target/arm: Deliver BKPT/BRK exceptions to correct exception level
[qemu/ar7.git] / target / arm / op_helper.c
blob5e1625a1c8a3f9f9d9ba642fa710d3f5b043d772
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/units.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "exec/helper-proto.h"
25 #include "internals.h"
26 #include "exec/exec-all.h"
27 #include "exec/cpu_ldst.h"
29 #define SIGNBIT (uint32_t)0x80000000
30 #define SIGNBIT64 ((uint64_t)1 << 63)
32 static CPUState *do_raise_exception(CPUARMState *env, uint32_t excp,
33 uint32_t syndrome, uint32_t target_el)
35 CPUState *cs = env_cpu(env);
37 if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
39 * Redirect NS EL1 exceptions to NS EL2. These are reported with
40 * their original syndrome register value, with the exception of
41 * SIMD/FP access traps, which are reported as uncategorized
42 * (see DDI0478C.a D1.10.4)
44 target_el = 2;
45 if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) {
46 syndrome = syn_uncategorized();
50 assert(!excp_is_internal(excp));
51 cs->exception_index = excp;
52 env->exception.syndrome = syndrome;
53 env->exception.target_el = target_el;
55 return cs;
58 void raise_exception(CPUARMState *env, uint32_t excp,
59 uint32_t syndrome, uint32_t target_el)
61 CPUState *cs = do_raise_exception(env, excp, syndrome, target_el);
62 cpu_loop_exit(cs);
65 void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome,
66 uint32_t target_el, uintptr_t ra)
68 CPUState *cs = do_raise_exception(env, excp, syndrome, target_el);
69 cpu_loop_exit_restore(cs, ra);
72 uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn,
73 uint32_t maxindex)
75 uint32_t val, shift;
76 uint64_t *table = vn;
78 val = 0;
79 for (shift = 0; shift < 32; shift += 8) {
80 uint32_t index = (ireg >> shift) & 0xff;
81 if (index < maxindex) {
82 uint32_t tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
83 val |= tmp << shift;
84 } else {
85 val |= def & (0xff << shift);
88 return val;
91 void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
94 * Perform the v8M stack limit check for SP updates from translated code,
95 * raising an exception if the limit is breached.
97 if (newvalue < v7m_sp_limit(env)) {
98 CPUState *cs = env_cpu(env);
101 * Stack limit exceptions are a rare case, so rather than syncing
102 * PC/condbits before the call, we use cpu_restore_state() to
103 * get them right before raising the exception.
105 cpu_restore_state(cs, GETPC(), true);
106 raise_exception(env, EXCP_STKOF, 0, 1);
110 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
112 uint32_t res = a + b;
113 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
114 env->QF = 1;
115 return res;
118 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
120 uint32_t res = a + b;
121 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
122 env->QF = 1;
123 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
125 return res;
128 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
130 uint32_t res = a - b;
131 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
132 env->QF = 1;
133 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
135 return res;
138 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
140 uint32_t res;
141 if (val >= 0x40000000) {
142 res = ~SIGNBIT;
143 env->QF = 1;
144 } else if (val <= (int32_t)0xc0000000) {
145 res = SIGNBIT;
146 env->QF = 1;
147 } else {
148 res = val << 1;
150 return res;
153 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
155 uint32_t res = a + b;
156 if (res < a) {
157 env->QF = 1;
158 res = ~0;
160 return res;
163 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
165 uint32_t res = a - b;
166 if (res > a) {
167 env->QF = 1;
168 res = 0;
170 return res;
173 /* Signed saturation. */
174 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
176 int32_t top;
177 uint32_t mask;
179 top = val >> shift;
180 mask = (1u << shift) - 1;
181 if (top > 0) {
182 env->QF = 1;
183 return mask;
184 } else if (top < -1) {
185 env->QF = 1;
186 return ~mask;
188 return val;
191 /* Unsigned saturation. */
192 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
194 uint32_t max;
196 max = (1u << shift) - 1;
197 if (val < 0) {
198 env->QF = 1;
199 return 0;
200 } else if (val > max) {
201 env->QF = 1;
202 return max;
204 return val;
207 /* Signed saturate. */
208 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
210 return do_ssat(env, x, shift);
213 /* Dual halfword signed saturate. */
214 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
216 uint32_t res;
218 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
219 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
220 return res;
223 /* Unsigned saturate. */
224 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
226 return do_usat(env, x, shift);
229 /* Dual halfword unsigned saturate. */
230 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
232 uint32_t res;
234 res = (uint16_t)do_usat(env, (int16_t)x, shift);
235 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
236 return res;
239 void HELPER(setend)(CPUARMState *env)
241 env->uncached_cpsr ^= CPSR_E;
244 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
245 * The function returns the target EL (1-3) if the instruction is to be trapped;
246 * otherwise it returns 0 indicating it is not trapped.
