Merge remote-tracking branch 'qemu/master'
[qemu/ar7.git] / exec.c
blobc8a893e1b44c535edddf7feedcd1c20c4416d1da
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "tcg.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/hax.h"
35 #include "sysemu/sysemu.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "qemu/error-report.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #else /* !CONFIG_USER_ONLY */
42 #include "hw/hw.h"
43 #include "exec/memory.h"
44 #include "exec/ioport.h"
45 #include "sysemu/dma.h"
46 #include "exec/address-spaces.h"
47 #include "sysemu/xen-mapcache.h"
48 #include "trace.h"
49 #endif
50 #include "exec/cpu-all.h"
51 #include "qemu/rcu_queue.h"
52 #include "qemu/main-loop.h"
53 #include "translate-all.h"
54 #include "sysemu/replay.h"
56 #include "exec/memory-internal.h"
57 #include "exec/ram_addr.h"
58 #include "exec/log.h"
60 #include "migration/vmstate.h"
62 #include "qemu/range.h"
63 #ifndef _WIN32
64 #include "qemu/mmap-alloc.h"
65 #endif
67 //#define DEBUG_SUBPAGE
69 #if !defined(CONFIG_USER_ONLY)
70 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
71 * are protected by the ramlist lock.
73 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
75 static MemoryRegion *system_memory;
76 static MemoryRegion *system_io;
78 AddressSpace address_space_io;
79 AddressSpace address_space_memory;
81 MemoryRegion io_mem_rom, io_mem_notdirty;
82 static MemoryRegion io_mem_unassigned;
84 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
85 #define RAM_PREALLOC (1 << 0)
87 /* RAM is mmap-ed with MAP_SHARED */
88 #define RAM_SHARED (1 << 1)
90 /* Only a portion of RAM (used_length) is actually used, and migrated.
91 * This used_length size can change across reboots.
93 #define RAM_RESIZEABLE (1 << 2)
95 #endif
97 #ifdef TARGET_PAGE_BITS_VARY
98 int target_page_bits;
99 bool target_page_bits_decided;
100 #endif
102 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
103 /* current CPU in the current thread. It is only valid inside
104 cpu_exec() */
105 __thread CPUState *current_cpu;
106 /* 0 = Do not count executed instructions.
107 1 = Precise instruction counting.
108 2 = Adaptive rate instruction counting. */
109 int use_icount;
111 bool set_preferred_target_page_bits(int bits)
113 /* The target page size is the lowest common denominator for all
114 * the CPUs in the system, so we can only make it smaller, never
115 * larger. And we can't make it smaller once we've committed to
116 * a particular size.
118 #ifdef TARGET_PAGE_BITS_VARY
119 assert(bits >= TARGET_PAGE_BITS_MIN);
120 if (target_page_bits == 0 || target_page_bits > bits) {
121 if (target_page_bits_decided) {
122 return false;
124 target_page_bits = bits;
126 #endif
127 return true;
130 #if !defined(CONFIG_USER_ONLY)
132 static void finalize_target_page_bits(void)
134 #ifdef TARGET_PAGE_BITS_VARY
135 if (target_page_bits == 0) {
136 target_page_bits = TARGET_PAGE_BITS_MIN;
138 target_page_bits_decided = true;
139 #endif
142 typedef struct PhysPageEntry PhysPageEntry;
144 struct PhysPageEntry {
145 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
146 uint32_t skip : 6;
147 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
148 uint32_t ptr : 26;
151 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
153 /* Size of the L2 (and L3, etc) page tables. */
154 #define ADDR_SPACE_BITS 64
156 #define P_L2_BITS 9
157 #define P_L2_SIZE (1 << P_L2_BITS)
159 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
161 typedef PhysPageEntry Node[P_L2_SIZE];
163 typedef struct PhysPageMap {
164 struct rcu_head rcu;
166 unsigned sections_nb;
167 unsigned sections_nb_alloc;
168 unsigned nodes_nb;
169 unsigned nodes_nb_alloc;
170 Node *nodes;
171 MemoryRegionSection *sections;
172 } PhysPageMap;
174 struct AddressSpaceDispatch {
175 struct rcu_head rcu;
177 MemoryRegionSection *mru_section;
178 /* This is a multi-level map on the physical address space.
179 * The bottom level has pointers to MemoryRegionSections.
181 PhysPageEntry phys_map;
182 PhysPageMap map;
183 AddressSpace *as;
186 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
187 typedef struct subpage_t {
188 MemoryRegion iomem;
189 AddressSpace *as;
190 hwaddr base;
191 uint16_t sub_section[];
192 } subpage_t;
194 #define PHYS_SECTION_UNASSIGNED 0
195 #define PHYS_SECTION_NOTDIRTY 1
196 #define PHYS_SECTION_ROM 2
197 #define PHYS_SECTION_WATCH 3
199 static void io_mem_init(void);
200 static void memory_map_init(void);
201 static void tcg_commit(MemoryListener *listener);
203 static MemoryRegion io_mem_watch;
206 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
207 * @cpu: the CPU whose AddressSpace this is
208 * @as: the AddressSpace itself
209 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
210 * @tcg_as_listener: listener for tracking changes to the AddressSpace
212 struct CPUAddressSpace {
213 CPUState *cpu;
214 AddressSpace *as;
215 struct AddressSpaceDispatch *memory_dispatch;
216 MemoryListener tcg_as_listener;
219 #endif
221 #if !defined(CONFIG_USER_ONLY)
223 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
225 static unsigned alloc_hint = 16;
226 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
227 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
228 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
229 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
230 alloc_hint = map->nodes_nb_alloc;
234 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
236 unsigned i;
237 uint32_t ret;
238 PhysPageEntry e;
239 PhysPageEntry *p;
241 ret = map->nodes_nb++;
242 p = map->nodes[ret];
243 assert(ret != PHYS_MAP_NODE_NIL);
244 assert(ret != map->nodes_nb_alloc);
246 e.skip = leaf ? 0 : 1;
247 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
248 for (i = 0; i < P_L2_SIZE; ++i) {
249 memcpy(&p[i], &e, sizeof(e));
251 return ret;
254 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
255 hwaddr *index, hwaddr *nb, uint16_t leaf,
256 int level)
258 PhysPageEntry *p;
259 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
261 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
262 lp->ptr = phys_map_node_alloc(map, level == 0);
264 p = map->nodes[lp->ptr];
265 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
267 while (*nb && lp < &p[P_L2_SIZE]) {
268 if ((*index & (step - 1)) == 0 && *nb >= step) {
269 lp->skip = 0;
270 lp->ptr = leaf;
271 *index += step;
272 *nb -= step;
273 } else {
274 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
276 ++lp;
280 static void phys_page_set(AddressSpaceDispatch *d,
281 hwaddr index, hwaddr nb,
282 uint16_t leaf)
284 /* Wildly overreserve - it doesn't matter much. */
285 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
287 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
290 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
291 * and update our entry so we can skip it and go directly to the destination.
293 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
295 unsigned valid_ptr = P_L2_SIZE;
296 int valid = 0;
297 PhysPageEntry *p;
298 int i;
300 if (lp->ptr == PHYS_MAP_NODE_NIL) {
301 return;
304 p = nodes[lp->ptr];
305 for (i = 0; i < P_L2_SIZE; i++) {
306 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
307 continue;
310 valid_ptr = i;
311 valid++;
312 if (p[i].skip) {
313 phys_page_compact(&p[i], nodes);
317 /* We can only compress if there's only one child. */
318 if (valid != 1) {
319 return;
322 assert(valid_ptr < P_L2_SIZE);
324 /* Don't compress if it won't fit in the # of bits we have. */
325 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
326 return;
329 lp->ptr = p[valid_ptr].ptr;
330 if (!p[valid_ptr].skip) {
331 /* If our only child is a leaf, make this a leaf. */
332 /* By design, we should have made this node a leaf to begin with so we
333 * should never reach here.
334 * But since it's so simple to handle this, let's do it just in case we
335 * change this rule.
337 lp->skip = 0;
338 } else {
339 lp->skip += p[valid_ptr].skip;
343 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
345 if (d->phys_map.skip) {
346 phys_page_compact(&d->phys_map, d->map.nodes);
350 static inline bool section_covers_addr(const MemoryRegionSection *section,
351 hwaddr addr)
353 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
354 * the section must cover the entire address space.
356 return int128_gethi(section->size) ||
357 range_covers_byte(section->offset_within_address_space,
358 int128_getlo(section->size), addr);
361 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
362 Node *nodes, MemoryRegionSection *sections)
364 PhysPageEntry *p;
365 hwaddr index = addr >> TARGET_PAGE_BITS;
366 int i;
368 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
369 if (lp.ptr == PHYS_MAP_NODE_NIL) {
370 return &sections[PHYS_SECTION_UNASSIGNED];
372 p = nodes[lp.ptr];
373 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
376 if (section_covers_addr(&sections[lp.ptr], addr)) {
377 return &sections[lp.ptr];
378 } else {
379 return &sections[PHYS_SECTION_UNASSIGNED];
383 bool memory_region_is_unassigned(MemoryRegion *mr)
385 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
386 && mr != &io_mem_watch;
389 /* Called from RCU critical section */
390 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
391 hwaddr addr,
392 bool resolve_subpage)
394 MemoryRegionSection *section = atomic_read(&d->mru_section);
395 subpage_t *subpage;
396 bool update;
398 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
399 section_covers_addr(section, addr)) {
400 update = false;
401 } else {
402 section = phys_page_find(d->phys_map, addr, d->map.nodes,
403 d->map.sections);
404 update = true;
406 if (resolve_subpage && section->mr->subpage) {
407 subpage = container_of(section->mr, subpage_t, iomem);
408 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
410 if (update) {
411 atomic_set(&d->mru_section, section);
413 return section;
416 /* Called from RCU critical section */
417 static MemoryRegionSection *
418 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
419 hwaddr *plen, bool resolve_subpage)
421 MemoryRegionSection *section;
422 MemoryRegion *mr;
423 Int128 diff;
425 section = address_space_lookup_region(d, addr, resolve_subpage);
426 /* Compute offset within MemoryRegionSection */
427 addr -= section->offset_within_address_space;
429 /* Compute offset within MemoryRegion */
430 *xlat = addr + section->offset_within_region;
432 mr = section->mr;
434 /* MMIO registers can be expected to perform full-width accesses based only
435 * on their address, without considering adjacent registers that could
436 * decode to completely different MemoryRegions. When such registers
437 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
438 * regions overlap wildly. For this reason we cannot clamp the accesses
439 * here.
