2 * RISC-V ACLINT (Advanced Core Local Interruptor)
3 * URL: https://github.com/riscv/riscv-aclint
5 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
6 * Copyright (c) 2017 SiFive, Inc.
7 * Copyright (c) 2021 Western Digital Corporation or its affiliates.
9 * This provides real-time clock, timer and interprocessor interrupts.
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms and conditions of the GNU General Public License,
13 * version 2 or later, as published by the Free Software Foundation.
15 * This program is distributed in the hope it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * You should have received a copy of the GNU General Public License along with
21 * this program. If not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
28 #include "qemu/module.h"
29 #include "hw/sysbus.h"
30 #include "target/riscv/cpu.h"
31 #include "hw/qdev-properties.h"
32 #include "hw/intc/riscv_aclint.h"
33 #include "qemu/timer.h"
36 typedef struct riscv_aclint_mtimer_callback
{
37 RISCVAclintMTimerState
*s
;
39 } riscv_aclint_mtimer_callback
;
41 static uint64_t cpu_riscv_read_rtc(uint32_t timebase_freq
)
43 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
44 timebase_freq
, NANOSECONDS_PER_SECOND
);
48 * Called when timecmp is written to update the QEMU timer or immediately
49 * trigger timer interrupt if mtimecmp <= current timer value.
51 static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState
*mtimer
,
55 uint32_t timebase_freq
)
60 uint64_t rtc_r
= cpu_riscv_read_rtc(timebase_freq
);
62 cpu
->env
.timecmp
= value
;
63 if (cpu
->env
.timecmp
<= rtc_r
) {
65 * If we're setting an MTIMECMP value in the "past",
66 * immediately raise the timer interrupt
68 qemu_irq_raise(mtimer
->timer_irqs
[hartid
- mtimer
->hartid_base
]);
72 /* otherwise, set up the future timer interrupt */
73 qemu_irq_lower(mtimer
->timer_irqs
[hartid
- mtimer
->hartid_base
]);
74 diff
= cpu
->env
.timecmp
- rtc_r
;
75 /* back to ns (note args switched in muldiv64) */
76 uint64_t ns_diff
= muldiv64(diff
, NANOSECONDS_PER_SECOND
, timebase_freq
);
79 * check if ns_diff overflowed and check if the addition would potentially
82 if ((NANOSECONDS_PER_SECOND
> timebase_freq
&& ns_diff
< diff
) ||
83 ns_diff
> INT64_MAX
) {
87 * as it is very unlikely qemu_clock_get_ns will return a value
88 * greater than INT64_MAX, no additional check is needed for an
89 * unsigned integer overflow.
91 next
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + ns_diff
;
93 * if ns_diff is INT64_MAX next may still be outside the range
94 * of a signed integer.
96 next
= MIN(next
, INT64_MAX
);
99 timer_mod(cpu
->env
.timer
, next
);
103 * Callback used when the timer set using timer_mod expires.
104 * Should raise the timer interrupt line
106 static void riscv_aclint_mtimer_cb(void *opaque
)
108 riscv_aclint_mtimer_callback
*state
= opaque
;
110 qemu_irq_raise(state
->s
->timer_irqs
[state
->num
]);
113 /* CPU read MTIMER register */
114 static uint64_t riscv_aclint_mtimer_read(void *opaque
, hwaddr addr
,
117 RISCVAclintMTimerState
*mtimer
= opaque
;
119 if (addr
>= mtimer
->timecmp_base
&&
120 addr
< (mtimer
->timecmp_base
+ (mtimer
->num_harts
<< 3))) {
121 size_t hartid
= mtimer
->hartid_base
+
122 ((addr
- mtimer
->timecmp_base
) >> 3);
123 CPUState
*cpu
= qemu_get_cpu(hartid
);
124 CPURISCVState
*env
= cpu
? cpu
->env_ptr
: NULL
;
126 qemu_log_mask(LOG_GUEST_ERROR
,
127 "aclint-mtimer: invalid hartid: %zu", hartid
);
128 } else if ((addr
& 0x7) == 0) {
130 uint64_t timecmp
= env
->timecmp
;
131 return timecmp
& 0xFFFFFFFF;
132 } else if ((addr
& 0x7) == 4) {
134 uint64_t timecmp
= env
->timecmp
;
135 return (timecmp
>> 32) & 0xFFFFFFFF;
137 qemu_log_mask(LOG_UNIMP
,
138 "aclint-mtimer: invalid read: %08x", (uint32_t)addr
);
141 } else if (addr
== mtimer
->time_base