248 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
250 int cur_el = arm_current_el(env);
251 uint64_t mask;
253 if (arm_feature(env, ARM_FEATURE_M)) {
254 /* M profile cores can never trap WFI/WFE. */
255 return 0;
258 /* If we are currently in EL0 then we need to check if SCTLR is set up for
259 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
261 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
262 int target_el;
264 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
265 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
266 /* Secure EL0 and Secure PL1 is at EL3 */
267 target_el = 3;
268 } else {
269 target_el = 1;
272 if (!(env->cp15.sctlr_el[target_el] & mask)) {
273 return target_el;
277 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
278 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
279 * bits will be zero indicating no trap.
281 if (cur_el < 2) {
282 mask = is_wfe ? HCR_TWE : HCR_TWI;
283 if (arm_hcr_el2_eff(env) & mask) {
284 return 2;
288 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
289 if (cur_el < 3) {
290 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
291 if (env->cp15.scr_el3 & mask) {
292 return 3;
296 return 0;
299 void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
301 CPUState *cs = env_cpu(env);
302 int target_el = check_wfx_trap(env, false);
304 if (cpu_has_work(cs)) {
305 /* Don't bother to go into our "low power state" if
306 * we would just wake up immediately.
308 return;
311 if (target_el) {
312 env->pc -= insn_len;
313 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
314 target_el);
317 cs->exception_index = EXCP_HLT;
318 cs->halted = 1;
319 cpu_loop_exit(cs);
322 void HELPER(wfe)(CPUARMState *env)
324 /* This is a hint instruction that is semantically different
325 * from YIELD even though we currently implement it identically.
326 * Don't actually halt the CPU, just yield back to top
327 * level loop. This is not going into a "low power state"
328 * (ie halting until some event occurs), so we never take
329 * a configurable trap to a different exception level.
331 HELPER(yield)(env);
334 void HELPER(yield)(CPUARMState *env)
336 CPUState *cs = env_cpu(env);
338 /* This is a non-trappable hint instruction that generally indicates
339 * that the guest is currently busy-looping. Yield control back to the
340 * top level loop so that a more deserving VCPU has a chance to run.
342 cs->exception_index = EXCP_YIELD;
343 cpu_loop_exit(cs);
346 /* Raise an internal-to-QEMU exception. This is limited to only
347 * those EXCP values which are special cases for QEMU to interrupt
348 * execution and not to be used for exceptions which are passed to
349 * the guest (those must all have syndrome information and thus should
350 * use exception_with_syndrome).
352 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
354 CPUState *cs = env_cpu(env);
356 assert(excp_is_internal(excp));
357 cs->exception_index = excp;
358 cpu_loop_exit(cs);
361 /* Raise an exception with the specified syndrome register value */
362 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
363 uint32_t syndrome, uint32_t target_el)
365 raise_exception(env, excp, syndrome, target_el);
368 /* Raise an EXCP_BKPT with the specified syndrome register value,
369 * targeting the correct exception level for debug exceptions.
371 void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
373 int debug_el = arm_debug_target_el(env);
374 int cur_el = arm_current_el(env);
376 /* FSR will only be used if the debug target EL is AArch32. */
377 env->exception.fsr = arm_debug_exception_fsr(env);
378 /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
379 * values to the guest that it shouldn't be able to see at its
380 * exception/security level.
