAGE_READ;
11889 if (!is_user) {
11890 *prot |= PAGE_WRITE;
11892 break;
11893 case 3:
11894 *prot = PAGE_READ | PAGE_WRITE;
11895 break;
11896 case 5:
11897 if (is_user) {
11898 fi->type = ARMFault_Permission;
11899 fi->level = 1;
11900 return true;
11902 *prot = PAGE_READ;
11903 break;
11904 case 6:
11905 *prot = PAGE_READ;
11906 break;
11907 default:
11908 /* Bad permission. */
11909 fi->type = ARMFault_Permission;
11910 fi->level = 1;
11911 return true;
11913 *prot |= PAGE_EXEC;
11914 return false;
11917 /* Combine either inner or outer cacheability attributes for normal
11918 * memory, according to table D4-42 and pseudocode procedure
11919 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11921 * NB: only stage 1 includes allocation hints (RW bits), leading to
11922 * some asymmetry.
11924 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11926 if (s1 == 4 || s2 == 4) {
11927 /* non-cacheable has precedence */
11928 return 4;
11929 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11930 /* stage 1 write-through takes precedence */
11931 return s1;
11932 } else if (extract32(s2, 2, 2) == 2) {
11933 /* stage 2 write-through takes precedence, but the allocation hint
11934 * is still taken from stage 1
11936 return (2 << 2) | extract32(s1, 0, 2);
11937 } else { /* write-back */
11938 return s1;
11942 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11943 * and CombineS1S2Desc()
11945 * @s1: Attributes from stage 1 walk
11946 * @s2: Attributes from stage 2 walk
11948 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11950 uint8_t s1lo, s2lo, s1hi, s2hi;
11951 ARMCacheAttrs ret;
11952 bool tagged = false;
11954 if (s1.attrs == 0xf0) {
11955 tagged = true;
11956 s1.attrs = 0xff;
11959 s1lo = extract32(s1.attrs, 0, 4);
11960 s2lo = extract32(s2.attrs, 0, 4);
11961 s1hi = extract32(s1.attrs, 4, 4);
11962 s2hi = extract32(s2.attrs, 4, 4);
11964 /* Combine shareability attributes (table D4-43) */
11965 if (s1.shareability == 2 || s2.shareability == 2) {
11966 /* if either are outer-shareable, the result is outer-shareable */
11967 ret.shareability = 2;
11968 } else if (s1.shareability == 3 || s2.shareability == 3) {
11969 /* if either are inner-shareable, the result is inner-shareable */
11970 ret.shareability = 3;
11971 } else {
11972 /* both non-shareable */
11973 ret.shareability = 0;
11976 /* Combine memory type and cacheability attributes */
11977 if (s1hi == 0 || s2hi == 0) {
11978 /* Device has precedence over normal */
11979 if (s1lo == 0 || s2lo == 0) {
11980 /* nGnRnE has precedence over anything */
11981 ret.attrs = 0;
11982 } else if (s1lo == 4 || s2lo == 4) {
11983 /* non-Reordering has precedence over Reordering */
11984 ret.attrs = 4; /* nGnRE */
11985 } else if (s1lo == 8 || s2lo == 8) {
11986 /* non-Gathering has precedence over Gathering */
11987 ret.attrs = 8; /* nGRE */
11988 } else {
11989 ret.attrs = 0xc; /* GRE */
11992 /* Any location for which the resultant memory type is any
11993 * type of Device memory is always treated as Outer Shareable.
11995 ret.shareability = 2;
11996 } else { /* Normal memory */
11997 /* Outer/inner cacheability combine independently */
11998 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11999 | combine_cacheattr_nibble(s1lo, s2lo);
12001 if (ret.attrs == 0x44) {
12002 /* Any location for which the resultant memory type is Normal
12003 * Inner Non-cacheable, Outer Non-cacheable is always treated
12004 * as Outer Shareable.
12006 ret.shareability = 2;
12010 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12011 if (tagged && ret.attrs == 0xff) {
12012 ret.attrs = 0xf0;
12015 return ret;
12019 /* get_phys_addr - get the physical address for this virtual address
12021 * Find the physical address corresponding to the given virtual address,
12022 * by doing a translation table walk on MMU based systems or using the
12023 * MPU state on MPU based systems.