) {
143 return cpu_riscv_read_rtc(mtimer
->timebase_freq
) & 0xFFFFFFFF;
144 } else if (addr
== mtimer
->time_base
+ 4) {
146 return (cpu_riscv_read_rtc(mtimer
->timebase_freq
) >> 32) & 0xFFFFFFFF;
149 qemu_log_mask(LOG_UNIMP
,
150 "aclint-mtimer: invalid read: %08x", (uint32_t)addr
);
154 /* CPU write MTIMER register */
155 static void riscv_aclint_mtimer_write(void *opaque
, hwaddr addr
,
156 uint64_t value
, unsigned size
)
158 RISCVAclintMTimerState
*mtimer
= opaque
;
160 if (addr
>= mtimer
->timecmp_base
&&
161 addr
< (mtimer
->timecmp_base
+ (mtimer
->num_harts
<< 3))) {
162 size_t hartid
= mtimer
->hartid_base
+
163 ((addr
- mtimer
->timecmp_base
) >> 3);
164 CPUState
*cpu
= qemu_get_cpu(hartid
);
165 CPURISCVState
*env
= cpu
? cpu
->env_ptr
: NULL
;
167 qemu_log_mask(LOG_GUEST_ERROR
,
168 "aclint-mtimer: invalid hartid: %zu", hartid
);
169 } else if ((addr
& 0x7) == 0) {
171 uint64_t timecmp_hi
= env
->timecmp
>> 32;
172 riscv_aclint_mtimer_write_timecmp(mtimer
, RISCV_CPU(cpu
), hartid
,
173 timecmp_hi
<< 32 | (value
& 0xFFFFFFFF),
174 mtimer
->timebase_freq
);
176 } else if ((addr
& 0x7) == 4) {
178 uint64_t timecmp_lo
= env
->timecmp
;
179 riscv_aclint_mtimer_write_timecmp(mtimer
, RISCV_CPU(cpu
), hartid
,
180 value
<< 32 | (timecmp_lo
& 0xFFFFFFFF),
181 mtimer
->timebase_freq
);
183 qemu_log_mask(LOG_UNIMP
,
184 "aclint-mtimer: invalid timecmp write: %08x",
188 } else if (addr
== mtimer
->time_base
) {
190 qemu_log_mask(LOG_UNIMP
,
191 "aclint-mtimer: time_lo write not implemented");
193 } else if (addr
== mtimer
->time_base
+ 4) {
195 qemu_log_mask(LOG_UNIMP
,
196 "aclint-mtimer: time_hi write not implemented");
200 qemu_log_mask(LOG_UNIMP
,
201 "aclint-mtimer: invalid write: %08x", (uint32_t)addr
);
204 static const MemoryRegionOps riscv_aclint_mtimer_ops
= {
205 .read
= riscv_aclint_mtimer_read
,
206 .write
= riscv_aclint_mtimer_write
,
207 .endianness
= DEVICE_LITTLE_ENDIAN
,
209 .min_access_size
= 4,
214 static Property riscv_aclint_mtimer_properties
[] = {
215 DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState
,
217 DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState
, num_harts
, 1),
218 DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState
,
219 timecmp_base
, RISCV_ACLINT_DEFAULT_MTIMECMP
),
220 DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState
,
221 time_base
, RISCV_ACLINT_DEFAULT_MTIME
),
222 DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState
,
223 aperture_size
, RISCV_ACLINT_DEFAULT_MTIMER_SIZE
),
224 DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState
,
226 DEFINE_PROP_END_OF_LIST(),
229 static void riscv_aclint_mtimer_realize(DeviceState
*dev
, Error
**errp
)
231 RISCVAclintMTimerState
*s
= RISCV_ACLINT_MTIMER(dev
);
234 memory_region_init_io(&s
->mmio
, OBJECT(dev
), &riscv_aclint_mtimer_ops
,
235 s
, TYPE_RISCV_ACLINT_MTIMER
, s
->aperture_size
);
236 sysbus_init_mmio(SYS_BUS_DEVICE(dev
), &s
->mmio
);
238 s
->timer_irqs
= g_new(qemu_irq
, s
->num_harts
);
239 qdev_init_gpio_out(dev
, s
->timer_irqs
, s
->num_harts
);
241 /* Claim timer interrupt bits */
242 for (i
= 0; i
< s
->num_harts
; i
++) {
243 RISCVCPU
*cpu
= RISCV_CPU(qemu_get_cpu(s
->hartid_base
+ i
));
244 if (riscv_cpu_claim_interrupts(cpu
, MIP_MTIP
) < 0) {
245 error_report("MTIP already claimed");
251 static void riscv_aclint_mtimer_class_init(ObjectClass
*klass
, void *data
)
253 DeviceClass
*dc
= DEVICE_CLASS(klass
);
254 dc
->realize
= riscv_aclint_mtimer_realize
;
255 device_class_set_props(dc
, riscv_aclint_mtimer_properties
);
258 static const TypeInfo riscv_aclint_mtimer_info
= {
259 .name
= TYPE_RISCV_ACLINT_MTIMER
,
260 .parent
= TYPE_SYS_BUS_DEVICE
,
261 .instance_size
= sizeof(RISCVAclintMTimerState
),
262 .class_init
= riscv_aclint_mtimer_class_init
,
266 * Create ACLINT MTIMER device.