382 env->exception.vaddress = 0;
384 * Other kinds of architectural debug exception are ignored if
385 * they target an exception level below the current one (in QEMU
386 * this is checked by arm_generate_debug_exceptions()). Breakpoint
387 * instructions are special because they always generate an exception
388 * to somewhere: if they can't go to the configured debug exception
389 * level they are taken to the current exception level.
391 if (debug_el < cur_el) {
392 debug_el = cur_el;
394 raise_exception(env, EXCP_BKPT, syndrome, debug_el);
397 uint32_t HELPER(cpsr_read)(CPUARMState *env)
399 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
402 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
404 cpsr_write(env, val, mask, CPSRWriteByInstr);
407 /* Write the CPSR for a 32-bit exception return */
408 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
410 qemu_mutex_lock_iothread();
411 arm_call_pre_el_change_hook(env_archcpu(env));
412 qemu_mutex_unlock_iothread();
414 cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
416 /* Generated code has already stored the new PC value, but
417 * without masking out its low bits, because which bits need
418 * masking depends on whether we're returning to Thumb or ARM
419 * state. Do the masking now.
421 env->regs[15] &= (env->thumb ? ~1 : ~3);
423 qemu_mutex_lock_iothread();
424 arm_call_el_change_hook(env_archcpu(env));
425 qemu_mutex_unlock_iothread();
428 /* Access to user mode registers from privileged modes. */
429 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
431 uint32_t val;
433 if (regno == 13) {
434 val = env->banked_r13[BANK_USRSYS];
435 } else if (regno == 14) {
436 val = env->banked_r14[BANK_USRSYS];
437 } else if (regno >= 8
438 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
439 val = env->usr_regs[regno - 8];
440 } else {
441 val = env->regs[regno];
443 return val;
446 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
448 if (regno == 13) {
449 env->banked_r13[BANK_USRSYS] = val;
450 } else if (regno == 14) {
451 env->banked_r14[BANK_USRSYS] = val;
452 } else if (regno >= 8
453 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
454 env->usr_regs[regno - 8] = val;
455 } else {
456 env->regs[regno] = val;
460 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
462 if ((env->uncached_cpsr & CPSR_M) == mode) {
463 env->regs[13] = val;
464 } else {
465 env->banked_r13[bank_number(mode)] = val;
469 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
471 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
472 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
473 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
475 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
476 exception_target_el(env));
479 if ((env->uncached_cpsr & CPSR_M) == mode) {
480 return env->regs[13];
481 } else {
482 return env->banked_r13[bank_number(mode)];
486 static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
487 uint32_t regno)
489 /* Raise an exception if the requested access is one of the UNPREDICTABLE
490 * cases; otherwise return. This broadly corresponds to the pseudocode
491 * BankedRegisterAccessValid() and SPSRAccessValid(),
492 * except that we have already handled some cases at translate time.
494 int curmode = env->uncached_cpsr & CPSR_M;
496 if (regno == 17) {
497 /* ELR_Hyp: a special case because access from tgtmode is OK */
498 if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
499 goto undef;
501 return;
504 if (curmode == tgtmode) {
505 goto undef;
508 if (tgtmode == ARM_CPU_MODE_USR) {
509 switch (regno) {
510 case 8 ... 12:
511 if (curmode != ARM_CPU_MODE_FIQ) {
512 goto undef;
514 break;
515 case 13:
516 if (curmode == ARM_CPU_MODE_SYS) {
517 goto undef;
519 break;
520 case 14:
521 if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
522 goto undef;
524 break;
525 default:
526 break;
530 if (tgtmode == ARM_CPU_MODE_HYP) {
531 /* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */
532 if (curmode != ARM_CPU_MODE_MON) {
533 goto undef;
537 return;
539 undef:
540 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
541 exception_target_el(env));
544 void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
545 uint32_t regno)
547 msr_mrs_banked_exc_checks(env, tgtmode, regno);
549 switch (regno) {
550 case 16: /* SPSRs */
551 env->banked_spsr[bank_number(tgtmode)] = value;
552 break;