441 * If the length is small (as is the case for address_space_ldl/stl),
442 * everything works fine. If the incoming length is large, however,
443 * the caller really has to do the clamping through memory_access_size.
445 if (memory_region_is_ram(mr)) {
446 diff = int128_sub(section->size, int128_make64(addr));
447 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
449 return section;
452 /* Called from RCU critical section */
453 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
454 hwaddr *xlat, hwaddr *plen,
455 bool is_write)
457 IOMMUTLBEntry iotlb;
458 MemoryRegionSection *section;
459 MemoryRegion *mr;
461 for (;;) {
462 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
463 section = address_space_translate_internal(d, addr, &addr, plen, true);
464 mr = section->mr;
466 if (!mr->iommu_ops) {
467 break;
470 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
471 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
472 | (addr & iotlb.addr_mask));
473 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
474 if (!(iotlb.perm & (1 << is_write))) {
475 mr = &io_mem_unassigned;
476 break;
479 as = iotlb.target_as;
482 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
483 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
484 *plen = MIN(page, *plen);
487 *xlat = addr;
488 return mr;
491 /* Called from RCU critical section */
492 MemoryRegionSection *
493 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
494 hwaddr *xlat, hwaddr *plen)
496 MemoryRegionSection *section;
497 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
499 section = address_space_translate_internal(d, addr, xlat, plen, false);
501 assert(!section->mr->iommu_ops);
502 return section;
504 #endif
506 #if !defined(CONFIG_USER_ONLY)
508 static int cpu_common_post_load(void *opaque, int version_id)
510 CPUState *cpu = opaque;
512 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
513 version_id is increased. */
514 cpu->interrupt_request &= ~0x01;
515 tlb_flush(cpu, 1);
517 return 0;
520 static int cpu_common_pre_load(void *opaque)
522 CPUState *cpu = opaque;
524 cpu->exception_index = -1;
526 return 0;
529 static bool cpu_common_exception_index_needed(void *opaque)
531 CPUState *cpu = opaque;
533 return tcg_enabled() && cpu->exception_index != -1;
536 static const VMStateDescription vmstate_cpu_common_exception_index = {
537 .name = "cpu_common/exception_index",
538 .version_id = 1,
539 .minimum_version_id = 1,
540 .needed = cpu_common_exception_index_needed,
541 .fields = (VMStateField[]) {
542 VMSTATE_INT32(exception_index, CPUState),
543 VMSTATE_END_OF_LIST()
547 static bool cpu_common_crash_occurred_needed(void *opaque)
549 CPUState *cpu = opaque;
551 return cpu->crash_occurred;
554 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
555 .name = "cpu_common/crash_occurred",
556 .version_id = 1,
557 .minimum_version_id = 1,
558 .needed = cpu_common_crash_occurred_needed,
559 .fields = (VMStateField[]) {
560 VMSTATE_BOOL(crash_occurred, CPUState),
561 VMSTATE_END_OF_LIST()
565 const VMStateDescription vmstate_cpu_common = {
566 .name = "cpu_common",
567 .version_id = 1,
568 .minimum_version_id = 1,
569 .pre_load = cpu_common_pre_load,
570 .post_load = cpu_common_post_load,
571 .fields = (VMStateField[]) {
572 VMSTATE_UINT32(halted, CPUState),
573 VMSTATE_UINT32(interrupt_request, CPUState),
574 VMSTATE_END_OF_LIST()
576 .subsections = (const VMStateDescription*[]) {
577 &vmstate_cpu_common_exception_index,
578 &vmstate_cpu_common_crash_occurred,
579 NULL
583 #endif
585 CPUState *qemu_get_cpu(int index)
587 CPUState *cpu;
589 CPU_FOREACH(cpu) {
590 if (cpu->cpu_index == index) {
591 return cpu;
595 return NULL;
598 #if !defined(CONFIG_USER_ONLY)
599 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
601 CPUAddressSpace *newas;
603 /* Target code should have set num_ases before calling us */
604 assert(asidx < cpu->num_ases);
606 if (asidx == 0) {
607 /* address space 0 gets the convenience alias */
608 cpu->as = as;
611 /* KVM cannot currently support multiple address spaces. */
612 assert(asidx == 0 || !kvm_enabled());
614 if (!cpu->cpu_ases) {
615 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
618 newas = &cpu->cpu_ases[asidx];
619 newas->cpu = cpu;
620 newas->as = as;
621 if (tcg_enabled()) {
622 newas->tcg_as_listener.commit = tcg_commit;
623 memory_listener_register(&newas->tcg_as_listener, as);
627 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
629 /* Return the AddressSpace corresponding to the specified index */
630 return cpu->cpu_ases[asidx].as;
632 #endif
634 void cpu_exec_unrealizefn(CPUState *cpu)
636 CPUClass *cc = CPU_GET_CLASS(cpu);
638 cpu_list_remove(cpu);
640 if (cc->vmsd != NULL) {
641 vmstate_unregister(NULL, cc->vmsd, cpu);
643 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
644 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
648 void cpu_exec_initfn(CPUState *cpu)
650 #ifdef TARGET_WORDS_BIGENDIAN
651 cpu->bigendian = true;
652 #else
653 cpu->bigendian = false;
654 #endif
655 cpu->as = NULL;
656 cpu->num_ases = 0;
658 #ifndef CONFIG_USER_ONLY
659 cpu->thread_id = qemu_get_thread_id();
661 /* This is a softmmu CPU object, so create a property for it
662 * so users can wire up its memory. (This can't go in qom/cpu.c
663 * because that file is compiled only once for both user-mode
664 * and system builds.) The default if no link is set up is to use
665 * the system address space.
667 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
668 (Object **)&cpu->memory,
669 qdev_prop_allow_set_link_before_realize,
670 OBJ_PROP_LINK_UNREF_ON_RELEASE,
671 &error_abort);
672 cpu->memory = system_memory;
673 object_ref(OBJECT(cpu->memory));
674 #endif
677 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
679 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
681 cpu_list_add(cpu);
683 #ifndef CONFIG_USER_ONLY
684 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
685 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
687 if (cc->vmsd != NULL) {
688 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
690 #endif
693 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
695 /* Flush the whole TB as this will not have race conditions
696 * even if we don't have proper locking yet.
697 * Ideally we would just invalidate the TBs for the
698 * specified PC.
700 tb_flush(cpu);
703 #if defined(CONFIG_USER_ONLY)
704 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
709 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
710 int flags)
712 return -ENOSYS;
715 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
719 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
720 int flags, CPUWatchpoint **watchpoint)
722 return -ENOSYS;
724 #else
725 /* Add a watchpoint. */
726 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
727 int flags, CPUWatchpoint **watchpoint)
729 CPUWatchpoint *wp;
731 /* forbid ranges which are empty or run off the end of the address space */
732 if (len == 0 || (addr + len - 1) < addr) {
733 error_report("tried to set invalid watchpoint at %"
734 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
735 return -EINVAL;
737 wp = g_malloc(sizeof(*wp));
739 wp->vaddr = addr;
740 wp->len = len;
741 wp->flags = flags;
743 /* keep all GDB-injected watchpoints in front */
744 if (flags & BP_GDB) {
745 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
746 } else {
747 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
750 tlb_flush_page(cpu, addr);
752 if (watchpoint)
753 *watchpoint = wp;
754 return 0;
757 /* Remove a specific watchpoint. */
758 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
759 int flags)
761 CPUWatchpoint *wp;
763 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
764 if (addr == wp->vaddr && len == wp->len
765 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
766 cpu_watchpoint_remove_by_ref(cpu, wp);
767 return 0;
770 return -ENOENT;
773 /* Remove a specific watchpoint by reference. */
774 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
776 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
778 tlb_flush_page(cpu, watchpoint->vaddr);
780 g_free(watchpoint);
783 /* Remove all matching watchpoints. */
784 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
786 CPUWatchpoint *wp, *next;
788 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
789 if (wp->flags & mask) {
790 cpu_watchpoint_remove_by_ref(cpu, wp);
795 /* Return true if this watchpoint address matches the specified
796 * access (ie the address range covered by the watchpoint overlaps
797 * partially or completely with the address range covered by the
798 * access).
800 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
801 vaddr addr,
802 vaddr len)
804 /* We know the lengths are non-zero, but a little caution is
805 * required to avoid errors in the case where the range ends
806 * exactly at the top of the address space and so addr + len
807 * wraps round to zero.
