Update version for 4.1.1 release
[qemu/ar7.git] / hw / char / escc.c
blob8ddbb4be4fab1aa919ab32f9b6a573b863a72aed
1 /*
2 * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "hw/sysbus.h"
28 #include "qemu/module.h"
29 #include "hw/char/escc.h"
30 #include "ui/console.h"
31 #include "trace.h"
34 * Chipset docs:
35 * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
36 * http://www.zilog.com/docs/serial/scc_escc_um.pdf
38 * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
39 * (Slave I/O), also produced as NCR89C105. See
40 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
42 * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
43 * mouse and keyboard ports don't implement all functions and they are
44 * only asynchronous. There is no DMA.
46 * Z85C30 is also used on PowerMacs. There are some small differences
47 * between Sparc version (sunzilog) and PowerMac (pmac):
48 * Offset between control and data registers
49 * There is some kind of lockup bug, but we can ignore it
50 * CTS is inverted
51 * DMA on pmac using DBDMA chip
52 * pmac can do IRDA and faster rates, sunzilog can only do 38400
53 * pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
57 * Modifications:
58 * 2006-Aug-10 Igor Kovalenko : Renamed KBDQueue to SERIOQueue, implemented
59 * serial mouse queue.
60 * Implemented serial mouse protocol.
62 * 2010-May-23 Artyom Tarasenko: Reworked IUS logic
65 #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a')
67 #define SERIAL_CTRL 0
68 #define SERIAL_DATA 1
70 #define W_CMD 0
71 #define CMD_PTR_MASK 0x07
72 #define CMD_CMD_MASK 0x38
73 #define CMD_HI 0x08
74 #define CMD_CLR_TXINT 0x28
75 #define CMD_CLR_IUS 0x38
76 #define W_INTR 1
77 #define INTR_INTALL 0x01
78 #define INTR_TXINT 0x02
79 #define INTR_RXMODEMSK 0x18
80 #define INTR_RXINT1ST 0x08
81 #define INTR_RXINTALL 0x10
82 #define W_IVEC 2
83 #define W_RXCTRL 3
84 #define RXCTRL_RXEN 0x01
85 #define W_TXCTRL1 4
86 #define TXCTRL1_PAREN 0x01
87 #define TXCTRL1_PAREV 0x02
88 #define TXCTRL1_1STOP 0x04
89 #define TXCTRL1_1HSTOP 0x08
90 #define TXCTRL1_2STOP 0x0c
91 #define TXCTRL1_STPMSK 0x0c
92 #define TXCTRL1_CLK1X 0x00
93 #define TXCTRL1_CLK16X 0x40
94 #define TXCTRL1_CLK32X 0x80
95 #define TXCTRL1_CLK64X 0xc0
96 #define TXCTRL1_CLKMSK 0xc0
97 #define W_TXCTRL2 5
98 #define TXCTRL2_TXEN 0x08
99 #define TXCTRL2_BITMSK 0x60
100 #define TXCTRL2_5BITS 0x00
101 #define TXCTRL2_7BITS 0x20
102 #define TXCTRL2_6BITS 0x40
103 #define TXCTRL2_8BITS 0x60
104 #define W_SYNC1 6
105 #define W_SYNC2 7
106 #define W_TXBUF 8
107 #define W_MINTR 9
108 #define MINTR_STATUSHI 0x10
109 #define MINTR_RST_MASK 0xc0
110 #define MINTR_RST_B 0x40
111 #define MINTR_RST_A 0x80
112 #define MINTR_RST_ALL 0xc0
113 #define W_MISC1 10
114 #define W_CLOCK 11
115 #define CLOCK_TRXC 0x08
116 #define W_BRGLO 12
117 #define W_BRGHI 13
118 #define W_MISC2 14
119 #define MISC2_PLLDIS 0x30
120 #define W_EXTINT 15
121 #define EXTINT_DCD 0x08
122 #define EXTINT_SYNCINT 0x10
123 #define EXTINT_CTSINT 0x20
124 #define EXTINT_TXUNDRN 0x40
125 #define EXTINT_BRKINT 0x80
127 #define R_STATUS 0
128 #define STATUS_RXAV 0x01
129 #define STATUS_ZERO 0x02
130 #define STATUS_TXEMPTY 0x04
131 #define STATUS_DCD 0x08
132 #define STATUS_SYNC 0x10
133 #define STATUS_CTS 0x20
134 #define STATUS_TXUNDRN 0x40
135 #define STATUS_BRK 0x80
136 #define R_SPEC 1
137 #define SPEC_ALLSENT 0x01
138 #define SPEC_BITS8 0x06
139 #define R_IVEC 2
140 #define IVEC_TXINTB 0x00
141 #define IVEC_LONOINT 0x06
142 #define IVEC_LORXINTA 0x0c
143 #define IVEC_LORXINTB 0x04