268 DeviceState
*riscv_aclint_mtimer_create(hwaddr addr
, hwaddr size
,
269 uint32_t hartid_base
, uint32_t num_harts
,
270 uint32_t timecmp_base
, uint32_t time_base
, uint32_t timebase_freq
,
274 DeviceState
*dev
= qdev_new(TYPE_RISCV_ACLINT_MTIMER
);
276 assert(num_harts
<= RISCV_ACLINT_MAX_HARTS
);
277 assert(!(addr
& 0x7));
278 assert(!(timecmp_base
& 0x7));
279 assert(!(time_base
& 0x7));
281 qdev_prop_set_uint32(dev
, "hartid-base", hartid_base
);
282 qdev_prop_set_uint32(dev
, "num-harts", num_harts
);
283 qdev_prop_set_uint32(dev
, "timecmp-base", timecmp_base
);
284 qdev_prop_set_uint32(dev
, "time-base", time_base
);
285 qdev_prop_set_uint32(dev
, "aperture-size", size
);
286 qdev_prop_set_uint32(dev
, "timebase-freq", timebase_freq
);
287 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
288 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, addr
);
290 for (i
= 0; i
< num_harts
; i
++) {
291 CPUState
*cpu
= qemu_get_cpu(hartid_base
+ i
);
292 RISCVCPU
*rvcpu
= RISCV_CPU(cpu
);
293 CPURISCVState
*env
= cpu
? cpu
->env_ptr
: NULL
;
294 riscv_aclint_mtimer_callback
*cb
=
295 g_new0(riscv_aclint_mtimer_callback
, 1);
301 if (provide_rdtime
) {
302 riscv_cpu_set_rdtime_fn(env
, cpu_riscv_read_rtc
, timebase_freq
);
305 cb
->s
= RISCV_ACLINT_MTIMER(dev
);
307 env
->timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
308 &riscv_aclint_mtimer_cb
, cb
);
311 qdev_connect_gpio_out(dev
, i
,
312 qdev_get_gpio_in(DEVICE(rvcpu
), IRQ_M_TIMER
));
318 /* CPU read [M|S]SWI register */
319 static uint64_t riscv_aclint_swi_read(void *opaque
, hwaddr addr
,
322 RISCVAclintSwiState
*swi
= opaque
;
324 if (addr
< (swi
->num_harts
<< 2)) {
325 size_t hartid
= swi
->hartid_base
+ (addr
>> 2);
326 CPUState
*cpu
= qemu_get_cpu(hartid
);
327 CPURISCVState
*env
= cpu
? cpu
->env_ptr
: NULL
;
329 qemu_log_mask(LOG_GUEST_ERROR
,
330 "aclint-swi: invalid hartid: %zu", hartid
);
331 } else if ((addr
& 0x3) == 0) {
332 return (swi
->sswi
) ? 0 : ((env
->mip
& MIP_MSIP
) > 0);
336 qemu_log_mask(LOG_UNIMP
,
337 "aclint-swi: invalid read: %08x", (uint32_t)addr
);
341 /* CPU write [M|S]SWI register */
342 static void riscv_aclint_swi_write(void *opaque
, hwaddr addr
, uint64_t value
,
345 RISCVAclintSwiState
*swi
= opaque
;
347 if (addr
< (swi
->num_harts
<< 2)) {
348 size_t hartid
= swi
->hartid_base
+ (addr
>> 2);
349 CPUState
*cpu
= qemu_get_cpu(hartid
);
350 CPURISCVState
*env
= cpu
? cpu
->env_ptr
: NULL
;
352 qemu_log_mask(LOG_GUEST_ERROR
,
353 "aclint-swi: invalid hartid: %zu", hartid
);
354 } else if ((addr
& 0x3) == 0) {
356 qemu_irq_raise(swi
->soft_irqs
[hartid
- swi
->hartid_base
]);
359 qemu_irq_lower(swi
->soft_irqs
[hartid
- swi
->hartid_base
]);
366 qemu_log_mask(LOG_UNIMP
,
367 "aclint-swi: invalid write: %08x", (uint32_t)addr
);
