spapr: Don't use weird units for MIN_RMA_SLOF
[qemu/ar7.git] / hw / arm / omap1.c
blob761cc17ea95f6bfd9e982d6d5feb9b992ba226c0
1 /*
2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/error-report.h"
22 #include "qemu/main-loop.h"
23 #include "qapi/error.h"
24 #include "qemu-common.h"
25 #include "cpu.h"
26 #include "exec/address-spaces.h"
27 #include "hw/boards.h"
28 #include "hw/hw.h"
29 #include "hw/irq.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/arm/boot.h"
32 #include "hw/arm/omap.h"
33 #include "sysemu/blockdev.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/arm/soc_dma.h"
36 #include "sysemu/qtest.h"
37 #include "sysemu/reset.h"
38 #include "sysemu/runstate.h"
39 #include "qemu/range.h"
40 #include "hw/sysbus.h"
41 #include "qemu/cutils.h"
42 #include "qemu/bcd.h"
44 static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
46 qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
47 funcname, 8 * sz, addr);
50 /* Should signal the TCMI/GPMC */
51 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
53 uint8_t ret;
55 omap_log_badwidth(__func__, addr, 1);
56 cpu_physical_memory_read(addr, &ret, 1);
57 return ret;
60 void omap_badwidth_write8(void *opaque, hwaddr addr,
61 uint32_t value)
63 uint8_t val8 = value;
65 omap_log_badwidth(__func__, addr, 1);
66 cpu_physical_memory_write(addr, &val8, 1);
69 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
71 uint16_t ret;
73 omap_log_badwidth(__func__, addr, 2);
74 cpu_physical_memory_read(addr, &ret, 2);
75 return ret;
78 void omap_badwidth_write16(void *opaque, hwaddr addr,
79 uint32_t value)
81 uint16_t val16 = value;
83 omap_log_badwidth(__func__, addr, 2);
84 cpu_physical_memory_write(addr, &val16, 2);
87 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
89 uint32_t ret;
91 omap_log_badwidth(__func__, addr, 4);
92 cpu_physical_memory_read(addr, &ret, 4);
93 return ret;
96 void omap_badwidth_write32(void *opaque, hwaddr addr,
97 uint32_t value)
99 omap_log_badwidth(__func__, addr, 4);
100 cpu_physical_memory_write(addr, &value, 4);
103 /* MPU OS timers */
104 struct omap_mpu_timer_s {
105 MemoryRegion iomem;
106 qemu_irq irq;
107 omap_clk clk;
108 uint32_t val;
109 int64_t time;
110 QEMUTimer *timer;
111 QEMUBH *tick;
112 int64_t rate;
113 int it_ena;
115 int enable;
116 int ptv;
117 int ar;
118 int st;
119 uint32_t reset_val;
122 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
124 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
126 if (timer->st && timer->enable && timer->rate)
127 return timer->val - muldiv64(distance >> (timer->ptv + 1),
128 timer->rate, NANOSECONDS_PER_SECOND);
129 else
130 return timer->val;
133 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
135 timer->val = omap_timer_read(timer);
136 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
139 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
141 int64_t expires;
143 if (timer->enable && timer->st && timer->rate) {
144 timer->val = timer->reset_val; /* Should skip this on clk enable */
145 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
146 NANOSECONDS_PER_SECOND, timer->rate);
148 /* If timer expiry would be sooner than in about 1 ms and
149 * auto-reload isn't set, then fire immediately. This is a hack
150 * to make systems like PalmOS run in acceptable time. PalmOS
151 * sets the interval to a very low value and polls the status bit
152 * in a busy loop when it wants to sleep just a couple of CPU
153 * ticks. */
154 if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
155 timer_mod(timer->timer, timer->time + expires);
156 } else {
157 qemu_bh_schedule(timer->tick);
159 } else
160 timer_del(timer->timer);
163 static void omap_timer_fire(void *opaque)
165 struct omap_mpu_timer_s *timer = opaque;
167 if (!timer->ar) {
168 timer->val = 0;
169 timer->st = 0;
172 if (timer->it_ena)
173 /* Edge-triggered irq */
174 qemu_irq_pulse(timer->irq);
177 static void omap_timer_tick(void *opaque)
179 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
181 omap_timer_sync(timer);
182 omap_timer_fire(timer);
183 omap_timer_update(timer);
186 static void omap_timer_clk_update(void *opaque, int line, int on)
188 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
190 omap_timer_sync(timer);
191 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
192 omap_timer_update(timer);
195 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
197 omap_clk_adduser(timer->clk,
198 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
199 timer->rate = omap_clk_getrate(timer->clk);
202 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
203 unsigned size)
205 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
207 if (size != 4) {
208 return omap_badwidth_read32(opaque, addr);
211 switch (addr) {
212 case 0x00: /* CNTL_TIMER */
213 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
215 case 0x04: /* LOAD_TIM */
216 break;
218 case 0x08: /* READ_TIM */
219 return omap_timer_read(s);
222 OMAP_BAD_REG(addr);
223 return 0;
226 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
227 uint64_t value, unsigned size)
229 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
231 if (size != 4) {
232 omap_badwidth_write32(opaque, addr, value);
233 return;
236 switch (addr) {
237 case 0x00: /* CNTL_TIMER */
238 omap_timer_sync(s);
239 s->enable = (value >> 5) & 1;
240 s->ptv = (value >> 2) & 7;
241 s->ar = (value >> 1) & 1;
242 s->st = value & 1;
243 omap_timer_update(s);
244 return;
246 case 0x04: /* LOAD_TIM */
247 s->reset_val = value;
248 return;
250 case 0x08: /* READ_TIM */
251 OMAP_RO_REG(addr);
252 break;
254 default:
255 OMAP_BAD_REG(addr);
259 static const MemoryRegionOps omap_mpu_timer_ops = {
260 .read = omap_mpu_timer_read,
261 .write = omap_mpu_timer_write,
262 .endianness = DEVICE_LITTLE_ENDIAN,
265 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
267 timer_del(s->timer);
268 s->enable = 0;
269 s->reset_val = 31337;
270 s->val = 0;
271 s->ptv = 0;
272 s->ar = 0;
273 s->st = 0;
274 s->it_ena = 1;
277 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
278 hwaddr base,
279 qemu_irq irq, omap_clk clk)
281 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
283 s->irq = irq;
284 s->clk = clk;
285 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
286 s->tick = qemu_bh_new(omap_timer_fire, s);
287 omap_mpu_timer_reset(s);
288 omap_timer_clk_setup(s);
290 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
291 "omap-mpu-timer", 0x100);
293 memory_region_add_subregion(system_memory, base, &s->iomem);
295 return s;
298 /* Watchdog timer */
299 struct omap_watchdog_timer_s {
300 struct omap_mpu_timer_s timer;
301 MemoryRegion iomem;
302 uint8_t last_wr;
303 int mode;
304 int free;
305 int reset;
308 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
309 unsigned size)
311 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
313 if (size != 2) {
314 return omap_badwidth_read16(opaque, addr);
317 switch (addr) {
318 case 0x00: /* CNTL_TIMER */
319 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
320 (s->timer.st << 7) | (s->free << 1);
322 case 0x04: /* READ_TIMER */
323 return omap_timer_read(&s->timer);
325 case 0x08: /* TIMER_MODE */
326 return s->mode << 15;
329 OMAP_BAD_REG(addr);
330 return 0;
333 static void omap_wd_timer_write(void *opaque, hwaddr addr,
334 uint64_t value, unsigned size)
336 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
338 if (size != 2) {
339 omap_badwidth_write16(opaque, addr, value);
340 return;
343 switch (addr) {
344 case 0x00: /* CNTL_TIMER */
345 omap_timer_sync(&s->timer);
346 s->timer.ptv = (value >> 9) & 7;
347 s->timer.ar = (value >> 8) & 1;
348 s->timer.st = (value >> 7) & 1;
349 s->free = (value >> 1) & 1;
350 omap_timer_update(&s->timer);
351 break;
353 case 0x04: /* LOAD_TIMER */
354 s->timer.reset_val = value & 0xffff;
355 break;
357 case 0x08: /* TIMER_MODE */
358 if (!s->mode && ((value >> 15) & 1))
359 omap_clk_get(s->timer.clk);
360 s->mode |= (value >> 15) & 1;
361 if (s->last_wr == 0xf5) {
362 if ((value & 0xff) == 0xa0) {
363 if (s->mode) {
364 s->mode = 0;
365 omap_clk_put(s->timer.clk);
367 } else {
368 /* XXX: on T|E hardware somehow this has no effect,
369 * on Zire 71 it works as specified. */
370 s->reset = 1;
371 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
374 s->last_wr = value & 0xff;
375 break;
377 default:
378 OMAP_BAD_REG(addr);
382 static const MemoryRegionOps omap_wd_timer_ops = {
383 .read = omap_wd_timer_read,
384 .write = omap_wd_timer_write,
385 .endianness = DEVICE_NATIVE_ENDIAN,
388 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
390 timer_del(s->timer.timer);
391 if (!s->mode)
392 omap_clk_get(s->timer.clk);
393 s->mode = 1;
394 s->free = 1;
395 s->reset = 0;
396 s->timer.enable = 1;
397 s->timer.it_ena = 1;
398 s->timer.reset_val = 0xffff;
399 s->timer.val = 0;
400 s->timer.st = 0;
401 s->timer.ptv = 0;
402 s->timer.ar = 0;
403 omap_timer_update(&s->timer);
406 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
407 hwaddr base,
408 qemu_irq irq, omap_clk clk)
410 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
412 s->timer.irq = irq;
413 s->timer.clk = clk;
414 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
415 omap_wd_timer_reset(s);
416 omap_timer_clk_setup(&s->timer);
418 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
419 "omap-wd-timer", 0x100);
420 memory_region_add_subregion(memory, base, &s->iomem);
422 return s;
425 /* 32-kHz timer */
426 struct omap_32khz_timer_s {
427 struct omap_mpu_timer_s timer;
428 MemoryRegion iomem;
431 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
432 unsigned size)
434 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
435 int offset = addr & OMAP_MPUI_REG_MASK;
437 if (size != 4) {
438 return omap_badwidth_read32(opaque, addr);
441 switch (offset) {
442 case 0x00: /* TVR */
443 return s->timer.reset_val;
445 case 0x04: /* TCR */
446 return omap_timer_read(&s->timer);
448 case 0x08: /* CR */
449 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
451 default:
452 break;
454 OMAP_BAD_REG(addr);
455 return 0;
458 static void omap_os_timer_write(void *opaque, hwaddr addr,
459 uint64_t value, unsigned size)
461 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
462 int offset = addr & OMAP_MPUI_REG_MASK;
464 if (size != 4) {
465 omap_badwidth_write32(opaque, addr, value);
466 return;
469 switch (offset) {
470 case 0x00: /* TVR */
471 s->timer.reset_val = value & 0x00ffffff;
472 break;
474 case 0x04: /* TCR */
475 OMAP_RO_REG(addr);
476 break;
478 case 0x08: /* CR */
479 s->timer.ar = (value >> 3) & 1;
480 s->timer.it_ena = (value >> 2) & 1;
481 if (s->timer.st != (value & 1) || (value & 2)) {
482 omap_timer_sync(&s->timer);
483 s->timer.enable = value & 1;
484 s->timer.st = value & 1;
485 omap_timer_update(&s->timer);
487 break;
489 default:
490 OMAP_BAD_REG(addr);
494 static const MemoryRegionOps omap_os_timer_ops = {
495 .read = omap_os_timer_read,
496 .write = omap_os_timer_write,
497 .endianness = DEVICE_NATIVE_ENDIAN,
500 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
502 timer_del(s->timer.timer);
503 s->timer.enable = 0;
504 s->timer.it_ena = 0;
505 s->timer.reset_val = 0x00ffffff;
506 s->timer.val = 0;
507 s->timer.st = 0;
508 s->timer.ptv = 0;
509 s->timer.ar = 1;
512 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
513 hwaddr base,
514 qemu_irq irq, omap_clk clk)
516 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
518 s->timer.irq = irq;
519 s->timer.clk = clk;
520 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
521 omap_os_timer_reset(s);
522 omap_timer_clk_setup(&s->timer);
524 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
525 "omap-os-timer", 0x800);
526 memory_region_add_subregion(memory, base, &s->iomem);
528 return s;
531 /* Ultra Low-Power Device Module */
532 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
533 unsigned size)
535 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
536 uint16_t ret;
538 if (size != 2) {
539 return omap_badwidth_read16(opaque, addr);
542 switch (addr) {
543 case 0x14: /* IT_STATUS */
544 ret = s->ulpd_pm_regs[addr >> 2];
545 s->ulpd_pm_regs[addr >> 2] = 0;
546 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
547 return ret;
549 case 0x18: /* Reserved */
550 case 0x1c: /* Reserved */
551 case 0x20: /* Reserved */
552 case 0x28: /* Reserved */
553 case 0x2c: /* Reserved */
554 OMAP_BAD_REG(addr);
555 /* fall through */
556 case 0x00: /* COUNTER_32_LSB */
557 case 0x04: /* COUNTER_32_MSB */
558 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
559 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
560 case 0x10: /* GAUGING_CTRL */
561 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
562 case 0x30: /* CLOCK_CTRL */
563 case 0x34: /* SOFT_REQ */
564 case 0x38: /* COUNTER_32_FIQ */
565 case 0x3c: /* DPLL_CTRL */
566 case 0x40: /* STATUS_REQ */
567 /* XXX: check clk::usecount state for every clock */
568 case 0x48: /* LOCL_TIME */
569 case 0x4c: /* APLL_CTRL */
570 case 0x50: /* POWER_CTRL */
571 return s->ulpd_pm_regs[addr >> 2];
574 OMAP_BAD_REG(addr);
575 return 0;
578 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
579 uint16_t diff, uint16_t value)
581 if (diff & (1 << 4)) /* USB_MCLK_EN */
582 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
583 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
