target/arm: Deliver BKPT/BRK exceptions to correct exception level
[qemu/ar7.git] / hw / misc / imx6_src.c
blob878ffcdc71c2425807d63f515de81808022e35ff
1 /*
2 * IMX6 System Reset Controller
4 * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include "hw/misc/imx6_src.h"
13 #include "sysemu/sysemu.h"
14 #include "qemu/bitops.h"
15 #include "qemu/log.h"
16 #include "qemu/module.h"
17 #include "arm-powerctl.h"
18 #include "qom/cpu.h"
20 #ifndef DEBUG_IMX6_SRC
21 #define DEBUG_IMX6_SRC 0
22 #endif
24 #define DPRINTF(fmt, args...) \
25 do { \
26 if (DEBUG_IMX6_SRC) { \
27 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_SRC, \
28 __func__, ##args); \
29 } \
30 } while (0)
32 static const char *imx6_src_reg_name(uint32_t reg)
34 static char unknown[20];
36 switch (reg) {
37 case SRC_SCR:
38 return "SRC_SCR";
39 case SRC_SBMR1:
40 return "SRC_SBMR1";
41 case SRC_SRSR:
42 return "SRC_SRSR";
43 case SRC_SISR:
44 return "SRC_SISR";
45 case SRC_SIMR:
46 return "SRC_SIMR";
47 case SRC_SBMR2:
48 return "SRC_SBMR2";
49 case SRC_GPR1:
50 return "SRC_GPR1";
51 case SRC_GPR2:
52 return "SRC_GPR2";
53 case SRC_GPR3:
54 return "SRC_GPR3";
55 case SRC_GPR4:
56 return "SRC_GPR4";
57 case SRC_GPR5:
58 return "SRC_GPR5";
59 case SRC_GPR6:
60 return "SRC_GPR6";
61 case SRC_GPR7:
62 return "SRC_GPR7";
63 case SRC_GPR8:
64 return "SRC_GPR8";
65 case SRC_GPR9:
66 return "SRC_GPR9";
67 case SRC_GPR10:
68 return "SRC_GPR10";
69 default:
70 sprintf(unknown, "%d ?", reg);
71 return unknown;
75 static const VMStateDescription vmstate_imx6_src = {
76 .name = TYPE_IMX6_SRC,
77 .version_id = 1,
78 .minimum_version_id = 1,
79 .fields = (VMStateField[]) {
80 VMSTATE_UINT32_ARRAY(regs, IMX6SRCState, SRC_MAX),
81 VMSTATE_END_OF_LIST()
85 static void imx6_src_reset(DeviceState *dev)
87 IMX6SRCState *s = IMX6_SRC(dev);
89 DPRINTF("\n");
91 memset(s->regs, 0, sizeof(s->regs));
93 /* Set reset values */
94 s->regs[SRC_SCR] = 0x521;
95 s->regs[SRC_SRSR] = 0x1;
96 s->regs[SRC_SIMR] = 0x1F;
99 static uint64_t imx6_src_read(void *opaque, hwaddr offset, unsigned size)
101 uint32_t value = 0;
102 IMX6SRCState *s = (IMX6SRCState *)opaque;
103 uint32_t index = offset >> 2;
105 if (index < SRC_MAX) {
106 value = s->regs[index];
107 } else {
108 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
109 HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
113 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_src_reg_name(index), value);
115 return value;
119 /* The reset is asynchronous so we need to defer clearing the reset
120 * bit until the work is completed.
123 struct SRCSCRResetInfo {
124 IMX6SRCState *s;
125 int reset_bit;
128 static void imx6_clear_reset_bit(CPUState *cpu, run_on_cpu_data data)
130 struct SRCSCRResetInfo *ri = data.host_ptr;
131 IMX6SRCState *s = ri->s;
133 assert(qemu_mutex_iothread_locked());
135 s->regs[SRC_SCR] = deposit32(s->regs[SRC_SCR], ri->reset_bit, 1, 0);
136 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n",
137 imx6_src_reg_name(SRC_SCR), s->regs[SRC_SCR]);
139 g_free(ri);
142 static void imx6_defer_clear_reset_bit(int cpuid,
143 IMX6SRCState *s,
144 unsigned long reset_shift)
146 struct SRCSCRResetInfo *ri;
147 CPUState *cpu = arm_get_cpu_by_id(cpuid);
149 if (!cpu) {
150 return;
153 ri = g_malloc(sizeof(struct SRCSCRResetInfo));
154 ri->s = s;
155 ri->reset_bit = reset_shift;
157 async_run_on_cpu(cpu, imx6_clear_reset_bit, RUN_ON_CPU_HOST_PTR(ri));
161 static void imx6_src_write(void *opaque, hwaddr offset, uint64_t value,
162 unsigned size)
164 IMX6SRCState *s = (IMX6SRCState *)opaque;
165 uint32_t index = offset >> 2;
166 unsigned long change_mask;
167 unsigned long current_value = value;
169 if (index >= SRC_MAX) {
170 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
171 HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
172 return;
175 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_src_reg_name(index),
176 (uint32_t)current_value);
178 change_mask = s->regs[index] ^ (uint32_t)current_value;
180 switch (index) {
181 case SRC_SCR:
183 * On real hardware when the system reset controller starts a
184 * secondary CPU it runs through some boot ROM code which reads
185 * the SRC_GPRX registers controlling the start address and branches
186 * to it.
