block: Switch blk_*write_zeroes() to byte interface
[qemu/ar7.git] / target-arm / kvm64.c
blobe8527bf0cc57b29fdd79a4d5e50017194e4c04b1
1 /*
2 * ARM implementation of KVM hooks, 64 bit specific code
4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
5 * Copyright Alex Bennée 2014, Linaro
7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
8 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include <sys/ioctl.h>
14 #include <sys/mman.h>
15 #include <sys/ptrace.h>
17 #include <linux/elf.h>
18 #include <linux/kvm.h>
20 #include "qemu-common.h"
21 #include "qemu/timer.h"
22 #include "qemu/error-report.h"
23 #include "qemu/host-utils.h"
24 #include "exec/gdbstub.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/kvm.h"
27 #include "kvm_arm.h"
28 #include "cpu.h"
29 #include "internals.h"
30 #include "hw/arm/arm.h"
32 static bool have_guest_debug;
35 * Although the ARM implementation of hardware assisted debugging
36 * allows for different breakpoints per-core, the current GDB
37 * interface treats them as a global pool of registers (which seems to
38 * be the case for x86, ppc and s390). As a result we store one copy
39 * of registers which is used for all active cores.
41 * Write access is serialised by virtue of the GDB protocol which
42 * updates things. Read access (i.e. when the values are copied to the
43 * vCPU) is also gated by GDB's run control.
45 * This is not unreasonable as most of the time debugging kernels you
46 * never know which core will eventually execute your function.
49 typedef struct {
50 uint64_t bcr;
51 uint64_t bvr;
52 } HWBreakpoint;
54 /* The watchpoint registers can cover more area than the requested
55 * watchpoint so we need to store the additional information
56 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
57 * when the watchpoint is hit.
59 typedef struct {
60 uint64_t wcr;
61 uint64_t wvr;
62 CPUWatchpoint details;
63 } HWWatchpoint;
65 /* Maximum and current break/watch point counts */
66 int max_hw_bps, max_hw_wps;
67 GArray *hw_breakpoints, *hw_watchpoints;
69 #define cur_hw_wps (hw_watchpoints->len)
70 #define cur_hw_bps (hw_breakpoints->len)
71 #define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
72 #define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
74 /**
75 * kvm_arm_init_debug() - check for guest debug capabilities
76 * @cs: CPUState
78 * kvm_check_extension returns the number of debug registers we have
79 * or 0 if we have none.
82 static void kvm_arm_init_debug(CPUState *cs)
84 have_guest_debug = kvm_check_extension(cs->kvm_state,
85 KVM_CAP_SET_GUEST_DEBUG);
87 max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
88 hw_watchpoints = g_array_sized_new(true, true,
89 sizeof(HWWatchpoint), max_hw_wps);
91 max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
92 hw_breakpoints = g_array_sized_new(true, true,
93 sizeof(HWBreakpoint), max_hw_bps);
94 return;
97 /**
98 * insert_hw_breakpoint()
99 * @addr: address of breakpoint
101 * See ARM ARM D2.9.1 for details but here we are only going to create
102 * simple un-linked breakpoints (i.e. we don't chain breakpoints
103 * together to match address and context or vmid). The hardware is
104 * capable of fancier matching but that will require exposing that
105 * fanciness to GDB's interface
107 * D7.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers
109 * 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
110 * +------+------+-------+-----+----+------+-----+------+-----+---+
111 * | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
112 * +------+------+-------+-----+----+------+-----+------+-----+---+
114 * BT: Breakpoint type (0 = unlinked address match)
115 * LBN: Linked BP number (0 = unused)
116 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
117 * BAS: Byte Address Select (RES1 for AArch64)
118 * E: Enable bit
120 static int insert_hw_breakpoint(target_ulong addr)
122 HWBreakpoint brk = {
123 .bcr = 0x1, /* BCR E=1, enable */
124 .bvr = addr
127 if (cur_hw_bps >= max_hw_bps) {
128 return -ENOBUFS;
131 brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */
132 brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */
134 g_array_append_val(hw_breakpoints, brk);
136 return 0;
140 * delete_hw_breakpoint()
141 * @pc: address of breakpoint
143 * Delete a breakpoint and shuffle any above down
146 static int delete_hw_breakpoint(target_ulong pc)
148 int i;
149 for (i = 0; i < hw_breakpoints->len; i++) {
150 HWBreakpoint *brk = get_hw_bp(i);
151 if (brk->bvr == pc) {
152 g_array_remove_index(hw_breakpoints, i);
153 return 0;
156 return -ENOENT;
160 * insert_hw_watchpoint()
161 * @addr: address of watch point
162 * @len: size of area
163 * @type: type of watch point
165 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
166 * stuff if we want to. The watch points can be linked with the break
167 * points above to make them context aware. However for simplicity
168 * currently we only deal with simple read/write watch points.
