hw/intc/arm_gicv3_redist: Factor out "update hpplpi for all LPIs" logic
[qemu/ar7.git] / hw / intc / riscv_aclint.c
blobe43b050e92906cb530f240cee4ff516a62f3a41d
1 /*
2 * RISC-V ACLINT (Advanced Core Local Interruptor)
3 * URL: https://github.com/riscv/riscv-aclint
5 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
6 * Copyright (c) 2017 SiFive, Inc.
7 * Copyright (c) 2021 Western Digital Corporation or its affiliates.
9 * This provides real-time clock, timer and interprocessor interrupts.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms and conditions of the GNU General Public License,
13 * version 2 or later, as published by the Free Software Foundation.
15 * This program is distributed in the hope it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * more details.
20 * You should have received a copy of the GNU General Public License along with
21 * this program. If not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "qemu/log.h"
28 #include "qemu/module.h"
29 #include "hw/sysbus.h"
30 #include "target/riscv/cpu.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/intc/riscv_aclint.h"
33 #include "qemu/timer.h"
34 #include "hw/irq.h"
36 typedef struct riscv_aclint_mtimer_callback {
37 RISCVAclintMTimerState *s;
38 int num;
39 } riscv_aclint_mtimer_callback;
41 static uint64_t cpu_riscv_read_rtc(uint32_t timebase_freq)
43 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
44 timebase_freq, NANOSECONDS_PER_SECOND);
48 * Called when timecmp is written to update the QEMU timer or immediately
49 * trigger timer interrupt if mtimecmp <= current timer value.
51 static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState *mtimer,
52 RISCVCPU *cpu,
53 int hartid,
54 uint64_t value,
55 uint32_t timebase_freq)
57 uint64_t next;
58 uint64_t diff;
60 uint64_t rtc_r = cpu_riscv_read_rtc(timebase_freq);
62 cpu->env.timecmp = value;
63 if (cpu->env.timecmp <= rtc_r) {
65 * If we're setting an MTIMECMP value in the "past",
66 * immediately raise the timer interrupt
68 qemu_irq_raise(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
69 return;
72 /* otherwise, set up the future timer interrupt */
73 qemu_irq_lower(mtimer->timer_irqs[hartid - mtimer->hartid_base]);
74 diff = cpu->env.timecmp - rtc_r;
75 /* back to ns (note args switched in muldiv64) */
76 uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq);
79 * check if ns_diff overflowed and check if the addition would potentially
80 * overflow
82 if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) ||
83 ns_diff > INT64_MAX) {
84 next = INT64_MAX;
85 } else {
87 * as it is very unlikely qemu_clock_get_ns will return a value
88 * greater than INT64_MAX, no additional check is needed for an
89 * unsigned integer overflow.
91 next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff;
93 * if ns_diff is INT64_MAX next may still be outside the range
94 * of a signed integer.
96 next = MIN(next, INT64_MAX);
99 timer_mod(cpu->env.timer, next);
103 * Callback used when the timer set using timer_mod expires.