144 #define IVEC_LOTXINTA 0x08
145 #define IVEC_HINOINT 0x60
146 #define IVEC_HIRXINTA 0x30
147 #define IVEC_HIRXINTB 0x20
148 #define IVEC_HITXINTA 0x10
149 #define R_INTR 3
150 #define INTR_EXTINTB 0x01
151 #define INTR_TXINTB 0x02
152 #define INTR_RXINTB 0x04
153 #define INTR_EXTINTA 0x08
154 #define INTR_TXINTA 0x10
155 #define INTR_RXINTA 0x20
156 #define R_IPEN 4
157 #define R_TXCTRL1 5
158 #define R_TXCTRL2 6
159 #define R_BC 7
160 #define R_RXBUF 8
161 #define R_RXCTRL 9
162 #define R_MISC 10
163 #define R_MISC1 11
164 #define R_BRGLO 12
165 #define R_BRGHI 13
166 #define R_MISC1I 14
167 #define R_EXTINT 15
169 static void handle_kbd_command(ESCCChannelState *s, int val);
170 static int serial_can_receive(void *opaque);
171 static void serial_receive_byte(ESCCChannelState *s, int ch);
173 static void clear_queue(void *opaque)
175 ESCCChannelState *s = opaque;
176 ESCCSERIOQueue *q = &s->queue;
177 q->rptr = q->wptr = q->count = 0;
180 static void put_queue(void *opaque, int b)
182 ESCCChannelState *s = opaque;
183 ESCCSERIOQueue *q = &s->queue;
185 trace_escc_put_queue(CHN_C(s), b);
186 if (q->count >= ESCC_SERIO_QUEUE_SIZE) {
187 return;
189 q->data[q->wptr] = b;
190 if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) {
191 q->wptr = 0;
193 q->count++;
194 serial_receive_byte(s, 0);
197 static uint32_t get_queue(void *opaque)
199 ESCCChannelState *s = opaque;
200 ESCCSERIOQueue *q = &s->queue;
201 int val;
203 if (q->count == 0) {
204 return 0;
205 } else {
206 val = q->data[q->rptr];
207 if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) {
208 q->rptr = 0;
210 q->count--;
212 trace_escc_get_queue(CHN_C(s), val);
213 if (q->count > 0)
214 serial_receive_byte(s, 0);
215 return val;
218 static int escc_update_irq_chn(ESCCChannelState *s)
220 if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
221 // tx ints enabled, pending
222 ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
223 ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
224 s->rxint == 1) || // rx ints enabled, pending
225 ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
226 (s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
227 return 1;
229 return 0;
232 static void escc_update_irq(ESCCChannelState *s)
234 int irq;
236 irq = escc_update_irq_chn(s);
237 irq |= escc_update_irq_chn(s->otherchn);
239 trace_escc_update_irq(irq);
240 qemu_set_irq(s->irq, irq);
243 static void escc_reset_chn(ESCCChannelState *s)
245 int i;
247 s->reg = 0;
248 for (i = 0; i < ESCC_SERIAL_REGS; i++) {
249 s->rregs[i] = 0;
250 s->wregs[i] = 0;
252 s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
253 s->wregs[W_MINTR] = MINTR_RST_ALL;
254 s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
255 s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
256 s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
257 EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
258 if (s->disabled)
259 s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
260 STATUS_CTS | STATUS_TXUNDRN;
261 else
262 s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
263 s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
265 s->rx = s->tx = 0;
266 s->rxint = s->txint = 0;
267 s->rxint_under_svc = s->txint_under_svc = 0;
268 s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
269 clear_queue(s);
272 static void escc_reset(DeviceState *d)
274 ESCCState *s = ESCC(d);
276 escc_reset_chn(&s->chn[0]);
277 escc_reset_chn(&s->chn[1]);
280 static inline void set_rxint(ESCCChannelState *s)
282 s->rxint = 1;
