hw/dma: Add SiFive platform DMA controller emulation
[qemu/ar7.git] / include / hw / core / cpu.h
blob9fc2696db55527a4aa52582dacd29cc0361ed6ce
1 /*
2 * QEMU CPU model
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qapi/qapi-types-run-state.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/rcu_queue.h"
30 #include "qemu/queue.h"
31 #include "qemu/thread.h"
32 #include "qemu/plugin.h"
34 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
35 void *opaque);
37 /**
38 * vaddr:
39 * Type wide enough to contain any #target_ulong virtual address.
41 typedef uint64_t vaddr;
42 #define VADDR_PRId PRId64
43 #define VADDR_PRIu PRIu64
44 #define VADDR_PRIo PRIo64
45 #define VADDR_PRIx PRIx64
46 #define VADDR_PRIX PRIX64
47 #define VADDR_MAX UINT64_MAX
49 /**
50 * SECTION:cpu
51 * @section_id: QEMU-cpu
52 * @title: CPU Class
53 * @short_description: Base class for all CPUs
56 #define TYPE_CPU "cpu"
58 /* Since this macro is used a lot in hot code paths and in conjunction with
59 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
60 * an unchecked cast.
62 #define CPU(obj) ((CPUState *)(obj))
64 #define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
65 #define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
67 typedef enum MMUAccessType {
68 MMU_DATA_LOAD = 0,
69 MMU_DATA_STORE = 1,
70 MMU_INST_FETCH = 2
71 } MMUAccessType;
73 typedef struct CPUWatchpoint CPUWatchpoint;
75 struct TranslationBlock;
77 /**
78 * CPUClass:
79 * @class_by_name: Callback to map -cpu command line model name to an
80 * instantiatable CPU type.
81 * @parse_features: Callback to parse command line arguments.
82 * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
83 * @has_work: Callback for checking if there is work to do.
84 * @do_interrupt: Callback for interrupt handling.
85 * @do_unaligned_access: Callback for unaligned access handling, if
86 * the target defines #TARGET_ALIGNED_ONLY.
87 * @do_transaction_failed: Callback for handling failed memory transactions
88 * (ie bus faults or external aborts; not MMU faults)
89 * @virtio_is_big_endian: Callback to return %true if a CPU which supports
90 * runtime configurable endianness is currently big-endian. Non-configurable
91 * CPUs can use the default implementation of this method. This method should
92 * not be used by any callers other than the pre-1.0 virtio devices.
93 * @memory_rw_debug: Callback for GDB memory access.
94 * @dump_state: Callback for dumping state.
95 * @dump_statistics: Callback for dumping statistics.
96 * @get_arch_id: Callback for getting architecture-dependent CPU ID.
97 * @get_paging_enabled: Callback for inquiring whether paging is enabled.
98 * @get_memory_mapping: Callback for obtaining the memory mappings.
99 * @set_pc: Callback for setting the Program Counter register. This
100 * should have the semantics used by the target architecture when
101 * setting the PC from a source such as an ELF file entry point;
102 * for example on Arm it will also set the Thumb mode bit based
103 * on the least significant bit of the new PC value.
104 * If the target behaviour here is anything other than "set
105 * the PC register to the value passed in" then the target must
106 * also implement the synchronize_from_tb hook.
107 * @synchronize_from_tb: Callback for synchronizing state from a TCG
108 * #TranslationBlock. This is called when we abandon execution
109 * of a TB before starting it, and must set all parts of the CPU
110 * state which the previous TB in the chain may not have updated.
111 * This always includes at least the program counter; some targets
112 * will need to do more. If this hook is not implemented then the
113 * default is to call @set_pc(tb->pc).
114 * @tlb_fill: Callback for handling a softmmu tlb miss or user-only
115 * address fault. For system mode, if the access is valid, call
116 * tlb_set_page and return true; if the access is invalid, and
117 * probe is true, return false; otherwise raise an exception and
118 * do not return. For user-only mode, always raise an exception
119 * and do not return.
120 * @get_phys_page_debug: Callback for obtaining a physical address.
121 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
122 * associated memory transaction attributes to use for the access.
