2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
29 #ifdef M25P80_ERR_DEBUG
30 #define DB_PRINT(...) do { \
31 fprintf(stderr, ": %s: ", __func__); \
32 fprintf(stderr, ## __VA_ARGS__); \
38 /* Fields for FlashPartInfo->flags */
40 /* erase capabilities */
43 /* set to allow the page program command to write 0s back to 1. Useful for
44 * modelling EEPROM with SPI flash command set
48 typedef struct FlashPartInfo
{
49 const char *part_name
;
50 /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
52 /* extended jedec code */
54 /* there is confusion between manufacturers as to what a sector is. In this
55 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
56 * command (opcode 0xd8).
64 /* adapted from linux */
66 #define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
67 .part_name = (_part_name),\
69 .ext_jedec = (_ext_jedec),\
70 .sector_size = (_sector_size),\
71 .n_sectors = (_n_sectors),\
75 static const FlashPartInfo known_devices[] = {
76 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
77 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K
) },
78 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K
) },
80 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K
) },
81 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K
) },
82 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K
) },
84 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K
) },
85 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K
) },
86 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K
) },
87 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K
) },
90 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K
) },
91 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
92 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
93 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
95 /* Intel/Numonyx -- xxxs33b */
96 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
97 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
98 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
101 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K
) },
102 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
103 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K
) },
104 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
105 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
106 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
107 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
108 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
109 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
111 /* Spansion -- single (large) sector size only, at least
112 * for the chips listed here (without boot sectors).
114 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
115 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
116 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
117 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
118 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K
) },
119 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
120 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
121 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
122 { INFO("s25fl512s", 0x010220, 0x4d00, 256 << 10, 256, 0) },
123 { INFO("s70fl01gs", 0x010221, 0x4d00, 256 << 10, 256, 0) },
124 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
125 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
126 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
127 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
128 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K
| ER_32K
) },
129 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K
| ER_32K
) },
131 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
132 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K
) },
133 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K
) },
134 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K
) },
135 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K
) },
136 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K
) },
137 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K
) },
138 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K
) },
139 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K
) },
141 /* ST Microelectronics -- newer production may have feature updates */
142 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
143 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
144 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
145 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
146 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
147 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
148 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
149 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
150 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
152 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
153 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
154 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
156 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
157 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K
) },
159 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K
) },
160 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K
) },
161 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K
) },
162 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
164 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
165 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K
) },
166 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K
) },
167 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K
) },
168 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K
) },
169 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K
) },
170 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K
) },
171 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K
) },
172 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K
) },
173 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K
) },
175 /* Numonyx -- n25q128 */
176 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
200 STATE_COLLECTING_DATA
,
204 typedef struct Flash
{
208 BlockDriverState
*bdrv
;
218 uint8_t needed_bytes
;
219 uint8_t cmd_in_progress
;
226 const FlashPartInfo
*pi
;
230 static void bdrv_sync_complete(void *opaque
, int ret
)
232 /* do nothing. Masters do not directly interact with the backing store,
233 * only the working copy so no mutexing required.
