hw/dma: Add SiFive platform DMA controller emulation
[qemu/ar7.git] / hw / arm / musca.c
blob4bc737f93b9f01f146eff8d80bb2904ef4ed5413
1 /*
2 * Arm Musca-B1 test chip board emulation
4 * Copyright (c) 2019 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
13 * The Musca boards are a reference implementation of a system using
14 * the SSE-200 subsystem for embedded:
15 * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board
16 * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board
17 * We model the A and B1 variants of this board, as described in the TRMs:
18 * http://infocenter.arm.com/help/topic/com.arm.doc.101107_0000_00_en/index.html
19 * http://infocenter.arm.com/help/topic/com.arm.doc.101312_0000_00_en/index.html
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "exec/address-spaces.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/arm/boot.h"
28 #include "hw/arm/armsse.h"
29 #include "hw/boards.h"
30 #include "hw/char/pl011.h"
31 #include "hw/core/split-irq.h"
32 #include "hw/misc/tz-mpc.h"
33 #include "hw/misc/tz-ppc.h"
34 #include "hw/misc/unimp.h"
35 #include "hw/rtc/pl031.h"
37 #define MUSCA_NUMIRQ_MAX 96
38 #define MUSCA_PPC_MAX 3
39 #define MUSCA_MPC_MAX 5
41 typedef struct MPCInfo MPCInfo;
43 typedef enum MuscaType {
44 MUSCA_A,
45 MUSCA_B1,
46 } MuscaType;
48 typedef struct {
49 MachineClass parent;
50 MuscaType type;
51 uint32_t init_svtor;
52 int sram_addr_width;
53 int num_irqs;
54 const MPCInfo *mpc_info;
55 int num_mpcs;
56 } MuscaMachineClass;
58 typedef struct {
59 MachineState parent;
61 ARMSSE sse;
62 /* RAM and flash */
63 MemoryRegion ram[MUSCA_MPC_MAX];
64 SplitIRQ cpu_irq_splitter[MUSCA_NUMIRQ_MAX];
65 SplitIRQ sec_resp_splitter;
66 TZPPC ppc[MUSCA_PPC_MAX];
67 MemoryRegion container;
68 UnimplementedDeviceState eflash[2];
69 UnimplementedDeviceState qspi;
70 TZMPC mpc[MUSCA_MPC_MAX];
71 UnimplementedDeviceState mhu[2];
72 UnimplementedDeviceState pwm[3];
73 UnimplementedDeviceState i2s;
74 PL011State uart[2];
75 UnimplementedDeviceState i2c[2];
76 UnimplementedDeviceState spi;
77 UnimplementedDeviceState scc;
78 UnimplementedDeviceState timer;
79 PL031State rtc;
80 UnimplementedDeviceState pvt;
81 UnimplementedDeviceState sdio;
82 UnimplementedDeviceState gpio;
83 UnimplementedDeviceState cryptoisland;
84 } MuscaMachineState;
86 #define TYPE_MUSCA_MACHINE "musca"
87 #define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a")
88 #define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1")
90 #define MUSCA_MACHINE(obj) \
91 OBJECT_CHECK(MuscaMachineState, obj, TYPE_MUSCA_MACHINE)
92 #define MUSCA_MACHINE_GET_CLASS(obj) \
93 OBJECT_GET_CLASS(MuscaMachineClass, obj, TYPE_MUSCA_MACHINE)
94 #define MUSCA_MACHINE_CLASS(klass) \
95 OBJECT_CLASS_CHECK(MuscaMachineClass, klass, TYPE_MUSCA_MACHINE)
98 * Main SYSCLK frequency in Hz
99 * TODO this should really be different for the two cores, but we
100 * don't model that in our SSE-200 model yet.
102 #define SYSCLK_FRQ 40000000
104 static qemu_irq get_sse_irq_in(MuscaMachineState *mms, int irqno)
106 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
107 assert(irqno < MUSCA_NUMIRQ_MAX);
109 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
113 * Most of the devices in the Musca board sit behind Peripheral Protection
114 * Controllers. These data structures define the layout of which devices
115 * sit behind which PPCs.
116 * The devfn for each port is a function which creates, configures
117 * and initializes the device, returning the MemoryRegion which
118 * needs to be plugged into the downstream end of the PPC port.
120 typedef MemoryRegion *MakeDevFn(MuscaMachineState *mms, void *opaque,
121 const char *name, hwaddr size);
123 typedef struct PPCPortInfo {
124 const char *name;
125 MakeDevFn *devfn;
126 void *opaque;
127 hwaddr addr;
128 hwaddr size;
129 } PPCPortInfo;
131 typedef struct PPCInfo {
132 const char *name;
133 PPCPortInfo ports[TZ_NUM_PORTS];
134 } PPCInfo;
136 static MemoryRegion *make_unimp_dev(MuscaMachineState *mms,
137 void *opaque, const char *name, hwaddr size)
140 * Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
141 * and return a pointer to its MemoryRegion.