553 case 17: /* ELR_Hyp */
554 env->elr_el[2] = value;
555 break;
556 case 13:
557 env->banked_r13[bank_number(tgtmode)] = value;
558 break;
559 case 14:
560 env->banked_r14[r14_bank_number(tgtmode)] = value;
561 break;
562 case 8 ... 12:
563 switch (tgtmode) {
564 case ARM_CPU_MODE_USR:
565 env->usr_regs[regno - 8] = value;
566 break;
567 case ARM_CPU_MODE_FIQ:
568 env->fiq_regs[regno - 8] = value;
569 break;
570 default:
571 g_assert_not_reached();
573 break;
574 default:
575 g_assert_not_reached();
579 uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
581 msr_mrs_banked_exc_checks(env, tgtmode, regno);
583 switch (regno) {
584 case 16: /* SPSRs */
585 return env->banked_spsr[bank_number(tgtmode)];
586 case 17: /* ELR_Hyp */
587 return env->elr_el[2];
588 case 13:
589 return env->banked_r13[bank_number(tgtmode)];
590 case 14:
591 return env->banked_r14[r14_bank_number(tgtmode)];
592 case 8 ... 12:
593 switch (tgtmode) {
594 case ARM_CPU_MODE_USR:
595 return env->usr_regs[regno - 8];
596 case ARM_CPU_MODE_FIQ:
597 return env->fiq_regs[regno - 8];
598 default:
599 g_assert_not_reached();
601 default:
602 g_assert_not_reached();
606 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
607 uint32_t isread)
609 const ARMCPRegInfo *ri = rip;
610 int target_el;
612 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
613 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
614 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
617 if (!ri->accessfn) {
618 return;
621 switch (ri->accessfn(env, ri, isread)) {
622 case CP_ACCESS_OK:
623 return;
624 case CP_ACCESS_TRAP:
625 target_el = exception_target_el(env);
626 break;
627 case CP_ACCESS_TRAP_EL2:
628 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
629 * a bug in the access function.
631 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
632 target_el = 2;
633 break;
634 case CP_ACCESS_TRAP_EL3:
635 target_el = 3;
636 break;
637 case CP_ACCESS_TRAP_UNCATEGORIZED:
638 target_el = exception_target_el(env);
639 syndrome = syn_uncategorized();
640 break;
641 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
642 target_el = 2;
643 syndrome = syn_uncategorized();
644 break;
645 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
646 target_el = 3;
647 syndrome = syn_uncategorized();
648 break;
649 case CP_ACCESS_TRAP_FP_EL2:
650 target_el = 2;
651 /* Since we are an implementation that takes exceptions on a trapped
652 * conditional insn only if the insn has passed its condition code
653 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
654 * (which is also the required value for AArch64 traps).
656 syndrome = syn_fp_access_trap(1, 0xe, false);
657 break;
658 case CP_ACCESS_TRAP_FP_EL3:
659 target_el = 3;
660 syndrome = syn_fp_access_trap(1, 0xe, false);
661 break;
662 default:
663 g_assert_not_reached();
666 raise_exception(env, EXCP_UDEF, syndrome, target_el);
669 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
671 const ARMCPRegInfo *ri = rip;
673 if (ri->type & ARM_CP_IO) {
674 qemu_mutex_lock_iothread();
675 ri->writefn(env, ri, value);
676 qemu_mutex_unlock_iothread();
677 } else {
678 ri->writefn(env, ri, value);
682 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
684 const ARMCPRegInfo *ri = rip;
685 uint32_t res;
687 if (ri->type & ARM_CP_IO) {
688 qemu_mutex_lock_iothread();
689 res = ri->readfn(env, ri);
690 qemu_mutex_unlock_iothread();
691 } else {
692 res = ri->readfn(env, ri);
695 return res;
698 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
700 const ARMCPRegInfo *ri = rip;
702 if (ri->type & ARM_CP_IO) {
703 qemu_mutex_lock_iothread();
704 ri->writefn(env, ri, value);
705 qemu_mutex_unlock_iothread();
706 } else {
707 ri->writefn(env, ri, value);
711 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
713 const ARMCPRegInfo *ri = rip;
714 uint64_t res;
716 if (ri->type & ARM_CP_IO) {
717 qemu_mutex_lock_iothread();
718 res = ri->readfn(env, ri);
719 qemu_mutex_unlock_iothread();
720 } else {
721 res = ri->readfn(env, ri);
724 return res;
727 void HELPER(pre_hvc)(CPUARMState *env)
729 ARMCPU *cpu = env_archcpu(env);
730 int cur_el = arm_current_el(env);
731 /* FIXME: Use actual secure state. */
732 bool secure = false;
733 bool undef;
735 if (arm_is_psci_call(cpu, EXCP_HVC)) {
736 /* If PSCI is enabled and this looks like a valid PSCI call then
737 * that overrides the architecturally mandated HVC behaviour.
