Update version for 4.1.1 release
[qemu/ar7.git] / hw / char / ipoctal232.c
blob5ab731e40806e55f6e19691cda1fbfe730773fd6
1 /*
2 * QEMU GE IP-Octal 232 IndustryPack emulation
4 * Copyright (C) 2012 Igalia, S.L.
5 * Author: Alberto Garcia <berto@igalia.com>
7 * This code is licensed under the GNU GPL v2 or (at your option) any
8 * later version.
9 */
11 #include "qemu/osdep.h"
12 #include "hw/ipack/ipack.h"
13 #include "qemu/bitops.h"
14 #include "qemu/module.h"
15 #include "chardev/char-fe.h"
17 /* #define DEBUG_IPOCTAL */
19 #ifdef DEBUG_IPOCTAL
20 #define DPRINTF2(fmt, ...) \
21 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
22 #else
23 #define DPRINTF2(fmt, ...) do { } while (0)
24 #endif
26 #define DPRINTF(fmt, ...) DPRINTF2("IP-Octal: " fmt, ## __VA_ARGS__)
28 #define RX_FIFO_SIZE 3
30 /* The IP-Octal has 8 channels (a-h)
31 divided into 4 blocks (A-D) */
32 #define N_CHANNELS 8
33 #define N_BLOCKS 4
35 #define REG_MRa 0x01
36 #define REG_MRb 0x11
37 #define REG_SRa 0x03
38 #define REG_SRb 0x13
39 #define REG_CSRa 0x03
40 #define REG_CSRb 0x13
41 #define REG_CRa 0x05
42 #define REG_CRb 0x15
43 #define REG_RHRa 0x07
44 #define REG_RHRb 0x17
45 #define REG_THRa 0x07
46 #define REG_THRb 0x17
47 #define REG_ACR 0x09
48 #define REG_ISR 0x0B
49 #define REG_IMR 0x0B
50 #define REG_OPCR 0x1B
52 #define CR_ENABLE_RX BIT(0)
53 #define CR_DISABLE_RX BIT(1)
54 #define CR_ENABLE_TX BIT(2)
55 #define CR_DISABLE_TX BIT(3)
56 #define CR_CMD(cr) ((cr) >> 4)
57 #define CR_NO_OP 0
58 #define CR_RESET_MR 1
59 #define CR_RESET_RX 2
60 #define CR_RESET_TX 3
61 #define CR_RESET_ERR 4
62 #define CR_RESET_BRKINT 5
63 #define CR_START_BRK 6
64 #define CR_STOP_BRK 7
65 #define CR_ASSERT_RTSN 8
66 #define CR_NEGATE_RTSN 9
67 #define CR_TIMEOUT_ON 10
68 #define CR_TIMEOUT_OFF 12
70 #define SR_RXRDY BIT(0)
71 #define SR_FFULL BIT(1)
72 #define SR_TXRDY BIT(2)
73 #define SR_TXEMT BIT(3)
74 #define SR_OVERRUN BIT(4)
75 #define SR_PARITY BIT(5)
76 #define SR_FRAMING BIT(6)
77 #define SR_BREAK BIT(7)
79 #define ISR_TXRDYA BIT(0)
80 #define ISR_RXRDYA BIT(1)
81 #define ISR_BREAKA BIT(2)
82 #define ISR_CNTRDY BIT(3)
83 #define ISR_TXRDYB BIT(4)
84 #define ISR_RXRDYB BIT(5)
85 #define ISR_BREAKB BIT(6)
86 #define ISR_MPICHG BIT(7)
87 #define ISR_TXRDY(CH) (((CH) & 1) ? BIT(4) : BIT(0))
88 #define ISR_RXRDY(CH) (((CH) & 1) ? BIT(5) : BIT(1))
89 #define ISR_BREAK(CH) (((CH) & 1) ? BIT(6) : BIT(2))
91 typedef struct IPOctalState IPOctalState;
92 typedef struct SCC2698Channel SCC2698Channel;
93 typedef struct SCC2698Block SCC2698Block;
95 struct SCC2698Channel {
96 IPOctalState *ipoctal;
97 CharBackend dev;
98 bool rx_enabled;
99 uint8_t mr[2];
100 uint8_t mr_idx;
101 uint8_t sr;
102 uint8_t rhr[RX_FIFO_SIZE];
103 uint8_t rhr_idx;
104 uint8_t rx_pending;
107 struct SCC2698Block {
108 uint8_t imr;
109 uint8_t isr;
112 struct IPOctalState {
113 IPackDevice parent_obj;
115 SCC2698Channel ch[N_CHANNELS];
116 SCC2698Block blk[N_BLOCKS];
117 uint8_t irq_vector;
120 #define TYPE_IPOCTAL "ipoctal232"
122 #define IPOCTAL(obj) \
123 OBJECT_CHECK(IPOctalState, (obj), TYPE_IPOCTAL)
125 static const VMStateDescription vmstate_scc2698_channel = {