170 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
172 * 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
173 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
174 * | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
175 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
177 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
178 * WT: 0 - unlinked, 1 - linked (not currently used)
179 * LBN: Linked BP number (not currently used)
180 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
181 * BAS: Byte Address Select
182 * LSC: Load/Store control (01: load, 10: store, 11: both)
183 * E: Enable
185 * The bottom 2 bits of the value register are masked. Therefore to
186 * break on any sizes smaller than an unaligned word you need to set
187 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
188 * need to ensure you mask the address as required and set BAS=0xff
191 static int insert_hw_watchpoint(target_ulong addr,
192 target_ulong len, int type)
194 HWWatchpoint wp = {
195 .wcr = 1, /* E=1, enable */
196 .wvr = addr & (~0x7ULL),
197 .details = { .vaddr = addr, .len = len }
200 if (cur_hw_wps >= max_hw_wps) {
201 return -ENOBUFS;
205 * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
206 * valid whether EL3 is implemented or not
208 wp.wcr = deposit32(wp.wcr, 1, 2, 3);
210 switch (type) {
211 case GDB_WATCHPOINT_READ:
212 wp.wcr = deposit32(wp.wcr, 3, 2, 1);
213 wp.details.flags = BP_MEM_READ;
214 break;
215 case GDB_WATCHPOINT_WRITE:
216 wp.wcr = deposit32(wp.wcr, 3, 2, 2);
217 wp.details.flags = BP_MEM_WRITE;
218 break;
219 case GDB_WATCHPOINT_ACCESS:
220 wp.wcr = deposit32(wp.wcr, 3, 2, 3);
221 wp.details.flags = BP_MEM_ACCESS;
222 break;
223 default:
224 g_assert_not_reached();
225 break;
227 if (len <= 8) {
228 /* we align the address and set the bits in BAS */
229 int off = addr & 0x7;
230 int bas = (1 << len) - 1;
232 wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
233 } else {
234 /* For ranges above 8 bytes we need to be a power of 2 */
235 if (is_power_of_2(len)) {
236 int bits = ctz64(len);
238 wp.wvr &= ~((1 << bits) - 1);
239 wp.wcr = deposit32(wp.wcr, 24, 4, bits);
240 wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
241 } else {
242 return -ENOBUFS;
246 g_array_append_val(hw_watchpoints, wp);
247 return 0;
251 static bool check_watchpoint_in_range(int i, target_ulong addr)
253 HWWatchpoint *wp = get_hw_wp(i);
254 uint64_t addr_top, addr_bottom = wp->wvr;
255 int bas = extract32(wp->wcr, 5, 8);
256 int mask = extract32(wp->wcr, 24, 4);
258 if (mask) {
259 addr_top = addr_bottom + (1 << mask);
260 } else {
261 /* BAS must be contiguous but can offset against the base
262 * address in DBGWVR */
263 addr_bottom = addr_bottom + ctz32(bas);
264 addr_top = addr_bottom + clo32(bas);
267 if (addr >= addr_bottom && addr <= addr_top) {
268 return true;
271 return false;
275 * delete_hw_watchpoint()
276 * @addr: address of breakpoint
278 * Delete a breakpoint and shuffle any above down
281 static int delete_hw_watchpoint(target_ulong addr,
282 target_ulong len, int type)
284 int i;
285 for (i = 0; i < cur_hw_wps; i++) {
286 if (check_watchpoint_in_range(i, addr)) {
287 g_array_remove_index(hw_watchpoints, i);
288 return 0;
291 return -ENOENT;