739 return;
742 if (!arm_feature(env, ARM_FEATURE_EL2)) {
743 /* If EL2 doesn't exist, HVC always UNDEFs */
744 undef = true;
745 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
746 /* EL3.HCE has priority over EL2.HCD. */
747 undef = !(env->cp15.scr_el3 & SCR_HCE);
748 } else {
749 undef = env->cp15.hcr_el2 & HCR_HCD;
752 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
753 * For ARMv8/AArch64, HVC is allowed in EL3.
754 * Note that we've already trapped HVC from EL0 at translation
755 * time.
757 if (secure && (!is_a64(env) || cur_el == 1)) {
758 undef = true;
761 if (undef) {
762 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
763 exception_target_el(env));
767 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
769 ARMCPU *cpu = env_archcpu(env);
770 int cur_el = arm_current_el(env);
771 bool secure = arm_is_secure(env);
772 bool smd_flag = env->cp15.scr_el3 & SCR_SMD;
775 * SMC behaviour is summarized in the following table.
776 * This helper handles the "Trap to EL2" and "Undef insn" cases.
777 * The "Trap to EL3" and "PSCI call" cases are handled in the exception
778 * helper.
780 * -> ARM_FEATURE_EL3 and !SMD
781 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
783 * Conduit SMC, valid call Trap to EL2 PSCI Call
784 * Conduit SMC, inval call Trap to EL2 Trap to EL3
785 * Conduit not SMC Trap to EL2 Trap to EL3
788 * -> ARM_FEATURE_EL3 and SMD
789 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
791 * Conduit SMC, valid call Trap to EL2 PSCI Call
792 * Conduit SMC, inval call Trap to EL2 Undef insn
793 * Conduit not SMC Trap to EL2 Undef insn
796 * -> !ARM_FEATURE_EL3
797 * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
799 * Conduit SMC, valid call Trap to EL2 PSCI Call
800 * Conduit SMC, inval call Trap to EL2 Undef insn
801 * Conduit not SMC Undef insn Undef insn
804 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
805 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
806 * extensions, SMD only applies to NS state.
807 * On ARMv7 without the Virtualization extensions, the SMD bit
808 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
809 * so we need not special case this here.
811 bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag
812 : smd_flag && !secure;
814 if (!arm_feature(env, ARM_FEATURE_EL3) &&
815 cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
816 /* If we have no EL3 then SMC always UNDEFs and can't be
817 * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
818 * firmware within QEMU, and we want an EL2 guest to be able
819 * to forbid its EL1 from making PSCI calls into QEMU's
820 * "firmware" via HCR.TSC, so for these purposes treat
821 * PSCI-via-SMC as implying an EL3.
822 * This handles the very last line of the previous table.
824 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
825 exception_target_el(env));
828 if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) {
829 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
830 * We also want an EL2 guest to be able to forbid its EL1 from
831 * making PSCI calls into QEMU's "firmware" via HCR.TSC.
832 * This handles all the "Trap to EL2" cases of the previous table.
834 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
837 /* Catch the two remaining "Undef insn" cases of the previous table:
838 * - PSCI conduit is SMC but we don't have a valid PCSI call,
839 * - We don't have EL3 or SMD is set.