584 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
587 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
588 uint16_t diff, uint16_t value)
590 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
591 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
592 if (diff & (1 << 1)) /* SOFT_COM_REQ */
593 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
594 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
595 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
596 if (diff & (1 << 3)) /* SOFT_USB_REQ */
597 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
600 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
601 uint64_t value, unsigned size)
603 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
604 int64_t now, ticks;
605 int div, mult;
606 static const int bypass_div[4] = { 1, 2, 4, 4 };
607 uint16_t diff;
609 if (size != 2) {
610 omap_badwidth_write16(opaque, addr, value);
611 return;
614 switch (addr) {
615 case 0x00: /* COUNTER_32_LSB */
616 case 0x04: /* COUNTER_32_MSB */
617 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
618 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
619 case 0x14: /* IT_STATUS */
620 case 0x40: /* STATUS_REQ */
621 OMAP_RO_REG(addr);
622 break;
624 case 0x10: /* GAUGING_CTRL */
625 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
626 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
627 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
629 if (value & 1)
630 s->ulpd_gauge_start = now;
631 else {
632 now -= s->ulpd_gauge_start;
634 /* 32-kHz ticks */
635 ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
636 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
637 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
638 if (ticks >> 32) /* OVERFLOW_32K */
639 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
641 /* High frequency ticks */
642 ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
643 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
644 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
645 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
646 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
648 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
649 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
652 s->ulpd_pm_regs[addr >> 2] = value;
653 break;
655 case 0x18: /* Reserved */
656 case 0x1c: /* Reserved */
657 case 0x20: /* Reserved */
658 case 0x28: /* Reserved */
659 case 0x2c: /* Reserved */
660 OMAP_BAD_REG(addr);
661 /* fall through */
662 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
663 case 0x38: /* COUNTER_32_FIQ */
664 case 0x48: /* LOCL_TIME */
665 case 0x50: /* POWER_CTRL */
666 s->ulpd_pm_regs[addr >> 2] = value;
667 break;
669 case 0x30: /* CLOCK_CTRL */
670 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
671 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
672 omap_ulpd_clk_update(s, diff, value);
673 break;
675 case 0x34: /* SOFT_REQ */
676 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
677 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
678 omap_ulpd_req_update(s, diff, value);
679 break;
681 case 0x3c: /* DPLL_CTRL */
682 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
683 * omitted altogether, probably a typo. */
684 /* This register has identical semantics with DPLL(1:3) control
685 * registers, see omap_dpll_write() */
686 diff = s->ulpd_pm_regs[addr >> 2] & value;
687 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
688 if (diff & (0x3ff << 2)) {
689 if (value & (1 << 4)) { /* PLL_ENABLE */
690 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
691 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
692 } else {
693 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
694 mult = 1;
696 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
699 /* Enter the desired mode. */
700 s->ulpd_pm_regs[addr >> 2] =
701 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
702 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
704 /* Act as if the lock is restored. */
705 s->ulpd_pm_regs[addr >> 2] |= 2;
706 break;
708 case 0x4c: /* APLL_CTRL */
709 diff = s->ulpd_pm_regs[addr >> 2] & value;
710 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
711 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
712 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
713 (value & (1 << 0)) ? "apll" : "dpll4"));
714 break;
716 default:
717 OMAP_BAD_REG(addr);
721 static const MemoryRegionOps omap_ulpd_pm_ops = {
722 .read = omap_ulpd_pm_read,
723 .write = omap_ulpd_pm_write,
724 .endianness = DEVICE_NATIVE_ENDIAN,
727 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
729 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
730 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
731 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
732 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
733 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
734 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
735 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
736 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
737 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
738 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
739 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
740 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
741 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
742 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
743 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
744 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
745 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
746 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
747 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
748 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
749 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
750 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
751 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
754 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
755 hwaddr base,
756 struct omap_mpu_state_s *mpu)
758 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
759 "omap-ulpd-pm", 0x800);
760 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
761 omap_ulpd_pm_reset(mpu);
764 /* OMAP Pin Configuration */
765 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
766 unsigned size)
768 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
770 if (size != 4) {
771 return omap_badwidth_read32(opaque, addr);
774 switch (addr) {
775 case 0x00: /* FUNC_MUX_CTRL_0 */
776 case 0x04: /* FUNC_MUX_CTRL_1 */
777 case 0x08: /* FUNC_MUX_CTRL_2 */
778 return s->func_mux_ctrl[addr >> 2];
780 case 0x0c: /* COMP_MODE_CTRL_0 */
781 return s->comp_mode_ctrl[0];
783 case 0x10: /* FUNC_MUX_CTRL_3 */
784 case 0x14: /* FUNC_MUX_CTRL_4 */
785 case 0x18: /* FUNC_MUX_CTRL_5 */
786 case 0x1c: /* FUNC_MUX_CTRL_6 */
787 case 0x20: /* FUNC_MUX_CTRL_7 */
788 case 0x24: /* FUNC_MUX_CTRL_8 */
789 case 0x28: /* FUNC_MUX_CTRL_9 */
790 case 0x2c: /* FUNC_MUX_CTRL_A */
791 case 0x30: /* FUNC_MUX_CTRL_B */
792 case 0x34: /* FUNC_MUX_CTRL_C */
793 case 0x38: /* FUNC_MUX_CTRL_D */
794 return s->func_mux_ctrl[(addr >> 2) - 1];
796 case 0x40: /* PULL_DWN_CTRL_0 */
797 case 0x44: /* PULL_DWN_CTRL_1 */
798 case 0x48: /* PULL_DWN_CTRL_2 */
799 case 0x4c: /* PULL_DWN_CTRL_3 */
800 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
802 case 0x50: /* GATE_INH_CTRL_0 */
803 return s->gate_inh_ctrl[0];
805 case 0x60: /* VOLTAGE_CTRL_0 */
806 return s->voltage_ctrl[0];
808 case 0x70: /* TEST_DBG_CTRL_0 */
809 return s->test_dbg_ctrl[0];
811 case 0x80: /* MOD_CONF_CTRL_0 */
812 return s->mod_conf_ctrl[0];
815 OMAP_BAD_REG(addr);
816 return 0;
819 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
820 uint32_t diff, uint32_t value)
822 if (s->compat1509) {
823 if (diff & (1 << 9)) /* BLUETOOTH */
824 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
825 (~value >> 9) & 1);
826 if (diff & (1 << 7)) /* USB.CLKO */
827 omap_clk_onoff(omap_findclk(s, "usb.clko"),
828 (value >> 7) & 1);
832 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
833 uint32_t diff, uint32_t value)
835 if (s->compat1509) {
836 if (diff & (1U << 31)) {
837 /* MCBSP3_CLK_HIZ_DI */
838 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
840 if (diff & (1 << 1)) {
841 /* CLK32K */
842 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
847 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
848 uint32_t diff, uint32_t value)
850 if (diff & (1U << 31)) {
851 /* CONF_MOD_UART3_CLK_MODE_R */
852 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
853 omap_findclk(s, ((value >> 31) & 1) ?
854 "ck_48m" : "armper_ck"));
856 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
857 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
858 omap_findclk(s, ((value >> 30) & 1) ?
859 "ck_48m" : "armper_ck"));
860 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
861 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
862 omap_findclk(s, ((value >> 29) & 1) ?
863 "ck_48m" : "armper_ck"));
864 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
865 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
866 omap_findclk(s, ((value >> 23) & 1) ?
867 "ck_48m" : "armper_ck"));
868 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
869 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
870 omap_findclk(s, ((value >> 12) & 1) ?
871 "ck_48m" : "armper_ck"));
872 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
873 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
876 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
877 uint64_t value, unsigned size)
879 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
880 uint32_t diff;
882 if (size != 4) {
883 omap_badwidth_write32(opaque, addr, value);
884 return;
887 switch (addr) {
888 case 0x00: /* FUNC_MUX_CTRL_0 */
889 diff = s->func_mux_ctrl[addr >> 2] ^ value;
890 s->func_mux_ctrl[addr >> 2] = value;
891 omap_pin_funcmux0_update(s, diff, value);
892 return;
894 case 0x04: /* FUNC_MUX_CTRL_1 */
895 diff = s->func_mux_ctrl[addr >> 2] ^ value;
896 s->func_mux_ctrl[addr >> 2] = value;
897 omap_pin_funcmux1_update(s, diff, value);
898 return;
900 case 0x08: /* FUNC_MUX_CTRL_2 */
901 s->func_mux_ctrl[addr >> 2] = value;
902 return;
904 case 0x0c: /* COMP_MODE_CTRL_0 */
905 s->comp_mode_ctrl[0] = value;
906 s->compat1509 = (value != 0x0000eaef);
907 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
908 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
909 return;
911 case 0x10: /* FUNC_MUX_CTRL_3 */
912 case 0x14: /* FUNC_MUX_CTRL_4 */
913 case 0x18: /* FUNC_MUX_CTRL_5 */
914 case 0x1c: /* FUNC_MUX_CTRL_6 */
915 case 0x20: /* FUNC_MUX_CTRL_7 */
916 case 0x24: /* FUNC_MUX_CTRL_8 */
917 case 0x28: /* FUNC_MUX_CTRL_9 */
918 case 0x2c: /* FUNC_MUX_CTRL_A */
919 case 0x30: /* FUNC_MUX_CTRL_B */
920 case 0x34: /* FUNC_MUX_CTRL_C */
921 case 0x38: /* FUNC_MUX_CTRL_D */
922 s->func_mux_ctrl[(addr >> 2) - 1] = value;
923 return;
925 case 0x40: /* PULL_DWN_CTRL_0 */
926 case 0x44: /* PULL_DWN_CTRL_1 */
927 case 0x48: /* PULL_DWN_CTRL_2 */
928 case 0x4c: /* PULL_DWN_CTRL_3 */
929 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
930 return;
932 case 0x50: /* GATE_INH_CTRL_0 */
933 s->gate_inh_ctrl[0] = value;
934 return;
936 case 0x60: /* VOLTAGE_CTRL_0 */
937 s->voltage_ctrl[0] = value;
938 return;
940 case 0x70: /* TEST_DBG_CTRL_0 */
941 s->test_dbg_ctrl[0] = value;
942 return;
944 case 0x80: /* MOD_CONF_CTRL_0 */
945 diff = s->mod_conf_ctrl[0] ^ value;
946 s->mod_conf_ctrl[0] = value;
947 omap_pin_modconf1_update(s, diff, value);
948 return;
950 default:
951 OMAP_BAD_REG(addr);
955 static const MemoryRegionOps omap_pin_cfg_ops = {
956 .read = omap_pin_cfg_read,
957 .write = omap_pin_cfg_write,
958 .endianness = DEVICE_NATIVE_ENDIAN,
961 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
963 /* Start in Compatibility Mode. */
964 mpu->compat1509 = 1;
965 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
966 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
967 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
968 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
969 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
970 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
971 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
972 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
973 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
974 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
977 static void omap_pin_cfg_init(MemoryRegion *system_memory,
978 hwaddr base,
979 struct omap_mpu_state_s *mpu)
981 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
982 "omap-pin-cfg", 0x800);
983 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
984 omap_pin_cfg_reset(mpu);
987 /* Device Identification, Die Identification */
988 static uint64_t omap_id_read(void *opaque, hwaddr addr,
989 unsigned size)
991 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
993 if (size != 4) {
994 return omap_badwidth_read32(opaque, addr);
997 switch (addr) {
998 case 0xfffe1800: /* DIE_ID_LSB */
999 return 0xc9581f0e;
1000 case 0xfffe1804: /* DIE_ID_MSB */
1001 return 0xa8858bfa;
1003 case 0xfffe2000: /* PRODUCT_ID_LSB */
1004 return 0x00aaaafc;
1005 case 0xfffe2004: /* PRODUCT_ID_MSB */
