s390x/css: unrestrict cssids
[qemu/ar7.git] / block / io.c
blob6773926fc1411fe01675fdd90d70e2f243119805
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/blockjob_int.h"
30 #include "block/block_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
38 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
40 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
41 int64_t offset, int bytes, BdrvRequestFlags flags);
43 void bdrv_parent_drained_begin(BlockDriverState *bs)
45 BdrvChild *c, *next;
47 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
48 if (c->role->drained_begin) {
49 c->role->drained_begin(c);
54 void bdrv_parent_drained_end(BlockDriverState *bs)
56 BdrvChild *c, *next;
58 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
59 if (c->role->drained_end) {
60 c->role->drained_end(c);
65 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
67 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
68 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
69 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
70 src->opt_mem_alignment);
71 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
72 src->min_mem_alignment);
73 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
76 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
78 BlockDriver *drv = bs->drv;
79 Error *local_err = NULL;
81 memset(&bs->bl, 0, sizeof(bs->bl));
83 if (!drv) {
84 return;
87 /* Default alignment based on whether driver has byte interface */
88 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
90 /* Take some limits from the children as a default */
91 if (bs->file) {
92 bdrv_refresh_limits(bs->file->bs, &local_err);
93 if (local_err) {
94 error_propagate(errp, local_err);
95 return;
97 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
98 } else {
99 bs->bl.min_mem_alignment = 512;
100 bs->bl.opt_mem_alignment = getpagesize();
102 /* Safe default since most protocols use readv()/writev()/etc */
103 bs->bl.max_iov = IOV_MAX;
106 if (bs->backing) {
107 bdrv_refresh_limits(bs->backing->bs, &local_err);
108 if (local_err) {
109 error_propagate(errp, local_err);
110 return;
112 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
115 /* Then let the driver override it */
116 if (drv->bdrv_refresh_limits) {
117 drv->bdrv_refresh_limits(bs, errp);
122 * The copy-on-read flag is actually a reference count so multiple users may
123 * use the feature without worrying about clobbering its previous state.
124 * Copy-on-read stays enabled until all users have called to disable it.
126 void bdrv_enable_copy_on_read(BlockDriverState *bs)
128 atomic_inc(&bs->copy_on_read);
131 void bdrv_disable_copy_on_read(BlockDriverState *bs)
133 int old = atomic_fetch_dec(&bs->copy_on_read);
134 assert(old >= 1);
137 /* Check if any requests are in-flight (including throttled requests) */
138 bool bdrv_requests_pending(BlockDriverState *bs)
140 BdrvChild *child;
142 if (atomic_read(&bs->in_flight)) {
143 return true;
146 QLIST_FOREACH(child, &bs->children, next) {
147 if (bdrv_requests_pending(child->bs)) {
148 return true;
152 return false;
155 typedef struct {
156 Coroutine *co;
157 BlockDriverState *bs;
158 bool done;
159 bool begin;
160 } BdrvCoDrainData;
162 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
164 BdrvCoDrainData *data = opaque;
165 BlockDriverState *bs = data->bs;
167 if (data->begin) {
168 bs->drv->bdrv_co_drain_begin(bs);
169 } else {
170 bs->drv->bdrv_co_drain_end(bs);
173 /* Set data->done before reading bs->wakeup. */
174 atomic_mb_set(&data->done, true);
175 bdrv_wakeup(bs);
178 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin)
180 BdrvCoDrainData data = { .bs = bs, .done = false, .begin = begin};
182 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
183 (!begin && !bs->drv->bdrv_co_drain_end)) {
184 return;
187 data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data);
188 bdrv_coroutine_enter(bs, data.co);
189 BDRV_POLL_WHILE(bs, !data.done);
192 static bool bdrv_drain_recurse(BlockDriverState *bs, bool begin)
194 BdrvChild *child, *tmp;
195 bool waited;
197 /* Ensure any pending metadata writes are submitted to bs->file. */
198 bdrv_drain_invoke(bs, begin);
200 /* Wait for drained requests to finish */
201 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
203 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
204 BlockDriverState *bs = child->bs;
205 bool in_main_loop =
206 qemu_get_current_aio_context() == qemu_get_aio_context();
207 assert(bs->refcnt > 0);
208 if (in_main_loop) {
209 /* In case the recursive bdrv_drain_recurse processes a
210 * block_job_defer_to_main_loop BH and modifies the graph,
211 * let's hold a reference to bs until we are done.
213 * IOThread doesn't have such a BH, and it is not safe to call
214 * bdrv_unref without BQL, so skip doing it there.
216 bdrv_ref(bs);
218 waited |= bdrv_drain_recurse(bs, begin);
219 if (in_main_loop) {
220 bdrv_unref(bs);
224 return waited;
227 static void bdrv_co_drain_bh_cb(void *opaque)
229 BdrvCoDrainData *data = opaque;
230 Coroutine *co = data->co;
231 BlockDriverState *bs = data->bs;
233 bdrv_dec_in_flight(bs);
234 if (data->begin) {
235 bdrv_drained_begin(bs);
236 } else {
237 bdrv_drained_end(bs);
240 data->done = true;
241 aio_co_wake(co);
244 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
245 bool begin)
247 BdrvCoDrainData data;
249 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
250 * other coroutines run if they were queued from
251 * qemu_co_queue_run_restart(). */
253 assert(qemu_in_coroutine());
254 data = (BdrvCoDrainData) {
255 .co = qemu_coroutine_self(),
256 .bs = bs,
257 .done = false,
258 .begin = begin,
260 bdrv_inc_in_flight(bs);
261 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
262 bdrv_co_drain_bh_cb, &data);
264 qemu_coroutine_yield();
265 /* If we are resumed from some other event (such as an aio completion or a
266 * timer callback), it is a bug in the caller that should be fixed. */
267 assert(data.done);
270 void bdrv_drained_begin(BlockDriverState *bs)
272 if (qemu_in_coroutine()) {
273 bdrv_co_yield_to_drain(bs, true);
274 return;
277 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
278 aio_disable_external(bdrv_get_aio_context(bs));
279 bdrv_parent_drained_begin(bs);
282 bdrv_drain_recurse(bs, true);
285 void bdrv_drained_end(BlockDriverState *bs)
287 if (qemu_in_coroutine()) {
288 bdrv_co_yield_to_drain(bs, false);
289 return;
291 assert(bs->quiesce_counter > 0);
292 if (atomic_fetch_dec(&bs->quiesce_counter) > 1) {
293 return;
296 bdrv_parent_drained_end(bs);
297 bdrv_drain_recurse(bs, false);
298 aio_enable_external(bdrv_get_aio_context(bs));
302 * Wait for pending requests to complete on a single BlockDriverState subtree,
303 * and suspend block driver's internal I/O until next request arrives.
305 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
306 * AioContext.
308 * Only this BlockDriverState's AioContext is run, so in-flight requests must
309 * not depend on events in other AioContexts. In that case, use
310 * bdrv_drain_all() instead.
312 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
314 assert(qemu_in_coroutine());
315 bdrv_drained_begin(bs);
316 bdrv_drained_end(bs);
319 void bdrv_drain(BlockDriverState *bs)
321 bdrv_drained_begin(bs);
322 bdrv_drained_end(bs);
326 * Wait for pending requests to complete across all BlockDriverStates
328 * This function does not flush data to disk, use bdrv_flush_all() for that
329 * after calling this function.
331 * This pauses all block jobs and disables external clients. It must
332 * be paired with bdrv_drain_all_end().
334 * NOTE: no new block jobs or BlockDriverStates can be created between
335 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
337 void bdrv_drain_all_begin(void)
339 /* Always run first iteration so any pending completion BHs run */
340 bool waited = true;
341 BlockDriverState *bs;
342 BdrvNextIterator it;
343 GSList *aio_ctxs = NULL, *ctx;
345 block_job_pause_all();
347 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
348 AioContext *aio_context = bdrv_get_aio_context(bs);
350 aio_context_acquire(aio_context);
351 bdrv_parent_drained_begin(bs);
352 aio_disable_external(aio_context);
353 aio_context_release(aio_context);
355 if (!g_slist_find(aio_ctxs, aio_context)) {
356 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
360 /* Note that completion of an asynchronous I/O operation can trigger any
361 * number of other I/O operations on other devices---for example a
362 * coroutine can submit an I/O request to another device in response to
363 * request completion. Therefore we must keep looping until there was no
364 * more activity rather than simply draining each device independently.