295 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
296 target_ulong len, int type)
298 switch (type) {
299 case GDB_BREAKPOINT_HW:
300 return insert_hw_breakpoint(addr);
301 break;
302 case GDB_WATCHPOINT_READ:
303 case GDB_WATCHPOINT_WRITE:
304 case GDB_WATCHPOINT_ACCESS:
305 return insert_hw_watchpoint(addr, len, type);
306 default:
307 return -ENOSYS;
311 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
312 target_ulong len, int type)
314 switch (type) {
315 case GDB_BREAKPOINT_HW:
316 return delete_hw_breakpoint(addr);
317 break;
318 case GDB_WATCHPOINT_READ:
319 case GDB_WATCHPOINT_WRITE:
320 case GDB_WATCHPOINT_ACCESS:
321 return delete_hw_watchpoint(addr, len, type);
322 default:
323 return -ENOSYS;
328 void kvm_arch_remove_all_hw_breakpoints(void)
330 if (cur_hw_wps > 0) {
331 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
333 if (cur_hw_bps > 0) {
334 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
338 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
340 int i;
341 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
343 for (i = 0; i < max_hw_wps; i++) {
344 HWWatchpoint *wp = get_hw_wp(i);
345 ptr->dbg_wcr[i] = wp->wcr;
346 ptr->dbg_wvr[i] = wp->wvr;
348 for (i = 0; i < max_hw_bps; i++) {
349 HWBreakpoint *bp = get_hw_bp(i);
350 ptr->dbg_bcr[i] = bp->bcr;
351 ptr->dbg_bvr[i] = bp->bvr;
355 bool kvm_arm_hw_debug_active(CPUState *cs)
357 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
360 static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
362 int i;
364 for (i = 0; i < cur_hw_bps; i++) {
365 HWBreakpoint *bp = get_hw_bp(i);
366 if (bp->bvr == pc) {
367 return true;
370 return false;
373 static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
375 int i;
377 for (i = 0; i < cur_hw_wps; i++) {
378 if (check_watchpoint_in_range(i, addr)) {
379 return &get_hw_wp(i)->details;
382 return NULL;
386 static inline void set_feature(uint64_t *features, int feature)
388 *features |= 1ULL << feature;
391 bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
393 /* Identify the feature bits corresponding to the host CPU, and
394 * fill out the ARMHostCPUClass fields accordingly. To do this
395 * we have to create a scratch VM, create a single CPU inside it,
396 * and then query that CPU for the relevant ID registers.
397 * For AArch64 we currently don't care about ID registers at
398 * all; we just want to know the CPU type.
400 int fdarray[3];
401 uint64_t features = 0;
402 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
403 * we know these will only support creating one kind of guest CPU,
404 * which is its preferred CPU type. Fortunately these old kernels
405 * support only a very limited number of CPUs.
407 static const uint32_t cpus_to_try[] = {
408 KVM_ARM_TARGET_AEM_V8,
409 KVM_ARM_TARGET_FOUNDATION_V8,
410 KVM_ARM_TARGET_CORTEX_A57,
411 QEMU_KVM_ARM_TARGET_NONE
413 struct kvm_vcpu_init init;
415 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
416 return false;
419 ahcc->target = init.target;
420 ahcc->dtb_compatible = "arm,arm-v8";
422 kvm_arm_destroy_scratch_host_vcpu(fdarray);
424 /* We can assume any KVM supporting CPU is at least a v8
425 * with VFPv4+Neon; this in turn implies most of the other
426 * feature bits.
