target/arm: Fix multiline comment syntax
[qemu/ar7.git] / hw / misc / iotkit-sysctl.c
blob00d4faa6db6b626b5a180a8a7a2c763f0fbfe8f7
1 /*
2 * ARM IoTKit system control element
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
13 * This is a model of the "system control element" which is part of the
14 * Arm IoTKit and documented in
15 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
16 * Specifically, it implements the "system control register" blocks.
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "qemu/log.h"
22 #include "qemu/module.h"
23 #include "trace.h"
24 #include "qapi/error.h"
25 #include "sysemu/sysemu.h"
26 #include "hw/sysbus.h"
27 #include "hw/registerfields.h"
28 #include "hw/misc/iotkit-sysctl.h"
29 #include "target/arm/arm-powerctl.h"
30 #include "target/arm/cpu.h"
32 REG32(SECDBGSTAT, 0x0)
33 REG32(SECDBGSET, 0x4)
34 REG32(SECDBGCLR, 0x8)
35 REG32(SCSECCTRL, 0xc)
36 REG32(FCLK_DIV, 0x10)
37 REG32(SYSCLK_DIV, 0x14)
38 REG32(CLOCK_FORCE, 0x18)
39 REG32(RESET_SYNDROME, 0x100)
40 REG32(RESET_MASK, 0x104)
41 REG32(SWRESET, 0x108)
42 FIELD(SWRESET, SWRESETREQ, 9, 1)
43 REG32(GRETREG, 0x10c)
44 REG32(INITSVTOR0, 0x110)
45 REG32(INITSVTOR1, 0x114)
46 REG32(CPUWAIT, 0x118)
47 REG32(NMI_ENABLE, 0x11c) /* BUSWAIT in IoTKit */
48 REG32(WICCTRL, 0x120)
49 REG32(EWCTRL, 0x124)
50 REG32(PDCM_PD_SYS_SENSE, 0x200)
51 REG32(PDCM_PD_SRAM0_SENSE, 0x20c)
52 REG32(PDCM_PD_SRAM1_SENSE, 0x210)
53 REG32(PDCM_PD_SRAM2_SENSE, 0x214)
54 REG32(PDCM_PD_SRAM3_SENSE, 0x218)
55 REG32(PID4, 0xfd0)
56 REG32(PID5, 0xfd4)
57 REG32(PID6, 0xfd8)
58 REG32(PID7, 0xfdc)
59 REG32(PID0, 0xfe0)
60 REG32(PID1, 0xfe4)
61 REG32(PID2, 0xfe8)
62 REG32(PID3, 0xfec)
63 REG32(CID0, 0xff0)
64 REG32(CID1, 0xff4)
65 REG32(CID2, 0xff8)
66 REG32(CID3, 0xffc)
68 /* PID/CID values */
69 static const int sysctl_id[] = {
70 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
71 0x54, 0xb8, 0x0b, 0x00, /* PID0..PID3 */
72 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
76 * Set the initial secure vector table offset address for the core.
77 * This will take effect when the CPU next resets.