366 while (waited) {
367 waited = false;
369 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
370 AioContext *aio_context = ctx->data;
372 aio_context_acquire(aio_context);
373 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
374 if (aio_context == bdrv_get_aio_context(bs)) {
375 waited |= bdrv_drain_recurse(bs, true);
378 aio_context_release(aio_context);
382 g_slist_free(aio_ctxs);
385 void bdrv_drain_all_end(void)
387 BlockDriverState *bs;
388 BdrvNextIterator it;
390 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
391 AioContext *aio_context = bdrv_get_aio_context(bs);
393 aio_context_acquire(aio_context);
394 aio_enable_external(aio_context);
395 bdrv_parent_drained_end(bs);
396 bdrv_drain_recurse(bs, false);
397 aio_context_release(aio_context);
400 block_job_resume_all();
403 void bdrv_drain_all(void)
405 bdrv_drain_all_begin();
406 bdrv_drain_all_end();
410 * Remove an active request from the tracked requests list
412 * This function should be called when a tracked request is completing.
414 static void tracked_request_end(BdrvTrackedRequest *req)
416 if (req->serialising) {
417 atomic_dec(&req->bs->serialising_in_flight);
420 qemu_co_mutex_lock(&req->bs->reqs_lock);
421 QLIST_REMOVE(req, list);
422 qemu_co_queue_restart_all(&req->wait_queue);
423 qemu_co_mutex_unlock(&req->bs->reqs_lock);
427 * Add an active request to the tracked requests list
429 static void tracked_request_begin(BdrvTrackedRequest *req,
430 BlockDriverState *bs,
431 int64_t offset,
432 unsigned int bytes,
433 enum BdrvTrackedRequestType type)
435 *req = (BdrvTrackedRequest){
436 .bs = bs,
437 .offset = offset,
438 .bytes = bytes,
439 .type = type,
440 .co = qemu_coroutine_self(),
441 .serialising = false,
442 .overlap_offset = offset,
443 .overlap_bytes = bytes,
446 qemu_co_queue_init(&req->wait_queue);
448 qemu_co_mutex_lock(&bs->reqs_lock);
449 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
450 qemu_co_mutex_unlock(&bs->reqs_lock);
453 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
455 int64_t overlap_offset = req->offset & ~(align - 1);
456 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
457 - overlap_offset;
459 if (!req->serialising) {
460 atomic_inc(&req->bs->serialising_in_flight);
461 req->serialising = true;
464 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
465 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
469 * Round a region to cluster boundaries
471 void bdrv_round_to_clusters(BlockDriverState *bs,
472 int64_t offset, int64_t bytes,
473 int64_t *cluster_offset,
474 int64_t *cluster_bytes)
476 BlockDriverInfo bdi;
478 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
479 *cluster_offset = offset;
480 *cluster_bytes = bytes;
481 } else {
482 int64_t c = bdi.cluster_size;
483 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
484 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
488 static int bdrv_get_cluster_size(BlockDriverState *bs)
490 BlockDriverInfo bdi;
491 int ret;
493 ret = bdrv_get_info(bs, &bdi);
494 if (ret < 0 || bdi.cluster_size == 0) {
495 return bs->bl.request_alignment;
496 } else {
497 return bdi.cluster_size;
501 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
502 int64_t offset, unsigned int bytes)
504 /* aaaa bbbb */
505 if (offset >= req->overlap_offset + req->overlap_bytes) {
506 return false;
508 /* bbbb aaaa */
509 if (req->overlap_offset >= offset + bytes) {
510 return false;
512 return true;
515 void bdrv_inc_in_flight(BlockDriverState *bs)
517 atomic_inc(&bs->in_flight);
520 static void dummy_bh_cb(void *opaque)
524 void bdrv_wakeup(BlockDriverState *bs)
526 /* The barrier (or an atomic op) is in the caller. */
527 if (atomic_read(&bs->wakeup)) {
528 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
532 void bdrv_dec_in_flight(BlockDriverState *bs)
534 atomic_dec(&bs->in_flight);
535 bdrv_wakeup(bs);
538 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
540 BlockDriverState *bs = self->bs;
541 BdrvTrackedRequest *req;
542 bool retry;
543 bool waited = false;
545 if (!atomic_read(&bs->serialising_in_flight)) {
546 return false;
549 do {
550 retry = false;
551 qemu_co_mutex_lock(&bs->reqs_lock);
552 QLIST_FOREACH(req, &bs->tracked_requests, list) {
553 if (req == self || (!req->serialising && !self->serialising)) {
554 continue;
556 if (tracked_request_overlaps(req, self->overlap_offset,
557 self->overlap_bytes))
559 /* Hitting this means there was a reentrant request, for
560 * example, a block driver issuing nested requests. This must
561 * never happen since it means deadlock.
563 assert(qemu_coroutine_self() != req->co);
565 /* If the request is already (indirectly) waiting for us, or
566 * will wait for us as soon as it wakes up, then just go on
567 * (instead of producing a deadlock in the former case). */
568 if (!req->waiting_for) {
569 self->waiting_for = req;
570 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
571 self->waiting_for = NULL;
572 retry = true;
573 waited = true;
574 break;
578 qemu_co_mutex_unlock(&bs->reqs_lock);
579 } while (retry);
581 return waited;
584 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
585 size_t size)
587 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
588 return -EIO;
591 if (!bdrv_is_inserted(bs)) {
592 return -ENOMEDIUM;
595 if (offset < 0) {
596 return -EIO;
599 return 0;
602 typedef struct RwCo {
603 BdrvChild *child;
604 int64_t offset;
605 QEMUIOVector *qiov;
606 bool is_write;
607 int ret;
608 BdrvRequestFlags flags;
609 } RwCo;
611 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
613 RwCo *rwco = opaque;
615 if (!rwco->is_write) {
616 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
617 rwco->qiov->size, rwco->qiov,
618 rwco->flags);
619 } else {
620 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
621 rwco->qiov->size, rwco->qiov,
622 rwco->flags);
627 * Process a vectored synchronous request using coroutines
629 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
630 QEMUIOVector *qiov, bool is_write,
631 BdrvRequestFlags flags)
633 Coroutine *co;
634 RwCo rwco = {
635 .child = child,
636 .offset = offset,
637 .qiov = qiov,
638 .is_write = is_write,
639 .ret = NOT_DONE,
640 .flags = flags,
643 if (qemu_in_coroutine()) {
644 /* Fast-path if already in coroutine context */
645 bdrv_rw_co_entry(&rwco);
646 } else {
647 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
648 bdrv_coroutine_enter(child->bs, co);
649 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
651 return rwco.ret;
655 * Process a synchronous request using coroutines
657 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
658 int nb_sectors, bool is_write, BdrvRequestFlags flags)
660 QEMUIOVector qiov;
661 struct iovec iov = {
662 .iov_base = (void *)buf,
663 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
666 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
667 return -EINVAL;
670 qemu_iovec_init_external(&qiov, &iov, 1);
671 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
672 &qiov, is_write, flags);
675 /* return < 0 if error. See bdrv_write() for the return codes */
676 int bdrv_read(BdrvChild *child, int64_t sector_num,
677 uint8_t *buf, int nb_sectors)
679 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
682 /* Return < 0 if error. Important errors are:
683 -EIO generic I/O error (may happen for all errors)
684 -ENOMEDIUM No media inserted.
685 -EINVAL Invalid sector number or nb_sectors
686 -EACCES Trying to write a read-only device
688 int bdrv_write(BdrvChild *child, int64_t sector_num,
689 const uint8_t *buf, int nb_sectors)
691 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
694 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
695 int bytes, BdrvRequestFlags flags)
697 QEMUIOVector qiov;
698 struct iovec iov = {
699 .iov_base = NULL,
700 .iov_len = bytes,
703 qemu_iovec_init_external(&qiov, &iov, 1);
704 return bdrv_prwv_co(child, offset, &qiov, true,
705 BDRV_REQ_ZERO_WRITE | flags);
709 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
710 * The operation is sped up by checking the block status and only writing
711 * zeroes to the device if they currently do not return zeroes. Optional
712 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
713 * BDRV_REQ_FUA).