123 * CPUs which use memory transaction attributes should implement this
124 * instead of get_phys_page_debug.
125 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
126 * a memory access with the specified memory transaction attributes.
127 * @gdb_read_register: Callback for letting GDB read a register.
128 * @gdb_write_register: Callback for letting GDB write a register.
129 * @debug_check_watchpoint: Callback: return true if the architectural
130 * watchpoint whose address has matched should really fire.
131 * @debug_excp_handler: Callback for handling debug exceptions.
132 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
133 * 64-bit VM coredump.
134 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
135 * note to a 32-bit VM coredump.
136 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
137 * 32-bit VM coredump.
138 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
139 * note to a 32-bit VM coredump.
140 * @vmsd: State description for migration.
141 * @gdb_num_core_regs: Number of core registers accessible to GDB.
142 * @gdb_core_xml_file: File name for core registers GDB XML description.
143 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
144 * before the insn which triggers a watchpoint rather than after it.
145 * @gdb_arch_name: Optional callback that returns the architecture name known
146 * to GDB. The caller must free the returned string with g_free.
147 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
148 * gdb stub. Returns a pointer to the XML contents for the specified XML file
149 * or NULL if the CPU doesn't have a dynamically generated content for it.
150 * @cpu_exec_enter: Callback for cpu_exec preparation.
151 * @cpu_exec_exit: Callback for cpu_exec cleanup.
152 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
153 * @disas_set_info: Setup architecture specific components of disassembly info
154 * @adjust_watchpoint_address: Perform a target-specific adjustment to an
155 * address before attempting to match it against watchpoints.
157 * Represents a CPU family or model.
159 typedef struct CPUClass {
160 /*< private >*/
161 DeviceClass parent_class;
162 /*< public >*/
164 ObjectClass *(*class_by_name)(const char *cpu_model);
165 void (*parse_features)(const char *typename, char *str, Error **errp);
167 int reset_dump_flags;
168 bool (*has_work)(CPUState *cpu);
169 void (*do_interrupt)(CPUState *cpu);
170 void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
171 MMUAccessType access_type,
172 int mmu_idx, uintptr_t retaddr);
173 void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
174 unsigned size, MMUAccessType access_type,
175 int mmu_idx, MemTxAttrs attrs,
176 MemTxResult response, uintptr_t retaddr);
177 bool (*virtio_is_big_endian)(CPUState *cpu);
178 int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
179 uint8_t *buf, int len, bool is_write);
180 void (*dump_state)(CPUState *cpu, FILE *, int flags);
181 GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
182 void (*dump_statistics)(CPUState *cpu, int flags);
183 int64_t (*get_arch_id)(CPUState *cpu);
184 bool (*get_paging_enabled)(const CPUState *cpu);
185 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
186 Error **errp);
187 void (*set_pc)(CPUState *cpu, vaddr value);
188 void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
189 bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
190 MMUAccessType access_type, int mmu_idx,
191 bool probe, uintptr_t retaddr);
192 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
193 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
194 MemTxAttrs *attrs);
195 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
196 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
197 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
198 bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
199 void (*debug_excp_handler)(CPUState *cpu);
201 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
202 int cpuid, void *opaque);
203 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
204 void *opaque);
205 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
206 int cpuid, void *opaque);
207 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
208 void *opaque);
210 const VMStateDescription *vmsd;
211 const char *gdb_core_xml_file;
212 gchar * (*gdb_arch_name)(CPUState *cpu);
213 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
214 void (*cpu_exec_enter)(CPUState *cpu);
215 void (*cpu_exec_exit)(CPUState *cpu);
216 bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
218 void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
219 vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
220 void (*tcg_initialize)(void);
222 /* Keep non-pointer data at the end to minimize holes. */
223 int gdb_num_core_regs;
224 bool gdb_stop_before_watchpoint;
225 } CPUClass;
228 * Low 16 bits: number of cycles left, used only in icount mode.
229 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
230 * for this CPU and return to its top level loop (even in non-icount mode).
231 * This allows a single read-compare-cbranch-write sequence to test
232 * for both decrementer underflow and exceptions.