1006 return 0xcafeb574;
1008 case 0xfffed400: /* JTAG_ID_LSB */
1009 switch (s->mpu_model) {
1010 case omap310:
1011 return 0x03310315;
1012 case omap1510:
1013 return 0x03310115;
1014 default:
1015 hw_error("%s: bad mpu model\n", __func__);
1017 break;
1019 case 0xfffed404: /* JTAG_ID_MSB */
1020 switch (s->mpu_model) {
1021 case omap310:
1022 return 0xfb57402f;
1023 case omap1510:
1024 return 0xfb47002f;
1025 default:
1026 hw_error("%s: bad mpu model\n", __func__);
1028 break;
1031 OMAP_BAD_REG(addr);
1032 return 0;
1035 static void omap_id_write(void *opaque, hwaddr addr,
1036 uint64_t value, unsigned size)
1038 if (size != 4) {
1039 omap_badwidth_write32(opaque, addr, value);
1040 return;
1043 OMAP_BAD_REG(addr);
1046 static const MemoryRegionOps omap_id_ops = {
1047 .read = omap_id_read,
1048 .write = omap_id_write,
1049 .endianness = DEVICE_NATIVE_ENDIAN,
1052 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1054 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1055 "omap-id", 0x100000000ULL);
1056 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1057 0xfffe1800, 0x800);
1058 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1059 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1060 0xfffed400, 0x100);
1061 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1062 if (!cpu_is_omap15xx(mpu)) {
1063 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1064 &mpu->id_iomem, 0xfffe2000, 0x800);
1065 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1069 /* MPUI Control (Dummy) */
1070 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1071 unsigned size)
1073 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1075 if (size != 4) {
1076 return omap_badwidth_read32(opaque, addr);
1079 switch (addr) {
1080 case 0x00: /* CTRL */
1081 return s->mpui_ctrl;
1082 case 0x04: /* DEBUG_ADDR */
1083 return 0x01ffffff;
1084 case 0x08: /* DEBUG_DATA */
1085 return 0xffffffff;
1086 case 0x0c: /* DEBUG_FLAG */
1087 return 0x00000800;
1088 case 0x10: /* STATUS */
1089 return 0x00000000;
1091 /* Not in OMAP310 */
1092 case 0x14: /* DSP_STATUS */
1093 case 0x18: /* DSP_BOOT_CONFIG */
1094 return 0x00000000;
1095 case 0x1c: /* DSP_MPUI_CONFIG */
1096 return 0x0000ffff;
1099 OMAP_BAD_REG(addr);
1100 return 0;
1103 static void omap_mpui_write(void *opaque, hwaddr addr,
1104 uint64_t value, unsigned size)
1106 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1108 if (size != 4) {
1109 omap_badwidth_write32(opaque, addr, value);
1110 return;
1113 switch (addr) {
1114 case 0x00: /* CTRL */
1115 s->mpui_ctrl = value & 0x007fffff;
1116 break;
1118 case 0x04: /* DEBUG_ADDR */
1119 case 0x08: /* DEBUG_DATA */
1120 case 0x0c: /* DEBUG_FLAG */
1121 case 0x10: /* STATUS */
1122 /* Not in OMAP310 */
1123 case 0x14: /* DSP_STATUS */
1124 OMAP_RO_REG(addr);
1125 break;
1126 case 0x18: /* DSP_BOOT_CONFIG */
1127 case 0x1c: /* DSP_MPUI_CONFIG */
1128 break;
1130 default:
1131 OMAP_BAD_REG(addr);
1135 static const MemoryRegionOps omap_mpui_ops = {
1136 .read = omap_mpui_read,
1137 .write = omap_mpui_write,
1138 .endianness = DEVICE_NATIVE_ENDIAN,
1141 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1143 s->mpui_ctrl = 0x0003ff1b;
1146 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1147 struct omap_mpu_state_s *mpu)
1149 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1150 "omap-mpui", 0x100);
1151 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1153 omap_mpui_reset(mpu);
1156 /* TIPB Bridges */
1157 struct omap_tipb_bridge_s {
1158 qemu_irq abort;
1159 MemoryRegion iomem;
1161 int width_intr;
1162 uint16_t control;
1163 uint16_t alloc;
1164 uint16_t buffer;
1165 uint16_t enh_control;
1168 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1169 unsigned size)
1171 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1173 if (size < 2) {
1174 return omap_badwidth_read16(opaque, addr);
1177 switch (addr) {
1178 case 0x00: /* TIPB_CNTL */
1179 return s->control;
1180 case 0x04: /* TIPB_BUS_ALLOC */
1181 return s->alloc;
1182 case 0x08: /* MPU_TIPB_CNTL */
1183 return s->buffer;
1184 case 0x0c: /* ENHANCED_TIPB_CNTL */
1185 return s->enh_control;
1186 case 0x10: /* ADDRESS_DBG */
1187 case 0x14: /* DATA_DEBUG_LOW */
1188 case 0x18: /* DATA_DEBUG_HIGH */
1189 return 0xffff;
1190 case 0x1c: /* DEBUG_CNTR_SIG */
1191 return 0x00f8;
1194 OMAP_BAD_REG(addr);
1195 return 0;
1198 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1199 uint64_t value, unsigned size)
1201 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1203 if (size < 2) {
1204 omap_badwidth_write16(opaque, addr, value);
1205 return;
1208 switch (addr) {
1209 case 0x00: /* TIPB_CNTL */
1210 s->control = value & 0xffff;
1211 break;
1213 case 0x04: /* TIPB_BUS_ALLOC */
1214 s->alloc = value & 0x003f;
1215 break;
1217 case 0x08: /* MPU_TIPB_CNTL */
1218 s->buffer = value & 0x0003;
1219 break;
1221 case 0x0c: /* ENHANCED_TIPB_CNTL */
1222 s->width_intr = !(value & 2);
1223 s->enh_control = value & 0x000f;
1224 break;
1226 case 0x10: /* ADDRESS_DBG */
1227 case 0x14: /* DATA_DEBUG_LOW */
1228 case 0x18: /* DATA_DEBUG_HIGH */
1229 case 0x1c: /* DEBUG_CNTR_SIG */
1230 OMAP_RO_REG(addr);
1231 break;
1233 default:
1234 OMAP_BAD_REG(addr);
1238 static const MemoryRegionOps omap_tipb_bridge_ops = {
1239 .read = omap_tipb_bridge_read,
1240 .write = omap_tipb_bridge_write,
1241 .endianness = DEVICE_NATIVE_ENDIAN,
1244 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1246 s->control = 0xffff;
1247 s->alloc = 0x0009;
1248 s->buffer = 0x0000;
1249 s->enh_control = 0x000f;
1252 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1253 MemoryRegion *memory, hwaddr base,
1254 qemu_irq abort_irq, omap_clk clk)
1256 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1258 s->abort = abort_irq;
1259 omap_tipb_bridge_reset(s);
1261 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1262 "omap-tipb-bridge", 0x100);
1263 memory_region_add_subregion(memory, base, &s->iomem);
1265 return s;
1268 /* Dummy Traffic Controller's Memory Interface */
1269 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1270 unsigned size)
1272 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1273 uint32_t ret;
1275 if (size != 4) {
1276 return omap_badwidth_read32(opaque, addr);
1279 switch (addr) {
1280 case 0x00: /* IMIF_PRIO */
1281 case 0x04: /* EMIFS_PRIO */
1282 case 0x08: /* EMIFF_PRIO */
1283 case 0x0c: /* EMIFS_CONFIG */
1284 case 0x10: /* EMIFS_CS0_CONFIG */
1285 case 0x14: /* EMIFS_CS1_CONFIG */
1286 case 0x18: /* EMIFS_CS2_CONFIG */
1287 case 0x1c: /* EMIFS_CS3_CONFIG */
1288 case 0x24: /* EMIFF_MRS */
1289 case 0x28: /* TIMEOUT1 */
1290 case 0x2c: /* TIMEOUT2 */
1291 case 0x30: /* TIMEOUT3 */
1292 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1293 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1294 return s->tcmi_regs[addr >> 2];
1296 case 0x20: /* EMIFF_SDRAM_CONFIG */
1297 ret = s->tcmi_regs[addr >> 2];
1298 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1299 /* XXX: We can try using the VGA_DIRTY flag for this */
1300 return ret;
1303 OMAP_BAD_REG(addr);
1304 return 0;
1307 static void omap_tcmi_write(void *opaque, hwaddr addr,
1308 uint64_t value, unsigned size)
1310 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1312 if (size != 4) {
1313 omap_badwidth_write32(opaque, addr, value);
1314 return;
1317 switch (addr) {
1318 case 0x00: /* IMIF_PRIO */
1319 case 0x04: /* EMIFS_PRIO */
1320 case 0x08: /* EMIFF_PRIO */
1321 case 0x10: /* EMIFS_CS0_CONFIG */
1322 case 0x14: /* EMIFS_CS1_CONFIG */
1323 case 0x18: /* EMIFS_CS2_CONFIG */
1324 case 0x1c: /* EMIFS_CS3_CONFIG */
1325 case 0x20: /* EMIFF_SDRAM_CONFIG */
1326 case 0x24: /* EMIFF_MRS */
1327 case 0x28: /* TIMEOUT1 */
1328 case 0x2c: /* TIMEOUT2 */
1329 case 0x30: /* TIMEOUT3 */
1330 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1331 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1332 s->tcmi_regs[addr >> 2] = value;
1333 break;
1334 case 0x0c: /* EMIFS_CONFIG */
1335 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1336 break;
1338 default:
1339 OMAP_BAD_REG(addr);
1343 static const MemoryRegionOps omap_tcmi_ops = {
1344 .read = omap_tcmi_read,
1345 .write = omap_tcmi_write,
1346 .endianness = DEVICE_NATIVE_ENDIAN,
1349 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1351 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1352 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1353 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1354 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1355 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1356 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1357 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1358 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1359 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1360 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1361 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1362 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1363 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1364 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1365 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1368 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1369 struct omap_mpu_state_s *mpu)
1371 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1372 "omap-tcmi", 0x100);
1373 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1374 omap_tcmi_reset(mpu);
1377 /* Digital phase-locked loops control */
1378 struct dpll_ctl_s {
1379 MemoryRegion iomem;
1380 uint16_t mode;
1381 omap_clk dpll;
1384 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1385 unsigned size)
1387 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1389 if (size != 2) {
1390 return omap_badwidth_read16(opaque, addr);
1393 if (addr == 0x00) /* CTL_REG */
1394 return s->mode;
1396 OMAP_BAD_REG(addr);
1397 return 0;
1400 static void omap_dpll_write(void *opaque, hwaddr addr,
1401 uint64_t value, unsigned size)
1403 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1404 uint16_t diff;
1405 static const int bypass_div[4] = { 1, 2, 4, 4 };
1406 int div, mult;
1408 if (size != 2) {
1409 omap_badwidth_write16(opaque, addr, value);
1410 return;
1413 if (addr == 0x00) { /* CTL_REG */
1414 /* See omap_ulpd_pm_write() too */
1415 diff = s->mode & value;
1416 s->mode = value & 0x2fff;
1417 if (diff & (0x3ff << 2)) {
1418 if (value & (1 << 4)) { /* PLL_ENABLE */
1419 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1420 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1421 } else {
1422 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1423 mult = 1;
1425 omap_clk_setrate(s->dpll, div, mult);
1428 /* Enter the desired mode. */
1429 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1431 /* Act as if the lock is restored. */
1432 s->mode |= 2;
1433 } else {
1434 OMAP_BAD_REG(addr);
1438 static const MemoryRegionOps omap_dpll_ops = {
1439 .read = omap_dpll_read,
1440 .write = omap_dpll_write,
1441 .endianness = DEVICE_NATIVE_ENDIAN,
1444 static void omap_dpll_reset(struct dpll_ctl_s *s)
1446 s->mode = 0x2002;
1447 omap_clk_setrate(s->dpll, 1, 1);
1450 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1451 hwaddr base, omap_clk clk)
1453 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1454 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1456 s->dpll = clk;
1457 omap_dpll_reset(s);
1459 memory_region_add_subregion(memory, base, &s->iomem);
1460 return s;
1463 /* MPU Clock/Reset/Power Mode Control */
1464 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1465 unsigned size)
1467 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1469 if (size != 2) {
1470 return omap_badwidth_read16(opaque, addr);
1473 switch (addr) {
1474 case 0x00: /* ARM_CKCTL */
1475 return s->clkm.arm_ckctl;
1477 case 0x04: /* ARM_IDLECT1 */
1478 return s->clkm.arm_idlect1;
1480 case 0x08: /* ARM_IDLECT2 */
1481 return s->clkm.arm_idlect2;
1483 case 0x0c: /* ARM_EWUPCT */
1484 return s->clkm.arm_ewupct;
1486 case 0x10: /* ARM_RSTCT1 */
1487 return s->clkm.arm_rstct1;
1489 case 0x14: /* ARM_RSTCT2 */
1490 return s->clkm.arm_rstct2;
1492 case 0x18: /* ARM_SYSST */
1493 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1495 case 0x1c: /* ARM_CKOUT1 */
1496 return s->clkm.arm_ckout1;
1498 case 0x20: /* ARM_CKOUT2 */
1499 break;
1502 OMAP_BAD_REG(addr);
1503 return 0;
1506 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1507 uint16_t diff, uint16_t value)
1509 omap_clk clk;
1511 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1512 if (value & (1 << 14))
1513 /* Reserved */;
1514 else {
1515 clk = omap_findclk(s, "arminth_ck");
1516 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1519 if (diff & (1 << 12)) { /* ARM_TIMXO */
1520 clk = omap_findclk(s, "armtim_ck");
1521 if (value & (1 << 12))
1522 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1523 else
1524 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1526 /* XXX: en_dspck */
1527 if (diff & (3 << 10)) { /* DSPMMUDIV */
1528 clk = omap_findclk(s, "dspmmu_ck");
1529 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1531 if (diff & (3 << 8)) { /* TCDIV */
1532 clk = omap_findclk(s, "tc_ck");
1533 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1535 if (diff & (3 << 6)) { /* DSPDIV */
1536 clk = omap_findclk(s, "dsp_ck");
