trace-events: Add hmp completion
[qemu/ar7.git] / target-arm / cpu.c
blobcc6c6f3d4ceedc061d333e3d376ad9a0869d0c2c
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "cpu.h"
22 #include "internals.h"
23 #include "qemu-common.h"
24 #include "hw/qdev-properties.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
27 #endif
28 #include "hw/arm/arm.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/kvm.h"
31 #include "kvm_arm.h"
33 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
35 ARMCPU *cpu = ARM_CPU(cs);
37 cpu->env.regs[15] = value;
40 static bool arm_cpu_has_work(CPUState *cs)
42 ARMCPU *cpu = ARM_CPU(cs);
44 return !cpu->powered_off
45 && cs->interrupt_request &
46 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
47 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
48 | CPU_INTERRUPT_EXITTB);
51 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
53 /* Reset a single ARMCPRegInfo register */
54 ARMCPRegInfo *ri = value;
55 ARMCPU *cpu = opaque;
57 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
58 return;
61 if (ri->resetfn) {
62 ri->resetfn(&cpu->env, ri);
63 return;
66 /* A zero offset is never possible as it would be regs[0]
67 * so we use it to indicate that reset is being handled elsewhere.
68 * This is basically only used for fields in non-core coprocessors
69 * (like the pxa2xx ones).
71 if (!ri->fieldoffset) {
72 return;
75 if (cpreg_field_is_64bit(ri)) {
76 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
77 } else {
78 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
82 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
84 /* Purely an assertion check: we've already done reset once,
85 * so now check that running the reset for the cpreg doesn't
86 * change its value. This traps bugs where two different cpregs
87 * both try to reset the same state field but to different values.
89 ARMCPRegInfo *ri = value;
90 ARMCPU *cpu = opaque;
91 uint64_t oldvalue, newvalue;
93 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
94 return;
97 oldvalue = read_raw_cp_reg(&cpu->env, ri);
98 cp_reg_reset(key, value, opaque);
99 newvalue = read_raw_cp_reg(&cpu->env, ri);
100 assert(oldvalue == newvalue);
103 /* CPUClass::reset() */
104 static void arm_cpu_reset(CPUState *s)
106 ARMCPU *cpu = ARM_CPU(s);
107 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
108 CPUARMState *env = &cpu->env;
110 acc->parent_reset(s);
112 memset(env, 0, offsetof(CPUARMState, features));
113 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
114 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
116 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
117 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
118 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
119 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
121 cpu->powered_off = cpu->start_powered_off;
122 s->halted = cpu->start_powered_off;
124 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
125 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
128 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
129 /* 64 bit CPUs always start in 64 bit mode */
130 env->aarch64 = 1;
131 #if defined(CONFIG_USER_ONLY)
132 env->pstate = PSTATE_MODE_EL0t;
133 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
134 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
135 /* and to the FP/Neon instructions */
136 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
137 #else
138 /* Reset into the highest available EL */
139 if (arm_feature(env, ARM_FEATURE_EL3)) {
140 env->pstate = PSTATE_MODE_EL3h;
141 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
142 env->pstate = PSTATE_MODE_EL2h;
143 } else {
144 env->pstate = PSTATE_MODE_EL1h;
146 env->pc = cpu->rvbar;
147 #endif
148 } else {
149 #if defined(CONFIG_USER_ONLY)
150 /* Userspace expects access to cp10 and cp11 for FP/Neon */
151 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
152 #endif
155 #if defined(CONFIG_USER_ONLY)
156 env->uncached_cpsr = ARM_CPU_MODE_USR;
157 /* For user mode we must enable access to coprocessors */
158 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
159 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
160 env->cp15.c15_cpar = 3;
161 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
162 env->cp15.c15_cpar = 1;
164 #else
165 /* SVC mode with interrupts disabled. */
166 env->uncached_cpsr = ARM_CPU_MODE_SVC;
167 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
168 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
169 * clear at reset. Initial SP and PC are loaded from ROM.
171 if (IS_M(env)) {
172 uint32_t initial_msp; /* Loaded from 0x0 */
173 uint32_t initial_pc; /* Loaded from 0x4 */
174 uint8_t *rom;
176 env->daif &= ~PSTATE_I;
177 rom = rom_ptr(0);
178 if (rom) {
179 /* Address zero is covered by ROM which hasn't yet been
180 * copied into physical memory.
182 initial_msp = ldl_p(rom);
183 initial_pc = ldl_p(rom + 4);
184 } else {
185 /* Address zero not covered by a ROM blob, or the ROM blob
186 * is in non-modifiable memory and this is a second reset after
187 * it got copied into memory. In the latter case, rom_ptr
188 * will return a NULL pointer and we should use ldl_phys instead.
190 initial_msp = ldl_phys(s->as, 0);
191 initial_pc = ldl_phys(s->as, 4);
194 env->regs[13] = initial_msp & 0xFFFFFFFC;
195 env->regs[15] = initial_pc & ~1;
196 env->thumb = initial_pc & 1;
199 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
200 * executing as AArch32 then check if highvecs are enabled and
201 * adjust the PC accordingly.