104 * Should raise the timer interrupt line
106 static void riscv_aclint_mtimer_cb(void *opaque)
108 riscv_aclint_mtimer_callback *state = opaque;
110 qemu_irq_raise(state->s->timer_irqs[state->num]);
113 /* CPU read MTIMER register */
114 static uint64_t riscv_aclint_mtimer_read(void *opaque, hwaddr addr,
115 unsigned size)
117 RISCVAclintMTimerState *mtimer = opaque;
119 if (addr >= mtimer->timecmp_base &&
120 addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
121 size_t hartid = mtimer->hartid_base +
122 ((addr - mtimer->timecmp_base) >> 3);
123 CPUState *cpu = qemu_get_cpu(hartid);
124 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
125 if (!env) {
126 qemu_log_mask(LOG_GUEST_ERROR,
127 "aclint-mtimer: invalid hartid: %zu", hartid);
128 } else if ((addr & 0x7) == 0) {
129 /* timecmp_lo */
130 uint64_t timecmp = env->timecmp;
131 return timecmp & 0xFFFFFFFF;
132 } else if ((addr & 0x7) == 4) {
133 /* timecmp_hi */
134 uint64_t timecmp = env->timecmp;
135 return (timecmp >> 32) & 0xFFFFFFFF;
136 } else {
137 qemu_log_mask(LOG_UNIMP,
138 "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
139 return 0;
141 } else if (addr == mtimer->time_base) {
142 /* time_lo */
143 return cpu_riscv_read_rtc(mtimer->timebase_freq) & 0xFFFFFFFF;
144 } else if (addr == mtimer->time_base + 4) {
145 /* time_hi */
146 return (cpu_riscv_read_rtc(mtimer->timebase_freq) >> 32) & 0xFFFFFFFF;
149 qemu_log_mask(LOG_UNIMP,
150 "aclint-mtimer: invalid read: %08x", (uint32_t)addr);
151 return 0;
154 /* CPU write MTIMER register */
155 static void riscv_aclint_mtimer_write(void *opaque, hwaddr addr,
156 uint64_t value, unsigned size)
158 RISCVAclintMTimerState *mtimer = opaque;
160 if (addr >= mtimer->timecmp_base &&
161 addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) {
162 size_t hartid = mtimer->hartid_base +
163 ((addr - mtimer->timecmp_base) >> 3);
164 CPUState *cpu = qemu_get_cpu(hartid);
165 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
166 if (!env) {
167 qemu_log_mask(LOG_GUEST_ERROR,
168 "aclint-mtimer: invalid hartid: %zu", hartid);
169 } else if ((addr & 0x7) == 0) {
170 /* timecmp_lo */
171 uint64_t timecmp_hi = env->timecmp >> 32;
172 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
173 timecmp_hi << 32 | (value & 0xFFFFFFFF),
174 mtimer->timebase_freq);
175 return;
176 } else if ((addr & 0x7) == 4) {
177 /* timecmp_hi */
178 uint64_t timecmp_lo = env->timecmp;
179 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid,
180 value << 32 | (timecmp_lo & 0xFFFFFFFF),
181 mtimer->timebase_freq);
182 } else {
183 qemu_log_mask(LOG_UNIMP,
184 "aclint-mtimer: invalid timecmp write: %08x",
185 (uint32_t)addr);
187 return;
188 } else if (addr == mtimer->time_base) {
189 /* time_lo */
190 qemu_log_mask(LOG_UNIMP,
191 "aclint-mtimer: time_lo write not implemented");
192 return;
193 } else if (addr == mtimer->time_base + 4) {
194 /* time_hi */
195 qemu_log_mask(LOG_UNIMP,
196 "aclint-mtimer: time_hi write not implemented");
197 return;
200 qemu_log_mask(LOG_UNIMP,
201 "aclint-mtimer: invalid write: %08x", (uint32_t)addr);
204 static const MemoryRegionOps riscv_aclint_mtimer_ops = {
205 .read = riscv_aclint_mtimer_read,
206 .write = riscv_aclint_mtimer_write,
207 .endianness = DEVICE_LITTLE_ENDIAN,
208 .valid = {
209 .min_access_size = 4,
210 .max_access_size = 8
214 static Property riscv_aclint_mtimer_properties[] = {
215 DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState,
216 hartid_base, 0),
217 DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState, num_harts, 1),
218 DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState,
219 timecmp_base, RISCV_ACLINT_DEFAULT_MTIMECMP),
220 DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState,