234 typedef union IcountDecr {
235 uint32_t u32;
236 struct {
237 #ifdef HOST_WORDS_BIGENDIAN
238 uint16_t high;
239 uint16_t low;
240 #else
241 uint16_t low;
242 uint16_t high;
243 #endif
244 } u16;
245 } IcountDecr;
247 typedef struct CPUBreakpoint {
248 vaddr pc;
249 int flags; /* BP_* */
250 QTAILQ_ENTRY(CPUBreakpoint) entry;
251 } CPUBreakpoint;
253 struct CPUWatchpoint {
254 vaddr vaddr;
255 vaddr len;
256 vaddr hitaddr;
257 MemTxAttrs hitattrs;
258 int flags; /* BP_* */
259 QTAILQ_ENTRY(CPUWatchpoint) entry;
262 #ifdef CONFIG_PLUGIN
264 * For plugins we sometime need to save the resolved iotlb data before
265 * the memory regions get moved around by io_writex.
267 typedef struct SavedIOTLB {
268 hwaddr addr;
269 MemoryRegionSection *section;
270 hwaddr mr_offset;
271 } SavedIOTLB;
272 #endif
274 struct KVMState;
275 struct kvm_run;
277 struct hax_vcpu_state;
279 #define TB_JMP_CACHE_BITS 12
280 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
282 /* work queue */
284 /* The union type allows passing of 64 bit target pointers on 32 bit
285 * hosts in a single parameter
287 typedef union {
288 int host_int;
289 unsigned long host_ulong;
290 void *host_ptr;
291 vaddr target_ptr;
292 } run_on_cpu_data;
294 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)})
295 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)})
296 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
297 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)})
298 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL)
300 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
302 struct qemu_work_item;
304 #define CPU_UNSET_NUMA_NODE_ID -1
305 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
308 * CPUState:
309 * @cpu_index: CPU index (informative).
310 * @cluster_index: Identifies which cluster this CPU is in.
311 * For boards which don't define clusters or for "loose" CPUs not assigned
312 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
313 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
314 * QOM parent.
315 * @nr_cores: Number of cores within this CPU package.
316 * @nr_threads: Number of threads within this CPU.
317 * @running: #true if CPU is currently running (lockless).
318 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
319 * valid under cpu_list_lock.
320 * @created: Indicates whether the CPU thread has been successfully created.
321 * @interrupt_request: Indicates a pending interrupt request.
322 * @halted: Nonzero if the CPU is in suspended state.
323 * @stop: Indicates a pending stop request.
324 * @stopped: Indicates the CPU has been artificially stopped.
325 * @unplug: Indicates a pending CPU unplug request.
326 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
327 * @singlestep_enabled: Flags for single-stepping.
328 * @icount_extra: Instructions until next timer event.
329 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
330 * requires that IO only be performed on the last instruction of a TB
331 * so that interrupts take effect immediately.
332 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
333 * AddressSpaces this CPU has)
334 * @num_ases: number of CPUAddressSpaces in @cpu_ases
335 * @as: Pointer to the first AddressSpace, for the convenience of targets which
336 * only have a single AddressSpace
337 * @env_ptr: Pointer to subclass-specific CPUArchState field.
338 * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
339 * @gdb_regs: Additional GDB registers.
340 * @gdb_num_regs: Number of total registers accessible to GDB.
341 * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
342 * @next_cpu: Next CPU sharing TB cache.
343 * @opaque: User data.
344 * @mem_io_pc: Host Program Counter at which the memory was accessed.
345 * @kvm_fd: vCPU file descriptor for KVM.
346 * @work_mutex: Lock to prevent multiple access to @work_list.
347 * @work_list: List of pending asynchronous work.
348 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
349 * to @trace_dstate).
350 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
351 * @plugin_mask: Plugin event bitmap. Modified only via async work.
352 * @ignore_memory_transaction_failures: Cached copy of the MachineState
353 * flag of the same name: allows the board to suppress calling of the
354 * CPU do_transaction_failed hook function.
356 * State of one CPU core or thread.