126 .name = "scc2698_channel",
127 .version_id = 1,
128 .minimum_version_id = 1,
129 .fields = (VMStateField[]) {
130 VMSTATE_BOOL(rx_enabled, SCC2698Channel),
131 VMSTATE_UINT8_ARRAY(mr, SCC2698Channel, 2),
132 VMSTATE_UINT8(mr_idx, SCC2698Channel),
133 VMSTATE_UINT8(sr, SCC2698Channel),
134 VMSTATE_UINT8_ARRAY(rhr, SCC2698Channel, RX_FIFO_SIZE),
135 VMSTATE_UINT8(rhr_idx, SCC2698Channel),
136 VMSTATE_UINT8(rx_pending, SCC2698Channel),
137 VMSTATE_END_OF_LIST()
141 static const VMStateDescription vmstate_scc2698_block = {
142 .name = "scc2698_block",
143 .version_id = 1,
144 .minimum_version_id = 1,
145 .fields = (VMStateField[]) {
146 VMSTATE_UINT8(imr, SCC2698Block),
147 VMSTATE_UINT8(isr, SCC2698Block),
148 VMSTATE_END_OF_LIST()
152 static const VMStateDescription vmstate_ipoctal = {
153 .name = "ipoctal232",
154 .version_id = 1,
155 .minimum_version_id = 1,
156 .fields = (VMStateField[]) {
157 VMSTATE_IPACK_DEVICE(parent_obj, IPOctalState),
158 VMSTATE_STRUCT_ARRAY(ch, IPOctalState, N_CHANNELS, 1,
159 vmstate_scc2698_channel, SCC2698Channel),
160 VMSTATE_STRUCT_ARRAY(blk, IPOctalState, N_BLOCKS, 1,
161 vmstate_scc2698_block, SCC2698Block),
162 VMSTATE_UINT8(irq_vector, IPOctalState),
163 VMSTATE_END_OF_LIST()
167 /* data[10] is 0x0C, not 0x0B as the doc says */
168 static const uint8_t id_prom_data[] = {
169 0x49, 0x50, 0x41, 0x43, 0xF0, 0x22,
170 0xA1, 0x00, 0x00, 0x00, 0x0C, 0xCC
173 static void update_irq(IPOctalState *dev, unsigned block)
175 IPackDevice *idev = IPACK_DEVICE(dev);
176 /* Blocks A and B interrupt on INT0#, C and D on INT1#.
177 Thus, to get the status we have to check two blocks. */
178 SCC2698Block *blk0 = &dev->blk[block];
179 SCC2698Block *blk1 = &dev->blk[block^1];
180 unsigned intno = block / 2;
182 if ((blk0->isr & blk0->imr) || (blk1->isr & blk1->imr)) {
183 qemu_irq_raise(idev->irq[intno]);
184 } else {
185 qemu_irq_lower(idev->irq[intno]);
189 static void write_cr(IPOctalState *dev, unsigned channel, uint8_t val)
191 SCC2698Channel *ch = &dev->ch[channel];
192 SCC2698Block *blk = &dev->blk[channel / 2];
194 DPRINTF("Write CR%c %u: ", channel + 'a', val);
196 /* The lower 4 bits are used to enable and disable Tx and Rx */
197 if (val & CR_ENABLE_RX) {
198 DPRINTF2("Rx on, ");
199 ch->rx_enabled = true;
201 if (val & CR_DISABLE_RX) {
202 DPRINTF2("Rx off, ");
203 ch->rx_enabled = false;
205 if (val & CR_ENABLE_TX) {
206 DPRINTF2("Tx on, ");
207 ch->sr |= SR_TXRDY | SR_TXEMT;
208 blk->isr |= ISR_TXRDY(channel);
210 if (val & CR_DISABLE_TX) {
211 DPRINTF2("Tx off, ");
212 ch->sr &= ~(SR_TXRDY | SR_TXEMT);
213 blk->isr &= ~ISR_TXRDY(channel);
216 DPRINTF2("cmd: ");
218 /* The rest of the bits implement different commands */
219 switch (CR_CMD(val)) {
220 case CR_NO_OP:
221 DPRINTF2("none");
222 break;
223 case CR_RESET_MR:
224 DPRINTF2("reset MR");
225 ch->mr_idx = 0;
226 break;
227 case CR_RESET_RX:
228 DPRINTF2("reset Rx");
229 ch->rx_enabled = false;
230 ch->rx_pending = 0;
231 ch->sr &= ~SR_RXRDY;
232 blk->isr &= ~ISR_RXRDY(channel);
233 break;
234 case CR_RESET_TX:
235 DPRINTF2("reset Tx");
236 ch->sr &= ~(SR_TXRDY | SR_TXEMT);