809 vaddr wpend = wp->vaddr + wp->len - 1;
810 vaddr addrend = addr + len - 1;
812 return !(addr > wpend || wp->vaddr > addrend);
815 #endif
817 /* Add a breakpoint. */
818 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
819 CPUBreakpoint **breakpoint)
821 CPUBreakpoint *bp;
823 bp = g_malloc(sizeof(*bp));
825 bp->pc = pc;
826 bp->flags = flags;
828 /* keep all GDB-injected breakpoints in front */
829 if (flags & BP_GDB) {
830 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
831 } else {
832 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
835 breakpoint_invalidate(cpu, pc);
837 if (breakpoint) {
838 *breakpoint = bp;
840 return 0;
843 /* Remove a specific breakpoint. */
844 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
846 CPUBreakpoint *bp;
848 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
849 if (bp->pc == pc && bp->flags == flags) {
850 cpu_breakpoint_remove_by_ref(cpu, bp);
851 return 0;
854 return -ENOENT;
857 /* Remove a specific breakpoint by reference. */
858 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
860 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
862 breakpoint_invalidate(cpu, breakpoint->pc);
864 g_free(breakpoint);
867 /* Remove all matching breakpoints. */
868 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
870 CPUBreakpoint *bp, *next;
872 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
873 if (bp->flags & mask) {
874 cpu_breakpoint_remove_by_ref(cpu, bp);
879 /* enable or disable single step mode. EXCP_DEBUG is returned by the
880 CPU loop after each instruction */
881 void cpu_single_step(CPUState *cpu, int enabled)
883 if (cpu->singlestep_enabled != enabled) {
884 cpu->singlestep_enabled = enabled;
885 if (kvm_enabled()) {
886 kvm_update_guest_debug(cpu, 0);
887 } else {
888 /* must flush all the translated code to avoid inconsistencies */
889 /* XXX: only flush what is necessary */
890 tb_flush(cpu);
895 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
897 va_list ap;
898 va_list ap2;
900 va_start(ap, fmt);
901 va_copy(ap2, ap);
902 fprintf(stderr, "qemu: fatal: ");
903 vfprintf(stderr, fmt, ap);
904 fprintf(stderr, "\n");
905 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
906 if (qemu_log_separate()) {
907 qemu_log_lock();
908 qemu_log("qemu: fatal: ");
909 qemu_log_vprintf(fmt, ap2);
910 qemu_log("\n");
911 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
912 qemu_log_flush();
913 qemu_log_unlock();
914 qemu_log_close();
916 va_end(ap2);
917 va_end(ap);
918 replay_finish();
919 #if defined(CONFIG_USER_ONLY)
921 struct sigaction act;
922 sigfillset(&act.sa_mask);
923 act.sa_handler = SIG_DFL;
924 sigaction(SIGABRT, &act, NULL);
926 #endif
927 abort();
930 #if !defined(CONFIG_USER_ONLY)
931 /* Called from RCU critical section */
932 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
934 RAMBlock *block;
936 block = atomic_rcu_read(&ram_list.mru_block);
937 if (block && addr - block->offset < block->max_length) {
938 return block;
940 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
941 if (addr - block->offset < block->max_length) {
942 goto found;
946 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
947 abort();
949 found:
950 /* It is safe to write mru_block outside the iothread lock. This
951 * is what happens:
953 * mru_block = xxx
954 * rcu_read_unlock()
955 * xxx removed from list
956 * rcu_read_lock()
957 * read mru_block
958 * mru_block = NULL;
959 * call_rcu(reclaim_ramblock, xxx);
960 * rcu_read_unlock()
962 * atomic_rcu_set is not needed here. The block was already published
963 * when it was placed into the list. Here we're just making an extra
964 * copy of the pointer.
966 ram_list.mru_block = block;
967 return block;
970 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
972 CPUState *cpu;
973 ram_addr_t start1;
974 RAMBlock *block;
975 ram_addr_t end;
977 end = TARGET_PAGE_ALIGN(start + length);
978 start &= TARGET_PAGE_MASK;
980 rcu_read_lock();
981 block = qemu_get_ram_block(start);
982 assert(block == qemu_get_ram_block(end - 1));
983 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
984 CPU_FOREACH(cpu) {
985 tlb_reset_dirty(cpu, start1, length);
987 rcu_read_unlock();
990 /* Note: start and end must be within the same ram block. */
991 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
992 ram_addr_t length,
993 unsigned client)
995 DirtyMemoryBlocks *blocks;
996 unsigned long end, page;
997 bool dirty = false;
999 if (length == 0) {
1000 return false;
1003 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1004 page = start >> TARGET_PAGE_BITS;
1006 rcu_read_lock();
1008 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1010 while (page < end) {
1011 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1012 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1013 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1015 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1016 offset, num);
1017 page += num;
1020 rcu_read_unlock();
1022 if (dirty && tcg_enabled()) {
1023 tlb_reset_dirty_range_all(start, length);
1026 return dirty;
1029 /* Called from RCU critical section */
1030 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1031 MemoryRegionSection *section,
1032 target_ulong vaddr,
1033 hwaddr paddr, hwaddr xlat,
1034 int prot,
1035 target_ulong *address)
1037 hwaddr iotlb;
1038 CPUWatchpoint *wp;
1040 if (memory_region_is_ram(section->mr)) {
1041 /* Normal RAM. */
1042 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1043 if (!section->readonly) {
1044 iotlb |= PHYS_SECTION_NOTDIRTY;
1045 } else {
1046 iotlb |= PHYS_SECTION_ROM;
1048 } else {
1049 AddressSpaceDispatch *d;
1051 d = atomic_rcu_read(&section->address_space->dispatch);
1052 iotlb = section - d->map.sections;
1053 iotlb += xlat;
1056 /* Make accesses to pages with watchpoints go via the
1057 watchpoint trap routines. */
1058 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1059 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1060 /* Avoid trapping reads of pages with a write breakpoint. */
1061 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1062 iotlb = PHYS_SECTION_WATCH + paddr;
1063 *address |= TLB_MMIO;
1064 break;
1069 return iotlb;
1071 #endif /* defined(CONFIG_USER_ONLY) */
1073 #if !defined(CONFIG_USER_ONLY)
1075 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1076 uint16_t section);
1077 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
1079 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1080 qemu_anon_ram_alloc;
1083 * Set a custom physical guest memory alloator.
1084 * Accelerators with unusual needs may need this. Hopefully, we can
1085 * get rid of it eventually.
1087 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1089 phys_mem_alloc = alloc;
1092 static uint16_t phys_section_add(PhysPageMap *map,
1093 MemoryRegionSection *section)
1095 /* The physical section number is ORed with a page-aligned
1096 * pointer to produce the iotlb entries. Thus it should
1097 * never overflow into the page-aligned value.
1099 assert(map->sections_nb < TARGET_PAGE_SIZE);
1101 if (map->sections_nb == map->sections_nb_alloc) {
1102 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1103 map->sections = g_renew(MemoryRegionSection, map->sections,
1104 map->sections_nb_alloc);
1106 map->sections[map->sections_nb] = *section;
1107 memory_region_ref(section->mr);
1108 return map->sections_nb++;
1111 static void phys_section_destroy(MemoryRegion *mr)
1113 bool have_sub_page = mr->subpage;
1115 memory_region_unref(mr);
1117 if (have_sub_page) {
1118 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1119 object_unref(OBJECT(&subpage->iomem));
1120 g_free(subpage);
1124 static void phys_sections_free(PhysPageMap *map)
1126 while (map->sections_nb > 0) {
1127 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1128 phys_section_destroy(section->mr);
1130 g_free(map->sections);
1131 g_free(map->nodes);
1134 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1136 subpage_t *subpage;
1137 hwaddr base = section->offset_within_address_space
1138 & TARGET_PAGE_MASK;
1139 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
1140 d->map.nodes, d->map.sections);
1141 MemoryRegionSection subsection = {
1142 .offset_within_address_space = base,
1143 .size = int128_make64(TARGET_PAGE_SIZE),
1145 hwaddr start, end;
1147 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1149 if (!(existing->mr->subpage)) {
1150 subpage = subpage_init(d->as, base);
1151 subsection.address_space = d->as;
1152 subsection.mr = &subpage->iomem;
1153 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1154 phys_section_add(&d->map, &subsection));
1155 } else {
1156 subpage = container_of(existing->mr, subpage_t, iomem);
1158 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1159 end = start + int128_get64(section->size) - 1;
1160 subpage_register(subpage, start, end,
1161 phys_section_add(&d->map, section));
1165 static void register_multipage(AddressSpaceDispatch *d,
1166 MemoryRegionSection *section)
1168 hwaddr start_addr = section->offset_within_address_space;
1169 uint16_t section_index = phys_section_add(&d->map, section);
1170 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1171 TARGET_PAGE_BITS));
1173 assert(num_pages);
1174 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1177 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1179 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1180 AddressSpaceDispatch *d = as->next_dispatch;
1181 MemoryRegionSection now = *section, remain = *section;
1182 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1184 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1185 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1186 - now.offset_within_address_space;
1188 now.size = int128_min(int128_make64(left), now.size);
1189 register_subpage(d, &now);
1190 } else {
1191 now.size = int128_zero();
1193 while (int128_ne(remain.size, now.size)) {
1194 remain.size = int128_sub(remain.size, now.size);
1195 remain.offset_within_address_space += int128_get64(now.size);
1196 remain.offset_within_region += int128_get64(now.size);
1197 now = remain;
1198 if (int128_lt(remain.size, page_size)) {
1199 register_subpage(d, &now);
1200 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1201 now.size = page_size;
1202 register_subpage(d, &now);
1203 } else {
1204 now.size = int128_and(now.size, int128_neg(page_size));
1205 register_multipage(d, &now);
1210 void qemu_flush_coalesced_mmio_buffer(void)
1212 if (kvm_enabled())
1213 kvm_flush_coalesced_mmio_buffer();
1216 void qemu_mutex_lock_ramlist(void)
1218 qemu_mutex_lock(&ram_list.mutex);
1221 void qemu_mutex_unlock_ramlist(void)
1223 qemu_mutex_unlock(&ram_list.mutex);
1226 #ifdef __linux__
1227 static int64_t get_file_size(int fd)
1229 int64_t size = lseek(fd, 0, SEEK_END);
1230 if (size < 0) {
1231 return -errno;
1233 return size;
1236 static void *file_ram_alloc(RAMBlock *block,
1237 ram_addr_t memory,
1238 const char *path,
1239 Error **errp)
1241 bool unlink_on_error = false;
1242 char *filename;
1243 char *sanitized_name;
1244 char *c;
1245 void * volatile area = MAP_FAILED;
1246 int fd = -1;
1247 int64_t file_size;
1249 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1250 error_setg(errp,
1251 "host lacks kvm mmu notifiers, -mem-path unsupported");
1252 return NULL;
1255 for (;;) {
1256 fd = open(path, O_RDWR);
1257 if (fd >= 0) {
1258 /* @path names an existing file, use it */
1259 break;
1261 if (errno == ENOENT) {
1262 /* @path names a file that doesn't exist, create it */
1263 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1264 if (fd >= 0) {
1265 unlink_on_error = true;
1266 break;
1268 } else if (errno == EISDIR) {
1269 /* @path names a directory, create a file there */
1270 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1271 sanitized_name = g_strdup(memory_region_name(block->mr));
1272 for (c = sanitized_name; *c != '\0'; c++) {
1273 if (*c == '/') {
1274 *c = '_';
1278 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1279 sanitized_name);
1280 g_free(sanitized_name);
1282 fd = mkstemp(filename);
1283 if (fd >= 0) {
1284 unlink(filename);
1285 g_free(filename);
1286 break;
1288 g_free(filename);
1290 if (errno != EEXIST && errno != EINTR) {
1291 error_setg_errno(errp, errno,
1292 "can't open backing store %s for guest RAM",
1293 path);
1294 goto error;
1297 * Try again on EINTR and EEXIST. The latter happens when
1298 * something else creates the file between our two open().