1537 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1539 if (diff & (3 << 4)) { /* ARMDIV */
1540 clk = omap_findclk(s, "arm_ck");
1541 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1543 if (diff & (3 << 2)) { /* LCDDIV */
1544 clk = omap_findclk(s, "lcd_ck");
1545 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1547 if (diff & (3 << 0)) { /* PERDIV */
1548 clk = omap_findclk(s, "armper_ck");
1549 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1553 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1554 uint16_t diff, uint16_t value)
1556 omap_clk clk;
1558 if (value & (1 << 11)) { /* SETARM_IDLE */
1559 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1561 if (!(value & (1 << 10))) { /* WKUP_MODE */
1562 /* XXX: disable wakeup from IRQ */
1563 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1566 #define SET_CANIDLE(clock, bit) \
1567 if (diff & (1 << bit)) { \
1568 clk = omap_findclk(s, clock); \
1569 omap_clk_canidle(clk, (value >> bit) & 1); \
1571 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1572 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1573 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1574 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1575 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1576 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1577 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1578 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1579 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1580 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1581 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1582 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1583 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1584 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1587 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1588 uint16_t diff, uint16_t value)
1590 omap_clk clk;
1592 #define SET_ONOFF(clock, bit) \
1593 if (diff & (1 << bit)) { \
1594 clk = omap_findclk(s, clock); \
1595 omap_clk_onoff(clk, (value >> bit) & 1); \
1597 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1598 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1599 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1600 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1601 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1602 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1603 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1604 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1605 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1606 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1607 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1610 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1611 uint16_t diff, uint16_t value)
1613 omap_clk clk;
1615 if (diff & (3 << 4)) { /* TCLKOUT */
1616 clk = omap_findclk(s, "tclk_out");
1617 switch ((value >> 4) & 3) {
1618 case 1:
1619 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1620 omap_clk_onoff(clk, 1);
1621 break;
1622 case 2:
1623 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1624 omap_clk_onoff(clk, 1);
1625 break;
1626 default:
1627 omap_clk_onoff(clk, 0);
1630 if (diff & (3 << 2)) { /* DCLKOUT */
1631 clk = omap_findclk(s, "dclk_out");
1632 switch ((value >> 2) & 3) {
1633 case 0:
1634 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1635 break;
1636 case 1:
1637 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1638 break;
1639 case 2:
1640 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1641 break;
1642 case 3:
1643 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1644 break;
1647 if (diff & (3 << 0)) { /* ACLKOUT */
1648 clk = omap_findclk(s, "aclk_out");
1649 switch ((value >> 0) & 3) {
1650 case 1:
1651 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1652 omap_clk_onoff(clk, 1);
1653 break;
1654 case 2:
1655 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1656 omap_clk_onoff(clk, 1);
1657 break;
1658 case 3:
1659 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1660 omap_clk_onoff(clk, 1);
1661 break;
1662 default:
1663 omap_clk_onoff(clk, 0);
1668 static void omap_clkm_write(void *opaque, hwaddr addr,
1669 uint64_t value, unsigned size)
1671 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1672 uint16_t diff;
1673 omap_clk clk;
1674 static const char *clkschemename[8] = {
1675 "fully synchronous", "fully asynchronous", "synchronous scalable",
1676 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1679 if (size != 2) {
1680 omap_badwidth_write16(opaque, addr, value);
1681 return;
1684 switch (addr) {
1685 case 0x00: /* ARM_CKCTL */
1686 diff = s->clkm.arm_ckctl ^ value;
1687 s->clkm.arm_ckctl = value & 0x7fff;
1688 omap_clkm_ckctl_update(s, diff, value);
1689 return;
1691 case 0x04: /* ARM_IDLECT1 */
1692 diff = s->clkm.arm_idlect1 ^ value;
1693 s->clkm.arm_idlect1 = value & 0x0fff;
1694 omap_clkm_idlect1_update(s, diff, value);
1695 return;
1697 case 0x08: /* ARM_IDLECT2 */
1698 diff = s->clkm.arm_idlect2 ^ value;
1699 s->clkm.arm_idlect2 = value & 0x07ff;
1700 omap_clkm_idlect2_update(s, diff, value);
1701 return;
1703 case 0x0c: /* ARM_EWUPCT */
1704 s->clkm.arm_ewupct = value & 0x003f;
1705 return;
1707 case 0x10: /* ARM_RSTCT1 */
1708 diff = s->clkm.arm_rstct1 ^ value;
1709 s->clkm.arm_rstct1 = value & 0x0007;
1710 if (value & 9) {
1711 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1712 s->clkm.cold_start = 0xa;
1714 if (diff & ~value & 4) { /* DSP_RST */
1715 omap_mpui_reset(s);
1716 omap_tipb_bridge_reset(s->private_tipb);
1717 omap_tipb_bridge_reset(s->public_tipb);
1719 if (diff & 2) { /* DSP_EN */
1720 clk = omap_findclk(s, "dsp_ck");
1721 omap_clk_canidle(clk, (~value >> 1) & 1);
1723 return;
1725 case 0x14: /* ARM_RSTCT2 */
1726 s->clkm.arm_rstct2 = value & 0x0001;
1727 return;
1729 case 0x18: /* ARM_SYSST */
1730 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1731 s->clkm.clocking_scheme = (value >> 11) & 7;
1732 printf("%s: clocking scheme set to %s\n", __func__,
1733 clkschemename[s->clkm.clocking_scheme]);
1735 s->clkm.cold_start &= value & 0x3f;
1736 return;
1738 case 0x1c: /* ARM_CKOUT1 */
1739 diff = s->clkm.arm_ckout1 ^ value;
1740 s->clkm.arm_ckout1 = value & 0x003f;
1741 omap_clkm_ckout1_update(s, diff, value);
1742 return;
1744 case 0x20: /* ARM_CKOUT2 */
1745 default:
1746 OMAP_BAD_REG(addr);
1750 static const MemoryRegionOps omap_clkm_ops = {
1751 .read = omap_clkm_read,
1752 .write = omap_clkm_write,
1753 .endianness = DEVICE_NATIVE_ENDIAN,
1756 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1757 unsigned size)
1759 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1760 CPUState *cpu = CPU(s->cpu);
1762 if (size != 2) {
1763 return omap_badwidth_read16(opaque, addr);
1766 switch (addr) {
1767 case 0x04: /* DSP_IDLECT1 */
1768 return s->clkm.dsp_idlect1;
1770 case 0x08: /* DSP_IDLECT2 */
1771 return s->clkm.dsp_idlect2;
1773 case 0x14: /* DSP_RSTCT2 */
1774 return s->clkm.dsp_rstct2;
1776 case 0x18: /* DSP_SYSST */
1777 cpu = CPU(s->cpu);
1778 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1779 (cpu->halted << 6); /* Quite useless... */
1782 OMAP_BAD_REG(addr);
1783 return 0;
1786 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1787 uint16_t diff, uint16_t value)
1789 omap_clk clk;
1791 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1794 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1795 uint16_t diff, uint16_t value)
1797 omap_clk clk;
1799 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1802 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1803 uint64_t value, unsigned size)
1805 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1806 uint16_t diff;
1808 if (size != 2) {
1809 omap_badwidth_write16(opaque, addr, value);
1810 return;
1813 switch (addr) {
1814 case 0x04: /* DSP_IDLECT1 */
1815 diff = s->clkm.dsp_idlect1 ^ value;
1816 s->clkm.dsp_idlect1 = value & 0x01f7;
1817 omap_clkdsp_idlect1_update(s, diff, value);
1818 break;
1820 case 0x08: /* DSP_IDLECT2 */
1821 s->clkm.dsp_idlect2 = value & 0x0037;
1822 diff = s->clkm.dsp_idlect1 ^ value;
1823 omap_clkdsp_idlect2_update(s, diff, value);
1824 break;
1826 case 0x14: /* DSP_RSTCT2 */
1827 s->clkm.dsp_rstct2 = value & 0x0001;
1828 break;
1830 case 0x18: /* DSP_SYSST */
1831 s->clkm.cold_start &= value & 0x3f;
1832 break;
1834 default:
1835 OMAP_BAD_REG(addr);
1839 static const MemoryRegionOps omap_clkdsp_ops = {
1840 .read = omap_clkdsp_read,
1841 .write = omap_clkdsp_write,
1842 .endianness = DEVICE_NATIVE_ENDIAN,
1845 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1847 if (s->wdt && s->wdt->reset)
1848 s->clkm.cold_start = 0x6;
1849 s->clkm.clocking_scheme = 0;
1850 omap_clkm_ckctl_update(s, ~0, 0x3000);
1851 s->clkm.arm_ckctl = 0x3000;
1852 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1853 s->clkm.arm_idlect1 = 0x0400;
1854 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1855 s->clkm.arm_idlect2 = 0x0100;
1856 s->clkm.arm_ewupct = 0x003f;
1857 s->clkm.arm_rstct1 = 0x0000;
1858 s->clkm.arm_rstct2 = 0x0000;
1859 s->clkm.arm_ckout1 = 0x0015;
1860 s->clkm.dpll1_mode = 0x2002;
1861 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1862 s->clkm.dsp_idlect1 = 0x0040;
1863 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1864 s->clkm.dsp_idlect2 = 0x0000;
1865 s->clkm.dsp_rstct2 = 0x0000;
1868 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1869 hwaddr dsp_base, struct omap_mpu_state_s *s)
1871 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1872 "omap-clkm", 0x100);
1873 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1874 "omap-clkdsp", 0x1000);
1876 s->clkm.arm_idlect1 = 0x03ff;
1877 s->clkm.arm_idlect2 = 0x0100;
1878 s->clkm.dsp_idlect1 = 0x0002;
1879 omap_clkm_reset(s);
1880 s->clkm.cold_start = 0x3a;
1882 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1883 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1886 /* MPU I/O */
1887 struct omap_mpuio_s {
1888 qemu_irq irq;
1889 qemu_irq kbd_irq;
1890 qemu_irq *in;
1891 qemu_irq handler[16];
1892 qemu_irq wakeup;
1893 MemoryRegion iomem;
1895 uint16_t inputs;
1896 uint16_t outputs;
1897 uint16_t dir;
1898 uint16_t edge;
1899 uint16_t mask;
1900 uint16_t ints;
1902 uint16_t debounce;
1903 uint16_t latch;
1904 uint8_t event;
1906 uint8_t buttons[5];
1907 uint8_t row_latch;
1908 uint8_t cols;
1909 int kbd_mask;
1910 int clk;
1913 static void omap_mpuio_set(void *opaque, int line, int level)
1915 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1916 uint16_t prev = s->inputs;
1918 if (level)
1919 s->inputs |= 1 << line;
1920 else
1921 s->inputs &= ~(1 << line);
1923 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1924 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1925 s->ints |= 1 << line;
1926 qemu_irq_raise(s->irq);
1927 /* TODO: wakeup */
1929 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1930 (s->event >> 1) == line) /* PIN_SELECT */
1931 s->latch = s->inputs;
1935 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1937 int i;
1938 uint8_t *row, rows = 0, cols = ~s->cols;
1940 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1941 if (*row & cols)
1942 rows |= i;
1944 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1945 s->row_latch = ~rows;
1948 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1949 unsigned size)
1951 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1952 int offset = addr & OMAP_MPUI_REG_MASK;
1953 uint16_t ret;
1955 if (size != 2) {
1956 return omap_badwidth_read16(opaque, addr);
1959 switch (offset) {
1960 case 0x00: /* INPUT_LATCH */
1961 return s->inputs;
1963 case 0x04: /* OUTPUT_REG */
1964 return s->outputs;
1966 case 0x08: /* IO_CNTL */
1967 return s->dir;
1969 case 0x10: /* KBR_LATCH */
1970 return s->row_latch;
1972 case 0x14: /* KBC_REG */
1973 return s->cols;
1975 case 0x18: /* GPIO_EVENT_MODE_REG */
1976 return s->event;
1978 case 0x1c: /* GPIO_INT_EDGE_REG */
1979 return s->edge;
1981 case 0x20: /* KBD_INT */
1982 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1984 case 0x24: /* GPIO_INT */
1985 ret = s->ints;
1986 s->ints &= s->mask;
1987 if (ret)
1988 qemu_irq_lower(s->irq);
1989 return ret;
1991 case 0x28: /* KBD_MASKIT */
1992 return s->kbd_mask;
1994 case 0x2c: /* GPIO_MASKIT */
1995 return s->mask;
1997 case 0x30: /* GPIO_DEBOUNCING_REG */
1998 return s->debounce;
2000 case 0x34: /* GPIO_LATCH_REG */
2001 return s->latch;
2004 OMAP_BAD_REG(addr);
2005 return 0;
2008 static void omap_mpuio_write(void *opaque, hwaddr addr,
2009 uint64_t value, unsigned size)
2011 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2012 int offset = addr & OMAP_MPUI_REG_MASK;
2013 uint16_t diff;
2014 int ln;
2016 if (size != 2) {
2017 omap_badwidth_write16(opaque, addr, value);
2018 return;
2021 switch (offset) {
2022 case 0x04: /* OUTPUT_REG */
2023 diff = (s->outputs ^ value) & ~s->dir;
2024 s->outputs = value;
2025 while ((ln = ctz32(diff)) != 32) {
2026 if (s->handler[ln])
2027 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2028 diff &= ~(1 << ln);
2030 break;
2032 case 0x08: /* IO_CNTL */
2033 diff = s->outputs & (s->dir ^ value);
2034 s->dir = value;
2036 value = s->outputs & ~s->dir;
2037 while ((ln = ctz32(diff)) != 32) {
2038 if (s->handler[ln])
2039 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2040 diff &= ~(1 << ln);