237 static void flash_sync_page(Flash
*s
, int page
)
240 int bdrv_sector
, nb_sectors
;
243 bdrv_sector
= (page
* s
->pi
->page_size
) / BDRV_SECTOR_SIZE
;
244 nb_sectors
= DIV_ROUND_UP(s
->pi
->page_size
, BDRV_SECTOR_SIZE
);
245 qemu_iovec_init(&iov
, 1);
246 qemu_iovec_add(&iov
, s
->storage
+ bdrv_sector
* BDRV_SECTOR_SIZE
,
247 nb_sectors
* BDRV_SECTOR_SIZE
);
248 bdrv_aio_writev(s
->bdrv
, bdrv_sector
, &iov
, nb_sectors
,
249 bdrv_sync_complete
, NULL
);
253 static inline void flash_sync_area(Flash
*s
, int64_t off
, int64_t len
)
255 int64_t start
, end
, nb_sectors
;
262 assert(!(len
% BDRV_SECTOR_SIZE
));
263 start
= off
/ BDRV_SECTOR_SIZE
;
264 end
= (off
+ len
) / BDRV_SECTOR_SIZE
;
265 nb_sectors
= end
- start
;
266 qemu_iovec_init(&iov
, 1);
267 qemu_iovec_add(&iov
, s
->storage
+ (start
* BDRV_SECTOR_SIZE
),
268 nb_sectors
* BDRV_SECTOR_SIZE
);
269 bdrv_aio_writev(s
->bdrv
, start
, &iov
, nb_sectors
, bdrv_sync_complete
, NULL
);
272 static void flash_erase(Flash
*s
, int offset
, FlashCMD cmd
)
275 uint8_t capa_to_assert
= 0;
280 capa_to_assert
= ER_4K
;
284 capa_to_assert
= ER_32K
;
287 len
= s
->pi
->sector_size
;
296 DB_PRINT("offset = %#x, len = %d\n", offset
, len
);
297 if ((s
->pi
->flags
& capa_to_assert
) != capa_to_assert
) {
298 hw_error("m25p80: %dk erase size not supported by device\n", len
);
301 if (!s
->write_enable
) {
302 DB_PRINT("erase with write protect!\n");
305 memset(s
->storage
+ offset
, 0xff, len
);
306 flash_sync_area(s
, offset
, len
);
309 static inline void flash_sync_dirty(Flash
*s
, int64_t newpage
)
311 if (s
->dirty_page
>= 0 && s
->dirty_page
!= newpage
) {
312 flash_sync_page(s
, s
->dirty_page
);
313 s
->dirty_page
= newpage
;
318 void flash_write8(Flash
*s
, uint64_t addr
, uint8_t data
)
320 int64_t page
= addr
/ s
->pi
->page_size
;
321 uint8_t prev
= s
->storage
[s
->cur_addr
];
323 if (!s
->write_enable
) {
324 DB_PRINT("write with write protect!\n");
327 if ((prev
^ data
) & data
) {
328 DB_PRINT("programming zero to one! addr=%lx %x -> %x\n",
332 if (s
->pi
->flags
& WR_1
) {
333 s
->storage
[s
->cur_addr
] = data
;
335 s
->storage
[s
->cur_addr
] &= data
;
338 flash_sync_dirty(s
, page
);
339 s
->dirty_page
= page
;
342 static void complete_collecting_data(Flash
*s
)
344 s
->cur_addr
= s
->data
[0] << 16;
345 s
->cur_addr
|= s
->data
[1] << 8;
346 s
->cur_addr
|= s
->data
[2];
348 switch (s
->cmd_in_progress
) {
350 s
->state
= STATE_PAGE_PROGRAM
;
354 s
->state
= STATE_READ
;
359 flash_erase(s
, s
->cur_addr
, s
->cmd_in_progress
);
366 static void decode_new_cmd(Flash
*s
, uint32_t value
)
368 s
->cmd_in_progress
= value
;
369 DB_PRINT("decoded new command:%x\n", value
);
381 s
->state
= STATE_COLLECTING_DATA
;
388 s
->state
= STATE_COLLECTING_DATA
;
392 s
->write_enable
= false;
395 s
->write_enable
= true;
399 s
->data
[0] = (!!s
->write_enable
) << 1;
402 s
->state
= STATE_READING_DATA
;
406 DB_PRINT("populated jedec code\n");
407 s
->data
[0] = (s
->pi
->jedec
>> 16) & 0xff;
408 s
->data
[1] = (s
->pi
->jedec
>> 8) & 0xff;
409 s
->data
[2] = s
->pi
->jedec
& 0xff;
410 if (s
->pi
->ext_jedec
) {
411 s
->data
[3] = (s
->pi
->ext_jedec
>> 8) & 0xff;
412 s
->data
[4] = s
->pi
->ext_jedec
& 0xff;
418 s
->state
= STATE_READING_DATA
;
422 if (s
->write_enable
) {
423 DB_PRINT("chip erase\n");