283 /* XXX: missing daisy chainnig: escc_chn_b rx should have a lower priority
284 than chn_a rx/tx/special_condition service*/
285 s->rxint_under_svc = 1;
286 if (s->chn == escc_chn_a) {
287 s->rregs[R_INTR] |= INTR_RXINTA;
288 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
289 s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
290 else
291 s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
292 } else {
293 s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
294 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
295 s->rregs[R_IVEC] = IVEC_HIRXINTB;
296 else
297 s->rregs[R_IVEC] = IVEC_LORXINTB;
299 escc_update_irq(s);
302 static inline void set_txint(ESCCChannelState *s)
304 s->txint = 1;
305 if (!s->rxint_under_svc) {
306 s->txint_under_svc = 1;
307 if (s->chn == escc_chn_a) {
308 if (s->wregs[W_INTR] & INTR_TXINT) {
309 s->rregs[R_INTR] |= INTR_TXINTA;
311 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
312 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
313 else
314 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
315 } else {
316 s->rregs[R_IVEC] = IVEC_TXINTB;
317 if (s->wregs[W_INTR] & INTR_TXINT) {
318 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
321 escc_update_irq(s);
325 static inline void clr_rxint(ESCCChannelState *s)
327 s->rxint = 0;
328 s->rxint_under_svc = 0;
329 if (s->chn == escc_chn_a) {
330 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
331 s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
332 else
333 s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
334 s->rregs[R_INTR] &= ~INTR_RXINTA;
335 } else {
336 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
337 s->rregs[R_IVEC] = IVEC_HINOINT;
338 else
339 s->rregs[R_IVEC] = IVEC_LONOINT;
340 s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
342 if (s->txint)
343 set_txint(s);
344 escc_update_irq(s);
347 static inline void clr_txint(ESCCChannelState *s)
349 s->txint = 0;
350 s->txint_under_svc = 0;
351 if (s->chn == escc_chn_a) {
352 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
353 s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
354 else
355 s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
356 s->rregs[R_INTR] &= ~INTR_TXINTA;
357 } else {
358 s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
359 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
360 s->rregs[R_IVEC] = IVEC_HINOINT;
361 else
362 s->rregs[R_IVEC] = IVEC_LONOINT;
363 s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
365 if (s->rxint)
366 set_rxint(s);
367 escc_update_irq(s);
370 static void escc_update_parameters(ESCCChannelState *s)
372 int speed, parity, data_bits, stop_bits;
373 QEMUSerialSetParams ssp;
375 if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial)
376 return;
378 if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
379 if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
380 parity = 'E';
381 else
382 parity = 'O';
383 } else {
384 parity = 'N';
386 if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
387 stop_bits = 2;
388 else
389 stop_bits = 1;
390 switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
391 case TXCTRL2_5BITS:
392 data_bits = 5;
393 break;
394 case TXCTRL2_7BITS:
395 data_bits = 7;
396 break;
397 case TXCTRL2_6BITS:
398 data_bits = 6;
399 break;
400 default:
401 case TXCTRL2_8BITS:
402 data_bits = 8;
403 break;
405 speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
406 switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
407 case TXCTRL1_CLK1X:
408 break;
409 case TXCTRL1_CLK16X:
410 speed /= 16;
