2 * Device model for Cadence UART
4 * Copyright (c) 2010 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written by Haibing Ma
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "hw/char/cadence_uart.h"
22 #ifdef CADENCE_UART_ERR_DEBUG
23 #define DB_PRINT(...) do { \
24 fprintf(stderr, ": %s: ", __func__); \
25 fprintf(stderr, ## __VA_ARGS__); \
31 #define UART_SR_INTR_RTRIG 0x00000001
32 #define UART_SR_INTR_REMPTY 0x00000002
33 #define UART_SR_INTR_RFUL 0x00000004
34 #define UART_SR_INTR_TEMPTY 0x00000008
35 #define UART_SR_INTR_TFUL 0x00000010
36 /* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
37 #define UART_SR_TTRIG 0x00002000
38 #define UART_INTR_TTRIG 0x00000400
39 /* bits fields in CSR that correlate to CISR. If any of these bits are set in
40 * SR, then the same bit in CISR is set high too */
41 #define UART_SR_TO_CISR_MASK 0x0000001F
43 #define UART_INTR_ROVR 0x00000020
44 #define UART_INTR_FRAME 0x00000040
45 #define UART_INTR_PARE 0x00000080
46 #define UART_INTR_TIMEOUT 0x00000100
47 #define UART_INTR_DMSI 0x00000200
48 #define UART_INTR_TOVR 0x00001000
50 #define UART_SR_RACTIVE 0x00000400
51 #define UART_SR_TACTIVE 0x00000800
52 #define UART_SR_FDELT 0x00001000
54 #define UART_CR_RXRST 0x00000001
55 #define UART_CR_TXRST 0x00000002
56 #define UART_CR_RX_EN 0x00000004
57 #define UART_CR_RX_DIS 0x00000008
58 #define UART_CR_TX_EN 0x00000010
59 #define UART_CR_TX_DIS 0x00000020
60 #define UART_CR_RST_TO 0x00000040
61 #define UART_CR_STARTBRK 0x00000080
62 #define UART_CR_STOPBRK 0x00000100
64 #define UART_MR_CLKS 0x00000001
65 #define UART_MR_CHRL 0x00000006
66 #define UART_MR_CHRL_SH 1
67 #define UART_MR_PAR 0x00000038
68 #define UART_MR_PAR_SH 3
69 #define UART_MR_NBSTOP 0x000000C0
70 #define UART_MR_NBSTOP_SH 6
71 #define UART_MR_CHMODE 0x00000300
72 #define UART_MR_CHMODE_SH 8
73 #define UART_MR_UCLKEN 0x00000400
74 #define UART_MR_IRMODE 0x00000800
76 #define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
77 #define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
78 #define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
79 #define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
80 #define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
81 #define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
82 #define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
83 #define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
84 #define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
85 #define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
87 #define UART_INPUT_CLK 50000000
91 #define R_IER (0x08/4)
92 #define R_IDR (0x0C/4)
93 #define R_IMR (0x10/4)
94 #define R_CISR (0x14/4)
95 #define R_BRGR (0x18/4)
96 #define R_RTOR (0x1C/4)
97 #define R_RTRIG (0x20/4)
98 #define R_MCR (0x24/4)
99 #define R_MSR (0x28/4)
100 #define R_SR (0x2C/4)
101 #define R_TX_RX (0x30/4)
102 #define R_BDIV (0x34/4)
103 #define R_FDEL (0x38/4)
104 #define R_PMIN (0x3C/4)
105 #define R_PWID (0x40/4)
106 #define R_TTRIG (0x44/4)