237 blk->isr &= ~ISR_TXRDY(channel);
238 break;
239 case CR_RESET_ERR:
240 DPRINTF2("reset err");
241 ch->sr &= ~(SR_OVERRUN | SR_PARITY | SR_FRAMING | SR_BREAK);
242 break;
243 case CR_RESET_BRKINT:
244 DPRINTF2("reset brk ch int");
245 blk->isr &= ~(ISR_BREAKA | ISR_BREAKB);
246 break;
247 default:
248 DPRINTF2("unsupported 0x%x", CR_CMD(val));
251 DPRINTF2("\n");
254 static uint16_t io_read(IPackDevice *ip, uint8_t addr)
256 IPOctalState *dev = IPOCTAL(ip);
257 uint16_t ret = 0;
258 /* addr[7:6]: block (A-D)
259 addr[7:5]: channel (a-h)
260 addr[5:0]: register */
261 unsigned block = addr >> 5;
262 unsigned channel = addr >> 4;
263 /* Big endian, accessed using 8-bit bytes at odd locations */
264 unsigned offset = (addr & 0x1F) ^ 1;
265 SCC2698Channel *ch = &dev->ch[channel];
266 SCC2698Block *blk = &dev->blk[block];
267 uint8_t old_isr = blk->isr;
269 switch (offset) {
271 case REG_MRa:
272 case REG_MRb:
273 ret = ch->mr[ch->mr_idx];
274 DPRINTF("Read MR%u%c: 0x%x\n", ch->mr_idx + 1, channel + 'a', ret);
275 ch->mr_idx = 1;
276 break;
278 case REG_SRa:
279 case REG_SRb:
280 ret = ch->sr;
281 DPRINTF("Read SR%c: 0x%x\n", channel + 'a', ret);
282 break;
284 case REG_RHRa:
285 case REG_RHRb:
286 ret = ch->rhr[ch->rhr_idx];
287 if (ch->rx_pending > 0) {
288 ch->rx_pending--;
289 if (ch->rx_pending == 0) {
290 ch->sr &= ~SR_RXRDY;
291 blk->isr &= ~ISR_RXRDY(channel);
292 qemu_chr_fe_accept_input(&ch->dev);
293 } else {
294 ch->rhr_idx = (ch->rhr_idx + 1) % RX_FIFO_SIZE;
296 if (ch->sr & SR_BREAK) {
297 ch->sr &= ~SR_BREAK;
298 blk->isr |= ISR_BREAK(channel);
301 DPRINTF("Read RHR%c (0x%x)\n", channel + 'a', ret);
302 break;
304 case REG_ISR:
305 ret = blk->isr;
306 DPRINTF("Read ISR%c: 0x%x\n", block + 'A', ret);
307 break;
309 default:
310 DPRINTF("Read unknown/unsupported register 0x%02x\n", offset);
313 if (old_isr != blk->isr) {
314 update_irq(dev, block);
317 return ret;
320 static void io_write(IPackDevice *ip, uint8_t addr, uint16_t val)
322 IPOctalState *dev = IPOCTAL(ip);
323 unsigned reg = val & 0xFF;
324 /* addr[7:6]: block (A-D)
325 addr[7:5]: channel (a-h)
326 addr[5:0]: register */
327 unsigned block = addr >> 5;
328 unsigned channel = addr >> 4;
329 /* Big endian, accessed using 8-bit bytes at odd locations */
330 unsigned offset = (addr & 0x1F) ^ 1;
331 SCC2698Channel *ch = &dev->ch[channel];
332 SCC2698Block *blk = &dev->blk[block];
333 uint8_t old_isr = blk->isr;
334 uint8_t old_imr = blk->imr;
336 switch (offset) {
338 case REG_MRa:
339 case REG_MRb:
340 ch->mr[ch->mr_idx] = reg;
341 DPRINTF("Write MR%u%c 0x%x\n", ch->mr_idx + 1, channel + 'a', reg);
342 ch->mr_idx = 1;
343 break;
345 /* Not implemented */
346 case REG_CSRa:
347 case REG_CSRb:
348 DPRINTF("Write CSR%c: 0x%x\n", channel + 'a', reg);
349 break;
351 case REG_CRa:
352 case REG_CRb:
353 write_cr(dev, channel, reg);
354 break;
356 case REG_THRa:
357 case REG_THRb:
358 if (ch->sr & SR_TXRDY) {
359 uint8_t thr = reg;
360 DPRINTF("Write THR%c (0x%x)\n", channel + 'a', reg);
361 /* XXX this blocks entire thread. Rewrite to use
362 * qemu_chr_fe_write and background I/O callbacks */