715 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
717 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
719 int ret;
720 int64_t target_size, bytes, offset = 0;
721 BlockDriverState *bs = child->bs;
723 target_size = bdrv_getlength(bs);
724 if (target_size < 0) {
725 return target_size;
728 for (;;) {
729 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
730 if (bytes <= 0) {
731 return 0;
733 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
734 if (ret < 0) {
735 error_report("error getting block status at offset %" PRId64 ": %s",
736 offset, strerror(-ret));
737 return ret;
739 if (ret & BDRV_BLOCK_ZERO) {
740 offset += bytes;
741 continue;
743 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
744 if (ret < 0) {
745 error_report("error writing zeroes at offset %" PRId64 ": %s",
746 offset, strerror(-ret));
747 return ret;
749 offset += bytes;
753 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
755 int ret;
757 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
758 if (ret < 0) {
759 return ret;
762 return qiov->size;
765 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
767 QEMUIOVector qiov;
768 struct iovec iov = {
769 .iov_base = (void *)buf,
770 .iov_len = bytes,
773 if (bytes < 0) {
774 return -EINVAL;
777 qemu_iovec_init_external(&qiov, &iov, 1);
778 return bdrv_preadv(child, offset, &qiov);
781 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
783 int ret;
785 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
786 if (ret < 0) {
787 return ret;
790 return qiov->size;
793 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
795 QEMUIOVector qiov;
796 struct iovec iov = {
797 .iov_base = (void *) buf,
798 .iov_len = bytes,
801 if (bytes < 0) {
802 return -EINVAL;
805 qemu_iovec_init_external(&qiov, &iov, 1);
806 return bdrv_pwritev(child, offset, &qiov);
810 * Writes to the file and ensures that no writes are reordered across this
811 * request (acts as a barrier)
813 * Returns 0 on success, -errno in error cases.
815 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
816 const void *buf, int count)
818 int ret;
820 ret = bdrv_pwrite(child, offset, buf, count);
821 if (ret < 0) {
822 return ret;
825 ret = bdrv_flush(child->bs);
826 if (ret < 0) {
827 return ret;
830 return 0;
833 typedef struct CoroutineIOCompletion {
834 Coroutine *coroutine;
835 int ret;
836 } CoroutineIOCompletion;
838 static void bdrv_co_io_em_complete(void *opaque, int ret)
840 CoroutineIOCompletion *co = opaque;
842 co->ret = ret;
843 aio_co_wake(co->coroutine);
846 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
847 uint64_t offset, uint64_t bytes,
848 QEMUIOVector *qiov, int flags)
850 BlockDriver *drv = bs->drv;
851 int64_t sector_num;
852 unsigned int nb_sectors;
854 assert(!(flags & ~BDRV_REQ_MASK));
856 if (!drv) {
857 return -ENOMEDIUM;
860 if (drv->bdrv_co_preadv) {
861 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
864 sector_num = offset >> BDRV_SECTOR_BITS;
865 nb_sectors = bytes >> BDRV_SECTOR_BITS;
867 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
868 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
869 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
871 if (drv->bdrv_co_readv) {
872 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
873 } else {
874 BlockAIOCB *acb;
875 CoroutineIOCompletion co = {
876 .coroutine = qemu_coroutine_self(),
879 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
880 bdrv_co_io_em_complete, &co);
881 if (acb == NULL) {
882 return -EIO;
883 } else {
884 qemu_coroutine_yield();
885 return co.ret;
890 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
891 uint64_t offset, uint64_t bytes,
892 QEMUIOVector *qiov, int flags)
894 BlockDriver *drv = bs->drv;
895 int64_t sector_num;
896 unsigned int nb_sectors;
897 int ret;
899 assert(!(flags & ~BDRV_REQ_MASK));
901 if (!drv) {
902 return -ENOMEDIUM;
905 if (drv->bdrv_co_pwritev) {
906 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
907 flags & bs->supported_write_flags);
908 flags &= ~bs->supported_write_flags;
909 goto emulate_flags;
912 sector_num = offset >> BDRV_SECTOR_BITS;
913 nb_sectors = bytes >> BDRV_SECTOR_BITS;
915 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
916 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
917 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
919 if (drv->bdrv_co_writev_flags) {
920 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
921 flags & bs->supported_write_flags);
922 flags &= ~bs->supported_write_flags;
923 } else if (drv->bdrv_co_writev) {
924 assert(!bs->supported_write_flags);
925 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
926 } else {
927 BlockAIOCB *acb;
928 CoroutineIOCompletion co = {
929 .coroutine = qemu_coroutine_self(),
932 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
933 bdrv_co_io_em_complete, &co);
934 if (acb == NULL) {
935 ret = -EIO;
936 } else {
937 qemu_coroutine_yield();
938 ret = co.ret;
942 emulate_flags:
943 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
944 ret = bdrv_co_flush(bs);
947 return ret;
950 static int coroutine_fn
951 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
952 uint64_t bytes, QEMUIOVector *qiov)
954 BlockDriver *drv = bs->drv;
956 if (!drv) {
957 return -ENOMEDIUM;
960 if (!drv->bdrv_co_pwritev_compressed) {
961 return -ENOTSUP;
964 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
967 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
968 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
970 BlockDriverState *bs = child->bs;
972 /* Perform I/O through a temporary buffer so that users who scribble over
973 * their read buffer while the operation is in progress do not end up
974 * modifying the image file. This is critical for zero-copy guest I/O
975 * where anything might happen inside guest memory.
977 void *bounce_buffer;
979 BlockDriver *drv = bs->drv;
980 struct iovec iov;
981 QEMUIOVector local_qiov;
982 int64_t cluster_offset;
983 int64_t cluster_bytes;
984 size_t skip_bytes;
985 int ret;
986 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
987 BDRV_REQUEST_MAX_BYTES);
988 unsigned int progress = 0;
990 if (!drv) {
991 return -ENOMEDIUM;
994 /* FIXME We cannot require callers to have write permissions when all they
995 * are doing is a read request. If we did things right, write permissions
996 * would be obtained anyway, but internally by the copy-on-read code. As
997 * long as it is implemented here rather than in a separate filter driver,
998 * the copy-on-read code doesn't have its own BdrvChild, however, for which
999 * it could request permissions. Therefore we have to bypass the permission
1000 * system for the moment. */
1001 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1003 /* Cover entire cluster so no additional backing file I/O is required when
1004 * allocating cluster in the image file. Note that this value may exceed
1005 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1006 * is one reason we loop rather than doing it all at once.
1008 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1009 skip_bytes = offset - cluster_offset;
1011 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1012 cluster_offset, cluster_bytes);
1014 bounce_buffer = qemu_try_blockalign(bs,
1015 MIN(MIN(max_transfer, cluster_bytes),
1016 MAX_BOUNCE_BUFFER));
1017 if (bounce_buffer == NULL) {
1018 ret = -ENOMEM;
1019 goto err;
1022 while (cluster_bytes) {
1023 int64_t pnum;
1025 ret = bdrv_is_allocated(bs, cluster_offset,
1026 MIN(cluster_bytes, max_transfer), &pnum);
1027 if (ret < 0) {
1028 /* Safe to treat errors in querying allocation as if
1029 * unallocated; we'll probably fail again soon on the
1030 * read, but at least that will set a decent errno.
1032 pnum = MIN(cluster_bytes, max_transfer);
1035 assert(skip_bytes < pnum);
1037 if (ret <= 0) {
1038 /* Must copy-on-read; use the bounce buffer */
1039 iov.iov_base = bounce_buffer;
1040 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1041 qemu_iovec_init_external(&local_qiov, &iov, 1);
1043 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1044 &local_qiov, 0);
1045 if (ret < 0) {
1046 goto err;
1049 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1050 if (drv->bdrv_co_pwrite_zeroes &&
1051 buffer_is_zero(bounce_buffer, pnum)) {
1052 /* FIXME: Should we (perhaps conditionally) be setting
1053 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1054 * that still correctly reads as zero? */
1055 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 0);
1056 } else {
1057 /* This does not change the data on the disk, it is not
1058 * necessary to flush even in cache=writethrough mode.
1060 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1061 &local_qiov, 0);
1064 if (ret < 0) {
1065 /* It might be okay to ignore write errors for guest
1066 * requests. If this is a deliberate copy-on-read
1067 * then we don't want to ignore the error. Simply
1068 * report it in all cases.