109 static void uart_update_status(CadenceUARTState
*s
)
113 s
->r
[R_SR
] |= s
->rx_count
== CADENCE_UART_RX_FIFO_SIZE
? UART_SR_INTR_RFUL
115 s
->r
[R_SR
] |= !s
->rx_count
? UART_SR_INTR_REMPTY
: 0;
116 s
->r
[R_SR
] |= s
->rx_count
>= s
->r
[R_RTRIG
] ? UART_SR_INTR_RTRIG
: 0;
118 s
->r
[R_SR
] |= s
->tx_count
== CADENCE_UART_TX_FIFO_SIZE
? UART_SR_INTR_TFUL
120 s
->r
[R_SR
] |= !s
->tx_count
? UART_SR_INTR_TEMPTY
: 0;
121 s
->r
[R_SR
] |= s
->tx_count
>= s
->r
[R_TTRIG
] ? UART_SR_TTRIG
: 0;
123 s
->r
[R_CISR
] |= s
->r
[R_SR
] & UART_SR_TO_CISR_MASK
;
124 s
->r
[R_CISR
] |= s
->r
[R_SR
] & UART_SR_TTRIG
? UART_INTR_TTRIG
: 0;
125 qemu_set_irq(s
->irq
, !!(s
->r
[R_IMR
] & s
->r
[R_CISR
]));
128 static void fifo_trigger_update(void *opaque
)
130 CadenceUARTState
*s
= opaque
;
132 s
->r
[R_CISR
] |= UART_INTR_TIMEOUT
;
134 uart_update_status(s
);
137 static void uart_rx_reset(CadenceUARTState
*s
)
142 qemu_chr_accept_input(s
->chr
);
146 static void uart_tx_reset(CadenceUARTState
*s
)
151 static void uart_send_breaks(CadenceUARTState
*s
)
153 int break_enabled
= 1;
156 qemu_chr_fe_ioctl(s
->chr
, CHR_IOCTL_SERIAL_SET_BREAK
,
161 static void uart_parameters_setup(CadenceUARTState
*s
)
163 QEMUSerialSetParams ssp
;
164 unsigned int baud_rate
, packet_size
;
166 baud_rate
= (s
->r
[R_MR
] & UART_MR_CLKS
) ?
167 UART_INPUT_CLK
/ 8 : UART_INPUT_CLK
;
169 ssp
.speed
= baud_rate
/ (s
->r
[R_BRGR
] * (s
->r
[R_BDIV
] + 1));
172 switch (s
->r
[R_MR
] & UART_MR_PAR
) {
173 case UART_PARITY_EVEN
:
177 case UART_PARITY_ODD
:
186 switch (s
->r
[R_MR
] & UART_MR_CHRL
) {
187 case UART_DATA_BITS_6
:
190 case UART_DATA_BITS_7
:
198 switch (s
->r
[R_MR
] & UART_MR_NBSTOP
) {
199 case UART_STOP_BITS_1
:
207 packet_size
+= ssp
.data_bits
+ ssp
.stop_bits
;
208 s
->char_tx_time
= (get_ticks_per_sec() / ssp
.speed
) * packet_size
;
210 qemu_chr_fe_ioctl(s
->chr
, CHR_IOCTL_SERIAL_SET_PARAMS
, &ssp
);
214 static int uart_can_receive(void *opaque
)
216 CadenceUARTState
*s
= opaque
;
217 int ret
= MAX(CADENCE_UART_RX_FIFO_SIZE
, CADENCE_UART_TX_FIFO_SIZE
);
218 uint32_t ch_mode
= s
->r
[R_MR
] & UART_MR_CHMODE
;
220 if (ch_mode
== NORMAL_MODE
|| ch_mode
== ECHO_MODE
) {
221 ret
= MIN(ret
, CADENCE_UART_RX_FIFO_SIZE
- s
->rx_count
);
223 if (ch_mode
== REMOTE_LOOPBACK
|| ch_mode
== ECHO_MODE
) {
224 ret
= MIN(ret
, CADENCE_UART_TX_FIFO_SIZE
- s
->tx_count
);
229 static void uart_ctrl_update(CadenceUARTState
*s
)
231 if (s
->r
[R_CR
] & UART_CR_TXRST
) {
235 if (s
->r
[R_CR
] & UART_CR_RXRST
) {
239 s
->r
[R_CR
] &= ~(UART_CR_TXRST
| UART_CR_RXRST
);
241 if (s
->r
[R_CR
] & UART_CR_STARTBRK
&& !(s
->r
[R_CR
] & UART_CR_STOPBRK
)) {
246 static void uart_write_rx_fifo(void *opaque
, const uint8_t *buf
, int size
)
248 CadenceUARTState
*s
= opaque
;
249 uint64_t new_rx_time
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
252 if ((s
->r
[R_CR
] & UART_CR_RX_DIS
) || !(s
->r
[R_CR
] & UART_CR_RX_EN
)) {
256 if (s
->rx_count
== CADENCE_UART_RX_FIFO_SIZE
) {
257 s
->r