203 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
204 env->regs[15] = 0xFFFF0000;
207 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
208 #endif
209 set_flush_to_zero(1, &env->vfp.standard_fp_status);
210 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
211 set_default_nan_mode(1, &env->vfp.standard_fp_status);
212 set_float_detect_tininess(float_tininess_before_rounding,
213 &env->vfp.fp_status);
214 set_float_detect_tininess(float_tininess_before_rounding,
215 &env->vfp.standard_fp_status);
216 tlb_flush(s, 1);
218 #ifndef CONFIG_USER_ONLY
219 if (kvm_enabled()) {
220 kvm_arm_reset_vcpu(cpu);
222 #endif
224 hw_breakpoint_update_all(cpu);
225 hw_watchpoint_update_all(cpu);
228 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
230 CPUClass *cc = CPU_GET_CLASS(cs);
231 CPUARMState *env = cs->env_ptr;
232 uint32_t cur_el = arm_current_el(env);
233 bool secure = arm_is_secure(env);
234 uint32_t target_el;
235 uint32_t excp_idx;
236 bool ret = false;
238 if (interrupt_request & CPU_INTERRUPT_FIQ) {
239 excp_idx = EXCP_FIQ;
240 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
241 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
242 cs->exception_index = excp_idx;
243 env->exception.target_el = target_el;
244 cc->do_interrupt(cs);
245 ret = true;
248 if (interrupt_request & CPU_INTERRUPT_HARD) {
249 excp_idx = EXCP_IRQ;
250 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
251 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
252 cs->exception_index = excp_idx;
253 env->exception.target_el = target_el;
254 cc->do_interrupt(cs);
255 ret = true;
258 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
259 excp_idx = EXCP_VIRQ;
260 target_el = 1;
261 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
262 cs->exception_index = excp_idx;
263 env->exception.target_el = target_el;
264 cc->do_interrupt(cs);
265 ret = true;
268 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
269 excp_idx = EXCP_VFIQ;
270 target_el = 1;
271 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
272 cs->exception_index = excp_idx;
273 env->exception.target_el = target_el;
274 cc->do_interrupt(cs);
275 ret = true;
279 return ret;
282 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
283 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
285 CPUClass *cc = CPU_GET_CLASS(cs);
286 ARMCPU *cpu = ARM_CPU(cs);
287 CPUARMState *env = &cpu->env;
288 bool ret = false;
291 if (interrupt_request & CPU_INTERRUPT_FIQ
292 && !(env->daif & PSTATE_F)) {
293 cs->exception_index = EXCP_FIQ;
294 cc->do_interrupt(cs);
295 ret = true;
297 /* ARMv7-M interrupt return works by loading a magic value
298 * into the PC. On real hardware the load causes the
299 * return to occur. The qemu implementation performs the
300 * jump normally, then does the exception return when the
301 * CPU tries to execute code at the magic address.
302 * This will cause the magic PC value to be pushed to
303 * the stack if an interrupt occurred at the wrong time.
304 * We avoid this by disabling interrupts when
305 * pc contains a magic address.
307 if (interrupt_request & CPU_INTERRUPT_HARD
308 && !(env->daif & PSTATE_I)
309 && (env->regs[15] < 0xfffffff0)) {
310 cs->exception_index = EXCP_IRQ;
311 cc->do_interrupt(cs);
312 ret = true;
314 return ret;
316 #endif
318 #ifndef CONFIG_USER_ONLY
319 static void arm_cpu_set_irq(void *opaque, int irq, int level)
321 ARMCPU *cpu = opaque;
322 CPUARMState *env = &cpu->env;
323 CPUState *cs = CPU(cpu);
324 static const int mask[] = {
325 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
326 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
327 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
328 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
331 switch (irq) {
332 case ARM_CPU_VIRQ:
333 case ARM_CPU_VFIQ:
334 if (!arm_feature(env, ARM_FEATURE_EL2)) {
335 hw_error("%s: Virtual interrupt line %d with no EL2 support\n",
336 __func__, irq);
338 /* fall through */
339 case ARM_CPU_IRQ:
340 case ARM_CPU_FIQ:
341 if (level) {
342 cpu_interrupt(cs, mask[irq]);
343 } else {
344 cpu_reset_interrupt(cs, mask[irq]);
346 break;
347 default:
348 hw_error("arm_cpu_set_irq: Bad interrupt line %d\n", irq);
352 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
354 #ifdef CONFIG_KVM
355 ARMCPU *cpu = opaque;
356 CPUState *cs = CPU(cpu);
357 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
359 switch (irq) {
360 case ARM_CPU_IRQ:
361 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
362 break;
363 case ARM_CPU_FIQ:
364 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
365 break;
366 default:
367 hw_error("arm_cpu_kvm_set_irq: Bad interrupt line %d\n", irq);
369 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
370 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
371 #endif
374 static bool arm_cpu_is_big_endian(CPUState *cs)
376 ARMCPU *cpu = ARM_CPU(cs);
377 CPUARMState *env = &cpu->env;
378 int cur_el;
380 cpu_synchronize_state(cs);
382 /* In 32bit guest endianness is determined by looking at CPSR's E bit */
383 if (!is_a64(env)) {
384 return (env->uncached_cpsr & CPSR_E) ? 1 : 0;
387 cur_el = arm_current_el(env);
389 if (cur_el == 0) {
390 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
393 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
396 #endif
398 static inline void set_feature(CPUARMState *env, int feature)
400 env->features |= 1ULL << feature;
403 static inline void unset_feature(CPUARMState *env, int feature)
405 env->features &= ~(1ULL << feature);
408 static int
409 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
411 return print_insn_arm(pc | 1, info);
414 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
416 ARMCPU *ac = ARM_CPU(cpu);
417 CPUARMState *env = &ac->env;
419 if (is_a64(env)) {
420 /* We might not be compiled with the A64 disassembler
421 * because it needs a C++ compiler. Leave print_insn
422 * unset in this case to use the caller default behaviour.
424 #if defined(CONFIG_ARM_A64_DIS)
425 info->print_insn = print_insn_arm_a64;
426 #endif
427 } else if (env->thumb) {
428 info->print_insn = print_insn_thumb1;
429 } else {
430 info->print_insn = print_insn_arm;
432 if (env->bswap_code) {
433 #ifdef TARGET_WORDS_BIGENDIAN
434 info->endian = BFD_ENDIAN_LITTLE;
435 #else
436 info->endian = BFD_ENDIAN_BIG;
437 #endif
441 #define ARM_CPUS_PER_CLUSTER 8
443 static void arm_cpu_initfn(Object *obj)
445 CPUState *cs = CPU(obj);
446 ARMCPU *cpu = ARM_CPU(obj);
447 static bool inited;
448 uint32_t Aff1, Aff0;
450 cs->env_ptr = &cpu->env;
451 cpu_exec_init(cs, &error_abort);
452 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
453 g_free, g_free);
455 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
456 * We don't support setting cluster ID ([16..23]) (known as Aff2
457 * in later ARM ARM versions), or any of the higher affinity level fields,
458 * so these bits always RAZ.