358 struct CPUState {
359 /*< private >*/
360 DeviceState parent_obj;
361 /*< public >*/
363 int nr_cores;
364 int nr_threads;
366 struct QemuThread *thread;
367 #ifdef _WIN32
368 HANDLE hThread;
369 #endif
370 int thread_id;
371 bool running, has_waiter;
372 struct QemuCond *halt_cond;
373 bool thread_kicked;
374 bool created;
375 bool stop;
376 bool stopped;
378 /* Should CPU start in powered-off state? */
379 bool start_powered_off;
381 bool unplug;
382 bool crash_occurred;
383 bool exit_request;
384 bool in_exclusive_context;
385 uint32_t cflags_next_tb;
386 /* updates protected by BQL */
387 uint32_t interrupt_request;
388 int singlestep_enabled;
389 int64_t icount_budget;
390 int64_t icount_extra;
391 uint64_t random_seed;
392 sigjmp_buf jmp_env;
394 QemuMutex work_mutex;
395 QSIMPLEQ_HEAD(, qemu_work_item) work_list;
397 CPUAddressSpace *cpu_ases;
398 int num_ases;
399 AddressSpace *as;
400 MemoryRegion *memory;
402 void *env_ptr; /* CPUArchState */
403 IcountDecr *icount_decr_ptr;
405 /* Accessed in parallel; all accesses must be atomic */
406 struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
408 struct GDBRegisterState *gdb_regs;
409 int gdb_num_regs;
410 int gdb_num_g_regs;
411 QTAILQ_ENTRY(CPUState) node;
413 /* ice debug support */
414 QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
416 QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
417 CPUWatchpoint *watchpoint_hit;
419 void *opaque;
421 /* In order to avoid passing too many arguments to the MMIO helpers,
422 * we store some rarely used information in the CPU context.
424 uintptr_t mem_io_pc;
426 int kvm_fd;
427 struct KVMState *kvm_state;
428 struct kvm_run *kvm_run;
430 /* Used for events with 'vcpu' and *without* the 'disabled' properties */
431 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
432 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
434 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
436 #ifdef CONFIG_PLUGIN
437 GArray *plugin_mem_cbs;
438 /* saved iotlb data from io_writex */
439 SavedIOTLB saved_iotlb;
440 #endif
442 /* TODO Move common fields from CPUArchState here. */
443 int cpu_index;
444 int cluster_index;
445 uint32_t halted;
446 uint32_t can_do_io;
447 int32_t exception_index;
449 /* shared by kvm, hax and hvf */
450 bool vcpu_dirty;
452 /* Used to keep track of an outstanding cpu throttle thread for migration
453 * autoconverge
455 bool throttle_thread_scheduled;
457 bool ignore_memory_transaction_failures;
459 struct hax_vcpu_state *hax_vcpu;
461 int hvf_fd;
463 /* track IOMMUs whose translations we've cached in the TCG TLB */
464 GArray *iommu_notifiers;
467 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
468 extern CPUTailQ cpus;
470 #define first_cpu QTAILQ_FIRST_RCU(&cpus)
471 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node)
472 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
473 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
474 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
476 extern __thread CPUState *current_cpu;
478 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
480 unsigned int i;
482 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
483 atomic_set(&cpu->tb_jmp_cache[i], NULL);
488 * qemu_tcg_mttcg_enabled:
489 * Check whether we are running MultiThread TCG or not.
491 * Returns: %true if we are in MTTCG mode %false otherwise.
493 extern bool mttcg_enabled;
494 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
497 * cpu_paging_enabled:
498 * @cpu: The CPU whose state is to be inspected.
500 * Returns: %true if paging is enabled, %false otherwise.
502 bool cpu_paging_enabled(const CPUState *cpu);
505 * cpu_get_memory_mapping:
506 * @cpu: The CPU whose memory mappings are to be obtained.
507 * @list: Where to write the memory mappings to.
508 * @errp: Pointer for reporting an #Error.