370 static const MemoryRegionOps riscv_aclint_swi_ops
= {
371 .read
= riscv_aclint_swi_read
,
372 .write
= riscv_aclint_swi_write
,
373 .endianness
= DEVICE_LITTLE_ENDIAN
,
375 .min_access_size
= 4,
380 static Property riscv_aclint_swi_properties
[] = {
381 DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState
, hartid_base
, 0),
382 DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState
, num_harts
, 1),
383 DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState
, sswi
, false),
384 DEFINE_PROP_END_OF_LIST(),
387 static void riscv_aclint_swi_realize(DeviceState
*dev
, Error
**errp
)
389 RISCVAclintSwiState
*swi
= RISCV_ACLINT_SWI(dev
);
392 memory_region_init_io(&swi
->mmio
, OBJECT(dev
), &riscv_aclint_swi_ops
, swi
,
393 TYPE_RISCV_ACLINT_SWI
, RISCV_ACLINT_SWI_SIZE
);
394 sysbus_init_mmio(SYS_BUS_DEVICE(dev
), &swi
->mmio
);
396 swi
->soft_irqs
= g_new(qemu_irq
, swi
->num_harts
);
397 qdev_init_gpio_out(dev
, swi
->soft_irqs
, swi
->num_harts
);
399 /* Claim software interrupt bits */
400 for (i
= 0; i
< swi
->num_harts
; i
++) {
401 RISCVCPU
*cpu
= RISCV_CPU(qemu_get_cpu(swi
->hartid_base
+ i
));
402 /* We don't claim mip.SSIP because it is writeable by software */
403 if (riscv_cpu_claim_interrupts(cpu
, swi
->sswi
? 0 : MIP_MSIP
) < 0) {
404 error_report("MSIP already claimed");
410 static void riscv_aclint_swi_class_init(ObjectClass
*klass
, void *data
)
412 DeviceClass
*dc
= DEVICE_CLASS(klass
);
413 dc
->realize
= riscv_aclint_swi_realize
;
414 device_class_set_props(dc
, riscv_aclint_swi_properties
);
417 static const TypeInfo riscv_aclint_swi_info
= {
418 .name
= TYPE_RISCV_ACLINT_SWI
,
419 .parent
= TYPE_SYS_BUS_DEVICE
,
420 .instance_size
= sizeof(RISCVAclintSwiState
),
421 .class_init
= riscv_aclint_swi_class_init
,
425 * Create ACLINT [M|S]SWI device.
427 DeviceState
*riscv_aclint_swi_create(hwaddr addr
, uint32_t hartid_base
,
428 uint32_t num_harts
, bool sswi
)
431 DeviceState
*dev
= qdev_new(TYPE_RISCV_ACLINT_SWI
);
433 assert(num_harts
<= RISCV_ACLINT_MAX_HARTS
);
434 assert(!(addr
& 0x3));
436 qdev_prop_set_uint32(dev
, "hartid-base", hartid_base
);
437 qdev_prop_set_uint32(dev
, "num-harts", num_harts
);
438 qdev_prop_set_uint32(dev
, "sswi", sswi
? true : false);
439 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
440 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, addr
);
442 for (i
= 0; i
< num_harts
; i
++) {
443 CPUState
*cpu
= qemu_get_cpu(hartid_base
+ i
);
444 RISCVCPU
*rvcpu
= RISCV_CPU(cpu
);
446 qdev_connect_gpio_out(dev
, i
,
447 qdev_get_gpio_in(DEVICE(rvcpu
),
448 (sswi
) ? IRQ_S_SOFT
: IRQ_M_SOFT
));
454 static void riscv_aclint_register_types(void)
456 type_register_static(&riscv_aclint_mtimer_info
);
457 type_register_static(&riscv_aclint_swi_info
);
460 type_init(riscv_aclint_register_types
)