12025 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12026 * prot and page_size may not be filled in, and the populated fsr value provides
12027 * information on why the translation aborted, in the format of a
12028 * DFSR/IFSR fault register, with the following caveats:
12029 * * we honour the short vs long DFSR format differences.
12030 * * the WnR bit is never set (the caller must do this).
12031 * * for PSMAv5 based systems we don't bother to return a full FSR format
12032 * value.
12034 * @env: CPUARMState
12035 * @address: virtual address to get physical address for
12036 * @access_type: 0 for read, 1 for write, 2 for execute
12037 * @mmu_idx: MMU index indicating required translation regime
12038 * @phys_ptr: set to the physical address corresponding to the virtual address
12039 * @attrs: set to the memory transaction attributes to use
12040 * @prot: set to the permissions for the page containing phys_ptr
12041 * @page_size: set to the size of the page containing phys_ptr
12042 * @fi: set to fault info if the translation fails
12043 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12045 bool get_phys_addr(CPUARMState *env, target_ulong address,
12046 MMUAccessType access_type, ARMMMUIdx mmu_idx,
12047 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12048 target_ulong *page_size,
12049 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12051 if (mmu_idx == ARMMMUIdx_E10_0 ||
12052 mmu_idx == ARMMMUIdx_E10_1 ||
12053 mmu_idx == ARMMMUIdx_E10_1_PAN) {
12054 /* Call ourselves recursively to do the stage 1 and then stage 2
12055 * translations.
12057 if (arm_feature(env, ARM_FEATURE_EL2)) {
12058 hwaddr ipa;
12059 int s2_prot;
12060 int ret;
12061 ARMCacheAttrs cacheattrs2 = {};
12063 ret = get_phys_addr(env, address, access_type,
12064 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
12065 prot, page_size, fi, cacheattrs);
12067 /* If S1 fails or S2 is disabled, return early. */
12068 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12069 *phys_ptr = ipa;
12070 return ret;
12073 /* S1 is done. Now do S2 translation. */
12074 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2,
12075 mmu_idx == ARMMMUIdx_E10_0,
12076 phys_ptr, attrs, &s2_prot,
12077 page_size, fi, &cacheattrs2);
12078 fi->s2addr = ipa;
12079 /* Combine the S1 and S2 perms. */
12080 *prot &= s2_prot;
12082 /* If S2 fails, return early. */
12083 if (ret) {
12084 return ret;
12087 /* Combine the S1 and S2 cache attributes. */
12088 if (env->cp15.hcr_el2 & HCR_DC) {
12090 * HCR.DC forces the first stage attributes to
12091 * Normal Non-Shareable,
12092 * Inner Write-Back Read-Allocate Write-Allocate,
12093 * Outer Write-Back Read-Allocate Write-Allocate.
12094 * Do not overwrite Tagged within attrs.
12096 if (cacheattrs->attrs != 0xf0) {
12097 cacheattrs->attrs = 0xff;
12099 cacheattrs->shareability = 0;
12101 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12102 return 0;
12103 } else {
12105 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12107 mmu_idx = stage_1_mmu_idx(mmu_idx);
12111 /* The page table entries may downgrade secure to non-secure, but
12112 * cannot upgrade an non-secure translation regime's attributes
12113 * to secure.
12115 attrs->secure = regime_is_secure(env, mmu_idx);
12116 attrs->user = regime_is_user(env, mmu_idx);
12118 /* Fast Context Switch Extension. This doesn't exist at all in v8.
12119 * In v7 and earlier it affects all stage 1 translations.