2042 break;
2044 case 0x14: /* KBC_REG */
2045 s->cols = value;
2046 omap_mpuio_kbd_update(s);
2047 break;
2049 case 0x18: /* GPIO_EVENT_MODE_REG */
2050 s->event = value & 0x1f;
2051 break;
2053 case 0x1c: /* GPIO_INT_EDGE_REG */
2054 s->edge = value;
2055 break;
2057 case 0x28: /* KBD_MASKIT */
2058 s->kbd_mask = value & 1;
2059 omap_mpuio_kbd_update(s);
2060 break;
2062 case 0x2c: /* GPIO_MASKIT */
2063 s->mask = value;
2064 break;
2066 case 0x30: /* GPIO_DEBOUNCING_REG */
2067 s->debounce = value & 0x1ff;
2068 break;
2070 case 0x00: /* INPUT_LATCH */
2071 case 0x10: /* KBR_LATCH */
2072 case 0x20: /* KBD_INT */
2073 case 0x24: /* GPIO_INT */
2074 case 0x34: /* GPIO_LATCH_REG */
2075 OMAP_RO_REG(addr);
2076 return;
2078 default:
2079 OMAP_BAD_REG(addr);
2080 return;
2084 static const MemoryRegionOps omap_mpuio_ops = {
2085 .read = omap_mpuio_read,
2086 .write = omap_mpuio_write,
2087 .endianness = DEVICE_NATIVE_ENDIAN,
2090 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2092 s->inputs = 0;
2093 s->outputs = 0;
2094 s->dir = ~0;
2095 s->event = 0;
2096 s->edge = 0;
2097 s->kbd_mask = 0;
2098 s->mask = 0;
2099 s->debounce = 0;
2100 s->latch = 0;
2101 s->ints = 0;
2102 s->row_latch = 0x1f;
2103 s->clk = 1;
2106 static void omap_mpuio_onoff(void *opaque, int line, int on)
2108 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2110 s->clk = on;
2111 if (on)
2112 omap_mpuio_kbd_update(s);
2115 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2116 hwaddr base,
2117 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2118 omap_clk clk)
2120 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2122 s->irq = gpio_int;
2123 s->kbd_irq = kbd_int;
2124 s->wakeup = wakeup;
2125 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2126 omap_mpuio_reset(s);
2128 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2129 "omap-mpuio", 0x800);
2130 memory_region_add_subregion(memory, base, &s->iomem);
2132 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2134 return s;
2137 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2139 return s->in;
2142 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2144 if (line >= 16 || line < 0)
2145 hw_error("%s: No GPIO line %i\n", __func__, line);
2146 s->handler[line] = handler;
2149 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2151 if (row >= 5 || row < 0)
2152 hw_error("%s: No key %i-%i\n", __func__, col, row);
2154 if (down)
2155 s->buttons[row] |= 1 << col;
2156 else
2157 s->buttons[row] &= ~(1 << col);
2159 omap_mpuio_kbd_update(s);
2162 /* MicroWire Interface */
2163 struct omap_uwire_s {
2164 MemoryRegion iomem;
2165 qemu_irq txirq;
2166 qemu_irq rxirq;
2167 qemu_irq txdrq;
2169 uint16_t txbuf;
2170 uint16_t rxbuf;
2171 uint16_t control;
2172 uint16_t setup[5];
2174 uWireSlave *chip[4];
2177 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2179 int chipselect = (s->control >> 10) & 3; /* INDEX */
2180 uWireSlave *slave = s->chip[chipselect];
2182 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2183 if (s->control & (1 << 12)) /* CS_CMD */
2184 if (slave && slave->send)
2185 slave->send(slave->opaque,
2186 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2187 s->control &= ~(1 << 14); /* CSRB */
2188 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2189 * a DRQ. When is the level IRQ supposed to be reset? */
2192 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2193 if (s->control & (1 << 12)) /* CS_CMD */
2194 if (slave && slave->receive)
2195 s->rxbuf = slave->receive(slave->opaque);
2196 s->control |= 1 << 15; /* RDRB */
2197 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2198 * a DRQ. When is the level IRQ supposed to be reset? */
2202 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2203 unsigned size)
2205 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2206 int offset = addr & OMAP_MPUI_REG_MASK;
2208 if (size != 2) {
2209 return omap_badwidth_read16(opaque, addr);
2212 switch (offset) {
2213 case 0x00: /* RDR */
2214 s->control &= ~(1 << 15); /* RDRB */
2215 return s->rxbuf;
2217 case 0x04: /* CSR */
2218 return s->control;
2220 case 0x08: /* SR1 */
2221 return s->setup[0];
2222 case 0x0c: /* SR2 */
2223 return s->setup[1];
2224 case 0x10: /* SR3 */
2225 return s->setup[2];
2226 case 0x14: /* SR4 */
2227 return s->setup[3];
2228 case 0x18: /* SR5 */
2229 return s->setup[4];
2232 OMAP_BAD_REG(addr);
2233 return 0;
2236 static void omap_uwire_write(void *opaque, hwaddr addr,
2237 uint64_t value, unsigned size)
2239 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2240 int offset = addr & OMAP_MPUI_REG_MASK;
2242 if (size != 2) {
2243 omap_badwidth_write16(opaque, addr, value);
2244 return;
2247 switch (offset) {
2248 case 0x00: /* TDR */
2249 s->txbuf = value; /* TD */
2250 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2251 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2252 (s->control & (1 << 12)))) { /* CS_CMD */
2253 s->control |= 1 << 14; /* CSRB */
2254 omap_uwire_transfer_start(s);
2256 break;
2258 case 0x04: /* CSR */
2259 s->control = value & 0x1fff;
2260 if (value & (1 << 13)) /* START */
2261 omap_uwire_transfer_start(s);
2262 break;
2264 case 0x08: /* SR1 */
2265 s->setup[0] = value & 0x003f;
2266 break;
2268 case 0x0c: /* SR2 */
2269 s->setup[1] = value & 0x0fc0;
2270 break;
2272 case 0x10: /* SR3 */
2273 s->setup[2] = value & 0x0003;
2274 break;
2276 case 0x14: /* SR4 */
2277 s->setup[3] = value & 0x0001;
2278 break;
2280 case 0x18: /* SR5 */
2281 s->setup[4] = value & 0x000f;
2282 break;
2284 default:
2285 OMAP_BAD_REG(addr);
2286 return;
2290 static const MemoryRegionOps omap_uwire_ops = {
2291 .read = omap_uwire_read,
2292 .write = omap_uwire_write,
2293 .endianness = DEVICE_NATIVE_ENDIAN,
2296 static void omap_uwire_reset(struct omap_uwire_s *s)
2298 s->control = 0;
2299 s->setup[0] = 0;
2300 s->setup[1] = 0;
2301 s->setup[2] = 0;
2302 s->setup[3] = 0;
2303 s->setup[4] = 0;
2306 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2307 hwaddr base,
2308 qemu_irq txirq, qemu_irq rxirq,
2309 qemu_irq dma,
2310 omap_clk clk)
2312 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2314 s->txirq = txirq;
2315 s->rxirq = rxirq;
2316 s->txdrq = dma;
2317 omap_uwire_reset(s);
2319 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2320 memory_region_add_subregion(system_memory, base, &s->iomem);
2322 return s;
2325 void omap_uwire_attach(struct omap_uwire_s *s,
2326 uWireSlave *slave, int chipselect)
2328 if (chipselect < 0 || chipselect > 3) {
2329 error_report("%s: Bad chipselect %i", __func__, chipselect);
2330 exit(-1);
2333 s->chip[chipselect] = slave;
2336 /* Pseudonoise Pulse-Width Light Modulator */
2337 struct omap_pwl_s {
2338 MemoryRegion iomem;
2339 uint8_t output;
2340 uint8_t level;
2341 uint8_t enable;
2342 int clk;
2345 static void omap_pwl_update(struct omap_pwl_s *s)
2347 int output = (s->clk && s->enable) ? s->level : 0;
2349 if (output != s->output) {
2350 s->output = output;
2351 printf("%s: Backlight now at %i/256\n", __func__, output);
2355 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2356 unsigned size)
2358 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2359 int offset = addr & OMAP_MPUI_REG_MASK;
2361 if (size != 1) {
2362 return omap_badwidth_read8(opaque, addr);
2365 switch (offset) {
2366 case 0x00: /* PWL_LEVEL */
2367 return s->level;
2368 case 0x04: /* PWL_CTRL */
2369 return s->enable;
2371 OMAP_BAD_REG(addr);
2372 return 0;
2375 static void omap_pwl_write(void *opaque, hwaddr addr,
2376 uint64_t value, unsigned size)
2378 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2379 int offset = addr & OMAP_MPUI_REG_MASK;
2381 if (size != 1) {
2382 omap_badwidth_write8(opaque, addr, value);
2383 return;
2386 switch (offset) {
2387 case 0x00: /* PWL_LEVEL */
2388 s->level = value;
2389 omap_pwl_update(s);
2390 break;
2391 case 0x04: /* PWL_CTRL */
2392 s->enable = value & 1;
2393 omap_pwl_update(s);
2394 break;
2395 default:
2396 OMAP_BAD_REG(addr);
2397 return;
2401 static const MemoryRegionOps omap_pwl_ops = {
2402 .read = omap_pwl_read,
2403 .write = omap_pwl_write,
2404 .endianness = DEVICE_NATIVE_ENDIAN,
2407 static void omap_pwl_reset(struct omap_pwl_s *s)
2409 s->output = 0;
2410 s->level = 0;
2411 s->enable = 0;
2412 s->clk = 1;
2413 omap_pwl_update(s);
2416 static void omap_pwl_clk_update(void *opaque, int line, int on)
2418 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2420 s->clk = on;
2421 omap_pwl_update(s);
2424 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2425 hwaddr base,
2426 omap_clk clk)
2428 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2430 omap_pwl_reset(s);
2432 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2433 "omap-pwl", 0x800);
2434 memory_region_add_subregion(system_memory, base, &s->iomem);
2436 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2437 return s;
2440 /* Pulse-Width Tone module */
2441 struct omap_pwt_s {
2442 MemoryRegion iomem;
2443 uint8_t frc;
2444 uint8_t vrc;
2445 uint8_t gcr;
2446 omap_clk clk;
2449 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2450 unsigned size)
2452 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2453 int offset = addr & OMAP_MPUI_REG_MASK;
2455 if (size != 1) {
2456 return omap_badwidth_read8(opaque, addr);
2459 switch (offset) {
2460 case 0x00: /* FRC */
2461 return s->frc;
2462 case 0x04: /* VCR */
2463 return s->vrc;
2464 case 0x08: /* GCR */
2465 return s->gcr;
2467 OMAP_BAD_REG(addr);
2468 return 0;
2471 static void omap_pwt_write(void *opaque, hwaddr addr,
2472 uint64_t value, unsigned size)
2474 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2475 int offset = addr & OMAP_MPUI_REG_MASK;
2477 if (size != 1) {
2478 omap_badwidth_write8(opaque, addr, value);
2479 return;
2482 switch (offset) {
2483 case 0x00: /* FRC */
2484 s->frc = value & 0x3f;
2485 break;
2486 case 0x04: /* VRC */
2487 if ((value ^ s->vrc) & 1) {
2488 if (value & 1)
2489 printf("%s: %iHz buzz on\n", __func__, (int)
2490 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2491 ((omap_clk_getrate(s->clk) >> 3) /
2492 /* Pre-multiplexer divider */
2493 ((s->gcr & 2) ? 1 : 154) /
2494 /* Octave multiplexer */
2495 (2 << (value & 3)) *
2496 /* 101/107 divider */
2497 ((value & (1 << 2)) ? 101 : 107) *
2498 /* 49/55 divider */
2499 ((value & (1 << 3)) ? 49 : 55) *
2500 /* 50/63 divider */
2501 ((value & (1 << 4)) ? 50 : 63) *
2502 /* 80/127 divider */
2503 ((value & (1 << 5)) ? 80 : 127) /
2504 (107 * 55 * 63 * 127)));
2505 else
2506 printf("%s: silence!\n", __func__);
2508 s->vrc = value & 0x7f;
2509 break;
2510 case 0x08: /* GCR */
2511 s->gcr = value & 3;
2512 break;
2513 default:
2514 OMAP_BAD_REG(addr);
2515 return;
2519 static const MemoryRegionOps omap_pwt_ops = {
2520 .read =omap_pwt_read,
2521 .write = omap_pwt_write,
2522 .endianness = DEVICE_NATIVE_ENDIAN,
2525 static void omap_pwt_reset(struct omap_pwt_s *s)
2527 s->frc = 0;
2528 s->vrc = 0;
2529 s->gcr = 0;
2532 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2533 hwaddr base,
2534 omap_clk clk)
2536 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2537 s->clk = clk;
2538 omap_pwt_reset(s);
2540 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2541 "omap-pwt", 0x800);
2542 memory_region_add_subregion(system_memory, base, &s->iomem);
2543 return s;
2546 /* Real-time Clock module */
2547 struct omap_rtc_s {
2548 MemoryRegion iomem;
2549 qemu_irq irq;
2550 qemu_irq alarm;
2551 QEMUTimer *clk;
2553 uint8_t interrupts;
2554 uint8_t status;
2555 int16_t comp_reg;
2556 int running;
2557 int pm_am;
2558 int auto_comp;
2559 int round;
2560 struct tm alarm_tm;
2561 time_t alarm_ti;
2563 struct tm current_tm;
2564 time_t ti;
2565 uint64_t tick;
2568 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2570 /* s->alarm is level-triggered */
2571 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2574 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2576 s->alarm_ti = mktimegm(&s->alarm_tm);
2577 if (s->alarm_ti == -1)
2578 printf("%s: conversion failed\n", __func__);
2581 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2582 unsigned size)
2584 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2585 int offset = addr & OMAP_MPUI_REG_MASK;
2586 uint8_t i;
2588 if (size != 1) {
2589 return omap_badwidth_read8(opaque, addr);
2592 switch (offset) {
2593 case 0x00: /* SECONDS_REG */
2594 return to_bcd(s->current_tm.tm_sec);
2596 case 0x04: /* MINUTES_REG */
2597 return to_bcd(s->current_tm.tm_min);
2599 case 0x08: /* HOURS_REG */
2600 if (s->pm_am)
2601 return ((s->current_tm.tm_hour > 11) << 7) |
2602 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2603 else
2604 return to_bcd(s->current_tm.tm_hour);
2606 case 0x0c: /* DAYS_REG */
2607 return to_bcd(s->current_tm.tm_mday);
2609 case 0x10: /* MONTHS_REG */
2610 return to_bcd(s->current_tm.tm_mon + 1);
2612 case 0x14: /* YEARS_REG */
2613 return to_bcd(s->current_tm.tm_year % 100);
2615 case 0x18: /* WEEK_REG */
2616 return s->current_tm.tm_wday;
2618 case 0x20: /* ALARM_SECONDS_REG */
2619 return to_bcd(s->alarm_tm.tm_sec);
2621 case 0x24: /* ALARM_MINUTES_REG */
2622 return to_bcd(s->alarm_tm.tm_min);
2624 case 0x28: /* ALARM_HOURS_REG */
2625 if (s->pm_am)
2626 return ((s->alarm_tm.tm_hour > 11) << 7) |