424 flash_erase(s
, 0, BULK_ERASE
);
426 DB_PRINT("chip erase with write protect!\n");
432 DB_PRINT("Unknown cmd %x\n", value
);
437 static int m25p80_cs(SSISlave
*ss
, bool select
)
439 Flash
*s
= FROM_SSI_SLAVE(Flash
, ss
);
444 s
->state
= STATE_IDLE
;
445 flash_sync_dirty(s
, -1);
448 DB_PRINT("%sselect\n", select
? "de" : "");
453 static uint32_t m25p80_transfer8(SSISlave
*ss
, uint32_t tx
)
455 Flash
*s
= FROM_SSI_SLAVE(Flash
, ss
);
460 case STATE_PAGE_PROGRAM
:
461 DB_PRINT("page program cur_addr=%lx data=%x\n", s
->cur_addr
,
463 flash_write8(s
, s
->cur_addr
, (uint8_t)tx
);
468 r
= s
->storage
[s
->cur_addr
];
469 DB_PRINT("READ 0x%lx=%x\n", s
->cur_addr
, r
);
470 s
->cur_addr
= (s
->cur_addr
+ 1) % s
->size
;
473 case STATE_COLLECTING_DATA
:
474 s
->data
[s
->len
] = (uint8_t)tx
;
477 if (s
->len
== s
->needed_bytes
) {
478 complete_collecting_data(s
);
482 case STATE_READING_DATA
:
485 if (s
->pos
== s
->len
) {
487 s
->state
= STATE_IDLE
;
493 decode_new_cmd(s
, (uint8_t)tx
);
500 static int m25p80_init(SSISlave
*ss
)
503 Flash
*s
= FROM_SSI_SLAVE(Flash
, ss
);
504 const FlashPartInfo
*i
;
506 if (!s
->part_name
) { /* default to actual m25p80 if no partname given */
507 s
->part_name
= (char *)"m25p80";
511 for (i
= known_devices
;; i
++) {
514 fprintf(stderr
, "Unknown SPI flash part: \"%s\"\n", s
->part_name
);
516 } else if (!strcmp(i
->part_name
, s
->part_name
)) {
522 s
->size
= s
->pi
->sector_size
* s
->pi
->n_sectors
;
524 s
->storage
= qemu_blockalign(s
->bdrv
, s
->size
);
526 dinfo
= drive_get_next(IF_MTD
);
528 if (dinfo
&& dinfo
->bdrv
) {
529 DB_PRINT("Binding to IF_MTD drive\n");
530 s
->bdrv
= dinfo
->bdrv
;
531 /* FIXME: Move to late init */
532 if (bdrv_read(s
->bdrv
, 0, s
->storage
, DIV_ROUND_UP(s
->size
,
533 BDRV_SECTOR_SIZE
))) {
534 fprintf(stderr
, "Failed to initialize SPI flash!\n");
538 memset(s
->storage
, 0xFF, s
->size
);
544 static void m25p80_pre_save(void *opaque
)
546 flash_sync_dirty((Flash
*)opaque
, -1);
549 static const VMStateDescription vmstate_m25p80
= {
550 .name
= "xilinx_spi",
552 .minimum_version_id
= 1,
553 .minimum_version_id_old
= 1,
554 .pre_save
= m25p80_pre_save
,
555 .fields
= (VMStateField
[]) {
556 VMSTATE_UINT8(state
, Flash
),
557 VMSTATE_UINT8_ARRAY(data
, Flash
, 16),
558 VMSTATE_UINT32(len
, Flash
),
559 VMSTATE_UINT32(pos
, Flash
),
560 VMSTATE_UINT8(needed_bytes
, Flash
),
561 VMSTATE_UINT8(cmd_in_progress
, Flash
),
562 VMSTATE_UINT64(cur_addr
, Flash
),
563 VMSTATE_BOOL(write_enable
, Flash
),
564 VMSTATE_END_OF_LIST()
568 static Property m25p80_properties
[] = {
569 DEFINE_PROP_STRING("partname", Flash
, part_name
),
570 DEFINE_PROP_END_OF_LIST(),
573 static void m25p80_class_init(ObjectClass
*klass
, void *data
)
575 DeviceClass
*dc
= DEVICE_CLASS(klass
);
576 SSISlaveClass
*k
= SSI_SLAVE_CLASS(klass
);
578 k
->init
= m25p80_init
;
579 k
->transfer
= m25p80_transfer8
;
580 k
->set_cs
= m25p80_cs
;
581 k
->cs_polarity
= SSI_CS_LOW
;
582 dc
->props
= m25p80_properties
;
583 dc
->vmsd
= &vmstate_m25p80
;
586 static const TypeInfo m25p80_info
= {
588 .parent
= TYPE_SSI_SLAVE
,
589 .instance_size
= sizeof(Flash
),
590 .class_init
= m25p80_class_init
,
593 static void m25p80_register_types(void)
595 type_register_static(&m25p80_info
);
598 type_init(m25p80_register_types
)