12121 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12122 && !arm_feature(env, ARM_FEATURE_V8)) {
12123 if (regime_el(env, mmu_idx) == 3) {
12124 address += env->cp15.fcseidr_s;
12125 } else {
12126 address += env->cp15.fcseidr_ns;
12130 if (arm_feature(env, ARM_FEATURE_PMSA)) {
12131 bool ret;
12132 *page_size = TARGET_PAGE_SIZE;
12134 if (arm_feature(env, ARM_FEATURE_V8)) {
12135 /* PMSAv8 */
12136 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12137 phys_ptr, attrs, prot, page_size, fi);
12138 } else if (arm_feature(env, ARM_FEATURE_V7)) {
12139 /* PMSAv7 */
12140 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12141 phys_ptr, prot, page_size, fi);
12142 } else {
12143 /* Pre-v7 MPU */
12144 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12145 phys_ptr, prot, fi);
12147 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12148 " mmu_idx %u -> %s (prot %c%c%c)\n",
12149 access_type == MMU_DATA_LOAD ? "reading" :
12150 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12151 (uint32_t)address, mmu_idx,
12152 ret ? "Miss" : "Hit",
12153 *prot & PAGE_READ ? 'r' : '-',
12154 *prot & PAGE_WRITE ? 'w' : '-',
12155 *prot & PAGE_EXEC ? 'x' : '-');
12157 return ret;
12160 /* Definitely a real MMU, not an MPU */
12162 if (regime_translation_disabled(env, mmu_idx)) {
12163 uint64_t hcr;
12164 uint8_t memattr;
12167 * MMU disabled. S1 addresses within aa64 translation regimes are
12168 * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12170 if (mmu_idx != ARMMMUIdx_Stage2) {
12171 int r_el = regime_el(env, mmu_idx);
12172 if (arm_el_is_aa64(env, r_el)) {
12173 int pamax = arm_pamax(env_archcpu(env));
12174 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12175 int addrtop, tbi;
12177 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12178 if (access_type == MMU_INST_FETCH) {
12179 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12181 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12182 addrtop = (tbi ? 55 : 63);
12184 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12185 fi->type = ARMFault_AddressSize;
12186 fi->level = 0;
12187 fi->stage2 = false;
12188 return 1;
12192 * When TBI is disabled, we've just validated that all of the
12193 * bits above PAMax are zero, so logically we only need to
12194 * clear the top byte for TBI. But it's clearer to follow
12195 * the pseudocode set of addrdesc.paddress.
12197 address = extract64(address, 0, 52);
12200 *phys_ptr = address;
12201 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12202 *page_size = TARGET_PAGE_SIZE;
12204 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12205 hcr = arm_hcr_el2_eff(env);
12206 cacheattrs->shareability = 0;
12207 if (hcr & HCR_DC) {
12208 if (hcr & HCR_DCT) {
12209 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
12210 } else {
12211 memattr = 0xff; /* Normal, WB, RWA */
12213 } else if (access_type == MMU_INST_FETCH) {
12214 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12215 memattr = 0xee; /* Normal, WT, RA, NT */
12216 } else {
12217 memattr = 0x44; /* Normal, NC, No */
12219 cacheattrs->shareability = 2; /* outer sharable */
12220 } else {
12221 memattr = 0x00; /* Device, nGnRnE */
12223 cacheattrs->attrs = memattr;
12224 return 0;
12227 if (regime_using_lpae_format(env, mmu_idx)) {
12228 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12229 phys_ptr, attrs, prot, page_size,
12230 fi, cacheattrs);
12231 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12232 return get_phys_addr_v6(env, address, access_type, mmu_idx,
12233 phys_ptr, attrs, prot, page_size, fi);
12234 } else {
12235 return get_phys_addr_v5(env, address, access_type, mmu_idx,
12236 phys_ptr, prot, page_size, fi);
12240 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12241 MemTxAttrs *attrs)
12243 ARMCPU *cpu = ARM_CPU(cs);
12244 CPUARMState *env = &cpu->env;
12245 hwaddr phys_addr;
12246 target_ulong page_size;
12247 int prot;
12248 bool ret;
12249 ARMMMUFaultInfo fi = {};
12250 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12251 ARMCacheAttrs cacheattrs = {};
12253 *attrs = (MemTxAttrs) {};
12255 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
12256 attrs, &prot, &page_size, &fi, &cacheattrs);
12258 if (ret) {
12259 return -1;
12261 return phys_addr;
12264 #endif
12266 /* Note that signed overflow is undefined in C. The following routines are
12267 careful to use unsigned types where modulo arithmetic is required.