79 static void set_init_vtor(uint64_t cpuid, uint32_t vtor)
81 Object *cpuobj = OBJECT(arm_get_cpu_by_id(cpuid));
83 if (cpuobj) {
84 if (object_property_find(cpuobj, "init-svtor", NULL)) {
85 object_property_set_uint(cpuobj, vtor, "init-svtor", &error_abort);
90 static uint64_t iotkit_sysctl_read(void *opaque, hwaddr offset,
91 unsigned size)
93 IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
94 uint64_t r;
96 switch (offset) {
97 case A_SECDBGSTAT:
98 r = s->secure_debug;
99 break;
100 case A_SCSECCTRL:
101 if (!s->is_sse200) {
102 goto bad_offset;
104 r = s->scsecctrl;
105 break;
106 case A_FCLK_DIV:
107 if (!s->is_sse200) {
108 goto bad_offset;
110 r = s->fclk_div;
111 break;
112 case A_SYSCLK_DIV:
113 if (!s->is_sse200) {
114 goto bad_offset;
116 r = s->sysclk_div;
117 break;
118 case A_CLOCK_FORCE:
119 if (!s->is_sse200) {
120 goto bad_offset;
122 r = s->clock_force;
123 break;
124 case A_RESET_SYNDROME:
125 r = s->reset_syndrome;
126 break;
127 case A_RESET_MASK:
128 r = s->reset_mask;
129 break;
130 case A_GRETREG:
131 r = s->gretreg;
132 break;
133 case A_INITSVTOR0:
134 r = s->initsvtor0;
135 break;
136 case A_INITSVTOR1:
137 if (!s->is_sse200) {
138 goto bad_offset;
140 r = s->initsvtor1;
141 break;
142 case A_CPUWAIT:
143 r = s->cpuwait;
144 break;
145 case A_NMI_ENABLE:
146 /* In IoTKit this is named BUSWAIT but is marked reserved, R/O, zero */
147 if (!s->is_sse200) {
148 r = 0;
149 break;
151 r = s->nmi_enable;
152 break;
153 case A_WICCTRL:
154 r = s->wicctrl;
155 break;
156 case A_EWCTRL:
157 if (!s->is_sse200) {
158 goto bad_offset;
160 r = s->ewctrl;
161 break;
162 case A_PDCM_PD_SYS_SENSE:
163 if (!s->is_sse200) {
164 goto bad_offset;
166 r = s->pdcm_pd_sys_sense;
167 break;
168 case A_PDCM_PD_SRAM0_SENSE:
169 if (!s->is_sse200) {
170 goto bad_offset;
172 r = s->pdcm_pd_sram0_sense;
173 break;
174 case A_PDCM_PD_SRAM1_SENSE:
175 if (!s->is_sse200) {
176 goto bad_offset;
178 r = s->pdcm_pd_sram1_sense;
179 break;
180 case A_PDCM_PD_SRAM2_SENSE:
181 if (!s->is_sse200) {
182 goto bad_offset;
184 r = s->pdcm_pd_sram2_sense;
185 break;
186 case A_PDCM_PD_SRAM3_SENSE:
187 if (!s->is_sse200) {
188 goto bad_offset;
190 r = s->pdcm_pd_sram3_sense;
191 break;
192 case A_PID4 ... A_CID3:
193 r = sysctl_id[(offset - A_PID4) / 4];
194 break;
195 case A_SECDBGSET:
196 case A_SECDBGCLR:
197 case A_SWRESET:
198 qemu_log_mask(LOG_GUEST_ERROR,
199 "IoTKit SysCtl read: read of WO offset %x\n",
200 (int)offset);
201 r = 0;
202 break;
203 default:
204 bad_offset:
205 qemu_log_mask(LOG_GUEST_ERROR,
206 "IoTKit SysCtl read: bad offset %x\n", (int)offset);
207 r = 0;
208 break;
210 trace_iotkit_sysctl_read(offset, r, size);
211 return r;
214 static void iotkit_sysctl_write(void *opaque, hwaddr offset,
215 uint64_t value, unsigned size)
217 IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
219 trace_iotkit_sysctl_write(offset, value, size);
222 * Most of the state here has to do with control of reset and
223 * similar kinds of power up -- for instance the guest can ask
224 * what the reason for the last reset was, or forbid reset for
225 * some causes (like the non-secure watchdog). Most of this is
226 * not relevant to QEMU, which doesn't really model anything other
227 * than a full power-on reset.
228 * We just model the registers as reads-as-written.