510 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
511 Error **errp);
513 #if !defined(CONFIG_USER_ONLY)
516 * cpu_write_elf64_note:
517 * @f: pointer to a function that writes memory to a file
518 * @cpu: The CPU whose memory is to be dumped
519 * @cpuid: ID number of the CPU
520 * @opaque: pointer to the CPUState struct
522 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
523 int cpuid, void *opaque);
526 * cpu_write_elf64_qemunote:
527 * @f: pointer to a function that writes memory to a file
528 * @cpu: The CPU whose memory is to be dumped
529 * @cpuid: ID number of the CPU
530 * @opaque: pointer to the CPUState struct
532 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
533 void *opaque);
536 * cpu_write_elf32_note:
537 * @f: pointer to a function that writes memory to a file
538 * @cpu: The CPU whose memory is to be dumped
539 * @cpuid: ID number of the CPU
540 * @opaque: pointer to the CPUState struct
542 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
543 int cpuid, void *opaque);
546 * cpu_write_elf32_qemunote:
547 * @f: pointer to a function that writes memory to a file
548 * @cpu: The CPU whose memory is to be dumped
549 * @cpuid: ID number of the CPU
550 * @opaque: pointer to the CPUState struct
552 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
553 void *opaque);
556 * cpu_get_crash_info:
557 * @cpu: The CPU to get crash information for
559 * Gets the previously saved crash information.
560 * Caller is responsible for freeing the data.
562 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
564 #endif /* !CONFIG_USER_ONLY */
567 * CPUDumpFlags:
568 * @CPU_DUMP_CODE:
569 * @CPU_DUMP_FPU: dump FPU register state, not just integer
570 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
572 enum CPUDumpFlags {
573 CPU_DUMP_CODE = 0x00010000,
574 CPU_DUMP_FPU = 0x00020000,
575 CPU_DUMP_CCOP = 0x00040000,
579 * cpu_dump_state:
580 * @cpu: The CPU whose state is to be dumped.
581 * @f: If non-null, dump to this stream, else to current print sink.
583 * Dumps CPU state.
585 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
588 * cpu_dump_statistics:
589 * @cpu: The CPU whose state is to be dumped.
590 * @flags: Flags what to dump.
592 * Dump CPU statistics to the current monitor if we have one, else to
593 * stdout.
595 void cpu_dump_statistics(CPUState *cpu, int flags);
597 #ifndef CONFIG_USER_ONLY
599 * cpu_get_phys_page_attrs_debug:
600 * @cpu: The CPU to obtain the physical page address for.
601 * @addr: The virtual address.
602 * @attrs: Updated on return with the memory transaction attributes to use
603 * for this access.
605 * Obtains the physical page corresponding to a virtual one, together
606 * with the corresponding memory transaction attributes to use for the access.
607 * Use it only for debugging because no protection checks are done.
609 * Returns: Corresponding physical page address or -1 if no page found.
611 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
612 MemTxAttrs *attrs)
614 CPUClass *cc = CPU_GET_CLASS(cpu);
616 if (cc->get_phys_page_attrs_debug) {
617 return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
619 /* Fallback for CPUs which don't implement the _attrs_ hook */
620 *attrs = MEMTXATTRS_UNSPECIFIED;
621 return cc->get_phys_page_debug(cpu, addr);
625 * cpu_get_phys_page_debug:
626 * @cpu: The CPU to obtain the physical page address for.
627 * @addr: The virtual address.
629 * Obtains the physical page corresponding to a virtual one.
630 * Use it only for debugging because no protection checks are done.
632 * Returns: Corresponding physical page address or -1 if no page found.
634 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
636 MemTxAttrs attrs = {};
638 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
641 /** cpu_asidx_from_attrs:
642 * @cpu: CPU
643 * @attrs: memory transaction attributes
645 * Returns the address space index specifying the CPU AddressSpace
646 * to use for a memory access with the given transaction attributes.
648 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
650 CPUClass *cc = CPU_GET_CLASS(cpu);
651 int ret = 0;
653 if (cc->asidx_from_attrs) {
654 ret = cc->asidx_from_attrs(cpu, attrs);
655 assert(ret < cpu->num_ases && ret >= 0);
657 return ret;
660 #endif /* CONFIG_USER_ONLY */
663 * cpu_list_add:
664 * @cpu: The CPU to be added to the list of CPUs.
666 void cpu_list_add(CPUState *cpu);
669 * cpu_list_remove:
670 * @cpu: The CPU to be removed from the list of CPUs.