12268 Failure to do so _will_ break on newer gcc. */
12270 /* Signed saturating arithmetic. */
12272 /* Perform 16-bit signed saturating addition. */
12273 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12275 uint16_t res;
12277 res = a + b;
12278 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12279 if (a & 0x8000)
12280 res = 0x8000;
12281 else
12282 res = 0x7fff;
12284 return res;
12287 /* Perform 8-bit signed saturating addition. */
12288 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12290 uint8_t res;
12292 res = a + b;
12293 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12294 if (a & 0x80)
12295 res = 0x80;
12296 else
12297 res = 0x7f;
12299 return res;
12302 /* Perform 16-bit signed saturating subtraction. */
12303 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12305 uint16_t res;
12307 res = a - b;
12308 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12309 if (a & 0x8000)
12310 res = 0x8000;
12311 else
12312 res = 0x7fff;
12314 return res;
12317 /* Perform 8-bit signed saturating subtraction. */
12318 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12320 uint8_t res;
12322 res = a - b;
12323 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12324 if (a & 0x80)
12325 res = 0x80;
12326 else
12327 res = 0x7f;
12329 return res;
12332 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12333 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12334 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12335 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12336 #define PFX q
12338 #include "op_addsub.h"
12340 /* Unsigned saturating arithmetic. */
12341 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12343 uint16_t res;
12344 res = a + b;
12345 if (res < a)
12346 res = 0xffff;
12347 return res;
12350 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12352 if (a > b)
12353 return a - b;
12354 else
12355 return 0;
12358 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12360 uint8_t res;
12361 res = a + b;
12362 if (res < a)
12363 res = 0xff;
12364 return res;
12367 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12369 if (a > b)
12370 return a - b;
12371 else
12372 return 0;
12375 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12376 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12377 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12378 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12379 #define PFX uq
12381 #include "op_addsub.h"
12383 /* Signed modulo arithmetic. */
12384 #define SARITH16(a, b, n, op) do { \
12385 int32_t sum; \
12386 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12387 RESULT(sum, n, 16); \
12388 if (sum >= 0) \
12389 ge |= 3 << (n * 2); \
12390 } while(0)
12392 #define SARITH8(a, b, n, op) do { \
12393 int32_t sum; \
12394 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12395 RESULT(sum, n, 8); \
12396 if (sum >= 0) \
12397 ge |= 1 << n; \
12398 } while(0)
12401 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12402 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12403 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12404 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12405 #define PFX s
12406 #define ARITH_GE
12408 #include "op_addsub.h"
12410 /* Unsigned modulo arithmetic. */
12411 #define ADD16(a, b, n) do { \
12412 uint32_t sum; \
12413 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12414 RESULT(sum, n, 16); \
12415 if ((sum >> 16) == 1) \
12416 ge |= 3 << (n * 2); \
12417 } while(0)
12419 #define ADD8(a, b, n) do { \
12420 uint32_t sum; \
12421 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12422 RESULT(sum, n, 8); \
12423 if ((sum >> 8) == 1) \
12424 ge |= 1 << n; \
12425 } while(0)
12427 #define SUB16(a, b, n) do { \
12428 uint32_t sum; \
12429 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12430 RESULT(sum, n, 16); \
12431 if ((sum >> 16) == 0) \
12432 ge |= 3 << (n * 2); \
12433 } while(0)
12435 #define SUB8(a, b, n) do { \
12436 uint32_t sum; \
12437 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12438 RESULT(sum, n, 8); \
12439 if ((sum >> 8) == 0) \
12440 ge |= 1 << n; \
12441 } while(0)
12443 #define PFX u
12444 #define ARITH_GE
12446 #include "op_addsub.h"
12448 /* Halved signed arithmetic. */
12449 #define ADD16(a, b, n) \
12450 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12451 #define SUB16(a, b, n) \
12452 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12453 #define ADD8(a, b, n) \
12454 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12455 #define SUB8(a, b, n) \
12456 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12457 #define PFX sh
12459 #include "op_addsub.h"
12461 /* Halved unsigned arithmetic. */
12462 #define ADD16(a, b, n) \
12463 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12464 #define SUB16(a, b, n) \
12465 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12466 #define ADD8(a, b, n) \
12467 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12468 #define SUB8(a, b, n) \
12469 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12470 #define PFX uh
12472 #include "op_addsub.h"
12474 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12476 if (a > b)
12477 return a - b;
12478 else
12479 return b - a;
12482 /* Unsigned sum of absolute byte differences. */
12483 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12485 uint32_t sum;
12486 sum = do_usad(a, b);
12487 sum += do_usad(a >> 8, b >> 8);
12488 sum += do_usad(a >> 16, b >>16);
12489 sum += do_usad(a >> 24, b >> 24);
12490 return sum;
12493 /* For ARMv6 SEL instruction. */
12494 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12496 uint32_t mask;
12498 mask = 0;
12499 if (flags & 1)
12500 mask |= 0xff;
12501 if (flags & 2)
12502 mask |= 0xff00;
12503 if (flags & 4)
12504 mask |= 0xff0000;
12505 if (flags & 8)
12506 mask |= 0xff000000;
12507 return (a & mask) | (b & ~mask);
12510 /* CRC helpers.