2627 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2628 else
2629 return to_bcd(s->alarm_tm.tm_hour);
2631 case 0x2c: /* ALARM_DAYS_REG */
2632 return to_bcd(s->alarm_tm.tm_mday);
2634 case 0x30: /* ALARM_MONTHS_REG */
2635 return to_bcd(s->alarm_tm.tm_mon + 1);
2637 case 0x34: /* ALARM_YEARS_REG */
2638 return to_bcd(s->alarm_tm.tm_year % 100);
2640 case 0x40: /* RTC_CTRL_REG */
2641 return (s->pm_am << 3) | (s->auto_comp << 2) |
2642 (s->round << 1) | s->running;
2644 case 0x44: /* RTC_STATUS_REG */
2645 i = s->status;
2646 s->status &= ~0x3d;
2647 return i;
2649 case 0x48: /* RTC_INTERRUPTS_REG */
2650 return s->interrupts;
2652 case 0x4c: /* RTC_COMP_LSB_REG */
2653 return ((uint16_t) s->comp_reg) & 0xff;
2655 case 0x50: /* RTC_COMP_MSB_REG */
2656 return ((uint16_t) s->comp_reg) >> 8;
2659 OMAP_BAD_REG(addr);
2660 return 0;
2663 static void omap_rtc_write(void *opaque, hwaddr addr,
2664 uint64_t value, unsigned size)
2666 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2667 int offset = addr & OMAP_MPUI_REG_MASK;
2668 struct tm new_tm;
2669 time_t ti[2];
2671 if (size != 1) {
2672 omap_badwidth_write8(opaque, addr, value);
2673 return;
2676 switch (offset) {
2677 case 0x00: /* SECONDS_REG */
2678 #ifdef ALMDEBUG
2679 printf("RTC SEC_REG <-- %02x\n", value);
2680 #endif
2681 s->ti -= s->current_tm.tm_sec;
2682 s->ti += from_bcd(value);
2683 return;
2685 case 0x04: /* MINUTES_REG */
2686 #ifdef ALMDEBUG
2687 printf("RTC MIN_REG <-- %02x\n", value);
2688 #endif
2689 s->ti -= s->current_tm.tm_min * 60;
2690 s->ti += from_bcd(value) * 60;
2691 return;
2693 case 0x08: /* HOURS_REG */
2694 #ifdef ALMDEBUG
2695 printf("RTC HRS_REG <-- %02x\n", value);
2696 #endif
2697 s->ti -= s->current_tm.tm_hour * 3600;
2698 if (s->pm_am) {
2699 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2700 s->ti += ((value >> 7) & 1) * 43200;
2701 } else
2702 s->ti += from_bcd(value & 0x3f) * 3600;
2703 return;
2705 case 0x0c: /* DAYS_REG */
2706 #ifdef ALMDEBUG
2707 printf("RTC DAY_REG <-- %02x\n", value);
2708 #endif
2709 s->ti -= s->current_tm.tm_mday * 86400;
2710 s->ti += from_bcd(value) * 86400;
2711 return;
2713 case 0x10: /* MONTHS_REG */
2714 #ifdef ALMDEBUG
2715 printf("RTC MTH_REG <-- %02x\n", value);
2716 #endif
2717 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2718 new_tm.tm_mon = from_bcd(value);
2719 ti[0] = mktimegm(&s->current_tm);
2720 ti[1] = mktimegm(&new_tm);
2722 if (ti[0] != -1 && ti[1] != -1) {
2723 s->ti -= ti[0];
2724 s->ti += ti[1];
2725 } else {
2726 /* A less accurate version */
2727 s->ti -= s->current_tm.tm_mon * 2592000;
2728 s->ti += from_bcd(value) * 2592000;
2730 return;
2732 case 0x14: /* YEARS_REG */
2733 #ifdef ALMDEBUG
2734 printf("RTC YRS_REG <-- %02x\n", value);
2735 #endif
2736 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2737 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2738 ti[0] = mktimegm(&s->current_tm);
2739 ti[1] = mktimegm(&new_tm);
2741 if (ti[0] != -1 && ti[1] != -1) {
2742 s->ti -= ti[0];
2743 s->ti += ti[1];
2744 } else {
2745 /* A less accurate version */
2746 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2747 s->ti += (time_t)from_bcd(value) * 31536000;
2749 return;
2751 case 0x18: /* WEEK_REG */
2752 return; /* Ignored */
2754 case 0x20: /* ALARM_SECONDS_REG */
2755 #ifdef ALMDEBUG
2756 printf("ALM SEC_REG <-- %02x\n", value);
2757 #endif
2758 s->alarm_tm.tm_sec = from_bcd(value);
2759 omap_rtc_alarm_update(s);
2760 return;
2762 case 0x24: /* ALARM_MINUTES_REG */
2763 #ifdef ALMDEBUG
2764 printf("ALM MIN_REG <-- %02x\n", value);
2765 #endif
2766 s->alarm_tm.tm_min = from_bcd(value);
2767 omap_rtc_alarm_update(s);
2768 return;
2770 case 0x28: /* ALARM_HOURS_REG */
2771 #ifdef ALMDEBUG
2772 printf("ALM HRS_REG <-- %02x\n", value);
2773 #endif
2774 if (s->pm_am)
2775 s->alarm_tm.tm_hour =
2776 ((from_bcd(value & 0x3f)) % 12) +
2777 ((value >> 7) & 1) * 12;
2778 else
2779 s->alarm_tm.tm_hour = from_bcd(value);
2780 omap_rtc_alarm_update(s);
2781 return;
2783 case 0x2c: /* ALARM_DAYS_REG */
2784 #ifdef ALMDEBUG
2785 printf("ALM DAY_REG <-- %02x\n", value);
2786 #endif
2787 s->alarm_tm.tm_mday = from_bcd(value);
2788 omap_rtc_alarm_update(s);
2789 return;
2791 case 0x30: /* ALARM_MONTHS_REG */
2792 #ifdef ALMDEBUG
2793 printf("ALM MON_REG <-- %02x\n", value);
2794 #endif
2795 s->alarm_tm.tm_mon = from_bcd(value);
2796 omap_rtc_alarm_update(s);
2797 return;
2799 case 0x34: /* ALARM_YEARS_REG */
2800 #ifdef ALMDEBUG
2801 printf("ALM YRS_REG <-- %02x\n", value);
2802 #endif
2803 s->alarm_tm.tm_year = from_bcd(value);
2804 omap_rtc_alarm_update(s);
2805 return;
2807 case 0x40: /* RTC_CTRL_REG */
2808 #ifdef ALMDEBUG
2809 printf("RTC CONTROL <-- %02x\n", value);
2810 #endif
2811 s->pm_am = (value >> 3) & 1;
2812 s->auto_comp = (value >> 2) & 1;
2813 s->round = (value >> 1) & 1;
2814 s->running = value & 1;
2815 s->status &= 0xfd;
2816 s->status |= s->running << 1;
2817 return;
2819 case 0x44: /* RTC_STATUS_REG */
2820 #ifdef ALMDEBUG
2821 printf("RTC STATUSL <-- %02x\n", value);
2822 #endif
2823 s->status &= ~((value & 0xc0) ^ 0x80);
2824 omap_rtc_interrupts_update(s);
2825 return;
2827 case 0x48: /* RTC_INTERRUPTS_REG */
2828 #ifdef ALMDEBUG
2829 printf("RTC INTRS <-- %02x\n", value);
2830 #endif
2831 s->interrupts = value;
2832 return;
2834 case 0x4c: /* RTC_COMP_LSB_REG */
2835 #ifdef ALMDEBUG
2836 printf("RTC COMPLSB <-- %02x\n", value);
2837 #endif
2838 s->comp_reg &= 0xff00;
2839 s->comp_reg |= 0x00ff & value;
2840 return;
2842 case 0x50: /* RTC_COMP_MSB_REG */
2843 #ifdef ALMDEBUG
2844 printf("RTC COMPMSB <-- %02x\n", value);
2845 #endif
2846 s->comp_reg &= 0x00ff;
2847 s->comp_reg |= 0xff00 & (value << 8);
2848 return;
2850 default:
2851 OMAP_BAD_REG(addr);
2852 return;
2856 static const MemoryRegionOps omap_rtc_ops = {
2857 .read = omap_rtc_read,
2858 .write = omap_rtc_write,
2859 .endianness = DEVICE_NATIVE_ENDIAN,
2862 static void omap_rtc_tick(void *opaque)
2864 struct omap_rtc_s *s = opaque;
2866 if (s->round) {
2867 /* Round to nearest full minute. */
2868 if (s->current_tm.tm_sec < 30)
2869 s->ti -= s->current_tm.tm_sec;
2870 else
2871 s->ti += 60 - s->current_tm.tm_sec;
2873 s->round = 0;
2876 localtime_r(&s->ti, &s->current_tm);
2878 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2879 s->status |= 0x40;
2880 omap_rtc_interrupts_update(s);
2883 if (s->interrupts & 0x04)
2884 switch (s->interrupts & 3) {
2885 case 0:
2886 s->status |= 0x04;
2887 qemu_irq_pulse(s->irq);
2888 break;
2889 case 1:
2890 if (s->current_tm.tm_sec)
2891 break;
2892 s->status |= 0x08;
2893 qemu_irq_pulse(s->irq);
2894 break;
2895 case 2:
2896 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2897 break;
2898 s->status |= 0x10;
2899 qemu_irq_pulse(s->irq);
2900 break;
2901 case 3:
2902 if (s->current_tm.tm_sec ||
2903 s->current_tm.tm_min || s->current_tm.tm_hour)
2904 break;
2905 s->status |= 0x20;
2906 qemu_irq_pulse(s->irq);
2907 break;
2910 /* Move on */
2911 if (s->running)
2912 s->ti ++;
2913 s->tick += 1000;
2916 * Every full hour add a rough approximation of the compensation
2917 * register to the 32kHz Timer (which drives the RTC) value.
2919 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2920 s->tick += s->comp_reg * 1000 / 32768;
2922 timer_mod(s->clk, s->tick);
2925 static void omap_rtc_reset(struct omap_rtc_s *s)
2927 struct tm tm;
2929 s->interrupts = 0;
2930 s->comp_reg = 0;
2931 s->running = 0;
2932 s->pm_am = 0;
2933 s->auto_comp = 0;
2934 s->round = 0;
2935 s->tick = qemu_clock_get_ms(rtc_clock);
2936 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2937 s->alarm_tm.tm_mday = 0x01;
2938 s->status = 1 << 7;
2939 qemu_get_timedate(&tm, 0);
2940 s->ti = mktimegm(&tm);
2942 omap_rtc_alarm_update(s);
2943 omap_rtc_tick(s);
2946 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2947 hwaddr base,
2948 qemu_irq timerirq, qemu_irq alarmirq,
2949 omap_clk clk)
2951 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2953 s->irq = timerirq;
2954 s->alarm = alarmirq;
2955 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2957 omap_rtc_reset(s);
2959 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2960 "omap-rtc", 0x800);
2961 memory_region_add_subregion(system_memory, base, &s->iomem);
2963 return s;
2966 /* Multi-channel Buffered Serial Port interfaces */
2967 struct omap_mcbsp_s {
2968 MemoryRegion iomem;
2969 qemu_irq txirq;
2970 qemu_irq rxirq;
2971 qemu_irq txdrq;
2972 qemu_irq rxdrq;
2974 uint16_t spcr[2];
2975 uint16_t rcr[2];
2976 uint16_t xcr[2];
2977 uint16_t srgr[2];
2978 uint16_t mcr[2];
2979 uint16_t pcr;
2980 uint16_t rcer[8];
2981 uint16_t xcer[8];
2982 int tx_rate;
2983 int rx_rate;
2984 int tx_req;
2985 int rx_req;
2987 I2SCodec *codec;
2988 QEMUTimer *source_timer;
2989 QEMUTimer *sink_timer;
2992 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2994 int irq;
2996 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2997 case 0:
2998 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2999 break;
3000 case 3:
3001 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
3002 break;
3003 default:
3004 irq = 0;
3005 break;
3008 if (irq)
3009 qemu_irq_pulse(s->rxirq);
3011 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
3012 case 0:
3013 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
3014 break;
3015 case 3:
3016 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
3017 break;
3018 default:
3019 irq = 0;
3020 break;
3023 if (irq)
3024 qemu_irq_pulse(s->txirq);
3027 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3029 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3030 s->spcr[0] |= 1 << 2; /* RFULL */
3031 s->spcr[0] |= 1 << 1; /* RRDY */
3032 qemu_irq_raise(s->rxdrq);
3033 omap_mcbsp_intr_update(s);
3036 static void omap_mcbsp_source_tick(void *opaque)
3038 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3039 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3041 if (!s->rx_rate)
3042 return;
3043 if (s->rx_req)
3044 printf("%s: Rx FIFO overrun\n", __func__);
3046 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3048 omap_mcbsp_rx_newdata(s);
3049 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3050 NANOSECONDS_PER_SECOND);
3053 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3055 if (!s->codec || !s->codec->rts)
3056 omap_mcbsp_source_tick(s);
3057 else if (s->codec->in.len) {
3058 s->rx_req = s->codec->in.len;
3059 omap_mcbsp_rx_newdata(s);
3063 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3065 timer_del(s->source_timer);
3068 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3070 s->spcr[0] &= ~(1 << 1); /* RRDY */
3071 qemu_irq_lower(s->rxdrq);
3072 omap_mcbsp_intr_update(s);
3075 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3077 s->spcr[1] |= 1 << 1; /* XRDY */
3078 qemu_irq_raise(s->txdrq);
3079 omap_mcbsp_intr_update(s);
3082 static void omap_mcbsp_sink_tick(void *opaque)
3084 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3085 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3087 if (!s->tx_rate)
3088 return;
3089 if (s->tx_req)
3090 printf("%s: Tx FIFO underrun\n", __func__);
3092 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3094 omap_mcbsp_tx_newdata(s);
3095 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3096 NANOSECONDS_PER_SECOND);
3099 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3101 if (!s->codec || !s->codec->cts)
3102 omap_mcbsp_sink_tick(s);
3103 else if (s->codec->out.size) {
3104 s->tx_req = s->codec->out.size;
3105 omap_mcbsp_tx_newdata(s);
3109 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3111 s->spcr[1] &= ~(1 << 1); /* XRDY */
3112 qemu_irq_lower(s->txdrq);
3113 omap_mcbsp_intr_update(s);
3114 if (s->codec && s->codec->cts)
3115 s->codec->tx_swallow(s->codec->opaque);
3118 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3120 s->tx_req = 0;
3121 omap_mcbsp_tx_done(s);
3122 timer_del(s->sink_timer);
3125 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3127 int prev_rx_rate, prev_tx_rate;
3128 int rx_rate = 0, tx_rate = 0;
3129 int cpu_rate = 1500000; /* XXX */
3131 /* TODO: check CLKSTP bit */
3132 if (s->spcr[1] & (1 << 6)) { /* GRST */
3133 if (s->spcr[0] & (1 << 0)) { /* RRST */
3134 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3135 (s->pcr & (1 << 8))) { /* CLKRM */
3136 if (~s->pcr & (1 << 7)) /* SCLKME */
3137 rx_rate = cpu_rate /
3138 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3139 } else
3140 if (s->codec)
3141 rx_rate = s->codec->rx_rate;
3144 if (s->spcr[1] & (1 << 0)) { /* XRST */
3145 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3146 (s->pcr & (1 << 9))) { /* CLKXM */
3147 if (~s->pcr & (1 << 7)) /* SCLKME */
3148 tx_rate = cpu_rate /
3149 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3150 } else
3151 if (s->codec)
3152 tx_rate = s->codec->tx_rate;
3155 prev_tx_rate = s->tx_rate;
3156 prev_rx_rate = s->rx_rate;
3157 s->tx_rate = tx_rate;
3158 s->rx_rate = rx_rate;
3160 if (s->codec)
3161 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3163 if (!prev_tx_rate && tx_rate)
3164 omap_mcbsp_tx_start(s);
3165 else if (s->tx_rate && !tx_rate)
3166 omap_mcbsp_tx_stop(s);
3168 if (!prev_rx_rate && rx_rate)
3169 omap_mcbsp_rx_start(s);
3170 else if (prev_tx_rate && !tx_rate)
3171 omap_mcbsp_rx_stop(s);
3174 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3175 unsigned size)
