hw/intc/arm_gicv3_redist: Factor out "update hpplpi for all LPIs" logic
[qemu/ar7.git] / hw / intc / arm_gic_common.c
blob7b44d5625b62e38921aefcdbbf5617d4e478523d
1 /*
2 * ARM GIC support - common bits of emulated and KVM kernel model
4 * Copyright (c) 2012 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "qemu/module.h"
24 #include "gic_internal.h"
25 #include "hw/arm/linux-boot-if.h"
26 #include "hw/qdev-properties.h"
27 #include "migration/vmstate.h"
29 static int gic_pre_save(void *opaque)
31 GICState *s = (GICState *)opaque;
32 ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s);
34 if (c->pre_save) {
35 c->pre_save(s);
38 return 0;
41 static int gic_post_load(void *opaque, int version_id)
43 GICState *s = (GICState *)opaque;
44 ARMGICCommonClass *c = ARM_GIC_COMMON_GET_CLASS(s);
46 if (c->post_load) {
47 c->post_load(s);
49 return 0;
52 static bool gic_virt_state_needed(void *opaque)
54 GICState *s = (GICState *)opaque;
56 return s->virt_extn;
59 static const VMStateDescription vmstate_gic_irq_state = {
60 .name = "arm_gic_irq_state",
61 .version_id = 1,
62 .minimum_version_id = 1,
63 .fields = (VMStateField[]) {
64 VMSTATE_UINT8(enabled, gic_irq_state),
65 VMSTATE_UINT8(pending, gic_irq_state),
66 VMSTATE_UINT8(active, gic_irq_state),
67 VMSTATE_UINT8(level, gic_irq_state),
68 VMSTATE_BOOL(model, gic_irq_state),
69 VMSTATE_BOOL(edge_trigger, gic_irq_state),
70 VMSTATE_UINT8(group, gic_irq_state),
71 VMSTATE_END_OF_LIST()
75 static const VMStateDescription vmstate_gic_virt_state = {
76 .name = "arm_gic_virt_state",
77 .version_id = 1,
78 .minimum_version_id = 1,
79 .needed = gic_virt_state_needed,
80 .fields = (VMStateField[]) {
81 /* Virtual interface */
82 VMSTATE_UINT32_ARRAY(h_hcr, GICState, GIC_NCPU),
83 VMSTATE_UINT32_ARRAY(h_misr, GICState, GIC_NCPU),
84 VMSTATE_UINT32_2DARRAY(h_lr, GICState, GIC_MAX_LR, GIC_NCPU),
85 VMSTATE_UINT32_ARRAY(h_apr, GICState, GIC_NCPU),
87 /* Virtual CPU interfaces */
88 VMSTATE_UINT32_SUB_ARRAY(cpu_ctlr, GICState, GIC_NCPU, GIC_NCPU),
89 VMSTATE_UINT16_SUB_ARRAY(priority_mask, GICState, GIC_NCPU, GIC_NCPU),
90 VMSTATE_UINT16_SUB_ARRAY(running_priority, GICState, GIC_NCPU, GIC_NCPU),
91 VMSTATE_UINT16_SUB_ARRAY(current_pending, GICState, GIC_NCPU, GIC_NCPU),
92 VMSTATE_UINT8_SUB_ARRAY(bpr, GICState, GIC_NCPU, GIC_NCPU),
93 VMSTATE_UINT8_SUB_ARRAY(abpr, GICState, GIC_NCPU, GIC_NCPU),
95 VMSTATE_END_OF_LIST()
99 static const VMStateDescription vmstate_gic = {
100 .name = "arm_gic",
101 .version_id = 12,
102 .minimum_version_id = 12,
103 .pre_save = gic_pre_save,
104 .post_load = gic_post_load,
105 .fields = (VMStateField[]) {
106 VMSTATE_UINT32(ctlr, GICState),
107 VMSTATE_UINT32_SUB_ARRAY(cpu_ctlr, GICState, 0, GIC_NCPU),
108 VMSTATE_STRUCT_ARRAY(irq_state, GICState, GIC_MAXIRQ, 1,
109 vmstate_gic_irq_state, gic_irq_state),
110 VMSTATE_UINT8_ARRAY(irq_target, GICState, GIC_MAXIRQ),
111 VMSTATE_UINT8_2DARRAY(priority1, GICState, GIC_INTERNAL, GIC_NCPU),
112 VMSTATE_UINT8_ARRAY(priority2, GICState, GIC_MAXIRQ - GIC_INTERNAL),
113 VMSTATE_UINT8_2DARRAY(sgi_pending, GICState, GIC_NR_SGIS, GIC_NCPU),
114 VMSTATE_UINT16_SUB_ARRAY(priority_mask, GICState, 0, GIC_NCPU),
115 VMSTATE_UINT16_SUB_ARRAY(running_priority, GICState, 0, GIC_NCPU),
116 VMSTATE_UINT16_SUB_ARRAY(current_pending, GICState, 0, GIC_NCPU),
117 VMSTATE_UINT8_SUB_ARRAY(bpr, GICState, 0, GIC_NCPU),
118 VMSTATE_UINT8_SUB_ARRAY(abpr, GICState, 0, GIC_NCPU),
119 VMSTATE_UINT32_2DARRAY(apr, GICState, GIC_NR_APRS, GIC_NCPU),
120 VMSTATE_UINT32_2DARRAY(nsapr, GICState, GIC_NR_APRS, GIC_NCPU),
121 VMSTATE_END_OF_LIST()
123 .subsections = (const VMStateDescription * []) {
124 &vmstate_gic_virt_state,
125 NULL
129 void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler,
130 const MemoryRegionOps *ops,
131 const MemoryRegionOps *virt_ops)
133 SysBusDevice *sbd = SYS_BUS_DEVICE(s);
134 int i = s->num_irq - GIC_INTERNAL;
136 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
137 * GPIO array layout is thus:
138 * [0..N-1] SPIs
139 * [N..N+31] PPIs for CPU 0
140 * [N+32..N+63] PPIs for CPU 1
141 * ...