12511 * The upper bytes of val (above the number specified by 'bytes') must have
12512 * been zeroed out by the caller.
12514 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12516 uint8_t buf[4];
12518 stl_le_p(buf, val);
12520 /* zlib crc32 converts the accumulator and output to one's complement. */
12521 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12524 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12526 uint8_t buf[4];
12528 stl_le_p(buf, val);
12530 /* Linux crc32c converts the output to one's complement. */
12531 return crc32c(acc, buf, bytes) ^ 0xffffffff;
12534 /* Return the exception level to which FP-disabled exceptions should
12535 * be taken, or 0 if FP is enabled.
12537 int fp_exception_el(CPUARMState *env, int cur_el)
12539 #ifndef CONFIG_USER_ONLY
12540 /* CPACR and the CPTR registers don't exist before v6, so FP is
12541 * always accessible
12543 if (!arm_feature(env, ARM_FEATURE_V6)) {
12544 return 0;
12547 if (arm_feature(env, ARM_FEATURE_M)) {
12548 /* CPACR can cause a NOCP UsageFault taken to current security state */
12549 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12550 return 1;
12553 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12554 if (!extract32(env->v7m.nsacr, 10, 1)) {
12555 /* FP insns cause a NOCP UsageFault taken to Secure */
12556 return 3;
12560 return 0;
12563 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12564 * 0, 2 : trap EL0 and EL1/PL1 accesses
12565 * 1 : trap only EL0 accesses
12566 * 3 : trap no accesses
12567 * This register is ignored if E2H+TGE are both set.
12569 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12570 int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12572 switch (fpen) {
12573 case 0:
12574 case 2:
12575 if (cur_el == 0 || cur_el == 1) {
12576 /* Trap to PL1, which might be EL1 or EL3 */
12577 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12578 return 3;
12580 return 1;
12582 if (cur_el == 3 && !is_a64(env)) {
12583 /* Secure PL1 running at EL3 */
12584 return 3;
12586 break;
12587 case 1:
12588 if (cur_el == 0) {
12589 return 1;
12591 break;
12592 case 3:
12593 break;
12598 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12599 * to control non-secure access to the FPU. It doesn't have any
12600 * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12602 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12603 cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12604 if (!extract32(env->cp15.nsacr, 10, 1)) {
12605 /* FP insns act as UNDEF */
12606 return cur_el == 2 ? 2 : 1;
12610 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12611 * check because zero bits in the registers mean "don't trap".