672 void cpu_list_remove(CPUState *cpu);
675 * cpu_reset:
676 * @cpu: The CPU whose state is to be reset.
678 void cpu_reset(CPUState *cpu);
681 * cpu_class_by_name:
682 * @typename: The CPU base type.
683 * @cpu_model: The model string without any parameters.
685 * Looks up a CPU #ObjectClass matching name @cpu_model.
687 * Returns: A #CPUClass or %NULL if not matching class is found.
689 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
692 * cpu_create:
693 * @typename: The CPU type.
695 * Instantiates a CPU and realizes the CPU.
697 * Returns: A #CPUState or %NULL if an error occurred.
699 CPUState *cpu_create(const char *typename);
702 * parse_cpu_option:
703 * @cpu_option: The -cpu option including optional parameters.
705 * processes optional parameters and registers them as global properties
707 * Returns: type of CPU to create or prints error and terminates process
708 * if an error occurred.
710 const char *parse_cpu_option(const char *cpu_option);
713 * cpu_has_work:
714 * @cpu: The vCPU to check.
716 * Checks whether the CPU has work to do.
718 * Returns: %true if the CPU has work, %false otherwise.
720 static inline bool cpu_has_work(CPUState *cpu)
722 CPUClass *cc = CPU_GET_CLASS(cpu);
724 g_assert(cc->has_work);
725 return cc->has_work(cpu);
729 * qemu_cpu_is_self:
730 * @cpu: The vCPU to check against.
732 * Checks whether the caller is executing on the vCPU thread.
734 * Returns: %true if called from @cpu's thread, %false otherwise.
736 bool qemu_cpu_is_self(CPUState *cpu);
739 * qemu_cpu_kick:
740 * @cpu: The vCPU to kick.
742 * Kicks @cpu's thread.
744 void qemu_cpu_kick(CPUState *cpu);
747 * cpu_is_stopped:
748 * @cpu: The CPU to check.
750 * Checks whether the CPU is stopped.
752 * Returns: %true if run state is not running or if artificially stopped;
753 * %false otherwise.
755 bool cpu_is_stopped(CPUState *cpu);
758 * do_run_on_cpu:
759 * @cpu: The vCPU to run on.
760 * @func: The function to be executed.
761 * @data: Data to pass to the function.
762 * @mutex: Mutex to release while waiting for @func to run.
764 * Used internally in the implementation of run_on_cpu.
766 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
767 QemuMutex *mutex);
770 * run_on_cpu:
771 * @cpu: The vCPU to run on.
772 * @func: The function to be executed.
773 * @data: Data to pass to the function.
775 * Schedules the function @func for execution on the vCPU @cpu.
777 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
780 * async_run_on_cpu:
781 * @cpu: The vCPU to run on.
782 * @func: The function to be executed.
783 * @data: Data to pass to the function.
785 * Schedules the function @func for execution on the vCPU @cpu asynchronously.
787 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
790 * async_safe_run_on_cpu:
791 * @cpu: The vCPU to run on.
792 * @func: The function to be executed.
793 * @data: Data to pass to the function.
795 * Schedules the function @func for execution on the vCPU @cpu asynchronously,
796 * while all other vCPUs are sleeping.
798 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
799 * BQL.
801 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
804 * cpu_in_exclusive_context()
805 * @cpu: The vCPU to check
807 * Returns true if @cpu is an exclusive context, for example running
808 * something which has previously been queued via async_safe_run_on_cpu().
810 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
812 return cpu->in_exclusive_context;
816 * qemu_get_cpu:
817 * @index: The CPUState@cpu_index value of the CPU to obtain.
819 * Gets a CPU matching @index.
821 * Returns: The CPU or %NULL if there is no matching CPU.
823 CPUState *qemu_get_cpu(int index);
826 * cpu_exists:
827 * @id: Guest-exposed CPU ID to lookup.
829 * Search for CPU with specified ID.
831 * Returns: %true - CPU is found, %false - CPU isn't found.
833 bool cpu_exists(int64_t id);
836 * cpu_by_arch_id:
837 * @id: Guest-exposed CPU ID of the CPU to obtain.
839 * Get a CPU with matching @id.