460 Aff1 = cs->cpu_index / ARM_CPUS_PER_CLUSTER;
461 Aff0 = cs->cpu_index % ARM_CPUS_PER_CLUSTER;
462 cpu->mp_affinity = (Aff1 << 8) | Aff0;
464 #ifndef CONFIG_USER_ONLY
465 /* Our inbound IRQ and FIQ lines */
466 if (kvm_enabled()) {
467 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
468 * the same interface as non-KVM CPUs.
470 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
471 } else {
472 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
475 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
476 arm_gt_ptimer_cb, cpu);
477 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
478 arm_gt_vtimer_cb, cpu);
479 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
480 arm_gt_htimer_cb, cpu);
481 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
482 arm_gt_stimer_cb, cpu);
483 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
484 ARRAY_SIZE(cpu->gt_timer_outputs));
485 #endif
487 /* DTB consumers generally don't in fact care what the 'compatible'
488 * string is, so always provide some string and trust that a hypothetical
489 * picky DTB consumer will also provide a helpful error message.
491 cpu->dtb_compatible = "qemu,unknown";
492 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
493 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
495 if (tcg_enabled()) {
496 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
497 if (!inited) {
498 inited = true;
499 arm_translate_init();
504 static Property arm_cpu_reset_cbar_property =
505 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
507 static Property arm_cpu_reset_hivecs_property =
508 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
510 static Property arm_cpu_rvbar_property =
511 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
513 static Property arm_cpu_has_el3_property =
514 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
516 static Property arm_cpu_has_mpu_property =
517 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
519 static Property arm_cpu_pmsav7_dregion_property =
520 DEFINE_PROP_UINT32("pmsav7-dregion", ARMCPU, pmsav7_dregion, 16);
522 static void arm_cpu_post_init(Object *obj)
524 ARMCPU *cpu = ARM_CPU(obj);
526 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
527 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
528 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
529 &error_abort);
532 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
533 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
534 &error_abort);
537 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
538 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
539 &error_abort);
542 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
543 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
544 * prevent "has_el3" from existing on CPUs which cannot support EL3.
546 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
547 &error_abort);
550 if (arm_feature(&cpu->env, ARM_FEATURE_MPU)) {
551 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
552 &error_abort);
553 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
554 qdev_property_add_static(DEVICE(obj),
555 &arm_cpu_pmsav7_dregion_property,
556 &error_abort);
562 static void arm_cpu_finalizefn(Object *obj)
564 ARMCPU *cpu = ARM_CPU(obj);
565 g_hash_table_destroy(cpu->cp_regs);
568 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
570 CPUState *cs = CPU(dev);
571 ARMCPU *cpu = ARM_CPU(dev);
572 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
573 CPUARMState *env = &cpu->env;
575 /* Some features automatically imply others: */
576 if (arm_feature(env, ARM_FEATURE_V8)) {
577 set_feature(env, ARM_FEATURE_V7);
578 set_feature(env, ARM_FEATURE_ARM_DIV);
579 set_feature(env, ARM_FEATURE_LPAE);
581 if (arm_feature(env, ARM_FEATURE_V7)) {
582 set_feature(env, ARM_FEATURE_VAPA);
583 set_feature(env, ARM_FEATURE_THUMB2);
584 set_feature(env, ARM_FEATURE_MPIDR);
585 if (!arm_feature(env, ARM_FEATURE_M)) {
586 set_feature(env, ARM_FEATURE_V6K);
587 } else {
588 set_feature(env, ARM_FEATURE_V6);
591 if (arm_feature(env, ARM_FEATURE_V6K)) {
592 set_feature(env, ARM_FEATURE_V6);
593 set_feature(env, ARM_FEATURE_MVFR);
595 if (arm_feature(env, ARM_FEATURE_V6)) {
596 set_feature(env, ARM_FEATURE_V5);
597 if (!arm_feature(env, ARM_FEATURE_M)) {
598 set_feature(env, ARM_FEATURE_AUXCR);
601 if (arm_feature(env, ARM_FEATURE_V5)) {
602 set_feature(env, ARM_FEATURE_V4T);
604 if (arm_feature(env, ARM_FEATURE_M)) {
605 set_feature(env, ARM_FEATURE_THUMB_DIV);
607 if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
608 set_feature(env, ARM_FEATURE_THUMB_DIV);
610 if (arm_feature(env, ARM_FEATURE_VFP4)) {
611 set_feature(env, ARM_FEATURE_VFP3);
612 set_feature(env, ARM_FEATURE_VFP_FP16);
614 if (arm_feature(env, ARM_FEATURE_VFP3)) {
615 set_feature(env, ARM_FEATURE_VFP);
617 if (arm_feature(env, ARM_FEATURE_LPAE)) {
618 set_feature(env, ARM_FEATURE_V7MP);
619 set_feature(env, ARM_FEATURE_PXN);
621 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
622 set_feature(env, ARM_FEATURE_CBAR);
624 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
625 !arm_feature(env, ARM_FEATURE_M)) {
626 set_feature(env, ARM_FEATURE_THUMB_DSP);
629 if (cpu->reset_hivecs) {
630 cpu->reset_sctlr |= (1 << 13);
633 if (!cpu->has_el3) {
634 /* If the has_el3 CPU property is disabled then we need to disable the
635 * feature.