363 qemu_chr_fe_write_all(&ch->dev, &thr, 1);
364 } else {
365 DPRINTF("Write THR%c (0x%x), Tx disabled\n", channel + 'a', reg);
367 break;
369 /* Not implemented */
370 case REG_ACR:
371 DPRINTF("Write ACR%c 0x%x\n", block + 'A', val);
372 break;
374 case REG_IMR:
375 DPRINTF("Write IMR%c 0x%x\n", block + 'A', val);
376 blk->imr = reg;
377 break;
379 /* Not implemented */
380 case REG_OPCR:
381 DPRINTF("Write OPCR%c 0x%x\n", block + 'A', val);
382 break;
384 default:
385 DPRINTF("Write unknown/unsupported register 0x%02x %u\n", offset, val);
388 if (old_isr != blk->isr || old_imr != blk->imr) {
389 update_irq(dev, block);
393 static uint16_t id_read(IPackDevice *ip, uint8_t addr)
395 uint16_t ret = 0;
396 unsigned pos = addr / 2; /* The ID PROM data is stored every other byte */
398 if (pos < ARRAY_SIZE(id_prom_data)) {
399 ret = id_prom_data[pos];
400 } else {
401 DPRINTF("Attempt to read unavailable PROM data at 0x%x\n", addr);
404 return ret;
407 static void id_write(IPackDevice *ip, uint8_t addr, uint16_t val)
409 IPOctalState *dev = IPOCTAL(ip);
410 if (addr == 1) {
411 DPRINTF("Write IRQ vector: %u\n", (unsigned) val);
412 dev->irq_vector = val; /* Undocumented, but the hw works like that */
413 } else {
414 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
418 static uint16_t int_read(IPackDevice *ip, uint8_t addr)
420 IPOctalState *dev = IPOCTAL(ip);
421 /* Read address 0 to ACK INT0# and address 2 to ACK INT1# */
422 if (addr != 0 && addr != 2) {
423 DPRINTF("Attempt to read from 0x%x\n", addr);
424 return 0;
425 } else {
426 /* Update interrupts if necessary */
427 update_irq(dev, addr);
428 return dev->irq_vector;
432 static void int_write(IPackDevice *ip, uint8_t addr, uint16_t val)
434 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
437 static uint16_t mem_read16(IPackDevice *ip, uint32_t addr)
439 DPRINTF("Attempt to read from 0x%x\n", addr);
440 return 0;
443 static void mem_write16(IPackDevice *ip, uint32_t addr, uint16_t val)
445 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
448 static uint8_t mem_read8(IPackDevice *ip, uint32_t addr)
450 DPRINTF("Attempt to read from 0x%x\n", addr);
451 return 0;
454 static void mem_write8(IPackDevice *ip, uint32_t addr, uint8_t val)
456 IPOctalState *dev = IPOCTAL(ip);
457 if (addr == 1) {
458 DPRINTF("Write IRQ vector: %u\n", (unsigned) val);
459 dev->irq_vector = val;
460 } else {
461 DPRINTF("Attempt to write 0x%x to 0x%x\n", val, addr);
465 static int hostdev_can_receive(void *opaque)
467 SCC2698Channel *ch = opaque;
468 int available_bytes = RX_FIFO_SIZE - ch->rx_pending;
469 return ch->rx_enabled ? available_bytes : 0;
472 static void hostdev_receive(void *opaque, const uint8_t *buf, int size)
474 SCC2698Channel *ch = opaque;
475 IPOctalState *dev = ch->ipoctal;
476 unsigned pos = ch->rhr_idx + ch->rx_pending;
477 int i;
479 assert(size + ch->rx_pending <= RX_FIFO_SIZE);
481 /* Copy data to the RxFIFO */
482 for (i = 0; i < size; i++) {
483 pos %= RX_FIFO_SIZE;
484 ch->rhr[pos++] = buf[i];
487 ch->rx_pending += size;
489 /* If the RxFIFO was empty raise an interrupt */
490 if (!(ch->sr & SR_RXRDY)) {