1302 block->page_size = qemu_fd_getpagesize(fd);
1303 block->mr->align = block->page_size;
1304 #if defined(__s390x__)
1305 if (kvm_enabled()) {
1306 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1308 #endif
1310 file_size = get_file_size(fd);
1312 if (memory < block->page_size) {
1313 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1314 "or larger than page size 0x%zx",
1315 memory, block->page_size);
1316 goto error;
1319 if (file_size > 0 && file_size < memory) {
1320 error_setg(errp, "backing store %s size 0x%" PRIx64
1321 " does not match 'size' option 0x" RAM_ADDR_FMT,
1322 path, file_size, memory);
1323 goto error;
1326 memory = ROUND_UP(memory, block->page_size);
1329 * ftruncate is not supported by hugetlbfs in older
1330 * hosts, so don't bother bailing out on errors.
1331 * If anything goes wrong with it under other filesystems,
1332 * mmap will fail.
1334 * Do not truncate the non-empty backend file to avoid corrupting
1335 * the existing data in the file. Disabling shrinking is not
1336 * enough. For example, the current vNVDIMM implementation stores
1337 * the guest NVDIMM labels at the end of the backend file. If the
1338 * backend file is later extended, QEMU will not be able to find
1339 * those labels. Therefore, extending the non-empty backend file
1340 * is disabled as well.
1342 if (!file_size && ftruncate(fd, memory)) {
1343 perror("ftruncate");
1346 area = qemu_ram_mmap(fd, memory, block->mr->align,
1347 block->flags & RAM_SHARED);
1348 if (area == MAP_FAILED) {
1349 error_setg_errno(errp, errno,
1350 "unable to map backing store for guest RAM");
1351 goto error;
1354 if (mem_prealloc) {
1355 os_mem_prealloc(fd, area, memory, errp);
1356 if (errp && *errp) {
1357 goto error;
1361 block->fd = fd;
1362 return area;
1364 error:
1365 if (area != MAP_FAILED) {
1366 qemu_ram_munmap(area, memory);
1368 if (unlink_on_error) {
1369 unlink(path);
1371 if (fd != -1) {
1372 close(fd);
1374 return NULL;
1376 #endif
1378 /* Called with the ramlist lock held. */
1379 static ram_addr_t find_ram_offset(ram_addr_t size)
1381 RAMBlock *block, *next_block;
1382 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1384 assert(size != 0); /* it would hand out same offset multiple times */
1386 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1387 return 0;
1390 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1391 ram_addr_t end, next = RAM_ADDR_MAX;
1393 end = block->offset + block->max_length;
1395 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
1396 if (next_block->offset >= end) {
1397 next = MIN(next, next_block->offset);
1400 if (next - end >= size && next - end < mingap) {
1401 offset = end;
1402 mingap = next - end;
1406 if (offset == RAM_ADDR_MAX) {
1407 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1408 (uint64_t)size);
1409 abort();
1412 return offset;
1415 ram_addr_t last_ram_offset(void)
1417 RAMBlock *block;
1418 ram_addr_t last = 0;
1420 rcu_read_lock();
1421 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1422 last = MAX(last, block->offset + block->max_length);
1424 rcu_read_unlock();
1425 return last;
1428 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1430 int ret;
1432 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1433 if (!machine_dump_guest_core(current_machine)) {
1434 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1435 if (ret) {
1436 perror("qemu_madvise");
1437 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1438 "but dump_guest_core=off specified\n");
1443 const char *qemu_ram_get_idstr(RAMBlock *rb)
1445 return rb->idstr;
1448 /* Called with iothread lock held. */
1449 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1451 RAMBlock *block;
1453 assert(new_block);
1454 assert(!new_block->idstr[0]);
1456 if (dev) {
1457 char *id = qdev_get_dev_path(dev);
1458 if (id) {
1459 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1460 g_free(id);
1463 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1465 rcu_read_lock();
1466 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1467 if (block != new_block &&
1468 !strcmp(block->idstr, new_block->idstr)) {
1469 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1470 new_block->idstr);
1471 abort();
1474 rcu_read_unlock();
1477 /* Called with iothread lock held. */
1478 void qemu_ram_unset_idstr(RAMBlock *block)
1480 /* FIXME: arch_init.c assumes that this is not called throughout
1481 * migration. Ignore the problem since hot-unplug during migration
1482 * does not work anyway.
1484 if (block) {
1485 memset(block->idstr, 0, sizeof(block->idstr));
1489 size_t qemu_ram_pagesize(RAMBlock *rb)
1491 return rb->page_size;
1494 static int memory_try_enable_merging(void *addr, size_t len)
1496 if (!machine_mem_merge(current_machine)) {
1497 /* disabled by the user */
1498 return 0;
1501 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1504 /* Only legal before guest might have detected the memory size: e.g. on
1505 * incoming migration, or right after reset.
1507 * As memory core doesn't know how is memory accessed, it is up to
1508 * resize callback to update device state and/or add assertions to detect
1509 * misuse, if necessary.
1511 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1513 assert(block);
1515 newsize = HOST_PAGE_ALIGN(newsize);
1517 if (block->used_length == newsize) {
1518 return 0;
1521 if (!(block->flags & RAM_RESIZEABLE)) {
1522 error_setg_errno(errp, EINVAL,
1523 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1524 " in != 0x" RAM_ADDR_FMT, block->idstr,
1525 newsize, block->used_length);
1526 return -EINVAL;
1529 if (block->max_length < newsize) {
1530 error_setg_errno(errp, EINVAL,
1531 "Length too large: %s: 0x" RAM_ADDR_FMT
1532 " > 0x" RAM_ADDR_FMT, block->idstr,
1533 newsize, block->max_length);
1534 return -EINVAL;
1537 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1538 block->used_length = newsize;
1539 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1540 DIRTY_CLIENTS_ALL);
1541 memory_region_set_size(block->mr, newsize);
1542 if (block->resized) {
1543 block->resized(block->idstr, newsize, block->host);
1545 return 0;
1548 /* Called with ram_list.mutex held */
1549 static void dirty_memory_extend(ram_addr_t old_ram_size,
1550 ram_addr_t new_ram_size)
1552 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1553 DIRTY_MEMORY_BLOCK_SIZE);
1554 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1555 DIRTY_MEMORY_BLOCK_SIZE);
1556 int i;
1558 /* Only need to extend if block count increased */
1559 if (new_num_blocks <= old_num_blocks) {
1560 return;
1563 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1564 DirtyMemoryBlocks *old_blocks;
1565 DirtyMemoryBlocks *new_blocks;
1566 int j;
1568 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1569 new_blocks = g_malloc(sizeof(*new_blocks) +
1570 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1572 if (old_num_blocks) {
1573 memcpy(new_blocks->blocks, old_blocks->blocks,
1574 old_num_blocks * sizeof(old_blocks->blocks[0]));
1577 for (j = old_num_blocks; j < new_num_blocks; j++) {
1578 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1581 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1583 if (old_blocks) {
1584 g_free_rcu(old_blocks, rcu);
1589 static void ram_block_add(RAMBlock *new_block, Error **errp)
1591 RAMBlock *block;
1592 RAMBlock *last_block = NULL;
1593 ram_addr_t old_ram_size, new_ram_size;
1594 Error *err = NULL;
1596 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1598 qemu_mutex_lock_ramlist();
1599 new_block->offset = find_ram_offset(new_block->max_length);
1601 if (!new_block->host) {
1602 if (xen_enabled()) {
1603 xen_ram_alloc(new_block->offset, new_block->max_length,
1604 new_block->mr, &err);
1605 if (err) {
1606 error_propagate(errp, err);
1607 qemu_mutex_unlock_ramlist();
1608 return;
1610 } else {
1611 new_block->host = phys_mem_alloc(new_block->max_length,
1612 &new_block->mr->align);
1613 if (!new_block->host) {
1614 error_setg_errno(errp, errno,
1615 "cannot set up guest memory '%s'",
1616 memory_region_name(new_block->mr));
1617 qemu_mutex_unlock_ramlist();
1618 return;
1621 * In Hax, the qemu allocate the virtual address, and HAX kernel
1622 * populate the memory with physical memory. Currently we have no
1623 * paging, so user should make sure enough free memory in advance
1625 if (hax_enabled()) {
1626 int ret;
1627 ret = hax_populate_ram((uint64_t)(uintptr_t)new_block->host,
1628 new_block->max_length);
1629 if (ret < 0) {
1630 error_setg(errp, "Hax failed to populate ram");
1631 return;
1635 memory_try_enable_merging(new_block->host, new_block->max_length);
1639 new_ram_size = MAX(old_ram_size,
1640 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1641 if (new_ram_size > old_ram_size) {
1642 migration_bitmap_extend(old_ram_size, new_ram_size);
1643 dirty_memory_extend(old_ram_size, new_ram_size);
1645 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1646 * QLIST (which has an RCU-friendly variant) does not have insertion at
1647 * tail, so save the last element in last_block.
1649 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1650 last_block = block;
1651 if (block->max_length < new_block->max_length) {
1652 break;
1655 if (block) {
1656 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1657 } else if (last_block) {
1658 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1659 } else { /* list is empty */
1660 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1662 ram_list.mru_block = NULL;
1664 /* Write list before version */
1665 smp_wmb();
1666 ram_list.version++;
1667 qemu_mutex_unlock_ramlist();
1669 cpu_physical_memory_set_dirty_range(new_block->offset,
1670 new_block->used_length,
1671 DIRTY_CLIENTS_ALL);
1673 if (new_block->host) {
1674 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1675 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1676 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1677 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1681 #ifdef __linux__
1682 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1683 bool share, const char *mem_path,
1684 Error **errp)
1686 RAMBlock *new_block;
1687 Error *local_err = NULL;
1689 if (xen_enabled()) {
1690 error_setg(errp, "-mem-path not supported with Xen");
1691 return NULL;
1694 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1696 * file_ram_alloc() needs to allocate just like
1697 * phys_mem_alloc, but we haven't bothered to provide
1698 * a hook there.