12614 /* CPTR_EL2 : present in v7VE or v8 */
12615 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12616 && !arm_is_secure_below_el3(env)) {
12617 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12618 return 2;
12621 /* CPTR_EL3 : present in v8 */
12622 if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12623 /* Trap all FP ops to EL3 */
12624 return 3;
12626 #endif
12627 return 0;
12630 /* Return the exception level we're running at if this is our mmu_idx */
12631 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12633 if (mmu_idx & ARM_MMU_IDX_M) {
12634 return mmu_idx & ARM_MMU_IDX_M_PRIV;
12637 switch (mmu_idx) {
12638 case ARMMMUIdx_E10_0:
12639 case ARMMMUIdx_E20_0:
12640 case ARMMMUIdx_SE10_0:
12641 return 0;
12642 case ARMMMUIdx_E10_1:
12643 case ARMMMUIdx_E10_1_PAN:
12644 case ARMMMUIdx_SE10_1:
12645 case ARMMMUIdx_SE10_1_PAN:
12646 return 1;
12647 case ARMMMUIdx_E2:
12648 case ARMMMUIdx_E20_2:
12649 case ARMMMUIdx_E20_2_PAN:
12650 return 2;
12651 case ARMMMUIdx_SE3:
12652 return 3;
12653 default:
12654 g_assert_not_reached();
12658 #ifndef CONFIG_TCG
12659 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12661 g_assert_not_reached();
12663 #endif
12665 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12667 if (arm_feature(env, ARM_FEATURE_M)) {
12668 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12671 /* See ARM pseudo-function ELIsInHost. */
12672 switch (el) {
12673 case 0:
12674 if (arm_is_secure_below_el3(env)) {
12675 return ARMMMUIdx_SE10_0;
12677 if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)
12678 && arm_el_is_aa64(env, 2)) {
12679 return ARMMMUIdx_E20_0;
12681 return ARMMMUIdx_E10_0;
12682 case 1:
12683 if (arm_is_secure_below_el3(env)) {
12684 if (env->pstate & PSTATE_PAN) {
12685 return ARMMMUIdx_SE10_1_PAN;
12687 return ARMMMUIdx_SE10_1;
12689 if (env->pstate & PSTATE_PAN) {
12690 return ARMMMUIdx_E10_1_PAN;
12692 return ARMMMUIdx_E10_1;
12693 case 2:
12694 /* TODO: ARMv8.4-SecEL2 */
12695 /* Note that TGE does not apply at EL2. */
12696 if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) {
12697 if (env->pstate & PSTATE_PAN) {
12698 return ARMMMUIdx_E20_2_PAN;
12700 return ARMMMUIdx_E20_2;
12702 return ARMMMUIdx_E2;
12703 case 3:
12704 return ARMMMUIdx_SE3;
12705 default:
12706 g_assert_not_reached();
12710 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12712 return arm_mmu_idx_el(env, arm_current_el(env));
12715 #ifndef CONFIG_USER_ONLY
12716 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12718 return stage_1_mmu_idx(arm_mmu_idx(env));
12720 #endif
12722 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
12723 ARMMMUIdx mmu_idx, uint32_t flags)
12725 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12726 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
12727 arm_to_core_mmu_idx(mmu_idx));
12729 if (arm_singlestep_active(env)) {
12730 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12732 return flags;
12735 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
12736 ARMMMUIdx mmu_idx, uint32_t flags)
12738 bool sctlr_b = arm_sctlr_b(env);
12740 if (sctlr_b) {
12741 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
12743 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
12744 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12746 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12748 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12751 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
12752 ARMMMUIdx mmu_idx)
12754 uint32_t flags = 0;
12756 if (arm_v7m_is_handler_mode(env)) {
12757 flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
12761 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
12762 * is suppressing them because the requested execution priority
12763 * is less than 0.
12765 if (arm_feature(env, ARM_FEATURE_V8) &&
12766 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12767 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12768 flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
12771 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12774 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
12776 int flags = 0;
12778 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
12779 arm_debug_target_el(env));
12780 return flags;
12783 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
12784 ARMMMUIdx mmu_idx)
12786 uint32_t flags = rebuild_hflags_aprofile(env);
12788 if (arm_el_is_aa64(env, 1)) {
12789 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12792 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
12793 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12794 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
12797 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12800 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
12801 ARMMMUIdx mmu_idx)
12803 uint32_t flags = rebuild_hflags_aprofile(env);
12804 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
12805 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
12806 uint64_t sctlr;
12807 int tbii, tbid;
12809 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12811 /* Get control bits for tagged addresses. */
12812 tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
12813 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
12815 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
12816 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
12818 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
12819 int sve_el = sve_exception_el(env, el);
12820 uint32_t zcr_len;
12823 * If SVE is disabled, but FP is enabled,
12824 * then the effective len is 0.