491 unsigned block, channel = 0;
492 /* Find channel number to update the ISR register */
493 while (&dev->ch[channel] != ch) {
494 channel++;
496 block = channel / 2;
497 dev->blk[block].isr |= ISR_RXRDY(channel);
498 ch->sr |= SR_RXRDY;
499 update_irq(dev, block);
503 static void hostdev_event(void *opaque, int event)
505 SCC2698Channel *ch = opaque;
506 switch (event) {
507 case CHR_EVENT_OPENED:
508 DPRINTF("Device %s opened\n", ch->dev->label);
509 break;
510 case CHR_EVENT_BREAK: {
511 uint8_t zero = 0;
512 DPRINTF("Device %s received break\n", ch->dev->label);
514 if (!(ch->sr & SR_BREAK)) {
515 IPOctalState *dev = ch->ipoctal;
516 unsigned block, channel = 0;
518 while (&dev->ch[channel] != ch) {
519 channel++;
521 block = channel / 2;
523 ch->sr |= SR_BREAK;
524 dev->blk[block].isr |= ISR_BREAK(channel);
527 /* Put a zero character in the buffer */
528 hostdev_receive(ch, &zero, 1);
530 break;
531 default:
532 DPRINTF("Device %s received event %d\n", ch->dev->label, event);
536 static void ipoctal_realize(DeviceState *dev, Error **errp)
538 IPOctalState *s = IPOCTAL(dev);
539 unsigned i;
541 for (i = 0; i < N_CHANNELS; i++) {
542 SCC2698Channel *ch = &s->ch[i];
543 ch->ipoctal = s;
545 /* Redirect IP-Octal channels to host character devices */
546 if (qemu_chr_fe_backend_connected(&ch->dev)) {
547 qemu_chr_fe_set_handlers(&ch->dev, hostdev_can_receive,
548 hostdev_receive, hostdev_event,
549 NULL, ch, NULL, true);
550 DPRINTF("Redirecting channel %u to %s\n", i, ch->dev->label);
551 } else {
552 DPRINTF("Could not redirect channel %u, no chardev set\n", i);
557 static Property ipoctal_properties[] = {
558 DEFINE_PROP_CHR("chardev0", IPOctalState, ch[0].dev),
559 DEFINE_PROP_CHR("chardev1", IPOctalState, ch[1].dev),
560 DEFINE_PROP_CHR("chardev2", IPOctalState, ch[2].dev),
561 DEFINE_PROP_CHR("chardev3", IPOctalState, ch[3].dev),
562 DEFINE_PROP_CHR("chardev4", IPOctalState, ch[4].dev),
563 DEFINE_PROP_CHR("chardev5", IPOctalState, ch[5].dev),
564 DEFINE_PROP_CHR("chardev6", IPOctalState, ch[6].dev),
565 DEFINE_PROP_CHR("chardev7", IPOctalState, ch[7].dev),
566 DEFINE_PROP_END_OF_LIST(),
569 static void ipoctal_class_init(ObjectClass *klass, void *data)
571 DeviceClass *dc = DEVICE_CLASS(klass);
572 IPackDeviceClass *ic = IPACK_DEVICE_CLASS(klass);
574 ic->realize = ipoctal_realize;
575 ic->io_read = io_read;
576 ic->io_write = io_write;
577 ic->id_read = id_read;
578 ic->id_write = id_write;
579 ic->int_read = int_read;
580 ic->int_write = int_write;
581 ic->mem_read16 = mem_read16;
582 ic->mem_write16 = mem_write16;
583 ic->mem_read8 = mem_read8;
584 ic->mem_write8 = mem_write8;
586 set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
587 dc->desc = "GE IP-Octal 232 8-channel RS-232 IndustryPack";
588 dc->props = ipoctal_properties;
589 dc->vmsd = &vmstate_ipoctal;
592 static const TypeInfo ipoctal_info = {
593 .name = TYPE_IPOCTAL,
594 .parent = TYPE_IPACK_DEVICE,
595 .instance_size = sizeof(IPOctalState),
596 .class_init = ipoctal_class_init,
599 static void ipoctal_register_types(void)
601 type_register_static(&ipoctal_info);
604 type_init(ipoctal_register_types)