[R_CISR
] |= UART_INTR_ROVR
;
259 for (i
= 0; i
< size
; i
++) {
260 s
->rx_fifo
[s
->rx_wpos
] = buf
[i
];
261 s
->rx_wpos
= (s
->rx_wpos
+ 1) % CADENCE_UART_RX_FIFO_SIZE
;
264 timer_mod(s
->fifo_trigger_handle
, new_rx_time
+
265 (s
->char_tx_time
* 4));
267 uart_update_status(s
);
270 static gboolean
cadence_uart_xmit(GIOChannel
*chan
, GIOCondition cond
,
273 CadenceUARTState
*s
= opaque
;
276 /* instant drain the fifo when there's no back-end */
286 ret
= qemu_chr_fe_write(s
->chr
, s
->tx_fifo
, s
->tx_count
);
288 memmove(s
->tx_fifo
, s
->tx_fifo
+ ret
, s
->tx_count
);
291 int r
= qemu_chr_fe_add_watch(s
->chr
, G_IO_OUT
|G_IO_HUP
,
292 cadence_uart_xmit
, s
);
296 uart_update_status(s
);
300 static void uart_write_tx_fifo(CadenceUARTState
*s
, const uint8_t *buf
,
303 if ((s
->r
[R_CR
] & UART_CR_TX_DIS
) || !(s
->r
[R_CR
] & UART_CR_TX_EN
)) {
307 if (size
> CADENCE_UART_TX_FIFO_SIZE
- s
->tx_count
) {
308 size
= CADENCE_UART_TX_FIFO_SIZE
- s
->tx_count
;
310 * This can only be a guest error via a bad tx fifo register push,
311 * as can_receive() should stop remote loop and echo modes ever getting
314 qemu_log_mask(LOG_GUEST_ERROR
, "cadence_uart: TxFIFO overflow");
315 s
->r
[R_CISR
] |= UART_INTR_ROVR
;
318 memcpy(s
->tx_fifo
+ s
->tx_count
, buf
, size
);
321 cadence_uart_xmit(NULL
, G_IO_OUT
, s
);
324 static void uart_receive(void *opaque
, const uint8_t *buf
, int size
)
326 CadenceUARTState
*s
= opaque
;
327 uint32_t ch_mode
= s
->r
[R_MR
] & UART_MR_CHMODE
;
329 if (ch_mode
== NORMAL_MODE
|| ch_mode
== ECHO_MODE
) {
330 uart_write_rx_fifo(opaque
, buf
, size
);
332 if (ch_mode
== REMOTE_LOOPBACK
|| ch_mode
== ECHO_MODE
) {
333 uart_write_tx_fifo(s
, buf
, size
);
337 static void uart_event(void *opaque
, int event
)
339 CadenceUARTState
*s
= opaque
;
342 if (event
== CHR_EVENT_BREAK
) {
343 uart_write_rx_fifo(opaque
, &buf
, 1);
346 uart_update_status(s
);
349 static void uart_read_rx_fifo(CadenceUARTState
*s
, uint32_t *c
)
351 if ((s
->r
[R_CR
] & UART_CR_RX_DIS
) || !(s
->r
[R_CR
] & UART_CR_RX_EN
)) {
356 uint32_t rx_rpos
= (CADENCE_UART_RX_FIFO_SIZE
+ s
->rx_wpos
-
357 s
->rx_count
) % CADENCE_UART_RX_FIFO_SIZE
;
358 *c
= s
->rx_fifo
[rx_rpos
];
362 qemu_chr_accept_input(s
->chr
);
368 uart_update_status(s
);
371 static void uart_write(void *opaque
, hwaddr offset
,
372 uint64_t value
, unsigned size
)
374 CadenceUARTState
*s
= opaque
;
376 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset
, (unsigned)value
);
379 case R_IER
: /* ier (wts imr) */
380 s
->r
[R_IMR
] |= value
;
382 case R_IDR
: /* idr (wtc imr) */
383 s
->r
[R_IMR
] &= ~value
;
385 case R_IMR
: /* imr (read only) */
387 case R_CISR
: /* cisr (wtc) */
388 s
->r
[R_CISR
] &= ~value
;
390 case R_TX_RX
: /* UARTDR */
391 switch (s
->r
[R_MR
] & UART_MR_CHMODE
) {
393 uart_write_tx_fifo(s
, (uint8_t *) &value
, 1);
396 uart_write_rx_fifo(opaque
, (uint8_t *) &value
, 1);
401 s
->r
[offset
] = value
;
409 uart_parameters_setup(s
);
412 uart_update_status(s
);