637 unset_feature(env, ARM_FEATURE_EL3);
639 /* Disable the security extension feature bits in the processor feature
640 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
642 cpu->id_pfr1 &= ~0xf0;
643 cpu->id_aa64pfr0 &= ~0xf000;
646 if (!cpu->has_mpu) {
647 unset_feature(env, ARM_FEATURE_MPU);
650 if (arm_feature(env, ARM_FEATURE_MPU) &&
651 arm_feature(env, ARM_FEATURE_V7)) {
652 uint32_t nr = cpu->pmsav7_dregion;
654 if (nr > 0xff) {
655 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32 "\n", nr);
656 return;
659 if (nr) {
660 env->pmsav7.drbar = g_new0(uint32_t, nr);
661 env->pmsav7.drsr = g_new0(uint32_t, nr);
662 env->pmsav7.dracr = g_new0(uint32_t, nr);
666 register_cp_regs_for_features(cpu);
667 arm_cpu_register_gdb_regs_for_features(cpu);
669 init_cpreg_list(cpu);
671 qemu_init_vcpu(cs);
672 cpu_reset(cs);
674 acc->parent_realize(dev, errp);
677 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
679 ObjectClass *oc;
680 char *typename;
681 char **cpuname;
683 if (!cpu_model) {
684 return NULL;
687 cpuname = g_strsplit(cpu_model, ",", 1);
688 typename = g_strdup_printf("%s-" TYPE_ARM_CPU, cpuname[0]);
689 oc = object_class_by_name(typename);
690 g_strfreev(cpuname);
691 g_free(typename);
692 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
693 object_class_is_abstract(oc)) {
694 return NULL;
696 return oc;
699 /* CPU models. These are not needed for the AArch64 linux-user build. */
700 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
702 static void arm926_initfn(Object *obj)
704 ARMCPU *cpu = ARM_CPU(obj);
706 cpu->dtb_compatible = "arm,arm926";
707 set_feature(&cpu->env, ARM_FEATURE_V5);
708 set_feature(&cpu->env, ARM_FEATURE_VFP);
709 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
710 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
711 cpu->midr = 0x41069265;
712 cpu->reset_fpsid = 0x41011090;
713 cpu->ctr = 0x1dd20d2;
714 cpu->reset_sctlr = 0x00090078;
717 static void arm946_initfn(Object *obj)
719 ARMCPU *cpu = ARM_CPU(obj);
721 cpu->dtb_compatible = "arm,arm946";
722 set_feature(&cpu->env, ARM_FEATURE_V5);
723 set_feature(&cpu->env, ARM_FEATURE_MPU);
724 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
725 cpu->midr = 0x41059461;
726 cpu->ctr = 0x0f004006;
727 cpu->reset_sctlr = 0x00000078;
730 static void arm1026_initfn(Object *obj)
732 ARMCPU *cpu = ARM_CPU(obj);
734 cpu->dtb_compatible = "arm,arm1026";
735 set_feature(&cpu->env, ARM_FEATURE_V5);
736 set_feature(&cpu->env, ARM_FEATURE_VFP);
737 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
738 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
739 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
740 cpu->midr = 0x4106a262;
741 cpu->reset_fpsid = 0x410110a0;
742 cpu->ctr = 0x1dd20d2;
743 cpu->reset_sctlr = 0x00090078;
744 cpu->reset_auxcr = 1;
746 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
747 ARMCPRegInfo ifar = {
748 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
749 .access = PL1_RW,
750 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
751 .resetvalue = 0
753 define_one_arm_cp_reg(cpu, &ifar);
757 static void arm1136_r2_initfn(Object *obj)
759 ARMCPU *cpu = ARM_CPU(obj);
760 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
761 * older core than plain "arm1136". In particular this does not
762 * have the v6K features.
763 * These ID register values are correct for 1136 but may be wrong
764 * for 1136_r2 (in particular r0p2 does not actually implement most
765 * of the ID registers).
768 cpu->dtb_compatible = "arm,arm1136";
769 set_feature(&cpu->env, ARM_FEATURE_V6);
770 set_feature(&cpu->env, ARM_FEATURE_VFP);
771 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
772 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
773 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
774 cpu->midr = 0x4107b362;
775 cpu->reset_fpsid = 0x410120b4;
776 cpu->mvfr0 = 0x11111111;
777 cpu->mvfr1 = 0x00000000;
778 cpu->ctr = 0x1dd20d2;
779 cpu->reset_sctlr = 0x00050078;
780 cpu->id_pfr0 = 0x111;
781 cpu->id_pfr1 = 0x1;
782 cpu->id_dfr0 = 0x2;
783 cpu->id_afr0 = 0x3;
784 cpu->id_mmfr0 = 0x01130003;
785 cpu->id_mmfr1 = 0x10030302;
786 cpu->id_mmfr2 = 0x01222110;
787 cpu->id_isar0 = 0x00140011;
788 cpu->id_isar1 = 0x12002111;
789 cpu->id_isar2 = 0x11231111;
790 cpu->id_isar3 = 0x01102131;
791 cpu->id_isar4 = 0x141;
792 cpu->reset_auxcr = 7;
795 static void arm1136_initfn(Object *obj)
797 ARMCPU *cpu = ARM_CPU(obj);
799 cpu->dtb_compatible = "arm,arm1136";
800 set_feature(&cpu->env, ARM_FEATURE_V6K);
801 set_feature(&cpu->env, ARM_FEATURE_V6);
802 set_feature(&cpu->env, ARM_FEATURE_VFP);
803 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