1070 goto err;
1073 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1074 pnum - skip_bytes);
1075 } else {
1076 /* Read directly into the destination */
1077 qemu_iovec_init(&local_qiov, qiov->niov);
1078 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1079 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1080 &local_qiov, 0);
1081 qemu_iovec_destroy(&local_qiov);
1082 if (ret < 0) {
1083 goto err;
1087 cluster_offset += pnum;
1088 cluster_bytes -= pnum;
1089 progress += pnum - skip_bytes;
1090 skip_bytes = 0;
1092 ret = 0;
1094 err:
1095 qemu_vfree(bounce_buffer);
1096 return ret;
1100 * Forwards an already correctly aligned request to the BlockDriver. This
1101 * handles copy on read, zeroing after EOF, and fragmentation of large
1102 * reads; any other features must be implemented by the caller.
1104 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1105 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1106 int64_t align, QEMUIOVector *qiov, int flags)
1108 BlockDriverState *bs = child->bs;
1109 int64_t total_bytes, max_bytes;
1110 int ret = 0;
1111 uint64_t bytes_remaining = bytes;
1112 int max_transfer;
1114 assert(is_power_of_2(align));
1115 assert((offset & (align - 1)) == 0);
1116 assert((bytes & (align - 1)) == 0);
1117 assert(!qiov || bytes == qiov->size);
1118 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1119 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1120 align);
1122 /* TODO: We would need a per-BDS .supported_read_flags and
1123 * potential fallback support, if we ever implement any read flags
1124 * to pass through to drivers. For now, there aren't any
1125 * passthrough flags. */
1126 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1128 /* Handle Copy on Read and associated serialisation */
1129 if (flags & BDRV_REQ_COPY_ON_READ) {
1130 /* If we touch the same cluster it counts as an overlap. This
1131 * guarantees that allocating writes will be serialized and not race
1132 * with each other for the same cluster. For example, in copy-on-read
1133 * it ensures that the CoR read and write operations are atomic and
1134 * guest writes cannot interleave between them. */
1135 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1138 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1139 wait_serialising_requests(req);
1142 if (flags & BDRV_REQ_COPY_ON_READ) {
1143 int64_t pnum;
1145 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1146 if (ret < 0) {
1147 goto out;
1150 if (!ret || pnum != bytes) {
1151 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1152 goto out;
1156 /* Forward the request to the BlockDriver, possibly fragmenting it */
1157 total_bytes = bdrv_getlength(bs);
1158 if (total_bytes < 0) {
1159 ret = total_bytes;
1160 goto out;
1163 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1164 if (bytes <= max_bytes && bytes <= max_transfer) {
1165 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1166 goto out;
1169 while (bytes_remaining) {
1170 int num;
1172 if (max_bytes) {
1173 QEMUIOVector local_qiov;
1175 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1176 assert(num);
1177 qemu_iovec_init(&local_qiov, qiov->niov);
1178 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1180 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1181 num, &local_qiov, 0);
1182 max_bytes -= num;
1183 qemu_iovec_destroy(&local_qiov);
1184 } else {
1185 num = bytes_remaining;
1186 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1187 bytes_remaining);
1189 if (ret < 0) {
1190 goto out;
1192 bytes_remaining -= num;
1195 out:
1196 return ret < 0 ? ret : 0;
1200 * Handle a read request in coroutine context
1202 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1203 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1204 BdrvRequestFlags flags)
1206 BlockDriverState *bs = child->bs;
1207 BlockDriver *drv = bs->drv;
1208 BdrvTrackedRequest req;
1210 uint64_t align = bs->bl.request_alignment;
1211 uint8_t *head_buf = NULL;
1212 uint8_t *tail_buf = NULL;
1213 QEMUIOVector local_qiov;
1214 bool use_local_qiov = false;
1215 int ret;
1217 trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1219 if (!drv) {
1220 return -ENOMEDIUM;
1223 ret = bdrv_check_byte_request(bs, offset, bytes);
1224 if (ret < 0) {
1225 return ret;
1228 bdrv_inc_in_flight(bs);
1230 /* Don't do copy-on-read if we read data before write operation */
1231 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1232 flags |= BDRV_REQ_COPY_ON_READ;
1235 /* Align read if necessary by padding qiov */
1236 if (offset & (align - 1)) {
1237 head_buf = qemu_blockalign(bs, align);
1238 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1239 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1240 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1241 use_local_qiov = true;
1243 bytes += offset & (align - 1);
1244 offset = offset & ~(align - 1);
1247 if ((offset + bytes) & (align - 1)) {
1248 if (!use_local_qiov) {
1249 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1250 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1251 use_local_qiov = true;
1253 tail_buf = qemu_blockalign(bs, align);
1254 qemu_iovec_add(&local_qiov, tail_buf,
1255 align - ((offset + bytes) & (align - 1)));
1257 bytes = ROUND_UP(bytes, align);
1260 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1261 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1262 use_local_qiov ? &local_qiov : qiov,
1263 flags);
1264 tracked_request_end(&req);
1265 bdrv_dec_in_flight(bs);
1267 if (use_local_qiov) {
1268 qemu_iovec_destroy(&local_qiov);
1269 qemu_vfree(head_buf);
1270 qemu_vfree(tail_buf);
1273 return ret;
1276 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1277 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1278 BdrvRequestFlags flags)
1280 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1281 return -EINVAL;
1284 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1285 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1288 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1289 int nb_sectors, QEMUIOVector *qiov)
1291 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1294 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1295 int64_t offset, int bytes, BdrvRequestFlags flags)
1297 BlockDriver *drv = bs->drv;
1298 QEMUIOVector qiov;
1299 struct iovec iov = {0};
1300 int ret = 0;
1301 bool need_flush = false;
1302 int head = 0;
1303 int tail = 0;
1305 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1306 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1307 bs->bl.request_alignment);
1308 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1310 if (!drv) {
1311 return -ENOMEDIUM;
1314 assert(alignment % bs->bl.request_alignment == 0);
1315 head = offset % alignment;
1316 tail = (offset + bytes) % alignment;
1317 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1318 assert(max_write_zeroes >= bs->bl.request_alignment);
1320 while (bytes > 0 && !ret) {
1321 int num = bytes;
1323 /* Align request. Block drivers can expect the "bulk" of the request
1324 * to be aligned, and that unaligned requests do not cross cluster
1325 * boundaries.
1327 if (head) {
1328 /* Make a small request up to the first aligned sector. For
1329 * convenience, limit this request to max_transfer even if
1330 * we don't need to fall back to writes. */
1331 num = MIN(MIN(bytes, max_transfer), alignment - head);
1332 head = (head + num) % alignment;
1333 assert(num < max_write_zeroes);
1334 } else if (tail && num > alignment) {
1335 /* Shorten the request to the last aligned sector. */
1336 num -= tail;
1339 /* limit request size */
1340 if (num > max_write_zeroes) {
1341 num = max_write_zeroes;
1344 ret = -ENOTSUP;
1345 /* First try the efficient write zeroes operation */
1346 if (drv->bdrv_co_pwrite_zeroes) {
1347 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1348 flags & bs->supported_zero_flags);
1349 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1350 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1351 need_flush = true;
1353 } else {
1354 assert(!bs->supported_zero_flags);
1357 if (ret == -ENOTSUP) {
1358 /* Fall back to bounce buffer if write zeroes is unsupported */
1359 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1361 if ((flags & BDRV_REQ_FUA) &&
1362 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1363 /* No need for bdrv_driver_pwrite() to do a fallback
1364 * flush on each chunk; use just one at the end */
1365 write_flags &= ~BDRV_REQ_FUA;
1366 need_flush = true;
1368 num = MIN(num, max_transfer);
1369 iov.iov_len = num;
1370 if (iov.iov_base == NULL) {
1371 iov.iov_base = qemu_try_blockalign(bs, num);
1372 if (iov.iov_base == NULL) {
1373 ret = -ENOMEM;
1374 goto fail;
1376 memset(iov.iov_base, 0, num);
1378 qemu_iovec_init_external(&qiov, &iov, 1);
1380 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1382 /* Keep bounce buffer around if it is big enough for all
1383 * all future requests.
1385 if (num < max_transfer) {
1386 qemu_vfree(iov.iov_base);
1387 iov.iov_base = NULL;
1391 offset += num;
1392 bytes -= num;
1395 fail:
1396 if (ret == 0 && need_flush) {
1397 ret = bdrv_co_flush(bs);
1399 qemu_vfree(iov.iov_base);
1400 return ret;
1404 * Forwards an already correctly aligned write request to the BlockDriver,
1405 * after possibly fragmenting it.