428 set_feature(&features, ARM_FEATURE_V8);
429 set_feature(&features, ARM_FEATURE_VFP4);
430 set_feature(&features, ARM_FEATURE_NEON);
431 set_feature(&features, ARM_FEATURE_AARCH64);
433 ahcc->features = features;
435 return true;
438 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
440 int kvm_arch_init_vcpu(CPUState *cs)
442 int ret;
443 uint64_t mpidr;
444 ARMCPU *cpu = ARM_CPU(cs);
446 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
447 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
448 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
449 return -EINVAL;
452 /* Determine init features for this CPU */
453 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
454 if (cpu->start_powered_off) {
455 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
457 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
458 cpu->psci_version = 2;
459 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
461 if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
462 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
465 /* Do KVM_ARM_VCPU_INIT ioctl */
466 ret = kvm_arm_vcpu_init(cs);
467 if (ret) {
468 return ret;
472 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
473 * Currently KVM has its own idea about MPIDR assignment, so we
474 * override our defaults with what we get from KVM.
476 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
477 if (ret) {
478 return ret;
480 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
482 kvm_arm_init_debug(cs);
484 return kvm_arm_init_cpreg_list(cpu);
487 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
489 /* Return true if the regidx is a register we should synchronize
490 * via the cpreg_tuples array (ie is not a core reg we sync by
491 * hand in kvm_arch_get/put_registers())
493 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
494 case KVM_REG_ARM_CORE:
495 return false;
496 default:
497 return true;
501 typedef struct CPRegStateLevel {
502 uint64_t regidx;
503 int level;
504 } CPRegStateLevel;
506 /* All system registers not listed in the following table are assumed to be
507 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
508 * often, you must add it to this table with a state of either
509 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
511 static const CPRegStateLevel non_runtime_cpregs[] = {
512 { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
515 int kvm_arm_cpreg_level(uint64_t regidx)
517 int i;
519 for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
520 const CPRegStateLevel *l = &non_runtime_cpregs[i];
521 if (l->regidx == regidx) {
522 return l->level;
526 return KVM_PUT_RUNTIME_STATE;
529 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
530 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
532 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
533 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
535 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
536 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
538 int kvm_arch_put_registers(CPUState *cs, int level)
540 struct kvm_one_reg reg;
541 uint32_t fpr;
542 uint64_t val;
543 int i;
544 int ret;
545 unsigned int el;
547 ARMCPU *cpu = ARM_CPU(cs);
548 CPUARMState *env = &cpu->env;
550 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
551 * AArch64 registers before pushing them out to 64-bit KVM.
553 if (!is_a64(env)) {
554 aarch64_sync_32_to_64(env);
557 for (i = 0; i < 31; i++) {
558 reg.id = AARCH64_CORE_REG(regs.regs[i]);
559 reg.addr = (uintptr_t) &env->xregs[i];
560 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
561 if (ret) {
562 return ret;
566 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
567 * QEMU side we keep the current SP in xregs[31] as well.
569 aarch64_save_sp(env, 1);
571 reg.id = AARCH64_CORE_REG(regs.sp);
572 reg.addr = (uintptr_t) &env->sp_el[0];
573 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
574 if (ret) {
575 return ret;
578 reg.id = AARCH64_CORE_REG(sp_el1);
579 reg.addr = (uintptr_t) &env->sp_el[1];
580 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
581 if (ret) {
582 return ret;
585 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
586 if (is_a64(env)) {
587 val = pstate_read(env);
588 } else {
589 val = cpsr_read(env);
591 reg.id = AARCH64_CORE_REG(regs.pstate);
592 reg.addr = (uintptr_t) &val;
593 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
594 if (ret) {
595 return ret;
598 reg.id = AARCH64_CORE_REG(regs.pc);
599 reg.addr = (uintptr_t) &env->pc;
600 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
601 if (ret) {
602 return ret;
605 reg.id = AARCH64_CORE_REG(elr_el1);
606 reg.addr = (uintptr_t) &env->elr_el[1];
607 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
608 if (ret) {
609 return ret;
612 /* Saved Program State Registers
614 * Before we restore from the banked_spsr[] array we need to
615 * ensure that any modifications to env->spsr are correctly
616 * reflected in the banks.