804 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
805 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
806 cpu->midr = 0x4117b363;
807 cpu->reset_fpsid = 0x410120b4;
808 cpu->mvfr0 = 0x11111111;
809 cpu->mvfr1 = 0x00000000;
810 cpu->ctr = 0x1dd20d2;
811 cpu->reset_sctlr = 0x00050078;
812 cpu->id_pfr0 = 0x111;
813 cpu->id_pfr1 = 0x1;
814 cpu->id_dfr0 = 0x2;
815 cpu->id_afr0 = 0x3;
816 cpu->id_mmfr0 = 0x01130003;
817 cpu->id_mmfr1 = 0x10030302;
818 cpu->id_mmfr2 = 0x01222110;
819 cpu->id_isar0 = 0x00140011;
820 cpu->id_isar1 = 0x12002111;
821 cpu->id_isar2 = 0x11231111;
822 cpu->id_isar3 = 0x01102131;
823 cpu->id_isar4 = 0x141;
824 cpu->reset_auxcr = 7;
827 static void arm1176_initfn(Object *obj)
829 ARMCPU *cpu = ARM_CPU(obj);
831 cpu->dtb_compatible = "arm,arm1176";
832 set_feature(&cpu->env, ARM_FEATURE_V6K);
833 set_feature(&cpu->env, ARM_FEATURE_VFP);
834 set_feature(&cpu->env, ARM_FEATURE_VAPA);
835 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
836 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
837 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
838 set_feature(&cpu->env, ARM_FEATURE_EL3);
839 cpu->midr = 0x410fb767;
840 cpu->reset_fpsid = 0x410120b5;
841 cpu->mvfr0 = 0x11111111;
842 cpu->mvfr1 = 0x00000000;
843 cpu->ctr = 0x1dd20d2;
844 cpu->reset_sctlr = 0x00050078;
845 cpu->id_pfr0 = 0x111;
846 cpu->id_pfr1 = 0x11;
847 cpu->id_dfr0 = 0x33;
848 cpu->id_afr0 = 0;
849 cpu->id_mmfr0 = 0x01130003;
850 cpu->id_mmfr1 = 0x10030302;
851 cpu->id_mmfr2 = 0x01222100;
852 cpu->id_isar0 = 0x0140011;
853 cpu->id_isar1 = 0x12002111;
854 cpu->id_isar2 = 0x11231121;
855 cpu->id_isar3 = 0x01102131;
856 cpu->id_isar4 = 0x01141;
857 cpu->reset_auxcr = 7;
860 static void arm11mpcore_initfn(Object *obj)
862 ARMCPU *cpu = ARM_CPU(obj);
864 cpu->dtb_compatible = "arm,arm11mpcore";
865 set_feature(&cpu->env, ARM_FEATURE_V6K);
866 set_feature(&cpu->env, ARM_FEATURE_VFP);
867 set_feature(&cpu->env, ARM_FEATURE_VAPA);
868 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
869 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
870 cpu->midr = 0x410fb022;
871 cpu->reset_fpsid = 0x410120b4;
872 cpu->mvfr0 = 0x11111111;
873 cpu->mvfr1 = 0x00000000;
874 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
875 cpu->id_pfr0 = 0x111;
876 cpu->id_pfr1 = 0x1;
877 cpu->id_dfr0 = 0;
878 cpu->id_afr0 = 0x2;
879 cpu->id_mmfr0 = 0x01100103;
880 cpu->id_mmfr1 = 0x10020302;
881 cpu->id_mmfr2 = 0x01222000;
882 cpu->id_isar0 = 0x00100011;
883 cpu->id_isar1 = 0x12002111;
884 cpu->id_isar2 = 0x11221011;
885 cpu->id_isar3 = 0x01102131;
886 cpu->id_isar4 = 0x141;
887 cpu->reset_auxcr = 1;
890 static void cortex_m3_initfn(Object *obj)
892 ARMCPU *cpu = ARM_CPU(obj);
893 set_feature(&cpu->env, ARM_FEATURE_V7);
894 set_feature(&cpu->env, ARM_FEATURE_M);
895 cpu->midr = 0x410fc231;
898 static void cortex_m4_initfn(Object *obj)
900 ARMCPU *cpu = ARM_CPU(obj);
902 set_feature(&cpu->env, ARM_FEATURE_V7);
903 set_feature(&cpu->env, ARM_FEATURE_M);
904 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
905 cpu->midr = 0x410fc240; /* r0p0 */
907 static void arm_v7m_class_init(ObjectClass *oc, void *data)
909 CPUClass *cc = CPU_CLASS(oc);
911 #ifndef CONFIG_USER_ONLY
912 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
913 #endif
915 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
918 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
919 /* Dummy the TCM region regs for the moment */
920 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
921 .access = PL1_RW, .type = ARM_CP_CONST },
922 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
923 .access = PL1_RW, .type = ARM_CP_CONST },
924 REGINFO_SENTINEL
927 static void cortex_r5_initfn(Object *obj)
929 ARMCPU *cpu = ARM_CPU(obj);
931 set_feature(&cpu->env, ARM_FEATURE_V7);
932 set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
933 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
934 set_feature(&cpu->env, ARM_FEATURE_V7MP);
935 set_feature(&cpu->env, ARM_FEATURE_MPU);
936 cpu->midr = 0x411fc153; /* r1p3 */
937 cpu->id_pfr0 = 0x0131;
938 cpu->id_pfr1 = 0x001;
939 cpu->id_dfr0 = 0x010400;
940 cpu->id_afr0 = 0x0;
941 cpu->id_mmfr0 = 0x0210030;
942 cpu->id_mmfr1 = 0x00000000;
943 cpu->id_mmfr2 = 0x01200000;
944 cpu->id_mmfr3 = 0x0211;
945 cpu->id_isar0 = 0x2101111;
946 cpu->id_isar1 = 0x13112111;
947 cpu->id_isar2 = 0x21232141;
948 cpu->id_isar3 = 0x01112131;
949 cpu->id_isar4 = 0x0010142;
950 cpu->id_isar5 = 0x0;
951 cpu->mp_is_up = true;
952 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
955 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
956 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