1407 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1408 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1409 int64_t align, QEMUIOVector *qiov, int flags)
1411 BlockDriverState *bs = child->bs;
1412 BlockDriver *drv = bs->drv;
1413 bool waited;
1414 int ret;
1416 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1417 uint64_t bytes_remaining = bytes;
1418 int max_transfer;
1420 if (!drv) {
1421 return -ENOMEDIUM;
1424 if (bdrv_has_readonly_bitmaps(bs)) {
1425 return -EPERM;
1428 assert(is_power_of_2(align));
1429 assert((offset & (align - 1)) == 0);
1430 assert((bytes & (align - 1)) == 0);
1431 assert(!qiov || bytes == qiov->size);
1432 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1433 assert(!(flags & ~BDRV_REQ_MASK));
1434 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1435 align);
1437 waited = wait_serialising_requests(req);
1438 assert(!waited || !req->serialising);
1439 assert(req->overlap_offset <= offset);
1440 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1441 assert(child->perm & BLK_PERM_WRITE);
1442 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1444 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1446 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1447 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1448 qemu_iovec_is_zero(qiov)) {
1449 flags |= BDRV_REQ_ZERO_WRITE;
1450 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1451 flags |= BDRV_REQ_MAY_UNMAP;
1455 if (ret < 0) {
1456 /* Do nothing, write notifier decided to fail this request */
1457 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1458 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1459 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1460 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1461 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1462 } else if (bytes <= max_transfer) {
1463 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1464 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1465 } else {
1466 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1467 while (bytes_remaining) {
1468 int num = MIN(bytes_remaining, max_transfer);
1469 QEMUIOVector local_qiov;
1470 int local_flags = flags;
1472 assert(num);
1473 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1474 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1475 /* If FUA is going to be emulated by flush, we only
1476 * need to flush on the last iteration */
1477 local_flags &= ~BDRV_REQ_FUA;
1479 qemu_iovec_init(&local_qiov, qiov->niov);
1480 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1482 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1483 num, &local_qiov, local_flags);
1484 qemu_iovec_destroy(&local_qiov);
1485 if (ret < 0) {
1486 break;
1488 bytes_remaining -= num;
1491 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1493 atomic_inc(&bs->write_gen);
1494 bdrv_set_dirty(bs, offset, bytes);
1496 stat64_max(&bs->wr_highest_offset, offset + bytes);
1498 if (ret >= 0) {
1499 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1500 ret = 0;
1503 return ret;
1506 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1507 int64_t offset,
1508 unsigned int bytes,
1509 BdrvRequestFlags flags,
1510 BdrvTrackedRequest *req)
1512 BlockDriverState *bs = child->bs;
1513 uint8_t *buf = NULL;
1514 QEMUIOVector local_qiov;
1515 struct iovec iov;
1516 uint64_t align = bs->bl.request_alignment;
1517 unsigned int head_padding_bytes, tail_padding_bytes;
1518 int ret = 0;
1520 head_padding_bytes = offset & (align - 1);
1521 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1524 assert(flags & BDRV_REQ_ZERO_WRITE);
1525 if (head_padding_bytes || tail_padding_bytes) {
1526 buf = qemu_blockalign(bs, align);
1527 iov = (struct iovec) {
1528 .iov_base = buf,
1529 .iov_len = align,
1531 qemu_iovec_init_external(&local_qiov, &iov, 1);
1533 if (head_padding_bytes) {
1534 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1536 /* RMW the unaligned part before head. */
1537 mark_request_serialising(req, align);
1538 wait_serialising_requests(req);
1539 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1540 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1541 align, &local_qiov, 0);
1542 if (ret < 0) {
1543 goto fail;
1545 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1547 memset(buf + head_padding_bytes, 0, zero_bytes);
1548 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1549 align, &local_qiov,
1550 flags & ~BDRV_REQ_ZERO_WRITE);
1551 if (ret < 0) {
1552 goto fail;
1554 offset += zero_bytes;
1555 bytes -= zero_bytes;
1558 assert(!bytes || (offset & (align - 1)) == 0);
1559 if (bytes >= align) {
1560 /* Write the aligned part in the middle. */
1561 uint64_t aligned_bytes = bytes & ~(align - 1);
1562 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1563 NULL, flags);
1564 if (ret < 0) {
1565 goto fail;
1567 bytes -= aligned_bytes;
1568 offset += aligned_bytes;
1571 assert(!bytes || (offset & (align - 1)) == 0);
1572 if (bytes) {
1573 assert(align == tail_padding_bytes + bytes);
1574 /* RMW the unaligned part after tail. */
1575 mark_request_serialising(req, align);
1576 wait_serialising_requests(req);
1577 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1578 ret = bdrv_aligned_preadv(child, req, offset, align,
1579 align, &local_qiov, 0);
1580 if (ret < 0) {
1581 goto fail;
1583 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1585 memset(buf, 0, bytes);
1586 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1587 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1589 fail:
1590 qemu_vfree(buf);
1591 return ret;
1596 * Handle a write request in coroutine context
1598 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1599 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1600 BdrvRequestFlags flags)
1602 BlockDriverState *bs = child->bs;
1603 BdrvTrackedRequest req;
1604 uint64_t align = bs->bl.request_alignment;
1605 uint8_t *head_buf = NULL;
1606 uint8_t *tail_buf = NULL;
1607 QEMUIOVector local_qiov;
1608 bool use_local_qiov = false;
1609 int ret;
1611 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1613 if (!bs->drv) {
1614 return -ENOMEDIUM;
1616 if (bs->read_only) {
1617 return -EPERM;
1619 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1621 ret = bdrv_check_byte_request(bs, offset, bytes);
1622 if (ret < 0) {
1623 return ret;
1626 bdrv_inc_in_flight(bs);
1628 * Align write if necessary by performing a read-modify-write cycle.
1629 * Pad qiov with the read parts and be sure to have a tracked request not
1630 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1632 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1634 if (!qiov) {
1635 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1636 goto out;
1639 if (offset & (align - 1)) {
1640 QEMUIOVector head_qiov;
1641 struct iovec head_iov;
1643 mark_request_serialising(&req, align);
1644 wait_serialising_requests(&req);
1646 head_buf = qemu_blockalign(bs, align);
1647 head_iov = (struct iovec) {
1648 .iov_base = head_buf,
1649 .iov_len = align,
1651 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1653 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1654 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1655 align, &head_qiov, 0);
1656 if (ret < 0) {
1657 goto fail;
1659 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1661 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1662 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1663 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1664 use_local_qiov = true;
1666 bytes += offset & (align - 1);
1667 offset = offset & ~(align - 1);
1669 /* We have read the tail already if the request is smaller
1670 * than one aligned block.
1672 if (bytes < align) {
1673 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1674 bytes = align;
1678 if ((offset + bytes) & (align - 1)) {
1679 QEMUIOVector tail_qiov;
1680 struct iovec tail_iov;
1681 size_t tail_bytes;
1682 bool waited;
1684 mark_request_serialising(&req, align);
1685 waited = wait_serialising_requests(&req);
1686 assert(!waited || !use_local_qiov);
1688 tail_buf = qemu_blockalign(bs, align);
1689 tail_iov = (struct iovec) {
1690 .iov_base = tail_buf,
1691 .iov_len = align,
1693 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1695 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1696 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1697 align, align, &tail_qiov, 0);
1698 if (ret < 0) {
1699 goto fail;
1701 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1703 if (!use_local_qiov) {
1704 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1705 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1706 use_local_qiov = true;
1709 tail_bytes = (offset + bytes) & (align - 1);
1710 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1712 bytes = ROUND_UP(bytes, align);
1715 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1716 use_local_qiov ? &local_qiov : qiov,
1717 flags);
1719 fail:
1721 if (use_local_qiov) {
1722 qemu_iovec_destroy(&local_qiov);
1724 qemu_vfree(head_buf);
1725 qemu_vfree(tail_buf);
1726 out:
1727 tracked_request_end(&req);
1728 bdrv_dec_in_flight(bs);
1729 return ret;
1732 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1733 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1734 BdrvRequestFlags flags)
1736 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1737 return -EINVAL;
1740 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1741 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1744 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1745 int nb_sectors, QEMUIOVector *qiov)
1747 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1750 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1751 int bytes, BdrvRequestFlags flags)
1753 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1755 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1756 flags &= ~BDRV_REQ_MAY_UNMAP;
1759 return bdrv_co_pwritev(child, offset, bytes, NULL,
1760 BDRV_REQ_ZERO_WRITE | flags);
1764 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1766 int bdrv_flush_all(void)
1768 BdrvNextIterator it;
1769 BlockDriverState *bs = NULL;
1770 int result = 0;
1772 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1773 AioContext *aio_context = bdrv_get_aio_context(bs);
1774 int ret;
1776 aio_context_acquire(aio_context);
1777 ret = bdrv_flush(bs);
1778 if (ret < 0 && !result) {
1779 result = ret;
1781 aio_context_release(aio_context);
1784 return result;
1788 typedef struct BdrvCoBlockStatusData {
1789 BlockDriverState *bs;
1790 BlockDriverState *base;
1791 bool want_zero;
1792 int64_t offset;
1793 int64_t bytes;
1794 int64_t *pnum;
1795 int64_t *map;
1796 BlockDriverState **file;
1797 int ret;
1798 bool done;
1799 } BdrvCoBlockStatusData;
1801 int64_t coroutine_fn bdrv_co_get_block_status_from_file(BlockDriverState *bs,
1802 int64_t sector_num,
1803 int nb_sectors,
1804 int *pnum,
1805 BlockDriverState **file)
1807 assert(bs->file && bs->file->bs);
1808 *pnum = nb_sectors;
1809 *file = bs->file->bs;
1810 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID |
1811 (sector_num << BDRV_SECTOR_BITS);
1814 int64_t coroutine_fn bdrv_co_get_block_status_from_backing(BlockDriverState *bs,
1815 int64_t sector_num,
1816 int nb_sectors,
1817 int *pnum,
1818 BlockDriverState **file)
1820 assert(bs->backing && bs->backing->bs);
1821 *pnum = nb_sectors;
1822 *file = bs->backing->bs;
1823 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID |
1824 (sector_num << BDRV_SECTOR_BITS);
1828 * Returns the allocation status of the specified sectors.