221 time_base, RISCV_ACLINT_DEFAULT_MTIME),
222 DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState,
223 aperture_size, RISCV_ACLINT_DEFAULT_MTIMER_SIZE),
224 DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState,
225 timebase_freq, 0),
226 DEFINE_PROP_END_OF_LIST(),
229 static void riscv_aclint_mtimer_realize(DeviceState *dev, Error **errp)
231 RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev);
232 int i;
234 memory_region_init_io(&s->mmio, OBJECT(dev), &riscv_aclint_mtimer_ops,
235 s, TYPE_RISCV_ACLINT_MTIMER, s->aperture_size);
236 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
238 s->timer_irqs = g_new(qemu_irq, s->num_harts);
239 qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts);
241 /* Claim timer interrupt bits */
242 for (i = 0; i < s->num_harts; i++) {
243 RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(s->hartid_base + i));
244 if (riscv_cpu_claim_interrupts(cpu, MIP_MTIP) < 0) {
245 error_report("MTIP already claimed");
246 exit(1);
251 static void riscv_aclint_mtimer_class_init(ObjectClass *klass, void *data)
253 DeviceClass *dc = DEVICE_CLASS(klass);
254 dc->realize = riscv_aclint_mtimer_realize;
255 device_class_set_props(dc, riscv_aclint_mtimer_properties);
258 static const TypeInfo riscv_aclint_mtimer_info = {
259 .name = TYPE_RISCV_ACLINT_MTIMER,
260 .parent = TYPE_SYS_BUS_DEVICE,
261 .instance_size = sizeof(RISCVAclintMTimerState),
262 .class_init = riscv_aclint_mtimer_class_init,
266 * Create ACLINT MTIMER device.
268 DeviceState *riscv_aclint_mtimer_create(hwaddr addr, hwaddr size,
269 uint32_t hartid_base, uint32_t num_harts,
270 uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq,
271 bool provide_rdtime)
273 int i;
274 DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_MTIMER);
276 assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
277 assert(!(addr & 0x7));
278 assert(!(timecmp_base & 0x7));
279 assert(!(time_base & 0x7));
281 qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
282 qdev_prop_set_uint32(dev, "num-harts", num_harts);
283 qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base);
284 qdev_prop_set_uint32(dev, "time-base", time_base);
285 qdev_prop_set_uint32(dev, "aperture-size", size);
286 qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq);
287 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
288 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
290 for (i = 0; i < num_harts; i++) {
291 CPUState *cpu = qemu_get_cpu(hartid_base + i);
292 RISCVCPU *rvcpu = RISCV_CPU(cpu);
293 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
294 riscv_aclint_mtimer_callback *cb =
295 g_new0(riscv_aclint_mtimer_callback, 1);
297 if (!env) {
298 g_free(cb);
299 continue;
301 if (provide_rdtime) {
302 riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, timebase_freq);
305 cb->s = RISCV_ACLINT_MTIMER(dev);
306 cb->num = i;
307 env->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
308 &riscv_aclint_mtimer_cb, cb);
309 env->timecmp = 0;
311 qdev_connect_gpio_out(dev, i,
312 qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER));
315 return dev;
318 /* CPU read [M|S]SWI register */
319 static uint64_t riscv_aclint_swi_read(void *opaque, hwaddr addr,
320 unsigned size)
322 RISCVAclintSwiState *swi = opaque;
324 if (addr < (swi->num_harts << 2)) {
325 size_t hartid = swi->hartid_base + (addr >> 2);
326 CPUState *cpu = qemu_get_cpu(hartid);
327 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
328 if (!env) {
329 qemu_log_mask(LOG_GUEST_ERROR,
330 "aclint-swi: invalid hartid: %zu", hartid);
331 } else if ((addr & 0x3) == 0) {
332 return (swi->sswi) ? 0 : ((env->mip & MIP_MSIP) > 0);
336 qemu_log_mask(LOG_UNIMP,