957 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
958 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
959 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
960 REGINFO_SENTINEL
963 static void cortex_a8_initfn(Object *obj)
965 ARMCPU *cpu = ARM_CPU(obj);
967 cpu->dtb_compatible = "arm,cortex-a8";
968 set_feature(&cpu->env, ARM_FEATURE_V7);
969 set_feature(&cpu->env, ARM_FEATURE_VFP3);
970 set_feature(&cpu->env, ARM_FEATURE_NEON);
971 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
972 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
973 set_feature(&cpu->env, ARM_FEATURE_EL3);
974 cpu->midr = 0x410fc080;
975 cpu->reset_fpsid = 0x410330c0;
976 cpu->mvfr0 = 0x11110222;
977 cpu->mvfr1 = 0x00011100;
978 cpu->ctr = 0x82048004;
979 cpu->reset_sctlr = 0x00c50078;
980 cpu->id_pfr0 = 0x1031;
981 cpu->id_pfr1 = 0x11;
982 cpu->id_dfr0 = 0x400;
983 cpu->id_afr0 = 0;
984 cpu->id_mmfr0 = 0x31100003;
985 cpu->id_mmfr1 = 0x20000000;
986 cpu->id_mmfr2 = 0x01202000;
987 cpu->id_mmfr3 = 0x11;
988 cpu->id_isar0 = 0x00101111;
989 cpu->id_isar1 = 0x12112111;
990 cpu->id_isar2 = 0x21232031;
991 cpu->id_isar3 = 0x11112131;
992 cpu->id_isar4 = 0x00111142;
993 cpu->dbgdidr = 0x15141000;
994 cpu->clidr = (1 << 27) | (2 << 24) | 3;
995 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
996 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
997 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
998 cpu->reset_auxcr = 2;
999 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1002 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1003 /* power_control should be set to maximum latency. Again,
1004 * default to 0 and set by private hook
1006 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1007 .access = PL1_RW, .resetvalue = 0,
1008 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1009 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1010 .access = PL1_RW, .resetvalue = 0,
1011 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1012 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1013 .access = PL1_RW, .resetvalue = 0,
1014 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1015 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1016 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1017 /* TLB lockdown control */
1018 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1019 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1020 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1021 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1022 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1023 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1024 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1025 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1026 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1027 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1028 REGINFO_SENTINEL
1031 static void cortex_a9_initfn(Object *obj)
1033 ARMCPU *cpu = ARM_CPU(obj);
1035 cpu->dtb_compatible = "arm,cortex-a9";
1036 set_feature(&cpu->env, ARM_FEATURE_V7);
1037 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1038 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1039 set_feature(&cpu->env, ARM_FEATURE_NEON);
1040 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1041 set_feature(&cpu->env, ARM_FEATURE_EL3);
1042 /* Note that A9 supports the MP extensions even for
1043 * A9UP and single-core A9MP (which are both different
1044 * and valid configurations; we don't model A9UP).
1046 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1047 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1048 cpu->midr = 0x410fc090;
1049 cpu->reset_fpsid = 0x41033090;
1050 cpu->mvfr0 = 0x11110222;
1051 cpu->mvfr1 = 0x01111111;
1052 cpu->ctr = 0x80038003;
1053 cpu->reset_sctlr = 0x00c50078;
1054 cpu->id_pfr0 = 0x1031;
1055 cpu->id_pfr1 = 0x11;
1056 cpu->id_dfr0 = 0x000;
1057 cpu->id_afr0 = 0;
1058 cpu->id_mmfr0 = 0x00100103;
1059 cpu->id_mmfr1 = 0x20000000;
1060 cpu->id_mmfr2 = 0x01230000;
1061 cpu->id_mmfr3 = 0x00002111;
1062 cpu->id_isar0 = 0x00101111;
1063 cpu->id_isar1 = 0x13112111;
1064 cpu->id_isar2 = 0x21232041;
1065 cpu->id_isar3 = 0x11112131;
1066 cpu->id_isar4 = 0x00111142;
1067 cpu->dbgdidr = 0x35141000;
1068 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1069 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1070 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1071 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1074 #ifndef CONFIG_USER_ONLY
1075 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1077 /* Linux wants the number of processors from here.
1078 * Might as well set the interrupt-controller bit too.