1829 * Drivers not implementing the functionality are assumed to not support
1830 * backing files, hence all their sectors are reported as allocated.
1832 * If 'want_zero' is true, the caller is querying for mapping purposes,
1833 * and the result should include BDRV_BLOCK_OFFSET_VALID and
1834 * BDRV_BLOCK_ZERO where possible; otherwise, the result may omit those
1835 * bits particularly if it allows for a larger value in 'pnum'.
1837 * If 'offset' is beyond the end of the disk image the return value is
1838 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1840 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
1841 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1842 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1844 * 'pnum' is set to the number of bytes (including and immediately
1845 * following the specified offset) that are easily known to be in the
1846 * same allocated/unallocated state. Note that a second call starting
1847 * at the original offset plus returned pnum may have the same status.
1848 * The returned value is non-zero on success except at end-of-file.
1850 * Returns negative errno on failure. Otherwise, if the
1851 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
1852 * set to the host mapping and BDS corresponding to the guest offset.
1854 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
1855 bool want_zero,
1856 int64_t offset, int64_t bytes,
1857 int64_t *pnum, int64_t *map,
1858 BlockDriverState **file)
1860 int64_t total_size;
1861 int64_t n; /* bytes */
1862 int ret;
1863 int64_t local_map = 0;
1864 BlockDriverState *local_file = NULL;
1865 int64_t aligned_offset, aligned_bytes;
1866 uint32_t align;
1868 assert(pnum);
1869 *pnum = 0;
1870 total_size = bdrv_getlength(bs);
1871 if (total_size < 0) {
1872 ret = total_size;
1873 goto early_out;
1876 if (offset >= total_size) {
1877 ret = BDRV_BLOCK_EOF;
1878 goto early_out;
1880 if (!bytes) {
1881 ret = 0;
1882 goto early_out;
1885 n = total_size - offset;
1886 if (n < bytes) {
1887 bytes = n;
1890 /* Must be non-NULL or bdrv_getlength() would have failed */
1891 assert(bs->drv);
1892 if (!bs->drv->bdrv_co_get_block_status) {
1893 *pnum = bytes;
1894 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1895 if (offset + bytes == total_size) {
1896 ret |= BDRV_BLOCK_EOF;
1898 if (bs->drv->protocol_name) {
1899 ret |= BDRV_BLOCK_OFFSET_VALID;
1900 local_map = offset;
1901 local_file = bs;
1903 goto early_out;
1906 bdrv_inc_in_flight(bs);
1908 /* Round out to request_alignment boundaries */
1909 /* TODO: until we have a byte-based driver callback, we also have to
1910 * round out to sectors, even if that is bigger than request_alignment */
1911 align = MAX(bs->bl.request_alignment, BDRV_SECTOR_SIZE);
1912 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
1913 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
1916 int count; /* sectors */
1917 int64_t longret;
1919 assert(QEMU_IS_ALIGNED(aligned_offset | aligned_bytes,
1920 BDRV_SECTOR_SIZE));
1922 * The contract allows us to return pnum smaller than bytes, even
1923 * if the next query would see the same status; we truncate the
1924 * request to avoid overflowing the driver's 32-bit interface.
1926 longret = bs->drv->bdrv_co_get_block_status(
1927 bs, aligned_offset >> BDRV_SECTOR_BITS,
1928 MIN(INT_MAX, aligned_bytes) >> BDRV_SECTOR_BITS, &count,
1929 &local_file);
1930 if (longret < 0) {
1931 assert(INT_MIN <= longret);
1932 ret = longret;
1933 goto out;
1935 if (longret & BDRV_BLOCK_OFFSET_VALID) {
1936 local_map = longret & BDRV_BLOCK_OFFSET_MASK;
1938 ret = longret & ~BDRV_BLOCK_OFFSET_MASK;
1939 *pnum = count * BDRV_SECTOR_SIZE;
1943 * The driver's result must be a multiple of request_alignment.
1944 * Clamp pnum and adjust map to original request.
1946 assert(QEMU_IS_ALIGNED(*pnum, align) && align > offset - aligned_offset);
1947 *pnum -= offset - aligned_offset;
1948 if (*pnum > bytes) {
1949 *pnum = bytes;
1951 if (ret & BDRV_BLOCK_OFFSET_VALID) {
1952 local_map += offset - aligned_offset;
1955 if (ret & BDRV_BLOCK_RAW) {
1956 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
1957 ret = bdrv_co_block_status(local_file, want_zero, local_map,
1958 *pnum, pnum, &local_map, &local_file);
1959 goto out;
1962 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1963 ret |= BDRV_BLOCK_ALLOCATED;
1964 } else if (want_zero) {
1965 if (bdrv_unallocated_blocks_are_zero(bs)) {
1966 ret |= BDRV_BLOCK_ZERO;
1967 } else if (bs->backing) {
1968 BlockDriverState *bs2 = bs->backing->bs;
1969 int64_t size2 = bdrv_getlength(bs2);
1971 if (size2 >= 0 && offset >= size2) {
1972 ret |= BDRV_BLOCK_ZERO;
1977 if (want_zero && local_file && local_file != bs &&
1978 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1979 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1980 int64_t file_pnum;
1981 int ret2;
1983 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
1984 *pnum, &file_pnum, NULL, NULL);
1985 if (ret2 >= 0) {
1986 /* Ignore errors. This is just providing extra information, it
1987 * is useful but not necessary.
1989 if (ret2 & BDRV_BLOCK_EOF &&
1990 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
1992 * It is valid for the format block driver to read
1993 * beyond the end of the underlying file's current
1994 * size; such areas read as zero.
1996 ret |= BDRV_BLOCK_ZERO;
1997 } else {
1998 /* Limit request to the range reported by the protocol driver */
1999 *pnum = file_pnum;
2000 ret |= (ret2 & BDRV_BLOCK_ZERO);
2005 out:
2006 bdrv_dec_in_flight(bs);
2007 if (ret >= 0 && offset + *pnum == total_size) {
2008 ret |= BDRV_BLOCK_EOF;
2010 early_out:
2011 if (file) {
2012 *file = local_file;
2014 if (map) {
2015 *map = local_map;
2017 return ret;
2020 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2021 BlockDriverState *base,
2022 bool want_zero,
2023 int64_t offset,
2024 int64_t bytes,
2025 int64_t *pnum,
2026 int64_t *map,
2027 BlockDriverState **file)
2029 BlockDriverState *p;
2030 int ret = 0;
2031 bool first = true;
2033 assert(bs != base);
2034 for (p = bs; p != base; p = backing_bs(p)) {
2035 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2036 file);
2037 if (ret < 0) {
2038 break;
2040 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2042 * Reading beyond the end of the file continues to read
2043 * zeroes, but we can only widen the result to the
2044 * unallocated length we learned from an earlier
2045 * iteration.