841 * Returns: The CPU or %NULL if there is no matching CPU.
843 CPUState *cpu_by_arch_id(int64_t id);
845 #ifndef CONFIG_USER_ONLY
847 typedef void (*CPUInterruptHandler)(CPUState *, int);
849 extern CPUInterruptHandler cpu_interrupt_handler;
852 * cpu_interrupt:
853 * @cpu: The CPU to set an interrupt on.
854 * @mask: The interrupts to set.
856 * Invokes the interrupt handler.
858 static inline void cpu_interrupt(CPUState *cpu, int mask)
860 cpu_interrupt_handler(cpu, mask);
863 #else /* USER_ONLY */
865 void cpu_interrupt(CPUState *cpu, int mask);
867 #endif /* USER_ONLY */
869 #ifdef NEED_CPU_H
871 #ifdef CONFIG_SOFTMMU
872 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
873 MMUAccessType access_type,
874 int mmu_idx, uintptr_t retaddr)
876 CPUClass *cc = CPU_GET_CLASS(cpu);
878 cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
881 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
882 vaddr addr, unsigned size,
883 MMUAccessType access_type,
884 int mmu_idx, MemTxAttrs attrs,
885 MemTxResult response,
886 uintptr_t retaddr)
888 CPUClass *cc = CPU_GET_CLASS(cpu);
890 if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) {
891 cc->do_transaction_failed(cpu, physaddr, addr, size, access_type,
892 mmu_idx, attrs, response, retaddr);
895 #endif
897 #endif /* NEED_CPU_H */
900 * cpu_set_pc:
901 * @cpu: The CPU to set the program counter for.
902 * @addr: Program counter value.
904 * Sets the program counter for a CPU.
906 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
908 CPUClass *cc = CPU_GET_CLASS(cpu);
910 cc->set_pc(cpu, addr);
914 * cpu_reset_interrupt:
915 * @cpu: The CPU to clear the interrupt on.
916 * @mask: The interrupt mask to clear.
918 * Resets interrupts on the vCPU @cpu.
920 void cpu_reset_interrupt(CPUState *cpu, int mask);
923 * cpu_exit:
924 * @cpu: The CPU to exit.
926 * Requests the CPU @cpu to exit execution.
928 void cpu_exit(CPUState *cpu);
931 * cpu_resume:
932 * @cpu: The CPU to resume.
934 * Resumes CPU, i.e. puts CPU into runnable state.
936 void cpu_resume(CPUState *cpu);
939 * cpu_remove:
940 * @cpu: The CPU to remove.
942 * Requests the CPU to be removed.
944 void cpu_remove(CPUState *cpu);
947 * cpu_remove_sync:
948 * @cpu: The CPU to remove.
950 * Requests the CPU to be removed and waits till it is removed.
952 void cpu_remove_sync(CPUState *cpu);
955 * process_queued_cpu_work() - process all items on CPU work queue
956 * @cpu: The CPU which work queue to process.
958 void process_queued_cpu_work(CPUState *cpu);
961 * cpu_exec_start:
962 * @cpu: The CPU for the current thread.
964 * Record that a CPU has started execution and can be interrupted with
965 * cpu_exit.
967 void cpu_exec_start(CPUState *cpu);
970 * cpu_exec_end:
971 * @cpu: The CPU for the current thread.
973 * Record that a CPU has stopped execution and exclusive sections
974 * can be executed without interrupting it.
976 void cpu_exec_end(CPUState *cpu);
979 * start_exclusive:
981 * Wait for a concurrent exclusive section to end, and then start
982 * a section of work that is run while other CPUs are not running
983 * between cpu_exec_start and cpu_exec_end. CPUs that are running
984 * cpu_exec are exited immediately. CPUs that call cpu_exec_start
985 * during the exclusive section go to sleep until this CPU calls
986 * end_exclusive.
988 void start_exclusive(void);
991 * end_exclusive:
993 * Concludes an exclusive execution section started by start_exclusive.
995 void end_exclusive(void);
998 * qemu_init_vcpu:
999 * @cpu: The vCPU to initialize.
1001 * Initializes a vCPU.