143 UnimplementedDeviceState *uds = opaque;
145 object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE);
146 qdev_prop_set_string(DEVICE(uds), "name", name);
147 qdev_prop_set_uint64(DEVICE(uds), "size", size);
148 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
149 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
152 typedef enum MPCInfoType {
153 MPC_RAM,
154 MPC_ROM,
155 MPC_CRYPTOISLAND,
156 } MPCInfoType;
158 struct MPCInfo {
159 const char *name;
160 hwaddr addr;
161 hwaddr size;
162 MPCInfoType type;
165 /* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */
166 static const MPCInfo a_mpc_info[] = { {
167 .name = "qspi",
168 .type = MPC_ROM,
169 .addr = 0x00200000,
170 .size = 0x00800000,
171 }, {
172 .name = "sram",
173 .type = MPC_RAM,
174 .addr = 0x00000000,
175 .size = 0x00200000,
179 static const MPCInfo b1_mpc_info[] = { {
180 .name = "qspi",
181 .type = MPC_ROM,
182 .addr = 0x00000000,
183 .size = 0x02000000,
184 }, {
185 .name = "sram",
186 .type = MPC_RAM,
187 .addr = 0x0a400000,
188 .size = 0x00080000,
189 }, {
190 .name = "eflash0",
191 .type = MPC_ROM,
192 .addr = 0x0a000000,
193 .size = 0x00200000,
194 }, {
195 .name = "eflash1",
196 .type = MPC_ROM,
197 .addr = 0x0a200000,
198 .size = 0x00200000,
199 }, {
200 .name = "cryptoisland",
201 .type = MPC_CRYPTOISLAND,
202 .addr = 0x0a000000,
203 .size = 0x00200000,
207 static MemoryRegion *make_mpc(MuscaMachineState *mms, void *opaque,
208 const char *name, hwaddr size)
211 * Create an MPC and the RAM or flash behind it.
212 * MPC 0: eFlash 0
213 * MPC 1: eFlash 1
214 * MPC 2: SRAM
215 * MPC 3: QSPI flash
216 * MPC 4: CryptoIsland
217 * For now we implement the flash regions as ROM (ie not programmable)
218 * (with their control interface memory regions being unimplemented
219 * stubs behind the PPCs).
220 * The whole CryptoIsland region behind its MPC is an unimplemented stub.
222 MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
223 TZMPC *mpc = opaque;
224 int i = mpc - &mms->mpc[0];
225 MemoryRegion *downstream;
226 MemoryRegion *upstream;
227 UnimplementedDeviceState *uds;
228 char *mpcname;
229 const MPCInfo *mpcinfo = mmc->mpc_info;
231 mpcname = g_strdup_printf("%s-mpc", mpcinfo[i].name);
233 switch (mpcinfo[i].type) {
234 case MPC_ROM:
235 downstream = &mms->ram[i];
236 memory_region_init_rom(downstream, NULL, mpcinfo[i].name,
237 mpcinfo[i].size, &error_fatal);
238 break;
239 case MPC_RAM:
240 downstream = &mms->ram[i];
241 memory_region_init_ram(downstream, NULL, mpcinfo[i].name,
242 mpcinfo[i].size, &error_fatal);
243 break;
244 case MPC_CRYPTOISLAND:
245 /* We don't implement the CryptoIsland yet */
246 uds = &mms->cryptoisland;
247 object_initialize_child(OBJECT(mms), name, uds,
248 TYPE_UNIMPLEMENTED_DEVICE);
249 qdev_prop_set_string(DEVICE(uds), "name", mpcinfo[i].name);
250 qdev_prop_set_uint64(DEVICE(uds), "size", mpcinfo[i].size);
251 sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal);
252 downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
253 break;
254 default:
255 g_assert_not_reached();
258 object_initialize_child(OBJECT(mms), mpcname, mpc, TYPE_TZ_MPC);
259 object_property_set_link(OBJECT(mpc), "downstream", OBJECT(downstream),
260 &error_fatal);
261 sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal);
262 /* Map the upstream end of the MPC into system memory */
263 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
264 memory_region_add_subregion(get_system_memory(), mpcinfo[i].addr, upstream);
265 /* and connect its interrupt to the SSE-200 */
266 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
267 qdev_get_gpio_in_named(DEVICE(&mms->sse),
268 "mpcexp_status", i));
270 g_free(mpcname);
271 /* Return the register interface MR for our caller to map behind the PPC */
272 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
275 static MemoryRegion *make_rtc(MuscaMachineState *mms, void *opaque,
276 const char *name, hwaddr size)
278 PL031State *rtc = opaque;
280 object_initialize_child(OBJECT(mms), name, rtc, TYPE_PL031);
281 sysbus_realize(SYS_BUS_DEVICE(rtc), &error_fatal);
282 sysbus_connect_irq(SYS_BUS_DEVICE(rtc), 0, get_sse_irq_in(mms, 39));
283 return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc), 0);
286 static MemoryRegion *make_uart(MuscaMachineState *mms, void *opaque,
287 const char *name, hwaddr size)
289 PL011State *uart = opaque;
290 int i = uart - &mms->uart[0];
291 int irqbase = 7 + i * 6;
292 SysBusDevice *s;
294 object_initialize_child(OBJECT(mms), name, uart, TYPE_PL011);
295 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
296 sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal);
297 s = SYS_BUS_DEVICE(uart);
298 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqbase + 5)); /* combined */
299 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqbase + 0)); /* RX */
300 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqbase + 1)); /* TX */
301 sysbus_connect_irq(s, 3, get_sse_irq_in(mms, irqbase + 2)); /* RT */
302 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqbase + 3)); /* MS */
303 sysbus_connect_irq(s, 5, get_sse_irq_in(mms, irqbase + 4)); /* E */
304 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
307 static MemoryRegion *make_musca_a_devs(MuscaMachineState *mms, void *opaque,
308 const char *name, hwaddr size)
311 * Create the container MemoryRegion for all the devices that live
312 * behind the Musca-A PPC's single port. These devices don't have a PPC
313 * port each, but we use the PPCPortInfo struct as a convenient way
314 * to describe them. Note that addresses here are relative to the base
315 * address of the PPC port region: 0x40100000, and devices appear both
316 * at the 0x4... NS region and the 0x5... S region.