2047 *pnum = bytes;
2049 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2050 break;
2052 /* [offset, pnum] unallocated on this layer, which could be only
2053 * the first part of [offset, bytes]. */
2054 bytes = MIN(bytes, *pnum);
2055 first = false;
2057 return ret;
2060 /* Coroutine wrapper for bdrv_block_status_above() */
2061 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2063 BdrvCoBlockStatusData *data = opaque;
2065 data->ret = bdrv_co_block_status_above(data->bs, data->base,
2066 data->want_zero,
2067 data->offset, data->bytes,
2068 data->pnum, data->map, data->file);
2069 data->done = true;
2073 * Synchronous wrapper around bdrv_co_block_status_above().
2075 * See bdrv_co_block_status_above() for details.
2077 static int bdrv_common_block_status_above(BlockDriverState *bs,
2078 BlockDriverState *base,
2079 bool want_zero, int64_t offset,
2080 int64_t bytes, int64_t *pnum,
2081 int64_t *map,
2082 BlockDriverState **file)
2084 Coroutine *co;
2085 BdrvCoBlockStatusData data = {
2086 .bs = bs,
2087 .base = base,
2088 .want_zero = want_zero,
2089 .offset = offset,
2090 .bytes = bytes,
2091 .pnum = pnum,
2092 .map = map,
2093 .file = file,
2094 .done = false,
2097 if (qemu_in_coroutine()) {
2098 /* Fast-path if already in coroutine context */
2099 bdrv_block_status_above_co_entry(&data);
2100 } else {
2101 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2102 bdrv_coroutine_enter(bs, co);
2103 BDRV_POLL_WHILE(bs, !data.done);
2105 return data.ret;
2108 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2109 int64_t offset, int64_t bytes, int64_t *pnum,
2110 int64_t *map, BlockDriverState **file)
2112 return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2113 pnum, map, file);
2116 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2117 int64_t *pnum, int64_t *map, BlockDriverState **file)
2119 return bdrv_block_status_above(bs, backing_bs(bs),
2120 offset, bytes, pnum, map, file);
2123 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2124 int64_t bytes, int64_t *pnum)
2126 int ret;
2127 int64_t dummy;
2129 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2130 bytes, pnum ? pnum : &dummy, NULL,
2131 NULL);
2132 if (ret < 0) {
2133 return ret;
2135 return !!(ret & BDRV_BLOCK_ALLOCATED);
2139 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2141 * Return true if (a prefix of) the given range is allocated in any image
2142 * between BASE and TOP (inclusive). BASE can be NULL to check if the given
2143 * offset is allocated in any image of the chain. Return false otherwise,
2144 * or negative errno on failure.
2146 * 'pnum' is set to the number of bytes (including and immediately
2147 * following the specified offset) that are known to be in the same
2148 * allocated/unallocated state. Note that a subsequent call starting
2149 * at 'offset + *pnum' may return the same allocation status (in other
2150 * words, the result is not necessarily the maximum possible range);
2151 * but 'pnum' will only be 0 when end of file is reached.
2154 int bdrv_is_allocated_above(BlockDriverState *top,
2155 BlockDriverState *base,
2156 int64_t offset, int64_t bytes, int64_t *pnum)
2158 BlockDriverState *intermediate;
2159 int ret;
2160 int64_t n = bytes;
2162 intermediate = top;
2163 while (intermediate && intermediate != base) {
2164 int64_t pnum_inter;
2165 int64_t size_inter;
2167 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2168 if (ret < 0) {
2169 return ret;
2171 if (ret) {
2172 *pnum = pnum_inter;
2173 return 1;
2176 size_inter = bdrv_getlength(intermediate);
2177 if (size_inter < 0) {
2178 return size_inter;
2180 if (n > pnum_inter &&
2181 (intermediate == top || offset + pnum_inter < size_inter)) {
2182 n = pnum_inter;
2185 intermediate = backing_bs(intermediate);
2188 *pnum = n;
2189 return 0;
2192 typedef struct BdrvVmstateCo {
2193 BlockDriverState *bs;
2194 QEMUIOVector *qiov;
2195 int64_t pos;
2196 bool is_read;
2197 int ret;
2198 } BdrvVmstateCo;
2200 static int coroutine_fn
2201 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2202 bool is_read)
2204 BlockDriver *drv = bs->drv;
2205 int ret = -ENOTSUP;
2207 bdrv_inc_in_flight(bs);
2209 if (!drv) {
2210 ret = -ENOMEDIUM;
2211 } else if (drv->bdrv_load_vmstate) {
2212 if (is_read) {
2213 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2214 } else {
2215 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2217 } else if (bs->file) {
2218 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2221 bdrv_dec_in_flight(bs);
2222 return ret;
2225 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2227 BdrvVmstateCo *co = opaque;
2228 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2231 static inline int
2232 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2233 bool is_read)
2235 if (qemu_in_coroutine()) {
2236 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2237 } else {
2238 BdrvVmstateCo data = {
2239 .bs = bs,
2240 .qiov = qiov,
2241 .pos = pos,
2242 .is_read = is_read,
2243 .ret = -EINPROGRESS,
2245 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2247 bdrv_coroutine_enter(bs, co);
2248 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2249 return data.ret;
2253 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2254 int64_t pos, int size)
2256 QEMUIOVector qiov;
2257 struct iovec iov = {
2258 .iov_base = (void *) buf,
2259 .iov_len = size,
2261 int ret;
2263 qemu_iovec_init_external(&qiov, &iov, 1);
2265 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2266 if (ret < 0) {
2267 return ret;
2270 return size;
2273 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2275 return bdrv_rw_vmstate(bs, qiov, pos, false);
2278 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2279 int64_t pos, int size)
2281 QEMUIOVector qiov;
2282 struct iovec iov = {
2283 .iov_base = buf,
2284 .iov_len = size,
2286 int ret;
2288 qemu_iovec_init_external(&qiov, &iov, 1);
2289 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2290 if (ret < 0) {
2291 return ret;
2294 return size;
2297 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2299 return bdrv_rw_vmstate(bs, qiov, pos, true);
2302 /**************************************************************/
2303 /* async I/Os */
2305 void bdrv_aio_cancel(BlockAIOCB *acb)
2307 qemu_aio_ref(acb);
2308 bdrv_aio_cancel_async(acb);
2309 while (acb->refcnt > 1) {
2310 if (acb->aiocb_info->get_aio_context) {
2311 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2312 } else if (acb->bs) {
2313 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2314 * assert that we're not using an I/O thread. Thread-safe
2315 * code should use bdrv_aio_cancel_async exclusively.
2317 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2318 aio_poll(bdrv_get_aio_context(acb->bs), true);
2319 } else {
2320 abort();
2323 qemu_aio_unref(acb);
2326 /* Async version of aio cancel. The caller is not blocked if the acb implements
2327 * cancel_async, otherwise we do nothing and let the request normally complete.
2328 * In either case the completion callback must be called. */
2329 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2331 if (acb->aiocb_info->cancel_async) {
2332 acb->aiocb_info->cancel_async(acb);
2336 /**************************************************************/
2337 /* Coroutine block device emulation */
2339 typedef struct FlushCo {
2340 BlockDriverState *bs;
2341 int ret;
2342 } FlushCo;
2345 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2347 FlushCo *rwco = opaque;
2349 rwco->ret = bdrv_co_flush(rwco->bs);
2352 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2354 int current_gen;
2355 int ret = 0;
2357 bdrv_inc_in_flight(bs);
2359 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2360 bdrv_is_sg(bs)) {
2361 goto early_exit;
2364 qemu_co_mutex_lock(&bs->reqs_lock);
2365 current_gen = atomic_read(&bs->write_gen);
2367 /* Wait until any previous flushes are completed */
2368 while (bs->active_flush_req) {
2369 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2372 /* Flushes reach this point in nondecreasing current_gen order. */
2373 bs->active_flush_req = true;
2374 qemu_co_mutex_unlock(&bs->reqs_lock);
2376 /* Write back all layers by calling one driver function */
2377 if (bs->drv->bdrv_co_flush) {
2378 ret = bs->drv->bdrv_co_flush(bs);
2379 goto out;
2382 /* Write back cached data to the OS even with cache=unsafe */
2383 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2384 if (bs->drv->bdrv_co_flush_to_os) {
2385 ret = bs->drv->bdrv_co_flush_to_os(bs);
2386 if (ret < 0) {
2387 goto out;
2391 /* But don't actually force it to the disk with cache=unsafe */
2392 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2393 goto flush_parent;
2396 /* Check if we really need to flush anything */
2397 if (bs->flushed_gen == current_gen) {
2398 goto flush_parent;
2401 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2402 if (!bs->drv) {
2403 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2404 * (even in case of apparent success) */
2405 ret = -ENOMEDIUM;
2406 goto out;
2408 if (bs->drv->bdrv_co_flush_to_disk) {
2409 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2410 } else if (bs->drv->bdrv_aio_flush) {
2411 BlockAIOCB *acb;
2412 CoroutineIOCompletion co = {
2413 .coroutine = qemu_coroutine_self(),
2416 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2417 if (acb == NULL) {
2418 ret = -EIO;
2419 } else {
2420 qemu_coroutine_yield();
2421 ret = co.ret;
2423 } else {
2425 * Some block drivers always operate in either writethrough or unsafe
2426 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2427 * know how the server works (because the behaviour is hardcoded or
2428 * depends on server-side configuration), so we can't ensure that
2429 * everything is safe on disk. Returning an error doesn't work because
2430 * that would break guests even if the server operates in writethrough
2431 * mode.
