hw/dma: Add SiFive platform DMA controller emulation
[qemu/ar7.git] / target / arm / tlb_helper.c
blobb35dc8a01187707ae120613772453e7a96a0c0e6
1 /*
2 * ARM TLB (Translation lookaside buffer) helpers.
4 * This code is licensed under the GNU GPL v2 or later.
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8 #include "qemu/osdep.h"
9 #include "cpu.h"
10 #include "internals.h"
11 #include "exec/exec-all.h"
13 static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
14 unsigned int target_el,
15 bool same_el, bool ea,
16 bool s1ptw, bool is_write,
17 int fsc)
19 uint32_t syn;
22 * ISV is only set for data aborts routed to EL2 and
23 * never for stage-1 page table walks faulting on stage 2.
25 * Furthermore, ISV is only set for certain kinds of load/stores.
26 * If the template syndrome does not have ISV set, we should leave
27 * it cleared.
29 * See ARMv8 specs, D7-1974:
30 * ISS encoding for an exception from a Data Abort, the
31 * ISV field.
33 if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
34 syn = syn_data_abort_no_iss(same_el, 0,
35 ea, 0, s1ptw, is_write, fsc);
36 } else {
38 * Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
39 * syndrome created at translation time.
40 * Now we create the runtime syndrome with the remaining fields.
42 syn = syn_data_abort_with_iss(same_el,
43 0, 0, 0, 0, 0,
44 ea, 0, s1ptw, is_write, fsc,
45 true);
46 /* Merge the runtime syndrome with the template syndrome. */
47 syn |= template_syn;
49 return syn;
52 static void QEMU_NORETURN arm_deliver_fault(ARMCPU *cpu, vaddr addr,
53 MMUAccessType access_type,
54 int mmu_idx, ARMMMUFaultInfo *fi)
56 CPUARMState *env = &cpu->env;
57 int target_el;
58 bool same_el;
59 uint32_t syn, exc, fsr, fsc;
60 ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
62 target_el = exception_target_el(env);
63 if (fi->stage2) {
64 target_el = 2;
65 env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
67 same_el = (arm_current_el(env) == target_el);
69 if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
70 arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
72 * LPAE format fault status register : bottom 6 bits are
73 * status code in the same form as needed for syndrome
75 fsr = arm_fi_to_lfsc(fi);
76 fsc = extract32(fsr, 0, 6);
77 } else {
78 fsr = arm_fi_to_sfsc(fi);
80 * Short format FSR : this fault will never actually be reported
81 * to an EL that uses a syndrome register. Use a (currently)
82 * reserved FSR code in case the constructed syndrome does leak
83 * into the guest somehow.
85 fsc = 0x3f;
88 if (access_type == MMU_INST_FETCH) {
89 syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
90 exc = EXCP_PREFETCH_ABORT;
91 } else {
92 syn = merge_syn_data_abort(env->exception.syndrome, target_el,
93 same_el, fi->ea, fi->s1ptw,
94 access_type == MMU_DATA_STORE,
95 fsc);
96 if (access_type == MMU_DATA_STORE
97 && arm_feature(env, ARM_FEATURE_V6)) {
98 fsr |= (1 << 11);
100 exc = EXCP_DATA_ABORT;
103 env->exception.vaddress = addr;
104 env->exception.fsr = fsr;
105 raise_exception(env, exc, syn, target_el);
108 /* Raise a data fault alignment exception for the specified virtual address */
109 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
110 MMUAccessType access_type,
111 int mmu_idx, uintptr_t retaddr)
113 ARMCPU *cpu = ARM_CPU(cs);
114 ARMMMUFaultInfo fi = {};
116 /* now we have a real cpu fault */
117 cpu_restore_state(cs, retaddr, true);
119 fi.type = ARMFault_Alignment;
120 arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
123 #if !defined(CONFIG_USER_ONLY)
126 * arm_cpu_do_transaction_failed: handle a memory system error response
127 * (eg "no device/memory present at address") by raising an external abort
128 * exception
130 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
131 vaddr addr, unsigned size,
132 MMUAccessType access_type,
133 int mmu_idx, MemTxAttrs attrs,
134 MemTxResult response, uintptr_t retaddr)
136 ARMCPU *cpu = ARM_CPU(cs);
137 ARMMMUFaultInfo fi = {};
139 /* now we have a real cpu fault */
140 cpu_restore_state(cs, retaddr, true);
142 fi.ea = arm_extabort_type(response);
143 fi.type = ARMFault_SyncExternal;
144 arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
147 #endif /* !defined(CONFIG_USER_ONLY) */
149 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
150 MMUAccessType access_type, int mmu_idx,
151 bool probe, uintptr_t retaddr)
153 ARMCPU *cpu = ARM_CPU(cs);
155 #ifdef CONFIG_USER_ONLY
156 cpu->env.exception.vaddress = address;
157 if (access_type == MMU_INST_FETCH) {
158 cs->exception_index = EXCP_PREFETCH_ABORT;
159 } else {
160 cs->exception_index = EXCP_DATA_ABORT;
162 cpu_loop_exit_restore(cs, retaddr);
163 #else
164 hwaddr phys_addr;
165 target_ulong page_size;
166 int prot, ret;
167 MemTxAttrs attrs = {};
168 ARMMMUFaultInfo fi = {};
169 ARMCacheAttrs cacheattrs = {};
172 * Walk the page table and (if the mapping exists) add the page
173 * to the TLB. On success, return true. Otherwise, if probing,
174 * return false. Otherwise populate fsr with ARM DFSR/IFSR fault
175 * register format, and signal the fault.
177 ret = get_phys_addr(&cpu->env, address, access_type,
178 core_to_arm_mmu_idx(&cpu->env, mmu_idx),
179 &phys_addr, &attrs, &prot, &page_size,
180 &fi, &cacheattrs);
181 if (likely(!ret)) {
183 * Map a single [sub]page. Regions smaller than our declared
184 * target page size are handled specially, so for those we
185 * pass in the exact addresses.
187 if (page_size >= TARGET_PAGE_SIZE) {
188 phys_addr &= TARGET_PAGE_MASK;
189 address &= TARGET_PAGE_MASK;
191 /* Notice and record tagged memory. */
192 if (cpu_isar_feature(aa64_mte, cpu) && cacheattrs.attrs == 0xf0) {
193 arm_tlb_mte_tagged(&attrs) = true;
196 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
197 prot, mmu_idx, page_size);
198 return true;
199 } else if (probe) {
200 return false;
201 } else {
202 /* now we have a real cpu fault */
203 cpu_restore_state(cs, retaddr, true);
204 arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi);
206 #endif