231 switch (offset) {
232 case A_RESET_SYNDROME:
233 qemu_log_mask(LOG_UNIMP,
234 "IoTKit SysCtl RESET_SYNDROME unimplemented\n");
235 s->reset_syndrome = value;
236 break;
237 case A_RESET_MASK:
238 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl RESET_MASK unimplemented\n");
239 s->reset_mask = value;
240 break;
241 case A_GRETREG:
243 * General retention register, which is only reset by a power-on
244 * reset. Technically this implementation is complete, since
245 * QEMU only supports power-on resets...
247 s->gretreg = value;
248 break;
249 case A_INITSVTOR0:
250 s->initsvtor0 = value;
251 set_init_vtor(0, s->initsvtor0);
252 break;
253 case A_CPUWAIT:
254 if ((s->cpuwait & 1) && !(value & 1)) {
255 /* Powering up CPU 0 */
256 arm_set_cpu_on_and_reset(0);
258 if ((s->cpuwait & 2) && !(value & 2)) {
259 /* Powering up CPU 1 */
260 arm_set_cpu_on_and_reset(1);
262 s->cpuwait = value;
263 break;
264 case A_WICCTRL:
265 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl WICCTRL unimplemented\n");
266 s->wicctrl = value;
267 break;
268 case A_SECDBGSET:
269 /* write-1-to-set */
270 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SECDBGSET unimplemented\n");
271 s->secure_debug |= value;
272 break;
273 case A_SECDBGCLR:
274 /* write-1-to-clear */
275 s->secure_debug &= ~value;
276 break;
277 case A_SWRESET:
278 /* One w/o bit to request a reset; all other bits reserved */
279 if (value & R_SWRESET_SWRESETREQ_MASK) {
280 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
282 break;
283 case A_SCSECCTRL:
284 if (!s->is_sse200) {
285 goto bad_offset;
287 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SCSECCTRL unimplemented\n");
288 s->scsecctrl = value;
289 break;
290 case A_FCLK_DIV:
291 if (!s->is_sse200) {
292 goto bad_offset;
294 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl FCLK_DIV unimplemented\n");
295 s->fclk_div = value;
296 break;
297 case A_SYSCLK_DIV:
298 if (!s->is_sse200) {
299 goto bad_offset;
301 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl SYSCLK_DIV unimplemented\n");
302 s->sysclk_div = value;
303 break;
304 case A_CLOCK_FORCE:
305 if (!s->is_sse200) {
306 goto bad_offset;
308 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl CLOCK_FORCE unimplemented\n");
309 s->clock_force = value;
310 break;
311 case A_INITSVTOR1:
312 if (!s->is_sse200) {
313 goto bad_offset;
315 s->initsvtor1 = value;
316 set_init_vtor(1, s->initsvtor1);
317 break;
318 case A_EWCTRL:
319 if (!s->is_sse200) {
320 goto bad_offset;
322 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl EWCTRL unimplemented\n");
323 s->ewctrl = value;
324 break;
325 case A_PDCM_PD_SYS_SENSE:
326 if (!s->is_sse200) {
327 goto bad_offset;
329 qemu_log_mask(LOG_UNIMP,
330 "IoTKit SysCtl PDCM_PD_SYS_SENSE unimplemented\n");