337 "aclint-swi: invalid read: %08x", (uint32_t)addr);
338 return 0;
341 /* CPU write [M|S]SWI register */
342 static void riscv_aclint_swi_write(void *opaque, hwaddr addr, uint64_t value,
343 unsigned size)
345 RISCVAclintSwiState *swi = opaque;
347 if (addr < (swi->num_harts << 2)) {
348 size_t hartid = swi->hartid_base + (addr >> 2);
349 CPUState *cpu = qemu_get_cpu(hartid);
350 CPURISCVState *env = cpu ? cpu->env_ptr : NULL;
351 if (!env) {
352 qemu_log_mask(LOG_GUEST_ERROR,
353 "aclint-swi: invalid hartid: %zu", hartid);
354 } else if ((addr & 0x3) == 0) {
355 if (value & 0x1) {
356 qemu_irq_raise(swi->soft_irqs[hartid - swi->hartid_base]);
357 } else {
358 if (!swi->sswi) {
359 qemu_irq_lower(swi->soft_irqs[hartid - swi->hartid_base]);
362 return;
366 qemu_log_mask(LOG_UNIMP,
367 "aclint-swi: invalid write: %08x", (uint32_t)addr);
370 static const MemoryRegionOps riscv_aclint_swi_ops = {
371 .read = riscv_aclint_swi_read,
372 .write = riscv_aclint_swi_write,
373 .endianness = DEVICE_LITTLE_ENDIAN,
374 .valid = {
375 .min_access_size = 4,
376 .max_access_size = 4
380 static Property riscv_aclint_swi_properties[] = {
381 DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState, hartid_base, 0),
382 DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState, num_harts, 1),
383 DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState, sswi, false),
384 DEFINE_PROP_END_OF_LIST(),
387 static void riscv_aclint_swi_realize(DeviceState *dev, Error **errp)
389 RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(dev);
390 int i;
392 memory_region_init_io(&swi->mmio, OBJECT(dev), &riscv_aclint_swi_ops, swi,
393 TYPE_RISCV_ACLINT_SWI, RISCV_ACLINT_SWI_SIZE);
394 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &swi->mmio);
396 swi->soft_irqs = g_new(qemu_irq, swi->num_harts);
397 qdev_init_gpio_out(dev, swi->soft_irqs, swi->num_harts);
399 /* Claim software interrupt bits */
400 for (i = 0; i < swi->num_harts; i++) {
401 RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(swi->hartid_base + i));
402 /* We don't claim mip.SSIP because it is writeable by software */
403 if (riscv_cpu_claim_interrupts(cpu, swi->sswi ? 0 : MIP_MSIP) < 0) {
404 error_report("MSIP already claimed");
405 exit(1);
410 static void riscv_aclint_swi_class_init(ObjectClass *klass, void *data)
412 DeviceClass *dc = DEVICE_CLASS(klass);
413 dc->realize = riscv_aclint_swi_realize;
414 device_class_set_props(dc, riscv_aclint_swi_properties);
417 static const TypeInfo riscv_aclint_swi_info = {
418 .name = TYPE_RISCV_ACLINT_SWI,
419 .parent = TYPE_SYS_BUS_DEVICE,
420 .instance_size = sizeof(RISCVAclintSwiState),
421 .class_init = riscv_aclint_swi_class_init,
425 * Create ACLINT [M|S]SWI device.
427 DeviceState *riscv_aclint_swi_create(hwaddr addr, uint32_t hartid_base,
428 uint32_t num_harts, bool sswi)
430 int i;
431 DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_SWI);
433 assert(num_harts <= RISCV_ACLINT_MAX_HARTS);
434 assert(!(addr & 0x3));
436 qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
437 qdev_prop_set_uint32(dev, "num-harts", num_harts);
438 qdev_prop_set_uint32(dev, "sswi", sswi ? true : false);
439 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
440 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
442 for (i = 0; i < num_harts; i++) {
443 CPUState *cpu = qemu_get_cpu(hartid_base + i);
444 RISCVCPU *rvcpu = RISCV_CPU(cpu);
446 qdev_connect_gpio_out(dev, i,
447 qdev_get_gpio_in(DEVICE(rvcpu),
448 (sswi) ? IRQ_S_SOFT : IRQ_M_SOFT));
451 return dev;
454 static void riscv_aclint_register_types(void)
456 type_register_static(&riscv_aclint_mtimer_info);
457 type_register_static(&riscv_aclint_swi_info);
460 type_init(riscv_aclint_register_types)