1700 error_setg(errp,
1701 "-mem-path not supported with this accelerator");
1702 return NULL;
1705 size = HOST_PAGE_ALIGN(size);
1706 new_block = g_malloc0(sizeof(*new_block));
1707 new_block->mr = mr;
1708 new_block->used_length = size;
1709 new_block->max_length = size;
1710 new_block->flags = share ? RAM_SHARED : 0;
1711 new_block->host = file_ram_alloc(new_block, size,
1712 mem_path, errp);
1713 if (!new_block->host) {
1714 g_free(new_block);
1715 return NULL;
1718 ram_block_add(new_block, &local_err);
1719 if (local_err) {
1720 g_free(new_block);
1721 error_propagate(errp, local_err);
1722 return NULL;
1724 return new_block;
1726 #endif
1728 static
1729 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1730 void (*resized)(const char*,
1731 uint64_t length,
1732 void *host),
1733 void *host, bool resizeable,
1734 MemoryRegion *mr, Error **errp)
1736 RAMBlock *new_block;
1737 Error *local_err = NULL;
1739 size = HOST_PAGE_ALIGN(size);
1740 max_size = HOST_PAGE_ALIGN(max_size);
1741 new_block = g_malloc0(sizeof(*new_block));
1742 new_block->mr = mr;
1743 new_block->resized = resized;
1744 new_block->used_length = size;
1745 new_block->max_length = max_size;
1746 assert(max_size >= size);
1747 new_block->fd = -1;
1748 new_block->page_size = getpagesize();
1749 new_block->host = host;
1750 if (host) {
1751 new_block->flags |= RAM_PREALLOC;
1753 if (resizeable) {
1754 new_block->flags |= RAM_RESIZEABLE;
1756 ram_block_add(new_block, &local_err);
1757 if (local_err) {
1758 g_free(new_block);
1759 error_propagate(errp, local_err);
1760 return NULL;
1762 return new_block;
1765 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1766 MemoryRegion *mr, Error **errp)
1768 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1771 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
1773 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1776 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1777 void (*resized)(const char*,
1778 uint64_t length,
1779 void *host),
1780 MemoryRegion *mr, Error **errp)
1782 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
1785 static void reclaim_ramblock(RAMBlock *block)
1787 if (block->flags & RAM_PREALLOC) {
1789 } else if (xen_enabled()) {
1790 xen_invalidate_map_cache_entry(block->host);
1791 #ifndef _WIN32
1792 } else if (block->fd >= 0) {
1793 qemu_ram_munmap(block->host, block->max_length);
1794 close(block->fd);
1795 #endif
1796 } else {
1797 qemu_anon_ram_free(block->host, block->max_length);
1799 g_free(block);
1802 void qemu_ram_free(RAMBlock *block)
1804 if (!block) {
1805 return;
1808 qemu_mutex_lock_ramlist();
1809 QLIST_REMOVE_RCU(block, next);
1810 ram_list.mru_block = NULL;
1811 /* Write list before version */
1812 smp_wmb();
1813 ram_list.version++;
1814 call_rcu(block, reclaim_ramblock, rcu);
1815 qemu_mutex_unlock_ramlist();
1818 #ifndef _WIN32
1819 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1821 RAMBlock *block;
1822 ram_addr_t offset;
1823 int flags;
1824 void *area, *vaddr;
1826 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1827 offset = addr - block->offset;
1828 if (offset < block->max_length) {
1829 vaddr = ramblock_ptr(block, offset);
1830 if (block->flags & RAM_PREALLOC) {
1832 } else if (xen_enabled()) {
1833 abort();
1834 } else {
1835 flags = MAP_FIXED;
1836 if (block->fd >= 0) {
1837 flags |= (block->flags & RAM_SHARED ?
1838 MAP_SHARED : MAP_PRIVATE);
1839 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1840 flags, block->fd, offset);
1841 } else {
1843 * Remap needs to match alloc. Accelerators that
1844 * set phys_mem_alloc never remap. If they did,
1845 * we'd need a remap hook here.
1847 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1849 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1850 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1851 flags, -1, 0);
1853 if (area != vaddr) {
1854 fprintf(stderr, "Could not remap addr: "
1855 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1856 length, addr);
1857 exit(1);
1859 memory_try_enable_merging(vaddr, length);
1860 qemu_ram_setup_dump(vaddr, length);
1865 #endif /* !_WIN32 */
1867 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1868 * This should not be used for general purpose DMA. Use address_space_map
1869 * or address_space_rw instead. For local memory (e.g. video ram) that the
1870 * device owns, use memory_region_get_ram_ptr.
1872 * Called within RCU critical section.
1874 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1876 RAMBlock *block = ram_block;
1878 if (block == NULL) {
1879 block = qemu_get_ram_block(addr);
1880 addr -= block->offset;
1883 if (xen_enabled() && block->host == NULL) {
1884 /* We need to check if the requested address is in the RAM
1885 * because we don't want to map the entire memory in QEMU.
1886 * In that case just map until the end of the page.
1888 if (block->offset == 0) {
1889 return xen_map_cache(addr, 0, 0);
1892 block->host = xen_map_cache(block->offset, block->max_length, 1);
1894 return ramblock_ptr(block, addr);
1897 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
1898 * but takes a size argument.
1900 * Called within RCU critical section.
1902 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1903 hwaddr *size)
1905 RAMBlock *block = ram_block;
1906 if (*size == 0) {
1907 return NULL;
1910 if (block == NULL) {
1911 block = qemu_get_ram_block(addr);
1912 addr -= block->offset;
1914 *size = MIN(*size, block->max_length - addr);
1916 if (xen_enabled() && block->host == NULL) {
1917 /* We need to check if the requested address is in the RAM
1918 * because we don't want to map the entire memory in QEMU.
1919 * In that case just map the requested area.
1921 if (block->offset == 0) {
1922 return xen_map_cache(addr, *size, 1);
1925 block->host = xen_map_cache(block->offset, block->max_length, 1);
1928 return ramblock_ptr(block, addr);
1932 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1933 * in that RAMBlock.
1935 * ptr: Host pointer to look up
1936 * round_offset: If true round the result offset down to a page boundary
1937 * *ram_addr: set to result ram_addr
1938 * *offset: set to result offset within the RAMBlock
1940 * Returns: RAMBlock (or NULL if not found)
1942 * By the time this function returns, the returned pointer is not protected
1943 * by RCU anymore. If the caller is not within an RCU critical section and
1944 * does not hold the iothread lock, it must have other means of protecting the
1945 * pointer, such as a reference to the region that includes the incoming
1946 * ram_addr_t.
1948 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1949 ram_addr_t *offset)
1951 RAMBlock *block;
1952 uint8_t *host = ptr;
1954 if (xen_enabled()) {
1955 ram_addr_t ram_addr;
1956 rcu_read_lock();
1957 ram_addr = xen_ram_addr_from_mapcache(ptr);
1958 block = qemu_get_ram_block(ram_addr);
1959 if (block) {
1960 *offset = ram_addr - block->offset;
1962 rcu_read_unlock();
1963 return block;
1966 rcu_read_lock();
1967 block = atomic_rcu_read(&ram_list.mru_block);
1968 if (block && block->host && host - block->host < block->max_length) {
1969 goto found;
1972 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1973 /* This case append when the block is not mapped. */
1974 if (block->host == NULL) {
1975 continue;
1977 if (host - block->host < block->max_length) {
1978 goto found;
1982 rcu_read_unlock();
1983 return NULL;
1985 found:
1986 *offset = (host - block->host);
1987 if (round_offset) {
1988 *offset &= TARGET_PAGE_MASK;
1990 rcu_read_unlock();
1991 return block;
1995 * Finds the named RAMBlock
1997 * name: The name of RAMBlock to find
1999 * Returns: RAMBlock (or NULL if not found)
2001 RAMBlock *qemu_ram_block_by_name(const char *name)
2003 RAMBlock *block;
2005 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
2006 if (!strcmp(name, block->idstr)) {
2007 return block;
2011 return NULL;
2014 /* Some of the softmmu routines need to translate from a host pointer
2015 (typically a TLB entry) back to a ram offset. */
2016 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2018 RAMBlock *block;
2019 ram_addr_t offset;
2021 block = qemu_ram_block_from_host(ptr, false, &offset);
2022 if (!block) {
2023 return RAM_ADDR_INVALID;
2026 return block->offset + offset;
2029 /* Called within RCU critical section. */
2030 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2031 uint64_t val, unsigned size)
2033 bool locked = false;
2035 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2036 locked = true;
2037 tb_lock();
2038 tb_invalidate_phys_page_fast(ram_addr, size);
2040 switch (size) {
2041 case 1:
2042 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2043 break;
2044 case 2:
2045 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2046 break;
2047 case 4:
2048 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2049 break;
2050 default:
2051 abort();
2054 if (locked) {
2055 tb_unlock();
2058 /* Set both VGA and migration bits for simplicity and to remove
2059 * the notdirty callback faster.