331 s->pdcm_pd_sys_sense = value;
332 break;
333 case A_PDCM_PD_SRAM0_SENSE:
334 if (!s->is_sse200) {
335 goto bad_offset;
337 qemu_log_mask(LOG_UNIMP,
338 "IoTKit SysCtl PDCM_PD_SRAM0_SENSE unimplemented\n");
339 s->pdcm_pd_sram0_sense = value;
340 break;
341 case A_PDCM_PD_SRAM1_SENSE:
342 if (!s->is_sse200) {
343 goto bad_offset;
345 qemu_log_mask(LOG_UNIMP,
346 "IoTKit SysCtl PDCM_PD_SRAM1_SENSE unimplemented\n");
347 s->pdcm_pd_sram1_sense = value;
348 break;
349 case A_PDCM_PD_SRAM2_SENSE:
350 if (!s->is_sse200) {
351 goto bad_offset;
353 qemu_log_mask(LOG_UNIMP,
354 "IoTKit SysCtl PDCM_PD_SRAM2_SENSE unimplemented\n");
355 s->pdcm_pd_sram2_sense = value;
356 break;
357 case A_PDCM_PD_SRAM3_SENSE:
358 if (!s->is_sse200) {
359 goto bad_offset;
361 qemu_log_mask(LOG_UNIMP,
362 "IoTKit SysCtl PDCM_PD_SRAM3_SENSE unimplemented\n");
363 s->pdcm_pd_sram3_sense = value;
364 break;
365 case A_NMI_ENABLE:
366 /* In IoTKit this is BUSWAIT: reserved, R/O, zero */
367 if (!s->is_sse200) {
368 goto ro_offset;
370 qemu_log_mask(LOG_UNIMP, "IoTKit SysCtl NMI_ENABLE unimplemented\n");
371 s->nmi_enable = value;
372 break;
373 case A_SECDBGSTAT:
374 case A_PID4 ... A_CID3:
375 ro_offset:
376 qemu_log_mask(LOG_GUEST_ERROR,
377 "IoTKit SysCtl write: write of RO offset %x\n",
378 (int)offset);
379 break;
380 default:
381 bad_offset:
382 qemu_log_mask(LOG_GUEST_ERROR,
383 "IoTKit SysCtl write: bad offset %x\n", (int)offset);
384 break;
388 static const MemoryRegionOps iotkit_sysctl_ops = {
389 .read = iotkit_sysctl_read,
390 .write = iotkit_sysctl_write,
391 .endianness = DEVICE_LITTLE_ENDIAN,
392 /* byte/halfword accesses are just zero-padded on reads and writes */
393 .impl.min_access_size = 4,
394 .impl.max_access_size = 4,
395 .valid.min_access_size = 1,
396 .valid.max_access_size = 4,
399 static void iotkit_sysctl_reset(DeviceState *dev)
401 IoTKitSysCtl *s = IOTKIT_SYSCTL(dev);
403 trace_iotkit_sysctl_reset();
404 s->secure_debug = 0;
405 s->reset_syndrome = 1;
406 s->reset_mask = 0;
407 s->gretreg = 0;
408 s->initsvtor0 = s->initsvtor0_rst;
409 s->initsvtor1 = s->initsvtor1_rst;
410 s->cpuwait = s->cpuwait_rst;
411 s->wicctrl = 0;
412 s->scsecctrl = 0;
413 s->fclk_div = 0;
414 s->sysclk_div = 0;
415 s->clock_force = 0;
416 s->nmi_enable = 0;
417 s->ewctrl = 0;
418 s->pdcm_pd_sys_sense = 0x7f;
419 s->pdcm_pd_sram0_sense = 0;
420 s->pdcm_pd_sram1_sense = 0;
421 s->pdcm_pd_sram2_sense = 0;
422 s->pdcm_pd_sram3_sense = 0;
425 static void iotkit_sysctl_init(Object *obj)
427 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
428 IoTKitSysCtl *s = IOTKIT_SYSCTL(obj);
430 memory_region_init_io(&s->iomem, obj, &iotkit_sysctl_ops,
431 s, "iotkit-sysctl", 0x1000);
432 sysbus_init_mmio(sbd, &s->iomem);
435 static void iotkit_sysctl_realize(DeviceState *dev, Error **errp)