3177 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3178 int offset = addr & OMAP_MPUI_REG_MASK;
3179 uint16_t ret;
3181 if (size != 2) {
3182 return omap_badwidth_read16(opaque, addr);
3185 switch (offset) {
3186 case 0x00: /* DRR2 */
3187 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3188 return 0x0000;
3189 /* Fall through. */
3190 case 0x02: /* DRR1 */
3191 if (s->rx_req < 2) {
3192 printf("%s: Rx FIFO underrun\n", __func__);
3193 omap_mcbsp_rx_done(s);
3194 } else {
3195 s->tx_req -= 2;
3196 if (s->codec && s->codec->in.len >= 2) {
3197 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3198 ret |= s->codec->in.fifo[s->codec->in.start ++];
3199 s->codec->in.len -= 2;
3200 } else
3201 ret = 0x0000;
3202 if (!s->tx_req)
3203 omap_mcbsp_rx_done(s);
3204 return ret;
3206 return 0x0000;
3208 case 0x04: /* DXR2 */
3209 case 0x06: /* DXR1 */
3210 return 0x0000;
3212 case 0x08: /* SPCR2 */
3213 return s->spcr[1];
3214 case 0x0a: /* SPCR1 */
3215 return s->spcr[0];
3216 case 0x0c: /* RCR2 */
3217 return s->rcr[1];
3218 case 0x0e: /* RCR1 */
3219 return s->rcr[0];
3220 case 0x10: /* XCR2 */
3221 return s->xcr[1];
3222 case 0x12: /* XCR1 */
3223 return s->xcr[0];
3224 case 0x14: /* SRGR2 */
3225 return s->srgr[1];
3226 case 0x16: /* SRGR1 */
3227 return s->srgr[0];
3228 case 0x18: /* MCR2 */
3229 return s->mcr[1];
3230 case 0x1a: /* MCR1 */
3231 return s->mcr[0];
3232 case 0x1c: /* RCERA */
3233 return s->rcer[0];
3234 case 0x1e: /* RCERB */
3235 return s->rcer[1];
3236 case 0x20: /* XCERA */
3237 return s->xcer[0];
3238 case 0x22: /* XCERB */
3239 return s->xcer[1];
3240 case 0x24: /* PCR0 */
3241 return s->pcr;
3242 case 0x26: /* RCERC */
3243 return s->rcer[2];
3244 case 0x28: /* RCERD */
3245 return s->rcer[3];
3246 case 0x2a: /* XCERC */
3247 return s->xcer[2];
3248 case 0x2c: /* XCERD */
3249 return s->xcer[3];
3250 case 0x2e: /* RCERE */
3251 return s->rcer[4];
3252 case 0x30: /* RCERF */
3253 return s->rcer[5];
3254 case 0x32: /* XCERE */
3255 return s->xcer[4];
3256 case 0x34: /* XCERF */
3257 return s->xcer[5];
3258 case 0x36: /* RCERG */
3259 return s->rcer[6];
3260 case 0x38: /* RCERH */
3261 return s->rcer[7];
3262 case 0x3a: /* XCERG */
3263 return s->xcer[6];
3264 case 0x3c: /* XCERH */
3265 return s->xcer[7];
3268 OMAP_BAD_REG(addr);
3269 return 0;
3272 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3273 uint32_t value)
3275 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3276 int offset = addr & OMAP_MPUI_REG_MASK;
3278 switch (offset) {
3279 case 0x00: /* DRR2 */
3280 case 0x02: /* DRR1 */
3281 OMAP_RO_REG(addr);
3282 return;
3284 case 0x04: /* DXR2 */
3285 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3286 return;
3287 /* Fall through. */
3288 case 0x06: /* DXR1 */
3289 if (s->tx_req > 1) {
3290 s->tx_req -= 2;
3291 if (s->codec && s->codec->cts) {
3292 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3293 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3295 if (s->tx_req < 2)
3296 omap_mcbsp_tx_done(s);
3297 } else
3298 printf("%s: Tx FIFO overrun\n", __func__);
3299 return;
3301 case 0x08: /* SPCR2 */
3302 s->spcr[1] &= 0x0002;
3303 s->spcr[1] |= 0x03f9 & value;
3304 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3305 if (~value & 1) /* XRST */
3306 s->spcr[1] &= ~6;
3307 omap_mcbsp_req_update(s);
3308 return;
3309 case 0x0a: /* SPCR1 */
3310 s->spcr[0] &= 0x0006;
3311 s->spcr[0] |= 0xf8f9 & value;
3312 if (value & (1 << 15)) /* DLB */
3313 printf("%s: Digital Loopback mode enable attempt\n", __func__);
3314 if (~value & 1) { /* RRST */
3315 s->spcr[0] &= ~6;
3316 s->rx_req = 0;
3317 omap_mcbsp_rx_done(s);
3319 omap_mcbsp_req_update(s);
3320 return;
3322 case 0x0c: /* RCR2 */
3323 s->rcr[1] = value & 0xffff;
3324 return;
3325 case 0x0e: /* RCR1 */
3326 s->rcr[0] = value & 0x7fe0;
3327 return;
3328 case 0x10: /* XCR2 */
3329 s->xcr[1] = value & 0xffff;
3330 return;
3331 case 0x12: /* XCR1 */
3332 s->xcr[0] = value & 0x7fe0;
3333 return;
3334 case 0x14: /* SRGR2 */
3335 s->srgr[1] = value & 0xffff;
3336 omap_mcbsp_req_update(s);
3337 return;
3338 case 0x16: /* SRGR1 */
3339 s->srgr[0] = value & 0xffff;
3340 omap_mcbsp_req_update(s);
3341 return;
3342 case 0x18: /* MCR2 */
3343 s->mcr[1] = value & 0x03e3;
3344 if (value & 3) /* XMCM */
3345 printf("%s: Tx channel selection mode enable attempt\n", __func__);
3346 return;
3347 case 0x1a: /* MCR1 */
3348 s->mcr[0] = value & 0x03e1;
3349 if (value & 1) /* RMCM */
3350 printf("%s: Rx channel selection mode enable attempt\n", __func__);
3351 return;
3352 case 0x1c: /* RCERA */
3353 s->rcer[0] = value & 0xffff;
3354 return;
3355 case 0x1e: /* RCERB */
3356 s->rcer[1] = value & 0xffff;
3357 return;
3358 case 0x20: /* XCERA */
3359 s->xcer[0] = value & 0xffff;
3360 return;
3361 case 0x22: /* XCERB */
3362 s->xcer[1] = value & 0xffff;
3363 return;
3364 case 0x24: /* PCR0 */
3365 s->pcr = value & 0x7faf;
3366 return;
3367 case 0x26: /* RCERC */
3368 s->rcer[2] = value & 0xffff;
3369 return;
3370 case 0x28: /* RCERD */
3371 s->rcer[3] = value & 0xffff;
3372 return;
3373 case 0x2a: /* XCERC */
3374 s->xcer[2] = value & 0xffff;
3375 return;
3376 case 0x2c: /* XCERD */
3377 s->xcer[3] = value & 0xffff;
3378 return;
3379 case 0x2e: /* RCERE */
3380 s->rcer[4] = value & 0xffff;
3381 return;
3382 case 0x30: /* RCERF */
3383 s->rcer[5] = value & 0xffff;
3384 return;
3385 case 0x32: /* XCERE */
3386 s->xcer[4] = value & 0xffff;
3387 return;
3388 case 0x34: /* XCERF */
3389 s->xcer[5] = value & 0xffff;
3390 return;
3391 case 0x36: /* RCERG */
3392 s->rcer[6] = value & 0xffff;
3393 return;
3394 case 0x38: /* RCERH */
3395 s->rcer[7] = value & 0xffff;
3396 return;
3397 case 0x3a: /* XCERG */
3398 s->xcer[6] = value & 0xffff;
3399 return;
3400 case 0x3c: /* XCERH */
3401 s->xcer[7] = value & 0xffff;
3402 return;
3405 OMAP_BAD_REG(addr);
3408 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3409 uint32_t value)
3411 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3412 int offset = addr & OMAP_MPUI_REG_MASK;
3414 if (offset == 0x04) { /* DXR */
3415 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3416 return;
3417 if (s->tx_req > 3) {
3418 s->tx_req -= 4;
3419 if (s->codec && s->codec->cts) {
3420 s->codec->out.fifo[s->codec->out.len ++] =
3421 (value >> 24) & 0xff;
3422 s->codec->out.fifo[s->codec->out.len ++] =
3423 (value >> 16) & 0xff;
3424 s->codec->out.fifo[s->codec->out.len ++] =
3425 (value >> 8) & 0xff;
3426 s->codec->out.fifo[s->codec->out.len ++] =
3427 (value >> 0) & 0xff;
3429 if (s->tx_req < 4)
3430 omap_mcbsp_tx_done(s);
3431 } else
3432 printf("%s: Tx FIFO overrun\n", __func__);
3433 return;
3436 omap_badwidth_write16(opaque, addr, value);
3439 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3440 uint64_t value, unsigned size)
3442 switch (size) {
3443 case 2:
3444 omap_mcbsp_writeh(opaque, addr, value);
3445 break;
3446 case 4:
3447 omap_mcbsp_writew(opaque, addr, value);
3448 break;
3449 default:
3450 omap_badwidth_write16(opaque, addr, value);
3454 static const MemoryRegionOps omap_mcbsp_ops = {
3455 .read = omap_mcbsp_read,
3456 .write = omap_mcbsp_write,
3457 .endianness = DEVICE_NATIVE_ENDIAN,
3460 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3462 memset(&s->spcr, 0, sizeof(s->spcr));
3463 memset(&s->rcr, 0, sizeof(s->rcr));
3464 memset(&s->xcr, 0, sizeof(s->xcr));
3465 s->srgr[0] = 0x0001;
3466 s->srgr[1] = 0x2000;
3467 memset(&s->mcr, 0, sizeof(s->mcr));
3468 memset(&s->pcr, 0, sizeof(s->pcr));
3469 memset(&s->rcer, 0, sizeof(s->rcer));
3470 memset(&s->xcer, 0, sizeof(s->xcer));
3471 s->tx_req = 0;
3472 s->rx_req = 0;
3473 s->tx_rate = 0;
3474 s->rx_rate = 0;
3475 timer_del(s->source_timer);
3476 timer_del(s->sink_timer);
3479 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3480 hwaddr base,
3481 qemu_irq txirq, qemu_irq rxirq,
3482 qemu_irq *dma, omap_clk clk)
3484 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3486 s->txirq = txirq;
3487 s->rxirq = rxirq;
3488 s->txdrq = dma[0];
3489 s->rxdrq = dma[1];
3490 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3491 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3492 omap_mcbsp_reset(s);
3494 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3495 memory_region_add_subregion(system_memory, base, &s->iomem);
3497 return s;
3500 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3502 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3504 if (s->rx_rate) {
3505 s->rx_req = s->codec->in.len;
3506 omap_mcbsp_rx_newdata(s);
3510 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3512 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3514 if (s->tx_rate) {
3515 s->tx_req = s->codec->out.size;
3516 omap_mcbsp_tx_newdata(s);
3520 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3522 s->codec = slave;
3523 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3524 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3527 /* LED Pulse Generators */
3528 struct omap_lpg_s {
3529 MemoryRegion iomem;
3530 QEMUTimer *tm;
3532 uint8_t control;
3533 uint8_t power;
3534 int64_t on;
3535 int64_t period;
3536 int clk;
3537 int cycle;
3540 static void omap_lpg_tick(void *opaque)
3542 struct omap_lpg_s *s = opaque;
3544 if (s->cycle)
3545 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3546 else
3547 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3549 s->cycle = !s->cycle;
3550 printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3553 static void omap_lpg_update(struct omap_lpg_s *s)
3555 int64_t on, period = 1, ticks = 1000;
3556 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3558 if (~s->control & (1 << 6)) /* LPGRES */
3559 on = 0;
3560 else if (s->control & (1 << 7)) /* PERM_ON */
3561 on = period;
3562 else {
3563 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3564 256 / 32);
3565 on = (s->clk && s->power) ? muldiv64(ticks,
3566 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3569 timer_del(s->tm);
3570 if (on == period && s->on < s->period)
3571 printf("%s: LED is on\n", __func__);
3572 else if (on == 0 && s->on)
3573 printf("%s: LED is off\n", __func__);
3574 else if (on && (on != s->on || period != s->period)) {
3575 s->cycle = 0;
3576 s->on = on;
3577 s->period = period;
3578 omap_lpg_tick(s);
3579 return;
3582 s->on = on;
3583 s->period = period;
3586 static void omap_lpg_reset(struct omap_lpg_s *s)
3588 s->control = 0x00;
3589 s->power = 0x00;
3590 s->clk = 1;
3591 omap_lpg_update(s);
3594 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3595 unsigned size)
3597 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3598 int offset = addr & OMAP_MPUI_REG_MASK;
3600 if (size != 1) {
3601 return omap_badwidth_read8(opaque, addr);
3604 switch (offset) {
3605 case 0x00: /* LCR */
3606 return s->control;
3608 case 0x04: /* PMR */
3609 return s->power;
3612 OMAP_BAD_REG(addr);
3613 return 0;
3616 static void omap_lpg_write(void *opaque, hwaddr addr,
3617 uint64_t value, unsigned size)
3619 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3620 int offset = addr & OMAP_MPUI_REG_MASK;
3622 if (size != 1) {
3623 omap_badwidth_write8(opaque, addr, value);
3624 return;
3627 switch (offset) {
3628 case 0x00: /* LCR */
3629 if (~value & (1 << 6)) /* LPGRES */
3630 omap_lpg_reset(s);
3631 s->control = value & 0xff;
3632 omap_lpg_update(s);
3633 return;
3635 case 0x04: /* PMR */
3636 s->power = value & 0x01;
3637 omap_lpg_update(s);
3638 return;
3640 default:
3641 OMAP_BAD_REG(addr);
3642 return;
3646 static const MemoryRegionOps omap_lpg_ops = {
3647 .read = omap_lpg_read,
3648 .write = omap_lpg_write,
3649 .endianness = DEVICE_NATIVE_ENDIAN,
3652 static void omap_lpg_clk_update(void *opaque, int line, int on)
3654 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3656 s->clk = on;
3657 omap_lpg_update(s);
3660 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3661 hwaddr base, omap_clk clk)
3663 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3665 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3667 omap_lpg_reset(s);
3669 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3670 memory_region_add_subregion(system_memory, base, &s->iomem);
3672 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3674 return s;
3677 /* MPUI Peripheral Bridge configuration */
3678 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3679 unsigned size)
3681 if (size != 2) {
3682 return omap_badwidth_read16(opaque, addr);
3685 if (addr == OMAP_MPUI_BASE) /* CMR */
3686 return 0xfe4d;
3688 OMAP_BAD_REG(addr);
3689 return 0;
3692 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3693 uint64_t value, unsigned size)
3695 /* FIXME: infinite loop */
3696 omap_badwidth_write16(opaque, addr, value);
3699 static const MemoryRegionOps omap_mpui_io_ops = {
3700 .read = omap_mpui_io_read,
3701 .write = omap_mpui_io_write,
3702 .endianness = DEVICE_NATIVE_ENDIAN,
3705 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3706 struct omap_mpu_state_s *mpu)
3708 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3709 "omap-mpui-io", 0x7fff);
3710 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3711 &mpu->mpui_io_iomem);
3714 /* General chip reset */
3715 static void omap1_mpu_reset(void *opaque)
3717 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3719 omap_dma_reset(mpu->dma);
3720 omap_mpu_timer_reset(mpu->timer[0]);
3721 omap_mpu_timer_reset(mpu->timer[1]);