618 el = arm_current_el(env);
619 if (el > 0 && !is_a64(env)) {
620 i = bank_number(env->uncached_cpsr & CPSR_M);
621 env->banked_spsr[i] = env->spsr;
624 /* KVM 0-4 map to QEMU banks 1-5 */
625 for (i = 0; i < KVM_NR_SPSR; i++) {
626 reg.id = AARCH64_CORE_REG(spsr[i]);
627 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
628 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
629 if (ret) {
630 return ret;
634 /* Advanced SIMD and FP registers
635 * We map Qn = regs[2n+1]:regs[2n]
637 for (i = 0; i < 32; i++) {
638 int rd = i << 1;
639 uint64_t fp_val[2];
640 #ifdef HOST_WORDS_BIGENDIAN
641 fp_val[0] = env->vfp.regs[rd + 1];
642 fp_val[1] = env->vfp.regs[rd];
643 #else
644 fp_val[1] = env->vfp.regs[rd + 1];
645 fp_val[0] = env->vfp.regs[rd];
646 #endif
647 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
648 reg.addr = (uintptr_t)(&fp_val);
649 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
650 if (ret) {
651 return ret;
655 reg.addr = (uintptr_t)(&fpr);
656 fpr = vfp_get_fpsr(env);
657 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
658 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
659 if (ret) {
660 return ret;
663 fpr = vfp_get_fpcr(env);
664 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
665 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
666 if (ret) {
667 return ret;
670 if (!write_list_to_kvmstate(cpu, level)) {
671 return EINVAL;
674 kvm_arm_sync_mpstate_to_kvm(cpu);
676 return ret;
679 int kvm_arch_get_registers(CPUState *cs)
681 struct kvm_one_reg reg;
682 uint64_t val;
683 uint32_t fpr;
684 unsigned int el;
685 int i;
686 int ret;
688 ARMCPU *cpu = ARM_CPU(cs);
689 CPUARMState *env = &cpu->env;
691 for (i = 0; i < 31; i++) {
692 reg.id = AARCH64_CORE_REG(regs.regs[i]);
693 reg.addr = (uintptr_t) &env->xregs[i];
694 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
695 if (ret) {
696 return ret;
700 reg.id = AARCH64_CORE_REG(regs.sp);
701 reg.addr = (uintptr_t) &env->sp_el[0];
702 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
703 if (ret) {
704 return ret;
707 reg.id = AARCH64_CORE_REG(sp_el1);
708 reg.addr = (uintptr_t) &env->sp_el[1];
709 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
710 if (ret) {
711 return ret;
714 reg.id = AARCH64_CORE_REG(regs.pstate);
715 reg.addr = (uintptr_t) &val;
716 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
717 if (ret) {
718 return ret;
721 env->aarch64 = ((val & PSTATE_nRW) == 0);
722 if (is_a64(env)) {
723 pstate_write(env, val);
724 } else {
725 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
728 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
729 * QEMU side we keep the current SP in xregs[31] as well.
731 aarch64_restore_sp(env, 1);
733 reg.id = AARCH64_CORE_REG(regs.pc);
734 reg.addr = (uintptr_t) &env->pc;
735 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
736 if (ret) {
737 return ret;
740 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
741 * incoming AArch64 regs received from 64-bit KVM.
742 * We must perform this after all of the registers have been acquired from
743 * the kernel.