2061 cpu_physical_memory_set_dirty_range(ram_addr, size,
2062 DIRTY_CLIENTS_NOCODE);
2063 /* we remove the notdirty callback only if the code has been
2064 flushed */
2065 if (!cpu_physical_memory_is_clean(ram_addr)) {
2066 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2070 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2071 unsigned size, bool is_write)
2073 return is_write;
2076 static const MemoryRegionOps notdirty_mem_ops = {
2077 .write = notdirty_mem_write,
2078 .valid.accepts = notdirty_mem_accepts,
2079 .endianness = DEVICE_NATIVE_ENDIAN,
2082 /* Generate a debug exception if a watchpoint has been hit. */
2083 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2085 CPUState *cpu = current_cpu;
2086 CPUClass *cc = CPU_GET_CLASS(cpu);
2087 CPUArchState *env = cpu->env_ptr;
2088 target_ulong pc, cs_base;
2089 target_ulong vaddr;
2090 CPUWatchpoint *wp;
2091 uint32_t cpu_flags;
2093 if (cpu->watchpoint_hit) {
2094 /* We re-entered the check after replacing the TB. Now raise
2095 * the debug interrupt so that is will trigger after the
2096 * current instruction. */
2097 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2098 return;
2100 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2101 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2102 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2103 && (wp->flags & flags)) {
2104 if (flags == BP_MEM_READ) {
2105 wp->flags |= BP_WATCHPOINT_HIT_READ;
2106 } else {
2107 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2109 wp->hitaddr = vaddr;
2110 wp->hitattrs = attrs;
2111 if (!cpu->watchpoint_hit) {
2112 if (wp->flags & BP_CPU &&
2113 !cc->debug_check_watchpoint(cpu, wp)) {
2114 wp->flags &= ~BP_WATCHPOINT_HIT;
2115 continue;
2117 cpu->watchpoint_hit = wp;
2119 /* The tb_lock will be reset when cpu_loop_exit or
2120 * cpu_loop_exit_noexc longjmp back into the cpu_exec
2121 * main loop.
2123 tb_lock();
2124 tb_check_watchpoint(cpu);
2125 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2126 cpu->exception_index = EXCP_DEBUG;
2127 cpu_loop_exit(cpu);
2128 } else {
2129 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2130 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2131 cpu_loop_exit_noexc(cpu);
2134 } else {
2135 wp->flags &= ~BP_WATCHPOINT_HIT;
2140 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2141 so these check for a hit then pass through to the normal out-of-line
2142 phys routines. */
2143 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2144 unsigned size, MemTxAttrs attrs)
2146 MemTxResult res;
2147 uint64_t data;
2148 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2149 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2151 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2152 switch (size) {
2153 case 1:
2154 data = address_space_ldub(as, addr, attrs, &res);
2155 break;
2156 case 2:
2157 data = address_space_lduw(as, addr, attrs, &res);
2158 break;
2159 case 4:
2160 data = address_space_ldl(as, addr, attrs, &res);
2161 break;
2162 default: abort();
2164 *pdata = data;
2165 return res;
2168 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2169 uint64_t val, unsigned size,
2170 MemTxAttrs attrs)
2172 MemTxResult res;
2173 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2174 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2176 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2177 switch (size) {
2178 case 1:
2179 address_space_stb(as, addr, val, attrs, &res);
2180 break;
2181 case 2:
2182 address_space_stw(as, addr, val, attrs, &res);
2183 break;
2184 case 4:
2185 address_space_stl(as, addr, val, attrs, &res);
2186 break;
2187 default: abort();
2189 return res;
2192 static const MemoryRegionOps watch_mem_ops = {
2193 .read_with_attrs = watch_mem_read,
2194 .write_with_attrs = watch_mem_write,
2195 .endianness = DEVICE_NATIVE_ENDIAN,
2198 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2199 unsigned len, MemTxAttrs attrs)
2201 subpage_t *subpage = opaque;
2202 uint8_t buf[8];
2203 MemTxResult res;
2205 #if defined(DEBUG_SUBPAGE)
2206 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2207 subpage, len, addr);
2208 #endif
2209 res = address_space_read(subpage->as, addr + subpage->base,
2210 attrs, buf, len);
2211 if (res) {
2212 return res;
2214 switch (len) {
2215 case 1:
2216 *data = ldub_p(buf);
2217 return MEMTX_OK;
2218 case 2:
2219 *data = lduw_p(buf);
2220 return MEMTX_OK;
2221 case 4:
2222 *data = ldl_p(buf);
2223 return MEMTX_OK;
2224 case 8:
2225 *data = ldq_p(buf);
2226 return MEMTX_OK;
2227 default:
2228 abort();
2232 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2233 uint64_t value, unsigned len, MemTxAttrs attrs)
2235 subpage_t *subpage = opaque;
2236 uint8_t buf[8];
2238 #if defined(DEBUG_SUBPAGE)
2239 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2240 " value %"PRIx64"\n",
2241 __func__, subpage, len, addr, value);
2242 #endif
2243 switch (len) {
2244 case 1:
2245 stb_p(buf, value);
2246 break;
2247 case 2:
2248 stw_p(buf, value);
2249 break;
2250 case 4:
2251 stl_p(buf, value);
2252 break;
2253 case 8:
2254 stq_p(buf, value);
2255 break;
2256 default:
2257 abort();
2259 return address_space_write(subpage->as, addr + subpage->base,
2260 attrs, buf, len);
2263 static bool subpage_accepts(void *opaque, hwaddr addr,
2264 unsigned len, bool is_write)
2266 subpage_t *subpage = opaque;
2267 #if defined(DEBUG_SUBPAGE)
2268 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2269 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2270 #endif
2272 return address_space_access_valid(subpage->as, addr + subpage->base,
2273 len, is_write);
2276 static const MemoryRegionOps subpage_ops = {
2277 .read_with_attrs = subpage_read,
2278 .write_with_attrs = subpage_write,
2279 .impl.min_access_size = 1,
2280 .impl.max_access_size = 8,
2281 .valid.min_access_size = 1,
2282 .valid.max_access_size = 8,
2283 .valid.accepts = subpage_accepts,
2284 .endianness = DEVICE_NATIVE_ENDIAN,
2287 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2288 uint16_t section)
2290 int idx, eidx;
2292 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2293 return -1;
2294 idx = SUBPAGE_IDX(start);
2295 eidx = SUBPAGE_IDX(end);
2296 #if defined(DEBUG_SUBPAGE)
2297 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2298 __func__, mmio, start, end, idx, eidx, section);
2299 #endif
2300 for (; idx <= eidx; idx++) {
2301 mmio->sub_section[idx] = section;
2304 return 0;
2307 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2309 subpage_t *mmio;
2311 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2312 mmio->as = as;
2313 mmio->base = base;
2314 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2315 NULL, TARGET_PAGE_SIZE);
2316 mmio->iomem.subpage = true;
2317 #if defined(DEBUG_SUBPAGE)
2318 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2319 mmio, base, TARGET_PAGE_SIZE);
2320 #endif
2321 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2323 return mmio;
2326 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2327 MemoryRegion *mr)
2329 assert(as);
2330 MemoryRegionSection section = {
2331 .address_space = as,
2332 .mr = mr,
2333 .offset_within_address_space = 0,
2334 .offset_within_region = 0,
2335 .size = int128_2_64(),
2338 return phys_section_add(map, &section);
2341 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2343 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2344 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2345 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2346 MemoryRegionSection *sections = d->map.sections;
2348 return sections[index & ~TARGET_PAGE_MASK].mr;
2351 static void io_mem_init(void)
2353 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2354 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2355 NULL, UINT64_MAX);
2356 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2357 NULL, UINT64_MAX);
2358 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2359 NULL, UINT64_MAX);
2362 static void mem_begin(MemoryListener *listener)
2364 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2365 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2366 uint16_t n;
2368 n = dummy_section(&d->map, as, &io_mem_unassigned);
2369 assert(n == PHYS_SECTION_UNASSIGNED);
2370 n = dummy_section(&d->map, as, &io_mem_notdirty);
2371 assert(n == PHYS_SECTION_NOTDIRTY);
2372 n = dummy_section(&d->map, as, &io_mem_rom);
2373 assert(n == PHYS_SECTION_ROM);
2374 n = dummy_section(&d->map, as, &io_mem_watch);
2375 assert(n == PHYS_SECTION_WATCH);
2377 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2378 d->as = as;
2379 as->next_dispatch = d;
2382 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2384 phys_sections_free(&d->map);
2385 g_free(d);
2388 static void mem_commit(MemoryListener *listener)
2390 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2391 AddressSpaceDispatch *cur = as->dispatch;
2392 AddressSpaceDispatch *next = as->next_dispatch;
2394 phys_page_compact_all(next, next->map.nodes_nb);
2396 atomic_rcu_set(&as->dispatch, next);
2397 if (cur) {
2398 call_rcu(cur, address_space_dispatch_free, rcu);
2402 static void tcg_commit(MemoryListener *listener)
2404 CPUAddressSpace *cpuas;
2405 AddressSpaceDispatch *d;
2407 /* since each CPU stores ram addresses in its TLB cache, we must
2408 reset the modified entries */
2409 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2410 cpu_reloading_memory_map();
2411 /* The CPU and TLB are protected by the iothread lock.
2412 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2413 * may have split the RCU critical section.
2415 d = atomic_rcu_read(&cpuas->as->dispatch);
2416 atomic_rcu_set(&cpuas->memory_dispatch, d);
2417 tlb_flush(cpuas->cpu, 1);
2420 void address_space_init_dispatch(AddressSpace *as)
2422 as->dispatch = NULL;
2423 as->dispatch_listener = (MemoryListener) {
2424 .begin = mem_begin,
2425 .commit = mem_commit,
2426 .region_add = mem_add,
2427 .region_nop = mem_add,
2428 .priority = 0,
2430 memory_listener_register(&as->dispatch_listener, as);
2433 void address_space_unregister(AddressSpace *as)
2435 memory_listener_unregister(&as->dispatch_listener);
2438 void address_space_destroy_dispatch(AddressSpace *as)
2440 AddressSpaceDispatch *d = as->dispatch;
2442 atomic_rcu_set(&as->dispatch, NULL);
2443 if (d) {
2444 call_rcu(d, address_space_dispatch_free, rcu);
2448 static void memory_map_init(void)
2450 system_memory = g_malloc(sizeof(*system_memory));
2452 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2453 address_space_init(&address_space_memory, system_memory, "memory");
2455 system_io = g_malloc(sizeof(*system_io));
2456 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2457 65536);
2458 address_space_init(&address_space_io, system_io, "I/O");
2461 MemoryRegion *get_system_memory(void)
2463 return system_memory;
2466 MemoryRegion *get_system_io(void)
2468 return system_io;
2471 #endif /* !defined(CONFIG_USER_ONLY) */
2473 /* physical memory access (slow version, mainly for debug) */
2474 #if defined(CONFIG_USER_ONLY)
2475 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2476 uint8_t *buf, int len, int is_write)
2478 int l, flags;
2479 target_ulong page;
2480 void * p;
2482 while (len > 0) {
2483 page = addr & TARGET_PAGE_MASK;
2484 l = (page + TARGET_PAGE_SIZE) - addr;
2485 if (l > len)
2486 l = len;
2487 flags = page_get_flags(page);
2488 if (!(flags & PAGE_VALID))
2489 return -1;
2490 if (is_write) {
2491 if (!(flags & PAGE_WRITE))
2492 return -1;
2493 /* XXX: this code should not depend on lock_user */
2494 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2495 return -1;
2496 memcpy(p, buf, l);
2497 unlock_user(p, addr, l);
2498 } else {
2499 if (!(flags & PAGE_READ))
2500 return -1;
2501 /* XXX: this code should not depend on lock_user */
2502 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2503 return -1;
2504 memcpy(buf, p, l);
2505 unlock_user(p, addr, 0);
2507 len -= l;
2508 buf += l;
2509 addr += l;
2511 return 0;
2514 #else
2516 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2517 hwaddr length)
2519 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2520 addr += memory_region_get_ram_addr(mr);
2522 /* No early return if dirty_log_mask is or becomes 0, because
2523 * cpu_physical_memory_set_dirty_range will still call
2524 * xen_modified_memory.