841 if (!arm_is_psci_call(cpu, EXCP_SMC) &&
842 (smd || !arm_feature(env, ARM_FEATURE_EL3))) {
843 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
844 exception_target_el(env));
848 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
849 The only way to do that in TCG is a conditional branch, which clobbers
850 all our temporaries. For now implement these as helper functions. */
852 /* Similarly for variable shift instructions. */
854 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
856 int shift = i & 0xff;
857 if (shift >= 32) {
858 if (shift == 32)
859 env->CF = x & 1;
860 else
861 env->CF = 0;
862 return 0;
863 } else if (shift != 0) {
864 env->CF = (x >> (32 - shift)) & 1;
865 return x << shift;
867 return x;
870 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
872 int shift = i & 0xff;
873 if (shift >= 32) {
874 if (shift == 32)
875 env->CF = (x >> 31) & 1;
876 else
877 env->CF = 0;
878 return 0;
879 } else if (shift != 0) {
880 env->CF = (x >> (shift - 1)) & 1;
881 return x >> shift;
883 return x;
886 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
888 int shift = i & 0xff;
889 if (shift >= 32) {
890 env->CF = (x >> 31) & 1;
891 return (int32_t)x >> 31;
892 } else if (shift != 0) {
893 env->CF = (x >> (shift - 1)) & 1;
894 return (int32_t)x >> shift;
896 return x;
899 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
901 int shift1, shift;
902 shift1 = i & 0xff;
903 shift = shift1 & 0x1f;
904 if (shift == 0) {
905 if (shift1 != 0)
906 env->CF = (x >> 31) & 1;
907 return x;
908 } else {
909 env->CF = (x >> (shift - 1)) & 1;
910 return ((uint32_t)x >> shift) | (x << (32 - shift));
914 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
917 * Implement DC ZVA, which zeroes a fixed-length block of memory.
918 * Note that we do not implement the (architecturally mandated)
919 * alignment fault for attempts to use this on Device memory
920 * (which matches the usual QEMU behaviour of not implementing either
921 * alignment faults or any memory attribute handling).
924 ARMCPU *cpu = env_archcpu(env);
925 uint64_t blocklen = 4 << cpu->dcz_blocksize;
926 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
928 #ifndef CONFIG_USER_ONLY
931 * Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
932 * the block size so we might have to do more than one TLB lookup.
933 * We know that in fact for any v8 CPU the page size is at least 4K
934 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
935 * 1K as an artefact of legacy v5 subpage support being present in the
936 * same QEMU executable. So in practice the hostaddr[] array has
937 * two entries, given the current setting of TARGET_PAGE_BITS_MIN.
939 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
940 void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)];
941 int try, i;
942 unsigned mmu_idx = cpu_mmu_index(env, false);
943 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
945 assert(maxidx <= ARRAY_SIZE(hostaddr));
947 for (try = 0; try < 2; try++) {
949 for (i = 0; i < maxidx; i++) {
950 hostaddr[i] = tlb_vaddr_to_host(env,
951 vaddr + TARGET_PAGE_SIZE * i,
952 1, mmu_idx);
953 if (!hostaddr[i]) {
954 break;
957 if (i == maxidx) {
959 * If it's all in the TLB it's fair game for just writing to;
960 * we know we don't need to update dirty status, etc.
962 for (i = 0; i < maxidx - 1; i++) {
963 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
965 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
966 return;
969 * OK, try a store and see if we can populate the tlb. This
970 * might cause an exception if the memory isn't writable,
971 * in which case we will longjmp out of here. We must for
972 * this purpose use the actual register value passed to us
973 * so that we get the fault address right.
975 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
976 /* Now we can populate the other TLB entries, if any */
977 for (i = 0; i < maxidx; i++) {
978 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
979 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
980 helper_ret_stb_mmu(env, va, 0, oi, GETPC());
986 * Slow path (probably attempt to do this to an I/O device or
987 * similar, or clearing of a block of code we have translations
988 * cached for). Just do a series of byte writes as the architecture
989 * demands. It's not worth trying to use a cpu_physical_memory_map(),
990 * memset(), unmap() sequence here because:
991 * + we'd need to account for the blocksize being larger than a page
992 * + the direct-RAM access case is almost always going to be dealt
993 * with in the fastpath code above, so there's no speed benefit
994 * + we would have to deal with the map returning NULL because the
995 * bounce buffer was in use
997 for (i = 0; i < blocklen; i++) {
998 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
1001 #else
1002 memset(g2h(vaddr), 0, blocklen);
1003 #endif