12826 if (sve_el != 0 && fp_el == 0) {
12827 zcr_len = 0;
12828 } else {
12829 zcr_len = sve_zcr_len_for_el(env, el);
12831 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12832 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
12835 sctlr = regime_sctlr(env, stage1);
12837 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
12838 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12841 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
12843 * In order to save space in flags, we record only whether
12844 * pauth is "inactive", meaning all insns are implemented as
12845 * a nop, or "active" when some action must be performed.
12846 * The decision of which action to take is left to a helper.
12848 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12849 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
12853 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12854 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
12855 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12856 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
12860 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
12861 if (!(env->pstate & PSTATE_UAO)) {
12862 switch (mmu_idx) {
12863 case ARMMMUIdx_E10_1:
12864 case ARMMMUIdx_E10_1_PAN:
12865 case ARMMMUIdx_SE10_1:
12866 case ARMMMUIdx_SE10_1_PAN:
12867 /* TODO: ARMv8.3-NV */
12868 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12869 break;
12870 case ARMMMUIdx_E20_2:
12871 case ARMMMUIdx_E20_2_PAN:
12872 /* TODO: ARMv8.4-SecEL2 */
12874 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
12875 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
12877 if (env->cp15.hcr_el2 & HCR_TGE) {
12878 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12880 break;
12881 default:
12882 break;
12886 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
12888 * Set MTE_ACTIVE if any access may be Checked, and leave clear
12889 * if all accesses must be Unchecked:
12890 * 1) If no TBI, then there are no tags in the address to check,
12891 * 2) If Tag Check Override, then all accesses are Unchecked,
12892 * 3) If Tag Check Fail == 0, then Checked access have no effect,
12893 * 4) If no Allocation Tag Access, then all accesses are Unchecked.
12895 if (allocation_tag_access_enabled(env, el, sctlr)) {
12896 flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1);
12897 if (tbid
12898 && !(env->pstate & PSTATE_TCO)
12899 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
12900 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1);
12903 /* And again for unprivileged accesses, if required. */
12904 if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV)
12905 && tbid
12906 && !(env->pstate & PSTATE_TCO)
12907 && (sctlr & SCTLR_TCF0)
12908 && allocation_tag_access_enabled(env, 0, sctlr)) {
12909 flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1);
12911 /* Cache TCMA as well as TBI. */
12912 flags = FIELD_DP32(flags, TBFLAG_A64, TCMA,
12913 aa64_va_parameter_tcma(tcr, mmu_idx));
12916 return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12919 static uint32_t rebuild_hflags_internal(CPUARMState *env)
12921 int el = arm_current_el(env);
12922 int fp_el = fp_exception_el(env, el);
12923 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12925 if (is_a64(env)) {
12926 return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12927 } else if (arm_feature(env, ARM_FEATURE_M)) {
12928 return rebuild_hflags_m32(env, fp_el, mmu_idx);
12929 } else {
12930 return rebuild_hflags_a32(env, fp_el, mmu_idx);
12934 void arm_rebuild_hflags(CPUARMState *env)
12936 env->hflags = rebuild_hflags_internal(env);
12940 * If we have triggered a EL state change we can't rely on the
12941 * translator having passed it to us, we need to recompute.
12943 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
12945 int el = arm_current_el(env);
12946 int fp_el = fp_exception_el(env, el);
12947 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12948 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12951 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12953 int fp_el = fp_exception_el(env, el);
12954 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12956 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12960 * If we have triggered a EL state change we can't rely on the
12961 * translator having passed it to us, we need to recompute.