187 * Here we are taking a short cut and branching directly to the
188 * requested address (we don't want to run the boot ROM code inside
189 * QEMU)
191 if (EXTRACT(change_mask, CORE3_ENABLE)) {
192 if (EXTRACT(current_value, CORE3_ENABLE)) {
193 /* CORE 3 is brought up */
194 arm_set_cpu_on(3, s->regs[SRC_GPR7], s->regs[SRC_GPR8],
195 3, false);
196 } else {
197 /* CORE 3 is shut down */
198 arm_set_cpu_off(3);
200 /* We clear the reset bits as the processor changed state */
201 imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
202 clear_bit(CORE3_RST_SHIFT, &change_mask);
204 if (EXTRACT(change_mask, CORE2_ENABLE)) {
205 if (EXTRACT(current_value, CORE2_ENABLE)) {
206 /* CORE 2 is brought up */
207 arm_set_cpu_on(2, s->regs[SRC_GPR5], s->regs[SRC_GPR6],
208 3, false);
209 } else {
210 /* CORE 2 is shut down */
211 arm_set_cpu_off(2);
213 /* We clear the reset bits as the processor changed state */
214 imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
215 clear_bit(CORE2_RST_SHIFT, &change_mask);
217 if (EXTRACT(change_mask, CORE1_ENABLE)) {
218 if (EXTRACT(current_value, CORE1_ENABLE)) {
219 /* CORE 1 is brought up */
220 arm_set_cpu_on(1, s->regs[SRC_GPR3], s->regs[SRC_GPR4],
221 3, false);
222 } else {
223 /* CORE 1 is shut down */
224 arm_set_cpu_off(1);
226 /* We clear the reset bits as the processor changed state */
227 imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
228 clear_bit(CORE1_RST_SHIFT, &change_mask);
230 if (EXTRACT(change_mask, CORE0_RST)) {
231 arm_reset_cpu(0);
232 imx6_defer_clear_reset_bit(0, s, CORE0_RST_SHIFT);
234 if (EXTRACT(change_mask, CORE1_RST)) {
235 arm_reset_cpu(1);
236 imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
238 if (EXTRACT(change_mask, CORE2_RST)) {
239 arm_reset_cpu(2);
240 imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
242 if (EXTRACT(change_mask, CORE3_RST)) {
243 arm_reset_cpu(3);
244 imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
246 if (EXTRACT(change_mask, SW_IPU2_RST)) {
247 /* We pretend the IPU2 is reset */
248 clear_bit(SW_IPU2_RST_SHIFT, &current_value);
250 if (EXTRACT(change_mask, SW_IPU1_RST)) {
251 /* We pretend the IPU1 is reset */
252 clear_bit(SW_IPU1_RST_SHIFT, &current_value);
254 s->regs[index] = current_value;
255 break;
256 default:
257 s->regs[index] = current_value;
258 break;
262 static const struct MemoryRegionOps imx6_src_ops = {
263 .read = imx6_src_read,
264 .write = imx6_src_write,
265 .endianness = DEVICE_NATIVE_ENDIAN,
266 .valid = {
268 * Our device would not work correctly if the guest was doing
269 * unaligned access. This might not be a limitation on the real
270 * device but in practice there is no reason for a guest to access
271 * this device unaligned.
273 .min_access_size = 4,
274 .max_access_size = 4,
275 .unaligned = false,
279 static void imx6_src_realize(DeviceState *dev, Error **errp)
281 IMX6SRCState *s = IMX6_SRC(dev);
283 memory_region_init_io(&s->iomem, OBJECT(dev), &imx6_src_ops, s,
284 TYPE_IMX6_SRC, 0x1000);
285 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
288 static void imx6_src_class_init(ObjectClass *klass, void *data)
290 DeviceClass *dc = DEVICE_CLASS(klass);
292 dc->realize = imx6_src_realize;
293 dc->reset = imx6_src_reset;
294 dc->vmsd = &vmstate_imx6_src;
295 dc->desc = "i.MX6 System Reset Controller";
298 static const TypeInfo imx6_src_info = {
299 .name = TYPE_IMX6_SRC,
300 .parent = TYPE_SYS_BUS_DEVICE,
301 .instance_size = sizeof(IMX6SRCState),
302 .class_init = imx6_src_class_init,
305 static void imx6_src_register_types(void)
307 type_register_static(&imx6_src_info);
310 type_init(imx6_src_register_types)