143 i += (GIC_INTERNAL * s->num_cpu);
144 qdev_init_gpio_in(DEVICE(s), handler, i);
146 for (i = 0; i < s->num_cpu; i++) {
147 sysbus_init_irq(sbd, &s->parent_irq[i]);
149 for (i = 0; i < s->num_cpu; i++) {
150 sysbus_init_irq(sbd, &s->parent_fiq[i]);
152 for (i = 0; i < s->num_cpu; i++) {
153 sysbus_init_irq(sbd, &s->parent_virq[i]);
155 for (i = 0; i < s->num_cpu; i++) {
156 sysbus_init_irq(sbd, &s->parent_vfiq[i]);
158 if (s->virt_extn) {
159 for (i = 0; i < s->num_cpu; i++) {
160 sysbus_init_irq(sbd, &s->maintenance_irq[i]);
164 /* Distributor */
165 memory_region_init_io(&s->iomem, OBJECT(s), ops, s, "gic_dist", 0x1000);
166 sysbus_init_mmio(sbd, &s->iomem);
168 /* This is the main CPU interface "for this core". It is always
169 * present because it is required by both software emulation and KVM.
171 memory_region_init_io(&s->cpuiomem[0], OBJECT(s), ops ? &ops[1] : NULL,
172 s, "gic_cpu", s->revision == 2 ? 0x2000 : 0x100);
173 sysbus_init_mmio(sbd, &s->cpuiomem[0]);
175 if (s->virt_extn) {
176 memory_region_init_io(&s->vifaceiomem[0], OBJECT(s), virt_ops,
177 s, "gic_viface", 0x1000);
178 sysbus_init_mmio(sbd, &s->vifaceiomem[0]);
180 memory_region_init_io(&s->vcpuiomem, OBJECT(s),
181 virt_ops ? &virt_ops[1] : NULL,
182 s, "gic_vcpu", 0x2000);
183 sysbus_init_mmio(sbd, &s->vcpuiomem);
187 static void arm_gic_common_realize(DeviceState *dev, Error **errp)
189 GICState *s = ARM_GIC_COMMON(dev);
190 int num_irq = s->num_irq;
192 if (s->num_cpu > GIC_NCPU) {
193 error_setg(errp, "requested %u CPUs exceeds GIC maximum %d",
194 s->num_cpu, GIC_NCPU);
195 return;
197 if (s->num_irq > GIC_MAXIRQ) {
198 error_setg(errp,
199 "requested %u interrupt lines exceeds GIC maximum %d",
200 num_irq, GIC_MAXIRQ);
201 return;
203 /* ITLinesNumber is represented as (N / 32) - 1 (see
204 * gic_dist_readb) so this is an implementation imposed
205 * restriction, not an architectural one:
207 if (s->num_irq < 32 || (s->num_irq % 32)) {
208 error_setg(errp,
209 "%d interrupt lines unsupported: not divisible by 32",
210 num_irq);
211 return;
214 if (s->security_extn &&
215 (s->revision == REV_11MPCORE)) {
216 error_setg(errp, "this GIC revision does not implement "
217 "the security extensions");
218 return;
221 if (s->virt_extn) {
222 if (s->revision != 2) {
223 error_setg(errp, "GIC virtualization extensions are only "
224 "supported by revision 2");
225 return;
228 /* For now, set the number of implemented LRs to 4, as found in most
229 * real GICv2. This could be promoted as a QOM property if we need to
230 * emulate a variant with another num_lrs.