1080 return ((smp_cpus - 1) << 24) | (1 << 23);
1082 #endif
1084 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1085 #ifndef CONFIG_USER_ONLY
1086 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1087 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1088 .writefn = arm_cp_write_ignore, },
1089 #endif
1090 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1091 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1092 REGINFO_SENTINEL
1095 static void cortex_a15_initfn(Object *obj)
1097 ARMCPU *cpu = ARM_CPU(obj);
1099 cpu->dtb_compatible = "arm,cortex-a15";
1100 set_feature(&cpu->env, ARM_FEATURE_V7);
1101 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1102 set_feature(&cpu->env, ARM_FEATURE_NEON);
1103 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1104 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1105 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1106 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1107 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1108 set_feature(&cpu->env, ARM_FEATURE_LPAE);
1109 set_feature(&cpu->env, ARM_FEATURE_EL3);
1110 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1111 cpu->midr = 0x412fc0f1;
1112 cpu->reset_fpsid = 0x410430f0;
1113 cpu->mvfr0 = 0x10110222;
1114 cpu->mvfr1 = 0x11111111;
1115 cpu->ctr = 0x8444c004;
1116 cpu->reset_sctlr = 0x00c50078;
1117 cpu->id_pfr0 = 0x00001131;
1118 cpu->id_pfr1 = 0x00011011;
1119 cpu->id_dfr0 = 0x02010555;
1120 cpu->id_afr0 = 0x00000000;
1121 cpu->id_mmfr0 = 0x10201105;
1122 cpu->id_mmfr1 = 0x20000000;
1123 cpu->id_mmfr2 = 0x01240000;
1124 cpu->id_mmfr3 = 0x02102211;
1125 cpu->id_isar0 = 0x02101110;
1126 cpu->id_isar1 = 0x13112111;
1127 cpu->id_isar2 = 0x21232041;
1128 cpu->id_isar3 = 0x11112131;
1129 cpu->id_isar4 = 0x10011142;
1130 cpu->dbgdidr = 0x3515f021;
1131 cpu->clidr = 0x0a200023;
1132 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1133 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1134 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1135 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1138 static void ti925t_initfn(Object *obj)
1140 ARMCPU *cpu = ARM_CPU(obj);
1141 set_feature(&cpu->env, ARM_FEATURE_V4T);
1142 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1143 cpu->midr = ARM_CPUID_TI925T;
1144 cpu->ctr = 0x5109149;
1145 cpu->reset_sctlr = 0x00000070;
1148 static void sa1100_initfn(Object *obj)
1150 ARMCPU *cpu = ARM_CPU(obj);
1152 cpu->dtb_compatible = "intel,sa1100";
1153 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1154 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1155 cpu->midr = 0x4401A11B;
1156 cpu->reset_sctlr = 0x00000070;
1159 static void sa1110_initfn(Object *obj)
1161 ARMCPU *cpu = ARM_CPU(obj);
1162 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1163 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1164 cpu->midr = 0x6901B119;
1165 cpu->reset_sctlr = 0x00000070;
1168 static void pxa250_initfn(Object *obj)
1170 ARMCPU *cpu = ARM_CPU(obj);
1172 cpu->dtb_compatible = "marvell,xscale";
1173 set_feature(&cpu->env, ARM_FEATURE_V5);
1174 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1175 cpu->midr = 0x69052100;
1176 cpu->ctr = 0xd172172;
1177 cpu->reset_sctlr = 0x00000078;
1180 static void pxa255_initfn(Object *obj)
1182 ARMCPU *cpu = ARM_CPU(obj);
1184 cpu->dtb_compatible = "marvell,xscale";
1185 set_feature(&cpu->env, ARM_FEATURE_V5);
1186 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1187 cpu->midr = 0x69052d00;
1188 cpu->ctr = 0xd172172;
1189 cpu->reset_sctlr = 0x00000078;
1192 static void pxa260_initfn(Object *obj)
1194 ARMCPU *cpu = ARM_CPU(obj);
1196 cpu->dtb_compatible = "marvell,xscale";
1197 set_feature(&cpu->env, ARM_FEATURE_V5);
1198 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1199 cpu->midr = 0x69052903;
1200 cpu->ctr = 0xd172172;
1201 cpu->reset_sctlr = 0x00000078;
1204 static void pxa261_initfn(Object *obj)
1206 ARMCPU *cpu = ARM_CPU(obj);
1208 cpu->dtb_compatible = "marvell,xscale";
1209 set_feature(&cpu->env, ARM_FEATURE_V5);
1210 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1211 cpu->midr = 0x69052d05;
1212 cpu->ctr = 0xd172172;
1213 cpu->reset_sctlr = 0x00000078;
1216 static void pxa262_initfn(Object *obj)
1218 ARMCPU *cpu = ARM_CPU(obj);
1220 cpu->dtb_compatible = "marvell,xscale";
1221 set_feature(&cpu->env, ARM_FEATURE_V5);
1222 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1223 cpu->midr = 0x69052d06;
1224 cpu->ctr = 0xd172172;
1225 cpu->reset_sctlr = 0x00000078;
1228 static void pxa270a0_initfn(Object *obj)
1230 ARMCPU *cpu = ARM_CPU(obj);
1232 cpu->dtb_compatible = "marvell,xscale";
1233 set_feature(&cpu->env, ARM_FEATURE_V5);
1234 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1235 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1236 cpu->midr = 0x69054110;
1237 cpu->ctr = 0xd172172;
1238 cpu->reset_sctlr = 0x00000078;
1241 static void pxa270a1_initfn(Object *obj)
1243 ARMCPU *cpu = ARM_CPU(obj);
1245 cpu->dtb_compatible = "marvell,xscale";
1246 set_feature(&cpu->env, ARM_FEATURE_V5);
1247 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1248 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1249 cpu->midr = 0x69054111;
1250 cpu->ctr = 0xd172172;
1251 cpu->reset_sctlr = 0x00000078;
1254 static void pxa270b0_initfn(Object *obj)
1256 ARMCPU *cpu = ARM_CPU(obj);
1258 cpu->dtb_compatible = "marvell,xscale";
1259 set_feature(&cpu->env, ARM_FEATURE_V5);
1260 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1261 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1262 cpu->midr = 0x69054112;
1263 cpu->ctr = 0xd172172;
1264 cpu->reset_sctlr = 0x00000078;
1267 static void pxa270b1_initfn(Object *obj)
1269 ARMCPU *cpu = ARM_CPU(obj);
1271 cpu->dtb_compatible = "marvell,xscale";
1272 set_feature(&cpu->env, ARM_FEATURE_V5);
1273 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1274 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1275 cpu->midr = 0x69054113;
1276 cpu->ctr = 0xd172172;
1277 cpu->reset_sctlr = 0x00000078;
1280 static void pxa270c0_initfn(Object *obj)
1282 ARMCPU *cpu = ARM_CPU(obj);
1284 cpu->dtb_compatible = "marvell,xscale";
1285 set_feature(&cpu->env, ARM_FEATURE_V5);
1286 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1287 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1288 cpu->midr = 0x69054114;
1289 cpu->ctr = 0xd172172;
1290 cpu->reset_sctlr = 0x00000078;
1293 static void pxa270c5_initfn(Object *obj)
1295 ARMCPU *cpu = ARM_CPU(obj);
1297 cpu->dtb_compatible = "marvell,xscale";
1298 set_feature(&cpu->env, ARM_FEATURE_V5);
1299 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1300 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1301 cpu->midr = 0x69054117;
1302 cpu->ctr = 0xd172172;
1303 cpu->reset_sctlr = 0x00000078;
1306 #ifdef CONFIG_USER_ONLY
1307 static void arm_any_initfn(Object *obj)
1309 ARMCPU *cpu = ARM_CPU(obj);
1310 set_feature(&cpu->env, ARM_FEATURE_V8);
1311 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1312 set_feature(&cpu->env, ARM_FEATURE_NEON);
1313 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1314 set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1315 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1316 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1317 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1318 set_feature(&cpu->env, ARM_FEATURE_CRC);
1319 cpu->midr = 0xffffffff;
1321 #endif
1323 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1325 typedef struct ARMCPUInfo {
1326 const char *name;
1327 void (*initfn)(Object *obj);
1328 void (*class_init)(ObjectClass *oc, void *data);
1329 } ARMCPUInfo;
1331 static const ARMCPUInfo arm_cpus[] = {
1332 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1333 { .name = "arm926", .initfn = arm926_initfn },
1334 { .name = "arm946", .initfn = arm946_initfn },
1335 { .name = "arm1026", .initfn = arm1026_initfn },
1336 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1337 * older core than plain "arm1136". In particular this does not
1338 * have the v6K features.