2433 * Let's hope the user knows what he's doing.
2435 ret = 0;
2438 if (ret < 0) {
2439 goto out;
2442 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2443 * in the case of cache=unsafe, so there are no useless flushes.
2445 flush_parent:
2446 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2447 out:
2448 /* Notify any pending flushes that we have completed */
2449 if (ret == 0) {
2450 bs->flushed_gen = current_gen;
2453 qemu_co_mutex_lock(&bs->reqs_lock);
2454 bs->active_flush_req = false;
2455 /* Return value is ignored - it's ok if wait queue is empty */
2456 qemu_co_queue_next(&bs->flush_queue);
2457 qemu_co_mutex_unlock(&bs->reqs_lock);
2459 early_exit:
2460 bdrv_dec_in_flight(bs);
2461 return ret;
2464 int bdrv_flush(BlockDriverState *bs)
2466 Coroutine *co;
2467 FlushCo flush_co = {
2468 .bs = bs,
2469 .ret = NOT_DONE,
2472 if (qemu_in_coroutine()) {
2473 /* Fast-path if already in coroutine context */
2474 bdrv_flush_co_entry(&flush_co);
2475 } else {
2476 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2477 bdrv_coroutine_enter(bs, co);
2478 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2481 return flush_co.ret;
2484 typedef struct DiscardCo {
2485 BlockDriverState *bs;
2486 int64_t offset;
2487 int bytes;
2488 int ret;
2489 } DiscardCo;
2490 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2492 DiscardCo *rwco = opaque;
2494 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2497 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2498 int bytes)
2500 BdrvTrackedRequest req;
2501 int max_pdiscard, ret;
2502 int head, tail, align;
2504 if (!bs->drv) {
2505 return -ENOMEDIUM;
2508 if (bdrv_has_readonly_bitmaps(bs)) {
2509 return -EPERM;
2512 ret = bdrv_check_byte_request(bs, offset, bytes);
2513 if (ret < 0) {
2514 return ret;
2515 } else if (bs->read_only) {
2516 return -EPERM;
2518 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2520 /* Do nothing if disabled. */
2521 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2522 return 0;
2525 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2526 return 0;
2529 /* Discard is advisory, but some devices track and coalesce
2530 * unaligned requests, so we must pass everything down rather than
2531 * round here. Still, most devices will just silently ignore
2532 * unaligned requests (by returning -ENOTSUP), so we must fragment
2533 * the request accordingly. */
2534 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2535 assert(align % bs->bl.request_alignment == 0);
2536 head = offset % align;
2537 tail = (offset + bytes) % align;
2539 bdrv_inc_in_flight(bs);
2540 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2542 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2543 if (ret < 0) {
2544 goto out;
2547 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2548 align);
2549 assert(max_pdiscard >= bs->bl.request_alignment);
2551 while (bytes > 0) {
2552 int num = bytes;
2554 if (head) {
2555 /* Make small requests to get to alignment boundaries. */
2556 num = MIN(bytes, align - head);
2557 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2558 num %= bs->bl.request_alignment;
2560 head = (head + num) % align;
2561 assert(num < max_pdiscard);
2562 } else if (tail) {
2563 if (num > align) {
2564 /* Shorten the request to the last aligned cluster. */
2565 num -= tail;
2566 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2567 tail > bs->bl.request_alignment) {
2568 tail %= bs->bl.request_alignment;
2569 num -= tail;
2572 /* limit request size */
2573 if (num > max_pdiscard) {
2574 num = max_pdiscard;
2577 if (!bs->drv) {
2578 ret = -ENOMEDIUM;
2579 goto out;
2581 if (bs->drv->bdrv_co_pdiscard) {
2582 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2583 } else {
2584 BlockAIOCB *acb;
2585 CoroutineIOCompletion co = {
2586 .coroutine = qemu_coroutine_self(),
2589 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2590 bdrv_co_io_em_complete, &co);
2591 if (acb == NULL) {
2592 ret = -EIO;
2593 goto out;
2594 } else {
2595 qemu_coroutine_yield();
2596 ret = co.ret;
2599 if (ret && ret != -ENOTSUP) {
2600 goto out;
2603 offset += num;
2604 bytes -= num;
2606 ret = 0;
2607 out:
2608 atomic_inc(&bs->write_gen);
2609 bdrv_set_dirty(bs, req.offset, req.bytes);
2610 tracked_request_end(&req);
2611 bdrv_dec_in_flight(bs);
2612 return ret;
2615 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2617 Coroutine *co;
2618 DiscardCo rwco = {
2619 .bs = bs,
2620 .offset = offset,
2621 .bytes = bytes,
2622 .ret = NOT_DONE,
2625 if (qemu_in_coroutine()) {
2626 /* Fast-path if already in coroutine context */
2627 bdrv_pdiscard_co_entry(&rwco);
2628 } else {
2629 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2630 bdrv_coroutine_enter(bs, co);
2631 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2634 return rwco.ret;
2637 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2639 BlockDriver *drv = bs->drv;
2640 CoroutineIOCompletion co = {
2641 .coroutine = qemu_coroutine_self(),
2643 BlockAIOCB *acb;
2645 bdrv_inc_in_flight(bs);
2646 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2647 co.ret = -ENOTSUP;
2648 goto out;
2651 if (drv->bdrv_co_ioctl) {
2652 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2653 } else {
2654 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2655 if (!acb) {
2656 co.ret = -ENOTSUP;
2657 goto out;
2659 qemu_coroutine_yield();
2661 out:
2662 bdrv_dec_in_flight(bs);
2663 return co.ret;
2666 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2668 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2671 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2673 return memset(qemu_blockalign(bs, size), 0, size);
2676 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2678 size_t align = bdrv_opt_mem_align(bs);
2680 /* Ensure that NULL is never returned on success */
2681 assert(align > 0);
2682 if (size == 0) {
2683 size = align;
2686 return qemu_try_memalign(align, size);
2689 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2691 void *mem = qemu_try_blockalign(bs, size);
2693 if (mem) {
2694 memset(mem, 0, size);
2697 return mem;
2701 * Check if all memory in this vector is sector aligned.
2703 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2705 int i;
2706 size_t alignment = bdrv_min_mem_align(bs);
2708 for (i = 0; i < qiov->niov; i++) {
2709 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2710 return false;
2712 if (qiov->iov[i].iov_len % alignment) {
2713 return false;
2717 return true;
2720 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2721 NotifierWithReturn *notifier)
2723 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2726 void bdrv_io_plug(BlockDriverState *bs)
2728 BdrvChild *child;
2730 QLIST_FOREACH(child, &bs->children, next) {
2731 bdrv_io_plug(child->bs);
2734 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2735 BlockDriver *drv = bs->drv;
2736 if (drv && drv->bdrv_io_plug) {
2737 drv->bdrv_io_plug(bs);
2742 void bdrv_io_unplug(BlockDriverState *bs)
2744 BdrvChild *child;
2746 assert(bs->io_plugged);
2747 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2748 BlockDriver *drv = bs->drv;
2749 if (drv && drv->bdrv_io_unplug) {
2750 drv->bdrv_io_unplug(bs);
2754 QLIST_FOREACH(child, &bs->children, next) {
2755 bdrv_io_unplug(child->bs);