232 s->num_lrs = 4;
236 static inline void arm_gic_common_reset_irq_state(GICState *s, int first_cpu,
237 int resetprio)
239 int i, j;
241 for (i = first_cpu; i < first_cpu + s->num_cpu; i++) {
242 if (s->revision == REV_11MPCORE) {
243 s->priority_mask[i] = 0xf0;
244 } else {
245 s->priority_mask[i] = resetprio;
247 s->current_pending[i] = 1023;
248 s->running_priority[i] = 0x100;
249 s->cpu_ctlr[i] = 0;
250 s->bpr[i] = gic_is_vcpu(i) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
251 s->abpr[i] = gic_is_vcpu(i) ? GIC_VIRT_MIN_ABPR : GIC_MIN_ABPR;
253 if (!gic_is_vcpu(i)) {
254 for (j = 0; j < GIC_INTERNAL; j++) {
255 s->priority1[j][i] = resetprio;
257 for (j = 0; j < GIC_NR_SGIS; j++) {
258 s->sgi_pending[j][i] = 0;
264 static void arm_gic_common_reset(DeviceState *dev)
266 GICState *s = ARM_GIC_COMMON(dev);
267 int i, j;
268 int resetprio;
270 /* If we're resetting a TZ-aware GIC as if secure firmware
271 * had set it up ready to start a kernel in non-secure,
272 * we need to set interrupt priorities to a "zero for the
273 * NS view" value. This is particularly critical for the
274 * priority_mask[] values, because if they are zero then NS
275 * code cannot ever rewrite the priority to anything else.
277 if (s->security_extn && s->irq_reset_nonsecure) {
278 resetprio = 0x80;
279 } else {
280 resetprio = 0;
283 memset(s->irq_state, 0, GIC_MAXIRQ * sizeof(gic_irq_state));
284 arm_gic_common_reset_irq_state(s, 0, resetprio);
286 if (s->virt_extn) {
287 /* vCPU states are stored at indexes GIC_NCPU .. GIC_NCPU+num_cpu.
288 * The exposed vCPU interface does not have security extensions.
290 arm_gic_common_reset_irq_state(s, GIC_NCPU, 0);
293 for (i = 0; i < GIC_NR_SGIS; i++) {
294 GIC_DIST_SET_ENABLED(i, ALL_CPU_MASK);
295 GIC_DIST_SET_EDGE_TRIGGER(i);
298 for (i = 0; i < ARRAY_SIZE(s->priority2); i++) {
299 s->priority2[i] = resetprio;
302 for (i = 0; i < GIC_MAXIRQ; i++) {
303 /* For uniprocessor GICs all interrupts always target the sole CPU */
304 if (s->num_cpu == 1) {
305 s->irq_target[i] = 1;
306 } else {
307 s->irq_target[i] = 0;
310 if (s->security_extn && s->irq_reset_nonsecure) {
311 for (i = 0; i < GIC_MAXIRQ; i++) {
312 GIC_DIST_SET_GROUP(i, ALL_CPU_MASK);
316 if (s->virt_extn) {
317 for (i = 0; i < s->num_lrs; i++) {
318 for (j = 0; j < s->num_cpu; j++) {
319 s->h_lr[i][j] = 0;
323 for (i = 0; i < s->num_cpu; i++) {
324 s->h_hcr[i] = 0;
325 s->h_misr[i] = 0;
329 s->ctlr = 0;
332 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
333 bool secure_boot)
335 GICState *s = ARM_GIC_COMMON(obj);
337 if (s->security_extn && !secure_boot) {
338 /* We're directly booting a kernel into NonSecure. If this GIC
339 * implements the security extensions then we must configure it
340 * to have all the interrupts be NonSecure (this is a job that
341 * is done by the Secure boot firmware in real hardware, and in
342 * this mode QEMU is acting as a minimalist firmware-and-bootloader
343 * equivalent).
345 s->irq_reset_nonsecure = true;
349 static Property arm_gic_common_properties[] = {
350 DEFINE_PROP_UINT32("num-cpu", GICState, num_cpu, 1),
351 DEFINE_PROP_UINT32("num-irq", GICState, num_irq, 32),
352 /* Revision can be 1 or 2 for GIC architecture specification
353 * versions 1 or 2, or 0 to indicate the legacy 11MPCore GIC.
355 DEFINE_PROP_UINT32("revision", GICState, revision, 1),
356 /* True if the GIC should implement the security extensions */
357 DEFINE_PROP_BOOL("has-security-extensions", GICState, security_extn, 0),
358 /* True if the GIC should implement the virtualization extensions */
359 DEFINE_PROP_BOOL("has-virtualization-extensions", GICState, virt_extn, 0),
360 DEFINE_PROP_UINT32("num-priority-bits", GICState, n_prio_bits, 8),
361 DEFINE_PROP_END_OF_LIST(),
364 static void arm_gic_common_class_init(ObjectClass *klass, void *data)
366 DeviceClass *dc = DEVICE_CLASS(klass);
367 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
369 dc->reset = arm_gic_common_reset;
370 dc->realize = arm_gic_common_realize;
371 device_class_set_props(dc, arm_gic_common_properties);
372 dc->vmsd = &vmstate_gic;
373 albifc->arm_linux_init = arm_gic_common_linux_init;
376 static const TypeInfo arm_gic_common_type = {
377 .name = TYPE_ARM_GIC_COMMON,
378 .parent = TYPE_SYS_BUS_DEVICE,
379 .instance_size = sizeof(GICState),
380 .class_size = sizeof(ARMGICCommonClass),
381 .class_init = arm_gic_common_class_init,
382 .abstract = true,
383 .interfaces = (InterfaceInfo []) {
384 { TYPE_ARM_LINUX_BOOT_IF },
385 { },
389 static void register_types(void)
391 type_register_static(&arm_gic_common_type);
394 type_init(register_types)