745 if (!is_a64(env)) {
746 aarch64_sync_64_to_32(env);
749 reg.id = AARCH64_CORE_REG(elr_el1);
750 reg.addr = (uintptr_t) &env->elr_el[1];
751 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
752 if (ret) {
753 return ret;
756 /* Fetch the SPSR registers
758 * KVM SPSRs 0-4 map to QEMU banks 1-5
760 for (i = 0; i < KVM_NR_SPSR; i++) {
761 reg.id = AARCH64_CORE_REG(spsr[i]);
762 reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
763 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
764 if (ret) {
765 return ret;
769 el = arm_current_el(env);
770 if (el > 0 && !is_a64(env)) {
771 i = bank_number(env->uncached_cpsr & CPSR_M);
772 env->spsr = env->banked_spsr[i];
775 /* Advanced SIMD and FP registers
776 * We map Qn = regs[2n+1]:regs[2n]
778 for (i = 0; i < 32; i++) {
779 uint64_t fp_val[2];
780 reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
781 reg.addr = (uintptr_t)(&fp_val);
782 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
783 if (ret) {
784 return ret;
785 } else {
786 int rd = i << 1;
787 #ifdef HOST_WORDS_BIGENDIAN
788 env->vfp.regs[rd + 1] = fp_val[0];
789 env->vfp.regs[rd] = fp_val[1];
790 #else
791 env->vfp.regs[rd + 1] = fp_val[1];
792 env->vfp.regs[rd] = fp_val[0];
793 #endif
797 reg.addr = (uintptr_t)(&fpr);
798 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
799 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
800 if (ret) {
801 return ret;
803 vfp_set_fpsr(env, fpr);
805 reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
806 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
807 if (ret) {
808 return ret;
810 vfp_set_fpcr(env, fpr);
812 if (!write_kvmstate_to_list(cpu)) {
813 return EINVAL;
815 /* Note that it's OK to have registers which aren't in CPUState,
816 * so we can ignore a failure return here.
818 write_list_to_cpustate(cpu);
820 kvm_arm_sync_mpstate_to_qemu(cpu);
822 /* TODO: other registers */
823 return ret;
826 /* C6.6.29 BRK instruction */
827 static const uint32_t brk_insn = 0xd4200000;
829 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
831 if (have_guest_debug) {
832 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
833 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
834 return -EINVAL;
836 return 0;
837 } else {
838 error_report("guest debug not supported on this kernel");
839 return -EINVAL;
843 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
845 static uint32_t brk;
847 if (have_guest_debug) {
848 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
849 brk != brk_insn ||
850 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
851 return -EINVAL;
853 return 0;
854 } else {
855 error_report("guest debug not supported on this kernel");
856 return -EINVAL;
860 /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
862 * To minimise translating between kernel and user-space the kernel
863 * ABI just provides user-space with the full exception syndrome
864 * register value to be decoded in QEMU.
867 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
869 int hsr_ec = debug_exit->hsr >> ARM_EL_EC_SHIFT;
870 ARMCPU *cpu = ARM_CPU(cs);
871 CPUClass *cc = CPU_GET_CLASS(cs);
872 CPUARMState *env = &cpu->env;
874 /* Ensure PC is synchronised */
875 kvm_cpu_synchronize_state(cs);
877 switch (hsr_ec) {
878 case EC_SOFTWARESTEP:
879 if (cs->singlestep_enabled) {
880 return true;
881 } else {
883 * The kernel should have suppressed the guest's ability to
884 * single step at this point so something has gone wrong.
886 error_report("%s: guest single-step while debugging unsupported"
887 " (%"PRIx64", %"PRIx32")\n",
888 __func__, env->pc, debug_exit->hsr);
889 return false;
891 break;
892 case EC_AA64_BKPT:
893 if (kvm_find_sw_breakpoint(cs, env->pc)) {
894 return true;
896 break;
897 case EC_BREAKPOINT:
898 if (find_hw_breakpoint(cs, env->pc)) {
899 return true;
901 break;
902 case EC_WATCHPOINT:
904 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
905 if (wp) {
906 cs->watchpoint_hit = wp;
907 return true;
909 break;
911 default:
912 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")\n",
913 __func__, debug_exit->hsr, env->pc);
916 /* If we are not handling the debug exception it must belong to
917 * the guest. Let's re-use the existing TCG interrupt code to set
918 * everything up properly.
920 cs->exception_index = EXCP_BKPT;
921 env->exception.syndrome = debug_exit->hsr;
922 env->exception.vaddress = debug_exit->far;
923 cc->do_interrupt(cs);
925 return false;