415 static uint64_t uart_read(void *opaque
, hwaddr offset
,
418 CadenceUARTState
*s
= opaque
;
422 if (offset
>= CADENCE_UART_R_MAX
) {
424 } else if (offset
== R_TX_RX
) {
425 uart_read_rx_fifo(s
, &c
);
430 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset
<< 2), (unsigned)c
);
434 static const MemoryRegionOps uart_ops
= {
437 .endianness
= DEVICE_NATIVE_ENDIAN
,
440 static void cadence_uart_reset(DeviceState
*dev
)
442 CadenceUARTState
*s
= CADENCE_UART(dev
);
444 s
->r
[R_CR
] = 0x00000128;
447 s
->r
[R_RTRIG
] = 0x00000020;
448 s
->r
[R_BRGR
] = 0x0000000F;
449 s
->r
[R_TTRIG
] = 0x00000020;
454 uart_update_status(s
);
457 static void cadence_uart_realize(DeviceState
*dev
, Error
**errp
)
459 CadenceUARTState
*s
= CADENCE_UART(dev
);
461 s
->fifo_trigger_handle
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
462 fifo_trigger_update
, s
);
464 /* FIXME use a qdev chardev prop instead of qemu_char_get_next_serial() */
465 s
->chr
= qemu_char_get_next_serial();
468 qemu_chr_add_handlers(s
->chr
, uart_can_receive
, uart_receive
,
473 static void cadence_uart_init(Object
*obj
)
475 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
476 CadenceUARTState
*s
= CADENCE_UART(obj
);
478 memory_region_init_io(&s
->iomem
, obj
, &uart_ops
, s
, "uart", 0x1000);
479 sysbus_init_mmio(sbd
, &s
->iomem
);
480 sysbus_init_irq(sbd
, &s
->irq
);
482 s
->char_tx_time
= (get_ticks_per_sec() / 9600) * 10;
485 static int cadence_uart_post_load(void *opaque
, int version_id
)
487 CadenceUARTState
*s
= opaque
;
489 uart_parameters_setup(s
);
490 uart_update_status(s
);
494 static const VMStateDescription vmstate_cadence_uart
= {
495 .name
= "cadence_uart",
497 .minimum_version_id
= 2,
498 .post_load
= cadence_uart_post_load
,
499 .fields
= (VMStateField
[]) {
500 VMSTATE_UINT32_ARRAY(r
, CadenceUARTState
, CADENCE_UART_R_MAX
),
501 VMSTATE_UINT8_ARRAY(rx_fifo
, CadenceUARTState
,
502 CADENCE_UART_RX_FIFO_SIZE
),
503 VMSTATE_UINT8_ARRAY(tx_fifo
, CadenceUARTState
,
504 CADENCE_UART_TX_FIFO_SIZE
),
505 VMSTATE_UINT32(rx_count
, CadenceUARTState
),
506 VMSTATE_UINT32(tx_count
, CadenceUARTState
),
507 VMSTATE_UINT32(rx_wpos
, CadenceUARTState
),
508 VMSTATE_TIMER_PTR(fifo_trigger_handle
, CadenceUARTState
),
509 VMSTATE_END_OF_LIST()
513 static void cadence_uart_class_init(ObjectClass
*klass
, void *data
)
515 DeviceClass
*dc
= DEVICE_CLASS(klass
);
517 dc
->realize
= cadence_uart_realize
;
518 dc
->vmsd
= &vmstate_cadence_uart
;
519 dc
->reset
= cadence_uart_reset
;
520 /* Reason: realize() method uses qemu_char_get_next_serial() */
521 dc
->cannot_instantiate_with_device_add_yet
= true;
524 static const TypeInfo cadence_uart_info
= {
525 .name
= TYPE_CADENCE_UART
,
526 .parent
= TYPE_SYS_BUS_DEVICE
,
527 .instance_size
= sizeof(CadenceUARTState
),
528 .instance_init
= cadence_uart_init
,
529 .class_init
= cadence_uart_class_init
,
532 static void cadence_uart_register_types(void)
534 type_register_static(&cadence_uart_info
);
537 type_init(cadence_uart_register_types
)