12963 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
12965 int el = arm_current_el(env);
12966 int fp_el = fp_exception_el(env, el);
12967 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12968 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12971 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
12973 int fp_el = fp_exception_el(env, el);
12974 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12976 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12979 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
12981 int fp_el = fp_exception_el(env, el);
12982 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12984 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12987 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
12989 #ifdef CONFIG_DEBUG_TCG
12990 uint32_t env_flags_current = env->hflags;
12991 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
12993 if (unlikely(env_flags_current != env_flags_rebuilt)) {
12994 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
12995 env_flags_current, env_flags_rebuilt);
12996 abort();
12998 #endif
13001 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13002 target_ulong *cs_base, uint32_t *pflags)
13004 uint32_t flags = env->hflags;
13005 uint32_t pstate_for_ss;
13007 *cs_base = 0;
13008 assert_hflags_rebuild_correctly(env);
13010 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
13011 *pc = env->pc;
13012 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13013 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13015 pstate_for_ss = env->pstate;
13016 } else {
13017 *pc = env->regs[15];
13019 if (arm_feature(env, ARM_FEATURE_M)) {
13020 if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13021 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13022 != env->v7m.secure) {
13023 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
13026 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13027 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13028 (env->v7m.secure &&
13029 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13031 * ASPEN is set, but FPCA/SFPA indicate that there is no
13032 * active FP context; we must create a new FP context before
13033 * executing any FP insn.
13035 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
13038 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13039 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13040 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
13042 } else {
13044 * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13045 * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13047 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13048 flags = FIELD_DP32(flags, TBFLAG_A32,
13049 XSCALE_CPAR, env->cp15.c15_cpar);
13050 } else {
13051 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
13052 env->vfp.vec_len);
13053 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
13054 env->vfp.vec_stride);
13056 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13057 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13061 flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
13062 flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
13063 pstate_for_ss = env->uncached_cpsr;
13067 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13068 * states defined in the ARM ARM for software singlestep:
13069 * SS_ACTIVE PSTATE.SS State
13070 * 0 x Inactive (the TB flag for SS is always 0)
13071 * 1 0 Active-pending
13072 * 1 1 Active-not-pending
13073 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
13075 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
13076 (pstate_for_ss & PSTATE_SS)) {
13077 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13080 *pflags = flags;
13083 #ifdef TARGET_AARCH64
13085 * The manual says that when SVE is enabled and VQ is widened the
13086 * implementation is allowed to zero the previously inaccessible
13087 * portion of the registers. The corollary to that is that when
13088 * SVE is enabled and VQ is narrowed we are also allowed to zero
13089 * the now inaccessible portion of the registers.
13091 * The intent of this is that no predicate bit beyond VQ is ever set.
13092 * Which means that some operations on predicate registers themselves
13093 * may operate on full uint64_t or even unrolled across the maximum
13094 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13095 * may well be cheaper than conditionals to restrict the operation
13096 * to the relevant portion of a uint16_t[16].
13098 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13100 int i, j;
13101 uint64_t pmask;
13103 assert(vq >= 1 && vq <= ARM_MAX_VQ);
13104 assert(vq <= env_archcpu(env)->sve_max_vq);
13106 /* Zap the high bits of the zregs. */
13107 for (i = 0; i < 32; i++) {
13108 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13111 /* Zap the high bits of the pregs and ffr. */
13112 pmask = 0;
13113 if (vq & 3) {
13114 pmask = ~(-1ULL << (16 * (vq & 3)));
13116 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13117 for (i = 0; i < 17; ++i) {
13118 env->vfp.pregs[i].p[j] &= pmask;
13120 pmask = 0;
13125 * Notice a change in SVE vector size when changing EL.
13127 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13128 int new_el, bool el0_a64)
13130 ARMCPU *cpu = env_archcpu(env);
13131 int old_len, new_len;
13132 bool old_a64, new_a64;
13134 /* Nothing to do if no SVE. */
13135 if (!cpu_isar_feature(aa64_sve, cpu)) {
13136 return;
13139 /* Nothing to do if FP is disabled in either EL. */
13140 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13141 return;
13145 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13146 * at ELx, or not available because the EL is in AArch32 state, then
13147 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13148 * has an effective value of 0".
13150 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13151 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13152 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13153 * we already have the correct register contents when encountering the
13154 * vq0->vq0 transition between EL0->EL1.
13156 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13157 old_len = (old_a64 && !sve_exception_el(env, old_el)
13158 ? sve_zcr_len_for_el(env, old_el) : 0);
13159 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13160 new_len = (new_a64 && !sve_exception_el(env, new_el)
13161 ? sve_zcr_len_for_el(env, new_el) : 0);
13163 /* When changing vector length, clear inaccessible state. */
13164 if (new_len < old_len) {
13165 aarch64_sve_narrow_vq(env, new_len + 1);
13168 #endif