411 break;
412 case TXCTRL1_CLK32X:
413 speed /= 32;
414 break;
415 default:
416 case TXCTRL1_CLK64X:
417 speed /= 64;
418 break;
420 ssp.speed = speed;
421 ssp.parity = parity;
422 ssp.data_bits = data_bits;
423 ssp.stop_bits = stop_bits;
424 trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
425 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
428 static void escc_mem_write(void *opaque, hwaddr addr,
429 uint64_t val, unsigned size)
431 ESCCState *serial = opaque;
432 ESCCChannelState *s;
433 uint32_t saddr;
434 int newreg, channel;
436 val &= 0xff;
437 saddr = (addr >> serial->it_shift) & 1;
438 channel = (addr >> (serial->it_shift + 1)) & 1;
439 s = &serial->chn[channel];
440 switch (saddr) {
441 case SERIAL_CTRL:
442 trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
443 newreg = 0;
444 switch (s->reg) {
445 case W_CMD:
446 newreg = val & CMD_PTR_MASK;
447 val &= CMD_CMD_MASK;
448 switch (val) {
449 case CMD_HI:
450 newreg |= CMD_HI;
451 break;
452 case CMD_CLR_TXINT:
453 clr_txint(s);
454 break;
455 case CMD_CLR_IUS:
456 if (s->rxint_under_svc) {
457 s->rxint_under_svc = 0;
458 if (s->txint) {
459 set_txint(s);
461 } else if (s->txint_under_svc) {
462 s->txint_under_svc = 0;
464 escc_update_irq(s);
465 break;
466 default:
467 break;
469 break;
470 case W_INTR ... W_RXCTRL:
471 case W_SYNC1 ... W_TXBUF:
472 case W_MISC1 ... W_CLOCK:
473 case W_MISC2 ... W_EXTINT:
474 s->wregs[s->reg] = val;
475 break;
476 case W_TXCTRL1:
477 case W_TXCTRL2:
478 s->wregs[s->reg] = val;
479 escc_update_parameters(s);
480 break;
481 case W_BRGLO:
482 case W_BRGHI:
483 s->wregs[s->reg] = val;
484 s->rregs[s->reg] = val;
485 escc_update_parameters(s);
486 break;
487 case W_MINTR:
488 switch (val & MINTR_RST_MASK) {
489 case 0:
490 default:
491 break;
492 case MINTR_RST_B:
493 escc_reset_chn(&serial->chn[0]);
494 return;
495 case MINTR_RST_A:
496 escc_reset_chn(&serial->chn[1]);
497 return;
498 case MINTR_RST_ALL:
499 escc_reset(DEVICE(serial));
500 return;
502 break;
503 default:
504 break;
506 if (s->reg == 0)
507 s->reg = newreg;
508 else
509 s->reg = 0;
510 break;
511 case SERIAL_DATA:
512 trace_escc_mem_writeb_data(CHN_C(s), val);
514 * Lower the irq when data is written to the Tx buffer and no other
515 * interrupts are currently pending. The irq will be raised again once
516 * the Tx buffer becomes empty below.
518 s->txint = 0;
519 escc_update_irq(s);
520 s->tx = val;
521 if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
522 if (qemu_chr_fe_backend_connected(&s->chr)) {
523 /* XXX this blocks entire thread. Rewrite to use
524 * qemu_chr_fe_write and background I/O callbacks */
525 qemu_chr_fe_write_all(&s->chr, &s->tx, 1);
526 } else if (s->type == escc_kbd && !s->disabled) {
527 handle_kbd_command(s, val);
530 s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
531 s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
532 set_txint(s);
533 break;
534 default:
535 break;
539 static uint64_t escc_mem_read(void *opaque, hwaddr addr,
540 unsigned size)
542 ESCCState *serial = opaque;
543 ESCCChannelState *s;
544 uint32_t saddr;
545 uint32_t ret;
546 int channel;
548 saddr = (addr >> serial->it_shift) & 1;
549 channel = (addr >> (serial->it_shift + 1)) & 1;
550 s = &serial->chn[channel];
551 switch (saddr) {
552 case SERIAL_CTRL:
553 trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
554 ret = s->rregs[s->reg];
555 s->reg = 0;
556 return ret;
557 case SERIAL_DATA:
558 s->rregs[R_STATUS] &= ~STATUS_RXAV;
559 clr_rxint(s);
560 if (s->type == escc_kbd || s->type == escc_mouse) {