1003 void qemu_init_vcpu(CPUState *cpu);
1005 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
1006 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
1007 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
1010 * cpu_single_step:
1011 * @cpu: CPU to the flags for.
1012 * @enabled: Flags to enable.
1014 * Enables or disables single-stepping for @cpu.
1016 void cpu_single_step(CPUState *cpu, int enabled);
1018 /* Breakpoint/watchpoint flags */
1019 #define BP_MEM_READ 0x01
1020 #define BP_MEM_WRITE 0x02
1021 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
1022 #define BP_STOP_BEFORE_ACCESS 0x04
1023 /* 0x08 currently unused */
1024 #define BP_GDB 0x10
1025 #define BP_CPU 0x20
1026 #define BP_ANY (BP_GDB | BP_CPU)
1027 #define BP_WATCHPOINT_HIT_READ 0x40
1028 #define BP_WATCHPOINT_HIT_WRITE 0x80
1029 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
1031 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1032 CPUBreakpoint **breakpoint);
1033 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1034 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1035 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1037 /* Return true if PC matches an installed breakpoint. */
1038 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1040 CPUBreakpoint *bp;
1042 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1043 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1044 if (bp->pc == pc && (bp->flags & mask)) {
1045 return true;
1049 return false;
1052 #ifdef CONFIG_USER_ONLY
1053 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1054 int flags, CPUWatchpoint **watchpoint)
1056 return -ENOSYS;
1059 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1060 vaddr len, int flags)
1062 return -ENOSYS;
1065 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1066 CPUWatchpoint *wp)
1070 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1074 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1075 MemTxAttrs atr, int fl, uintptr_t ra)
1079 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
1080 vaddr addr, vaddr len)
1082 return 0;
1084 #else
1085 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1086 int flags, CPUWatchpoint **watchpoint);
1087 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1088 vaddr len, int flags);
1089 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1090 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1093 * cpu_check_watchpoint:
1094 * @cpu: cpu context
1095 * @addr: guest virtual address
1096 * @len: access length
1097 * @attrs: memory access attributes
1098 * @flags: watchpoint access type
1099 * @ra: unwind return address
1101 * Check for a watchpoint hit in [addr, addr+len) of the type
1102 * specified by @flags. Exit via exception with a hit.
1104 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1105 MemTxAttrs attrs, int flags, uintptr_t ra);
1108 * cpu_watchpoint_address_matches:
1109 * @cpu: cpu context
1110 * @addr: guest virtual address
1111 * @len: access length
1113 * Return the watchpoint flags that apply to [addr, addr+len).
1114 * If no watchpoint is registered for the range, the result is 0.
1116 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1117 #endif
1120 * cpu_get_address_space:
1121 * @cpu: CPU to get address space from
1122 * @asidx: index identifying which address space to get
1124 * Return the requested address space of this CPU. @asidx
1125 * specifies which address space to read.
1127 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1129 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1130 GCC_FMT_ATTR(2, 3);
1131 extern Property cpu_common_props[];
1132 void cpu_exec_initfn(CPUState *cpu);
1133 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1134 void cpu_exec_unrealizefn(CPUState *cpu);
1137 * target_words_bigendian:
1138 * Returns true if the (default) endianness of the target is big endian,
1139 * false otherwise. Note that in target-specific code, you can use
1140 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1141 * code should normally never need to know about the endianness of the
1142 * target, so please do *not* use this function unless you know very well
1143 * what you are doing!
1145 bool target_words_bigendian(void);
1147 #ifdef NEED_CPU_H
1149 #ifdef CONFIG_SOFTMMU
1150 extern const VMStateDescription vmstate_cpu_common;
1151 #else
1152 #define vmstate_cpu_common vmstate_dummy
1153 #endif
1155 #define VMSTATE_CPU() { \
1156 .name = "parent_obj", \
1157 .size = sizeof(CPUState), \
1158 .vmsd = &vmstate_cpu_common, \
1159 .flags = VMS_STRUCT, \
1160 .offset = 0, \
1163 #endif /* NEED_CPU_H */
1165 #define UNASSIGNED_CPU_INDEX -1
1166 #define UNASSIGNED_CLUSTER_INDEX -1
1168 #endif