437 IoTKitSysCtl *s = IOTKIT_SYSCTL(dev);
439 /* The top 4 bits of the SYS_VERSION register tell us if we're an SSE-200 */
440 if (extract32(s->sys_version, 28, 4) == 2) {
441 s->is_sse200 = true;
445 static bool sse200_needed(void *opaque)
447 IoTKitSysCtl *s = IOTKIT_SYSCTL(opaque);
449 return s->is_sse200;
452 static const VMStateDescription iotkit_sysctl_sse200_vmstate = {
453 .name = "iotkit-sysctl/sse-200",
454 .version_id = 1,
455 .minimum_version_id = 1,
456 .needed = sse200_needed,
457 .fields = (VMStateField[]) {
458 VMSTATE_UINT32(scsecctrl, IoTKitSysCtl),
459 VMSTATE_UINT32(fclk_div, IoTKitSysCtl),
460 VMSTATE_UINT32(sysclk_div, IoTKitSysCtl),
461 VMSTATE_UINT32(clock_force, IoTKitSysCtl),
462 VMSTATE_UINT32(initsvtor1, IoTKitSysCtl),
463 VMSTATE_UINT32(nmi_enable, IoTKitSysCtl),
464 VMSTATE_UINT32(pdcm_pd_sys_sense, IoTKitSysCtl),
465 VMSTATE_UINT32(pdcm_pd_sram0_sense, IoTKitSysCtl),
466 VMSTATE_UINT32(pdcm_pd_sram1_sense, IoTKitSysCtl),
467 VMSTATE_UINT32(pdcm_pd_sram2_sense, IoTKitSysCtl),
468 VMSTATE_UINT32(pdcm_pd_sram3_sense, IoTKitSysCtl),
469 VMSTATE_END_OF_LIST()
473 static const VMStateDescription iotkit_sysctl_vmstate = {
474 .name = "iotkit-sysctl",
475 .version_id = 1,
476 .minimum_version_id = 1,
477 .fields = (VMStateField[]) {
478 VMSTATE_UINT32(secure_debug, IoTKitSysCtl),
479 VMSTATE_UINT32(reset_syndrome, IoTKitSysCtl),
480 VMSTATE_UINT32(reset_mask, IoTKitSysCtl),
481 VMSTATE_UINT32(gretreg, IoTKitSysCtl),
482 VMSTATE_UINT32(initsvtor0, IoTKitSysCtl),
483 VMSTATE_UINT32(cpuwait, IoTKitSysCtl),
484 VMSTATE_UINT32(wicctrl, IoTKitSysCtl),
485 VMSTATE_END_OF_LIST()
487 .subsections = (const VMStateDescription*[]) {
488 &iotkit_sysctl_sse200_vmstate,
489 NULL
493 static Property iotkit_sysctl_props[] = {
494 DEFINE_PROP_UINT32("SYS_VERSION", IoTKitSysCtl, sys_version, 0),
495 DEFINE_PROP_UINT32("CPUWAIT_RST", IoTKitSysCtl, cpuwait_rst, 0),
496 DEFINE_PROP_UINT32("INITSVTOR0_RST", IoTKitSysCtl, initsvtor0_rst,
497 0x10000000),
498 DEFINE_PROP_UINT32("INITSVTOR1_RST", IoTKitSysCtl, initsvtor1_rst,
499 0x10000000),
500 DEFINE_PROP_END_OF_LIST()
503 static void iotkit_sysctl_class_init(ObjectClass *klass, void *data)
505 DeviceClass *dc = DEVICE_CLASS(klass);
507 dc->vmsd = &iotkit_sysctl_vmstate;
508 dc->reset = iotkit_sysctl_reset;
509 dc->props = iotkit_sysctl_props;
510 dc->realize = iotkit_sysctl_realize;
513 static const TypeInfo iotkit_sysctl_info = {
514 .name = TYPE_IOTKIT_SYSCTL,
515 .parent = TYPE_SYS_BUS_DEVICE,
516 .instance_size = sizeof(IoTKitSysCtl),
517 .instance_init = iotkit_sysctl_init,
518 .class_init = iotkit_sysctl_class_init,
521 static void iotkit_sysctl_register_types(void)
523 type_register_static(&iotkit_sysctl_info);
526 type_init(iotkit_sysctl_register_types);