2526 if (dirty_log_mask) {
2527 dirty_log_mask =
2528 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2530 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2531 tb_lock();
2532 tb_invalidate_phys_range(addr, addr + length);
2533 tb_unlock();
2534 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2536 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2539 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2541 unsigned access_size_max = mr->ops->valid.max_access_size;
2543 /* Regions are assumed to support 1-4 byte accesses unless
2544 otherwise specified. */
2545 if (access_size_max == 0) {
2546 access_size_max = 4;
2549 /* Bound the maximum access by the alignment of the address. */
2550 if (!mr->ops->impl.unaligned) {
2551 unsigned align_size_max = addr & -addr;
2552 if (align_size_max != 0 && align_size_max < access_size_max) {
2553 access_size_max = align_size_max;
2557 /* Don't attempt accesses larger than the maximum. */
2558 if (l > access_size_max) {
2559 l = access_size_max;
2561 l = pow2floor(l);
2563 return l;
2566 static bool prepare_mmio_access(MemoryRegion *mr)
2568 bool unlocked = !qemu_mutex_iothread_locked();
2569 bool release_lock = false;
2571 if (unlocked && mr->global_locking) {
2572 qemu_mutex_lock_iothread();
2573 unlocked = false;
2574 release_lock = true;
2576 if (mr->flush_coalesced_mmio) {
2577 if (unlocked) {
2578 qemu_mutex_lock_iothread();
2580 qemu_flush_coalesced_mmio_buffer();
2581 if (unlocked) {
2582 qemu_mutex_unlock_iothread();
2586 return release_lock;
2589 /* Called within RCU critical section. */
2590 static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2591 MemTxAttrs attrs,
2592 const uint8_t *buf,
2593 int len, hwaddr addr1,
2594 hwaddr l, MemoryRegion *mr)
2596 uint8_t *ptr;
2597 uint64_t val;
2598 MemTxResult result = MEMTX_OK;
2599 bool release_lock = false;
2601 for (;;) {
2602 if (!memory_access_is_direct(mr, true)) {
2603 release_lock |= prepare_mmio_access(mr);
2604 l = memory_access_size(mr, l, addr1);
2605 /* XXX: could force current_cpu to NULL to avoid
2606 potential bugs */
2607 switch (l) {
2608 case 8:
2609 /* 64 bit write access */
2610 val = ldq_p(buf);
2611 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2612 attrs);
2613 break;
2614 case 4:
2615 /* 32 bit write access */
2616 val = ldl_p(buf);
2617 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2618 attrs);
2619 break;
2620 case 2:
2621 /* 16 bit write access */
2622 val = lduw_p(buf);
2623 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2624 attrs);
2625 break;
2626 case 1:
2627 /* 8 bit write access */
2628 val = ldub_p(buf);
2629 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2630 attrs);
2631 break;
2632 default:
2633 abort();
2635 } else {
2636 /* RAM case */
2637 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2638 memcpy(ptr, buf, l);
2639 invalidate_and_set_dirty(mr, addr1, l);
2642 if (release_lock) {
2643 qemu_mutex_unlock_iothread();
2644 release_lock = false;
2647 len -= l;
2648 buf += l;
2649 addr += l;
2651 if (!len) {
2652 break;
2655 l = len;
2656 mr = address_space_translate(as, addr, &addr1, &l, true);
2659 return result;
2662 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2663 const uint8_t *buf, int len)
2665 hwaddr l;
2666 hwaddr addr1;
2667 MemoryRegion *mr;
2668 MemTxResult result = MEMTX_OK;
2670 if (len > 0) {
2671 rcu_read_lock();
2672 l = len;
2673 mr = address_space_translate(as, addr, &addr1, &l, true);
2674 result = address_space_write_continue(as, addr, attrs, buf, len,
2675 addr1, l, mr);
2676 rcu_read_unlock();
2679 return result;
2682 /* Called within RCU critical section. */
2683 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2684 MemTxAttrs attrs, uint8_t *buf,
2685 int len, hwaddr addr1, hwaddr l,
2686 MemoryRegion *mr)
2688 uint8_t *ptr;
2689 uint64_t val;
2690 MemTxResult result = MEMTX_OK;
2691 bool release_lock = false;
2693 for (;;) {
2694 if (!memory_access_is_direct(mr, false)) {
2695 /* I/O case */
2696 release_lock |= prepare_mmio_access(mr);
2697 l = memory_access_size(mr, l, addr1);
2698 switch (l) {
2699 case 8:
2700 /* 64 bit read access */
2701 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2702 attrs);
2703 stq_p(buf, val);
2704 break;
2705 case 4:
2706 /* 32 bit read access */
2707 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2708 attrs);
2709 stl_p(buf, val);
2710 break;
2711 case 2:
2712 /* 16 bit read access */
2713 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2714 attrs);
2715 stw_p(buf, val);
2716 break;
2717 case 1:
2718 /* 8 bit read access */
2719 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2720 attrs);
2721 stb_p(buf, val);
2722 break;
2723 default:
2724 abort();
2726 } else {
2727 /* RAM case */
2728 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2729 memcpy(buf, ptr, l);
2732 if (release_lock) {
2733 qemu_mutex_unlock_iothread();
2734 release_lock = false;
2737 len -= l;
2738 buf += l;
2739 addr += l;
2741 if (!len) {
2742 break;
2745 l = len;
2746 mr = address_space_translate(as, addr, &addr1, &l, false);
2749 return result;
2752 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2753 MemTxAttrs attrs, uint8_t *buf, int len)
2755 hwaddr l;
2756 hwaddr addr1;
2757 MemoryRegion *mr;
2758 MemTxResult result = MEMTX_OK;
2760 if (len > 0) {
2761 rcu_read_lock();
2762 l = len;
2763 mr = address_space_translate(as, addr, &addr1, &l, false);
2764 result = address_space_read_continue(as, addr, attrs, buf, len,
2765 addr1, l, mr);
2766 rcu_read_unlock();
2769 return result;
2772 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2773 uint8_t *buf, int len, bool is_write)
2775 if (is_write) {
2776 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2777 } else {
2778 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2782 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2783 int len, int is_write)
2785 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2786 buf, len, is_write);
2789 enum write_rom_type {
2790 WRITE_DATA,
2791 FLUSH_CACHE,
2794 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2795 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2797 hwaddr l;
2798 uint8_t *ptr;
2799 hwaddr addr1;
2800 MemoryRegion *mr;
2802 rcu_read_lock();
2803 while (len > 0) {
2804 l = len;
2805 mr = address_space_translate(as, addr, &addr1, &l, true);
2807 if (!(memory_region_is_ram(mr) ||
2808 memory_region_is_romd(mr))) {
2809 l = memory_access_size(mr, l, addr1);
2810 } else {
2811 /* ROM/RAM case */
2812 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2813 switch (type) {
2814 case WRITE_DATA:
2815 memcpy(ptr, buf, l);
2816 invalidate_and_set_dirty(mr, addr1, l);
2817 break;
2818 case FLUSH_CACHE:
2819 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2820 break;
2823 len -= l;
2824 buf += l;
2825 addr += l;
2827 rcu_read_unlock();
2830 /* used for ROM loading : can write in RAM and ROM */
2831 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2832 const uint8_t *buf, int len)
2834 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2837 void cpu_flush_icache_range(hwaddr start, int len)
2840 * This function should do the same thing as an icache flush that was
2841 * triggered from within the guest. For TCG we are always cache coherent,
2842 * so there is no need to flush anything. For KVM / Xen we need to flush
2843 * the host's instruction cache at least.
2845 if (tcg_enabled()) {
2846 return;
2849 cpu_physical_memory_write_rom_internal(&address_space_memory,
2850 start, NULL, len, FLUSH_CACHE);
2853 typedef struct {
2854 MemoryRegion *mr;
2855 void *buffer;
2856 hwaddr addr;
2857 hwaddr len;
2858 bool in_use;
2859 } BounceBuffer;
2861 static BounceBuffer bounce;
2863 typedef struct MapClient {
2864 QEMUBH *bh;
2865 QLIST_ENTRY(MapClient) link;
2866 } MapClient;
2868 QemuMutex map_client_list_lock;
2869 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2870 = QLIST_HEAD_INITIALIZER(map_client_list);
2872 static void cpu_unregister_map_client_do(MapClient *client)
2874 QLIST_REMOVE(client, link);
2875 g_free(client);
2878 static void cpu_notify_map_clients_locked(void)
2880 MapClient *client;
2882 while (!QLIST_EMPTY(&map_client_list)) {
2883 client = QLIST_FIRST(&map_client_list);
2884 qemu_bh_schedule(client->bh);
2885 cpu_unregister_map_client_do(client);
2889 void cpu_register_map_client(QEMUBH *bh)
2891 MapClient *client = g_malloc(sizeof(*client));
2893 qemu_mutex_lock(&map_client_list_lock);
2894 client->bh = bh;
2895 QLIST_INSERT_HEAD(&map_client_list, client, link);
2896 if (!atomic_read(&bounce.in_use)) {
2897 cpu_notify_map_clients_locked();
2899 qemu_mutex_unlock(&map_client_list_lock);
2902 void cpu_exec_init_all(void)
2904 qemu_mutex_init(&ram_list.mutex);
2905 /* The data structures we set up here depend on knowing the page size,
2906 * so no more changes can be made after this point.