3722 omap_mpu_timer_reset(mpu->timer[2]);
3723 omap_wd_timer_reset(mpu->wdt);
3724 omap_os_timer_reset(mpu->os_timer);
3725 omap_lcdc_reset(mpu->lcd);
3726 omap_ulpd_pm_reset(mpu);
3727 omap_pin_cfg_reset(mpu);
3728 omap_mpui_reset(mpu);
3729 omap_tipb_bridge_reset(mpu->private_tipb);
3730 omap_tipb_bridge_reset(mpu->public_tipb);
3731 omap_dpll_reset(mpu->dpll[0]);
3732 omap_dpll_reset(mpu->dpll[1]);
3733 omap_dpll_reset(mpu->dpll[2]);
3734 omap_uart_reset(mpu->uart[0]);
3735 omap_uart_reset(mpu->uart[1]);
3736 omap_uart_reset(mpu->uart[2]);
3737 omap_mmc_reset(mpu->mmc);
3738 omap_mpuio_reset(mpu->mpuio);
3739 omap_uwire_reset(mpu->microwire);
3740 omap_pwl_reset(mpu->pwl);
3741 omap_pwt_reset(mpu->pwt);
3742 omap_rtc_reset(mpu->rtc);
3743 omap_mcbsp_reset(mpu->mcbsp1);
3744 omap_mcbsp_reset(mpu->mcbsp2);
3745 omap_mcbsp_reset(mpu->mcbsp3);
3746 omap_lpg_reset(mpu->led[0]);
3747 omap_lpg_reset(mpu->led[1]);
3748 omap_clkm_reset(mpu);
3749 cpu_reset(CPU(mpu->cpu));
3752 static const struct omap_map_s {
3753 hwaddr phys_dsp;
3754 hwaddr phys_mpu;
3755 uint32_t size;
3756 const char *name;
3757 } omap15xx_dsp_mm[] = {
3758 /* Strobe 0 */
3759 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3760 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3761 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3762 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3763 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3764 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3765 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3766 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3767 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3768 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3769 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3770 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3771 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3772 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3773 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3774 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3775 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3776 /* Strobe 1 */
3777 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3779 { 0 }
3782 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3783 const struct omap_map_s *map)
3785 MemoryRegion *io;
3787 for (; map->phys_dsp; map ++) {
3788 io = g_new(MemoryRegion, 1);
3789 memory_region_init_alias(io, NULL, map->name,
3790 system_memory, map->phys_mpu, map->size);
3791 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3795 void omap_mpu_wakeup(void *opaque, int irq, int req)
3797 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3798 CPUState *cpu = CPU(mpu->cpu);
3800 if (cpu->halted) {
3801 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3805 static const struct dma_irq_map omap1_dma_irq_map[] = {
3806 { 0, OMAP_INT_DMA_CH0_6 },
3807 { 0, OMAP_INT_DMA_CH1_7 },
3808 { 0, OMAP_INT_DMA_CH2_8 },
3809 { 0, OMAP_INT_DMA_CH3 },
3810 { 0, OMAP_INT_DMA_CH4 },
3811 { 0, OMAP_INT_DMA_CH5 },
3812 { 1, OMAP_INT_1610_DMA_CH6 },
3813 { 1, OMAP_INT_1610_DMA_CH7 },
3814 { 1, OMAP_INT_1610_DMA_CH8 },
3815 { 1, OMAP_INT_1610_DMA_CH9 },
3816 { 1, OMAP_INT_1610_DMA_CH10 },
3817 { 1, OMAP_INT_1610_DMA_CH11 },
3818 { 1, OMAP_INT_1610_DMA_CH12 },
3819 { 1, OMAP_INT_1610_DMA_CH13 },
3820 { 1, OMAP_INT_1610_DMA_CH14 },
3821 { 1, OMAP_INT_1610_DMA_CH15 }
3824 /* DMA ports for OMAP1 */
3825 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3826 hwaddr addr)
3828 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3831 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3832 hwaddr addr)
3834 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3835 addr);
3838 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3839 hwaddr addr)
3841 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3844 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3845 hwaddr addr)
3847 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3850 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3851 hwaddr addr)
3853 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3856 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3857 hwaddr addr)
3859 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3862 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *dram,
3863 const char *cpu_type)
3865 int i;
3866 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3867 qemu_irq dma_irqs[6];
3868 DriveInfo *dinfo;
3869 SysBusDevice *busdev;
3870 MemoryRegion *system_memory = get_system_memory();
3872 /* Core */
3873 s->mpu_model = omap310;
3874 s->cpu = ARM_CPU(cpu_create(cpu_type));
3875 s->sdram_size = memory_region_size(dram);
3876 s->sram_size = OMAP15XX_SRAM_SIZE;
3878 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3880 /* Clocks */
3881 omap_clk_init(s);
3883 /* Memory-mapped stuff */
3884 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3885 &error_fatal);
3886 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3888 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3890 s->ih[0] = qdev_create(NULL, "omap-intc");
3891 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3892 omap_intc_set_iclk(OMAP_INTC(s->ih[0]), omap_findclk(s, "arminth_ck"));
3893 qdev_init_nofail(s->ih[0]);
3894 busdev = SYS_BUS_DEVICE(s->ih[0]);
3895 sysbus_connect_irq(busdev, 0,
3896 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3897 sysbus_connect_irq(busdev, 1,
3898 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3899 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3900 s->ih[1] = qdev_create(NULL, "omap-intc");
3901 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3902 omap_intc_set_iclk(OMAP_INTC(s->ih[1]), omap_findclk(s, "arminth_ck"));
3903 qdev_init_nofail(s->ih[1]);
3904 busdev = SYS_BUS_DEVICE(s->ih[1]);
3905 sysbus_connect_irq(busdev, 0,
3906 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3907 /* The second interrupt controller's FIQ output is not wired up */
3908 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3910 for (i = 0; i < 6; i++) {
3911 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3912 omap1_dma_irq_map[i].intr);
3914 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3915 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3916 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3918 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3919 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3920 s->port[imif ].addr_valid = omap_validate_imif_addr;
3921 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3922 s->port[local ].addr_valid = omap_validate_local_addr;
3923 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3925 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3926 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(dram),
3927 OMAP_EMIFF_BASE, s->sdram_size);
3928 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3929 OMAP_IMIF_BASE, s->sram_size);
3931 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3932 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3933 omap_findclk(s, "mputim_ck"));
3934 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3935 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3936 omap_findclk(s, "mputim_ck"));
3937 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3938 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3939 omap_findclk(s, "mputim_ck"));
3941 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3942 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3943 omap_findclk(s, "armwdt_ck"));
3945 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3946 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3947 omap_findclk(s, "clk32-kHz"));
3949 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3950 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3951 omap_dma_get_lcdch(s->dma),
3952 omap_findclk(s, "lcd_ck"));
3954 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3955 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3956 omap_id_init(system_memory, s);
3958 omap_mpui_init(system_memory, 0xfffec900, s);
3960 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3961 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3962 omap_findclk(s, "tipb_ck"));
3963 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3964 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3965 omap_findclk(s, "tipb_ck"));
3967 omap_tcmi_init(system_memory, 0xfffecc00, s);
3969 s->uart[0] = omap_uart_init(0xfffb0000,
3970 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3971 omap_findclk(s, "uart1_ck"),
3972 omap_findclk(s, "uart1_ck"),
3973 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3974 "uart1",
3975 serial_hd(0));
3976 s->uart[1] = omap_uart_init(0xfffb0800,
3977 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3978 omap_findclk(s, "uart2_ck"),
3979 omap_findclk(s, "uart2_ck"),
3980 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3981 "uart2",
3982 serial_hd(0) ? serial_hd(1) : NULL);
3983 s->uart[2] = omap_uart_init(0xfffb9800,
3984 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3985 omap_findclk(s, "uart3_ck"),
3986 omap_findclk(s, "uart3_ck"),
3987 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3988 "uart3",
3989 serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3991 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3992 omap_findclk(s, "dpll1"));
3993 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3994 omap_findclk(s, "dpll2"));
3995 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3996 omap_findclk(s, "dpll3"));
3998 dinfo = drive_get(IF_SD, 0, 0);
3999 if (!dinfo && !qtest_enabled()) {
4000 warn_report("missing SecureDigital device");
4002 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
4003 dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
4004 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4005 &s->drq[OMAP_DMA_MMC_TX],
4006 omap_findclk(s, "mmc_ck"));
4008 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4009 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4010 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4011 s->wakeup, omap_findclk(s, "clk32-kHz"));
4013 s->gpio = qdev_create(NULL, "omap-gpio");
4014 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4015 omap_gpio_set_clk(OMAP1_GPIO(s->gpio), omap_findclk(s, "arm_gpio_ck"));
4016 qdev_init_nofail(s->gpio);
4017 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4018 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4019 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4021 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4022 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4023 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4024 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4026 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4027 omap_findclk(s, "armxor_ck"));
4028 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4029 omap_findclk(s, "armxor_ck"));
4031 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4032 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4033 omap_i2c_set_fclk(OMAP_I2C(s->i2c[0]), omap_findclk(s, "mpuper_ck"));
4034 qdev_init_nofail(s->i2c[0]);
4035 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4036 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4037 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4038 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4039 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4041 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4042 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4043 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4044 omap_findclk(s, "clk32-kHz"));
4046 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4047 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4048 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4049 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4050 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4051 qdev_get_gpio_in(s->ih[0],
4052 OMAP_INT_310_McBSP2_TX),
4053 qdev_get_gpio_in(s->ih[0],
4054 OMAP_INT_310_McBSP2_RX),
4055 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4056 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4057 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4058 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4059 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4061 s->led[0] = omap_lpg_init(system_memory,
4062 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4063 s->led[1] = omap_lpg_init(system_memory,
4064 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4066 /* Register mappings not currenlty implemented:
4067 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4068 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4069 * USB W2FC fffb4000 - fffb47ff
4070 * Camera Interface fffb6800 - fffb6fff
4071 * USB Host fffba000 - fffba7ff
4072 * FAC fffba800 - fffbafff
4073 * HDQ/1-Wire fffbc000 - fffbc7ff
4074 * TIPB switches fffbc800 - fffbcfff
4075 * Mailbox fffcf000 - fffcf7ff
4076 * Local bus IF fffec100 - fffec1ff
4077 * Local bus MMU fffec200 - fffec2ff
4078 * DSP MMU fffed200 - fffed2ff
4081 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4082 omap_setup_mpui_io(system_memory, s);
4084 qemu_register_reset(omap1_mpu_reset, s);
4086 return s;