1340 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
1341 { .name = "arm1136", .initfn = arm1136_initfn },
1342 { .name = "arm1176", .initfn = arm1176_initfn },
1343 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1344 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
1345 .class_init = arm_v7m_class_init },
1346 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
1347 .class_init = arm_v7m_class_init },
1348 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
1349 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
1350 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
1351 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
1352 { .name = "ti925t", .initfn = ti925t_initfn },
1353 { .name = "sa1100", .initfn = sa1100_initfn },
1354 { .name = "sa1110", .initfn = sa1110_initfn },
1355 { .name = "pxa250", .initfn = pxa250_initfn },
1356 { .name = "pxa255", .initfn = pxa255_initfn },
1357 { .name = "pxa260", .initfn = pxa260_initfn },
1358 { .name = "pxa261", .initfn = pxa261_initfn },
1359 { .name = "pxa262", .initfn = pxa262_initfn },
1360 /* "pxa270" is an alias for "pxa270-a0" */
1361 { .name = "pxa270", .initfn = pxa270a0_initfn },
1362 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
1363 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
1364 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
1365 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
1366 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
1367 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
1368 #ifdef CONFIG_USER_ONLY
1369 { .name = "any", .initfn = arm_any_initfn },
1370 #endif
1371 #endif
1372 { .name = NULL }
1375 static Property arm_cpu_properties[] = {
1376 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1377 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1378 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1379 DEFINE_PROP_END_OF_LIST()
1382 #ifdef CONFIG_USER_ONLY
1383 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1384 int mmu_idx)
1386 ARMCPU *cpu = ARM_CPU(cs);
1387 CPUARMState *env = &cpu->env;
1389 env->exception.vaddress = address;
1390 if (rw == 2) {
1391 cs->exception_index = EXCP_PREFETCH_ABORT;
1392 } else {
1393 cs->exception_index = EXCP_DATA_ABORT;
1395 return 1;
1397 #endif
1399 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1401 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1402 CPUClass *cc = CPU_CLASS(acc);
1403 DeviceClass *dc = DEVICE_CLASS(oc);
1405 acc->parent_realize = dc->realize;
1406 dc->realize = arm_cpu_realizefn;
1407 dc->props = arm_cpu_properties;
1409 acc->parent_reset = cc->reset;
1410 cc->reset = arm_cpu_reset;
1412 cc->class_by_name = arm_cpu_class_by_name;
1413 cc->has_work = arm_cpu_has_work;
1414 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1415 cc->dump_state = arm_cpu_dump_state;
1416 cc->set_pc = arm_cpu_set_pc;
1417 cc->gdb_read_register = arm_cpu_gdb_read_register;
1418 cc->gdb_write_register = arm_cpu_gdb_write_register;
1419 #ifdef CONFIG_USER_ONLY
1420 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1421 #else
1422 cc->do_interrupt = arm_cpu_do_interrupt;
1423 cc->get_phys_page_debug = arm_cpu_get_phys_page_debug;
1424 cc->vmsd = &vmstate_arm_cpu;
1425 cc->virtio_is_big_endian = arm_cpu_is_big_endian;
1426 #endif
1427 cc->gdb_num_core_regs = 26;
1428 cc->gdb_core_xml_file = "arm-core.xml";
1429 cc->gdb_stop_before_watchpoint = true;
1430 cc->debug_excp_handler = arm_debug_excp_handler;
1432 cc->disas_set_info = arm_disas_set_info;
1435 static void cpu_register(const ARMCPUInfo *info)
1437 TypeInfo type_info = {
1438 .parent = TYPE_ARM_CPU,
1439 .instance_size = sizeof(ARMCPU),
1440 .instance_init = info->initfn,
1441 .class_size = sizeof(ARMCPUClass),
1442 .class_init = info->class_init,
1445 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1446 type_register(&type_info);
1447 g_free((void *)type_info.name);
1450 static const TypeInfo arm_cpu_type_info = {
1451 .name = TYPE_ARM_CPU,
1452 .parent = TYPE_CPU,
1453 .instance_size = sizeof(ARMCPU),
1454 .instance_init = arm_cpu_initfn,
1455 .instance_post_init = arm_cpu_post_init,
1456 .instance_finalize = arm_cpu_finalizefn,
1457 .abstract = true,
1458 .class_size = sizeof(ARMCPUClass),
1459 .class_init = arm_cpu_class_init,
1462 static void arm_cpu_register_types(void)
1464 const ARMCPUInfo *info = arm_cpus;
1466 type_register_static(&arm_cpu_type_info);
1468 while (info->name) {
1469 cpu_register(info);
1470 info++;
1474 type_init(arm_cpu_register_types)