561 ret = get_queue(s);
562 } else {
563 ret = s->rx;
565 trace_escc_mem_readb_data(CHN_C(s), ret);
566 qemu_chr_fe_accept_input(&s->chr);
567 return ret;
568 default:
569 break;
571 return 0;
574 static const MemoryRegionOps escc_mem_ops = {
575 .read = escc_mem_read,
576 .write = escc_mem_write,
577 .endianness = DEVICE_NATIVE_ENDIAN,
578 .valid = {
579 .min_access_size = 1,
580 .max_access_size = 1,
584 static int serial_can_receive(void *opaque)
586 ESCCChannelState *s = opaque;
587 int ret;
589 if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
590 || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
591 // char already available
592 ret = 0;
593 else
594 ret = 1;
595 return ret;
598 static void serial_receive_byte(ESCCChannelState *s, int ch)
600 trace_escc_serial_receive_byte(CHN_C(s), ch);
601 s->rregs[R_STATUS] |= STATUS_RXAV;
602 s->rx = ch;
603 set_rxint(s);
606 static void serial_receive_break(ESCCChannelState *s)
608 s->rregs[R_STATUS] |= STATUS_BRK;
609 escc_update_irq(s);
612 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
614 ESCCChannelState *s = opaque;
615 serial_receive_byte(s, buf[0]);
618 static void serial_event(void *opaque, int event)
620 ESCCChannelState *s = opaque;
621 if (event == CHR_EVENT_BREAK)
622 serial_receive_break(s);
625 static const VMStateDescription vmstate_escc_chn = {
626 .name ="escc_chn",
627 .version_id = 2,
628 .minimum_version_id = 1,
629 .fields = (VMStateField[]) {
630 VMSTATE_UINT32(vmstate_dummy, ESCCChannelState),
631 VMSTATE_UINT32(reg, ESCCChannelState),
632 VMSTATE_UINT32(rxint, ESCCChannelState),
633 VMSTATE_UINT32(txint, ESCCChannelState),
634 VMSTATE_UINT32(rxint_under_svc, ESCCChannelState),
635 VMSTATE_UINT32(txint_under_svc, ESCCChannelState),
636 VMSTATE_UINT8(rx, ESCCChannelState),
637 VMSTATE_UINT8(tx, ESCCChannelState),
638 VMSTATE_BUFFER(wregs, ESCCChannelState),
639 VMSTATE_BUFFER(rregs, ESCCChannelState),
640 VMSTATE_END_OF_LIST()
644 static const VMStateDescription vmstate_escc = {
645 .name ="escc",
646 .version_id = 2,
647 .minimum_version_id = 1,
648 .fields = (VMStateField[]) {
649 VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
650 ESCCChannelState),
651 VMSTATE_END_OF_LIST()
655 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
656 InputEvent *evt)
658 ESCCChannelState *s = (ESCCChannelState *)dev;
659 int qcode, keycode;
660 InputKeyEvent *key;
662 assert(evt->type == INPUT_EVENT_KIND_KEY);
663 key = evt->u.key.data;
664 qcode = qemu_input_key_value_to_qcode(key->key);
665 trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode),
666 key->down);
668 if (qcode == Q_KEY_CODE_CAPS_LOCK) {
669 if (key->down) {
670 s->caps_lock_mode ^= 1;
671 if (s->caps_lock_mode == 2) {
672 return; /* Drop second press */
674 } else {
675 s->caps_lock_mode ^= 2;
676 if (s->caps_lock_mode == 3) {
677 return; /* Drop first release */
682 if (qcode == Q_KEY_CODE_NUM_LOCK) {
683 if (key->down) {
684 s->num_lock_mode ^= 1;
685 if (s->num_lock_mode == 2) {
686 return; /* Drop second press */
688 } else {
689 s->num_lock_mode ^= 2;
690 if (s->num_lock_mode == 3) {
691 return; /* Drop first release */
696 if (qcode > qemu_input_map_qcode_to_sun_len) {
697 return;
700 keycode = qemu_input_map_qcode_to_sun[qcode];
701 if (!key->down) {
702 keycode |= 0x80;
704 trace_escc_sunkbd_event_out(keycode);
705 put_queue(s, keycode);
708 static QemuInputHandler sunkbd_handler = {
709 .name = "sun keyboard",
710 .mask = INPUT_EVENT_MASK_KEY,
711 .event = sunkbd_handle_event,
714 static void handle_kbd_command(ESCCChannelState *s, int val)