2907 * In an ideal world, nothing we did before we had finished the
2908 * machine setup would care about the target page size, and we could
2909 * do this much later, rather than requiring board models to state
2910 * up front what their requirements are.
2912 finalize_target_page_bits();
2913 io_mem_init();
2914 memory_map_init();
2915 qemu_mutex_init(&map_client_list_lock);
2918 void cpu_unregister_map_client(QEMUBH *bh)
2920 MapClient *client;
2922 qemu_mutex_lock(&map_client_list_lock);
2923 QLIST_FOREACH(client, &map_client_list, link) {
2924 if (client->bh == bh) {
2925 cpu_unregister_map_client_do(client);
2926 break;
2929 qemu_mutex_unlock(&map_client_list_lock);
2932 static void cpu_notify_map_clients(void)
2934 qemu_mutex_lock(&map_client_list_lock);
2935 cpu_notify_map_clients_locked();
2936 qemu_mutex_unlock(&map_client_list_lock);
2939 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2941 MemoryRegion *mr;
2942 hwaddr l, xlat;
2944 rcu_read_lock();
2945 while (len > 0) {
2946 l = len;
2947 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2948 if (!memory_access_is_direct(mr, is_write)) {
2949 l = memory_access_size(mr, l, addr);
2950 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2951 return false;
2955 len -= l;
2956 addr += l;
2958 rcu_read_unlock();
2959 return true;
2962 static hwaddr
2963 address_space_extend_translation(AddressSpace *as, hwaddr addr, hwaddr target_len,
2964 MemoryRegion *mr, hwaddr base, hwaddr len,
2965 bool is_write)
2967 hwaddr done = 0;
2968 hwaddr xlat;
2969 MemoryRegion *this_mr;
2971 for (;;) {
2972 target_len -= len;
2973 addr += len;
2974 done += len;
2975 if (target_len == 0) {
2976 return done;
2979 len = target_len;
2980 this_mr = address_space_translate(as, addr, &xlat, &len, is_write);
2981 if (this_mr != mr || xlat != base + done) {
2982 return done;
2987 /* Map a physical memory region into a host virtual address.
2988 * May map a subset of the requested range, given by and returned in *plen.
2989 * May return NULL if resources needed to perform the mapping are exhausted.
2990 * Use only for reads OR writes - not for read-modify-write operations.
2991 * Use cpu_register_map_client() to know when retrying the map operation is
2992 * likely to succeed.
2994 void *address_space_map(AddressSpace *as,
2995 hwaddr addr,
2996 hwaddr *plen,
2997 bool is_write)
2999 hwaddr len = *plen;
3000 hwaddr l, xlat;
3001 MemoryRegion *mr;
3002 void *ptr;
3004 if (len == 0) {
3005 return NULL;
3008 l = len;
3009 rcu_read_lock();
3010 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3012 if (!memory_access_is_direct(mr, is_write)) {
3013 if (atomic_xchg(&bounce.in_use, true)) {
3014 rcu_read_unlock();
3015 return NULL;
3017 /* Avoid unbounded allocations */
3018 l = MIN(l, TARGET_PAGE_SIZE);
3019 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3020 bounce.addr = addr;
3021 bounce.len = l;
3023 memory_region_ref(mr);
3024 bounce.mr = mr;
3025 if (!is_write) {
3026 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
3027 bounce.buffer, l);
3030 rcu_read_unlock();
3031 *plen = l;
3032 return bounce.buffer;
3036 memory_region_ref(mr);
3037 *plen = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3038 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen);
3039 rcu_read_unlock();
3041 return ptr;
3044 /* Unmaps a memory region previously mapped by address_space_map().
3045 * Will also mark the memory as dirty if is_write == 1. access_len gives
3046 * the amount of memory that was actually read or written by the caller.
3048 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3049 int is_write, hwaddr access_len)
3051 if (buffer != bounce.buffer) {
3052 MemoryRegion *mr;
3053 ram_addr_t addr1;
3055 mr = memory_region_from_host(buffer, &addr1);
3056 assert(mr != NULL);
3057 if (is_write) {
3058 invalidate_and_set_dirty(mr, addr1, access_len);
3060 if (xen_enabled()) {
3061 xen_invalidate_map_cache_entry(buffer);
3063 memory_region_unref(mr);
3064 return;
3066 if (is_write) {
3067 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3068 bounce.buffer, access_len);
3070 qemu_vfree(bounce.buffer);
3071 bounce.buffer = NULL;
3072 memory_region_unref(bounce.mr);
3073 atomic_mb_set(&bounce.in_use, false);
3074 cpu_notify_map_clients();
3077 void *cpu_physical_memory_map(hwaddr addr,
3078 hwaddr *plen,
3079 int is_write)
3081 return address_space_map(&address_space_memory, addr, plen, is_write);
3084 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3085 int is_write, hwaddr access_len)
3087 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3090 #define ARG1_DECL AddressSpace *as
3091 #define ARG1 as
3092 #define SUFFIX
3093 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3094 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3095 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3096 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3097 #define RCU_READ_LOCK(...) rcu_read_lock()
3098 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3099 #include "memory_ldst.inc.c"
3101 int64_t address_space_cache_init(MemoryRegionCache *cache,
3102 AddressSpace *as,
3103 hwaddr addr,
3104 hwaddr len,
3105 bool is_write)
3107 hwaddr l, xlat;
3108 MemoryRegion *mr;
3109 void *ptr;
3111 assert(len > 0);
3113 l = len;
3114 mr = address_space_translate(as, addr, &xlat, &l, is_write);
3115 if (!memory_access_is_direct(mr, is_write)) {
3116 return -EINVAL;
3119 l = address_space_extend_translation(as, addr, len, mr, xlat, l, is_write);
3120 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, &l);
3122 cache->xlat = xlat;
3123 cache->is_write = is_write;
3124 cache->mr = mr;
3125 cache->ptr = ptr;
3126 cache->len = l;
3127 memory_region_ref(cache->mr);
3129 return l;
3132 void address_space_cache_invalidate(MemoryRegionCache *cache,
3133 hwaddr addr,
3134 hwaddr access_len)
3136 assert(cache->is_write);
3137 invalidate_and_set_dirty(cache->mr, addr + cache->xlat, access_len);
3140 void address_space_cache_destroy(MemoryRegionCache *cache)
3142 if (!cache->mr) {
3143 return;
3146 if (xen_enabled()) {
3147 xen_invalidate_map_cache_entry(cache->ptr);
3149 memory_region_unref(cache->mr);
3152 /* Called from RCU critical section. This function has the same
3153 * semantics as address_space_translate, but it only works on a
3154 * predefined range of a MemoryRegion that was mapped with
3155 * address_space_cache_init.
3157 static inline MemoryRegion *address_space_translate_cached(
3158 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3159 hwaddr *plen, bool is_write)
3161 assert(addr < cache->len && *plen <= cache->len - addr);
3162 *xlat = addr + cache->xlat;
3163 return cache->mr;
3166 #define ARG1_DECL MemoryRegionCache *cache
3167 #define ARG1 cache
3168 #define SUFFIX _cached
3169 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3170 #define IS_DIRECT(mr, is_write) true
3171 #define MAP_RAM(mr, ofs) (cache->ptr + (ofs - cache->xlat))
3172 #define INVALIDATE(mr, ofs, len) ((void)0)
3173 #define RCU_READ_LOCK() ((void)0)
3174 #define RCU_READ_UNLOCK() ((void)0)
3175 #include "memory_ldst.inc.c"
3177 /* virtual memory access for debug (includes writing to ROM) */
3178 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3179 uint8_t *buf, int len, int is_write)
3181 int l;
3182 hwaddr phys_addr;
3183 target_ulong page;
3185 while (len > 0) {
3186 int asidx;
3187 MemTxAttrs attrs;
3189 page = addr & TARGET_PAGE_MASK;
3190 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3191 asidx = cpu_asidx_from_attrs(cpu, attrs);
3192 /* if no physical page mapped, return an error */
3193 if (phys_addr == -1)
3194 return -1;
3195 l = (page + TARGET_PAGE_SIZE) - addr;
3196 if (l > len)
3197 l = len;
3198 phys_addr += (addr & ~TARGET_PAGE_MASK);
3199 if (is_write) {
3200 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3201 phys_addr, buf, l);
3202 } else {
3203 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3204 MEMTXATTRS_UNSPECIFIED,
3205 buf, l, 0);
3207 len -= l;
3208 buf += l;
3209 addr += l;
3211 return 0;
3215 * Allows code that needs to deal with migration bitmaps etc to still be built
3216 * target independent.
3218 size_t qemu_target_page_bits(void)
3220 return TARGET_PAGE_BITS;
3223 #endif
3226 * A helper function for the _utterly broken_ virtio device model to find out if
3227 * it's running on a big endian machine. Don't do this at home kids!
3229 bool target_words_bigendian(void);
3230 bool target_words_bigendian(void)
3232 #if defined(TARGET_WORDS_BIGENDIAN)
3233 return true;
3234 #else
3235 return false;
3236 #endif
3239 #ifndef CONFIG_USER_ONLY
3240 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3242 MemoryRegion*mr;
3243 hwaddr l = 1;
3244 bool res;
3246 rcu_read_lock();
3247 mr = address_space_translate(&address_space_memory,
3248 phys_addr, &phys_addr, &l, false);
3250 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3251 rcu_read_unlock();
3252 return res;
3255 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3257 RAMBlock *block;
3258 int ret = 0;
3260 rcu_read_lock();
3261 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
3262 ret = func(block->idstr, block->host, block->offset,
3263 block->used_length, opaque);
3264 if (ret) {
3265 break;
3268 rcu_read_unlock();
3269 return ret;
3271 #endif