716 trace_escc_kbd_command(val);
717 if (s->led_mode) { // Ignore led byte
718 s->led_mode = 0;
719 return;
721 switch (val) {
722 case 1: // Reset, return type code
723 clear_queue(s);
724 put_queue(s, 0xff);
725 put_queue(s, 4); // Type 4
726 put_queue(s, 0x7f);
727 break;
728 case 0xe: // Set leds
729 s->led_mode = 1;
730 break;
731 case 7: // Query layout
732 case 0xf:
733 clear_queue(s);
734 put_queue(s, 0xfe);
735 put_queue(s, 0x21); /* en-us layout */
736 break;
737 default:
738 break;
742 static void sunmouse_event(void *opaque,
743 int dx, int dy, int dz, int buttons_state)
745 ESCCChannelState *s = opaque;
746 int ch;
748 trace_escc_sunmouse_event(dx, dy, buttons_state);
749 ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
751 if (buttons_state & MOUSE_EVENT_LBUTTON)
752 ch ^= 0x4;
753 if (buttons_state & MOUSE_EVENT_MBUTTON)
754 ch ^= 0x2;
755 if (buttons_state & MOUSE_EVENT_RBUTTON)
756 ch ^= 0x1;
758 put_queue(s, ch);
760 ch = dx;
762 if (ch > 127)
763 ch = 127;
764 else if (ch < -127)
765 ch = -127;
767 put_queue(s, ch & 0xff);
769 ch = -dy;
771 if (ch > 127)
772 ch = 127;
773 else if (ch < -127)
774 ch = -127;
776 put_queue(s, ch & 0xff);
778 // MSC protocol specify two extra motion bytes
780 put_queue(s, 0);
781 put_queue(s, 0);
784 static void escc_init1(Object *obj)
786 ESCCState *s = ESCC(obj);
787 SysBusDevice *dev = SYS_BUS_DEVICE(obj);
788 unsigned int i;
790 for (i = 0; i < 2; i++) {
791 sysbus_init_irq(dev, &s->chn[i].irq);
792 s->chn[i].chn = 1 - i;
794 s->chn[0].otherchn = &s->chn[1];
795 s->chn[1].otherchn = &s->chn[0];
797 sysbus_init_mmio(dev, &s->mmio);
800 static void escc_realize(DeviceState *dev, Error **errp)
802 ESCCState *s = ESCC(dev);
803 unsigned int i;
805 s->chn[0].disabled = s->disabled;
806 s->chn[1].disabled = s->disabled;
808 memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc",
809 ESCC_SIZE << s->it_shift);
811 for (i = 0; i < 2; i++) {
812 if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) {
813 s->chn[i].clock = s->frequency / 2;
814 qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive,
815 serial_receive1, serial_event, NULL,
816 &s->chn[i], NULL, true);
820 if (s->chn[0].type == escc_mouse) {
821 qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
822 "QEMU Sun Mouse");
824 if (s->chn[1].type == escc_kbd) {
825 s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
826 &sunkbd_handler);
830 static Property escc_properties[] = {
831 DEFINE_PROP_UINT32("frequency", ESCCState, frequency, 0),
832 DEFINE_PROP_UINT32("it_shift", ESCCState, it_shift, 0),
833 DEFINE_PROP_UINT32("disabled", ESCCState, disabled, 0),
834 DEFINE_PROP_UINT32("chnBtype", ESCCState, chn[0].type, 0),
835 DEFINE_PROP_UINT32("chnAtype", ESCCState, chn[1].type, 0),
836 DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
837 DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
838 DEFINE_PROP_END_OF_LIST(),
841 static void escc_class_init(ObjectClass *klass, void *data)
843 DeviceClass *dc = DEVICE_CLASS(klass);
845 dc->reset = escc_reset;
846 dc->realize = escc_realize;
847 dc->vmsd = &vmstate_escc;
848 dc->props = escc_properties;
849 set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
852 static const TypeInfo escc_info = {
853 .name = TYPE_ESCC,
854 .parent = TYPE_SYS_BUS_DEVICE,
855 .instance_size = sizeof(ESCCState),
856 .instance_init = escc_init1,
857 .class_init = escc_class_init,
860 static void escc_register_types(void)
862 type_register_static(&escc_info);
865 type_init(escc_register_types)