318 int i;
319 MemoryRegion *container = &mms->container;
321 const PPCPortInfo devices[] = {
322 { "uart0", make_uart, &mms->uart[0], 0x1000, 0x1000 },
323 { "uart1", make_uart, &mms->uart[1], 0x2000, 0x1000 },
324 { "spi", make_unimp_dev, &mms->spi, 0x3000, 0x1000 },
325 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x4000, 0x1000 },
326 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x5000, 0x1000 },
327 { "i2s", make_unimp_dev, &mms->i2s, 0x6000, 0x1000 },
328 { "pwm0", make_unimp_dev, &mms->pwm[0], 0x7000, 0x1000 },
329 { "rtc", make_rtc, &mms->rtc, 0x8000, 0x1000 },
330 { "qspi", make_unimp_dev, &mms->qspi, 0xa000, 0x1000 },
331 { "timer", make_unimp_dev, &mms->timer, 0xb000, 0x1000 },
332 { "scc", make_unimp_dev, &mms->scc, 0xc000, 0x1000 },
333 { "pwm1", make_unimp_dev, &mms->pwm[1], 0xe000, 0x1000 },
334 { "pwm2", make_unimp_dev, &mms->pwm[2], 0xf000, 0x1000 },
335 { "gpio", make_unimp_dev, &mms->gpio, 0x10000, 0x1000 },
336 { "mpc0", make_mpc, &mms->mpc[0], 0x12000, 0x1000 },
337 { "mpc1", make_mpc, &mms->mpc[1], 0x13000, 0x1000 },
340 memory_region_init(container, OBJECT(mms), "musca-device-container", size);
342 for (i = 0; i < ARRAY_SIZE(devices); i++) {
343 const PPCPortInfo *pinfo = &devices[i];
344 MemoryRegion *mr;
346 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
347 memory_region_add_subregion(container, pinfo->addr, mr);
350 return &mms->container;
353 static void musca_init(MachineState *machine)
355 MuscaMachineState *mms = MUSCA_MACHINE(machine);
356 MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
357 MachineClass *mc = MACHINE_GET_CLASS(machine);
358 MemoryRegion *system_memory = get_system_memory();
359 DeviceState *ssedev;
360 DeviceState *dev_splitter;
361 const PPCInfo *ppcs;
362 int num_ppcs;
363 int i;
365 assert(mmc->num_irqs <= MUSCA_NUMIRQ_MAX);
366 assert(mmc->num_mpcs <= MUSCA_MPC_MAX);
368 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
369 error_report("This board can only be used with CPU %s",
370 mc->default_cpu_type);
371 exit(1);
374 object_initialize_child(OBJECT(machine), "sse-200", &mms->sse,
375 TYPE_SSE200);
376 ssedev = DEVICE(&mms->sse);
377 object_property_set_link(OBJECT(&mms->sse), "memory",
378 OBJECT(system_memory), &error_fatal);
379 qdev_prop_set_uint32(ssedev, "EXP_NUMIRQ", mmc->num_irqs);
380 qdev_prop_set_uint32(ssedev, "init-svtor", mmc->init_svtor);
381 qdev_prop_set_uint32(ssedev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
382 qdev_prop_set_uint32(ssedev, "MAINCLK", SYSCLK_FRQ);
384 * Musca-A takes the default SSE-200 FPU/DSP settings (ie no for
385 * CPU0 and yes for CPU1); Musca-B1 explicitly enables them for CPU0.
387 if (mmc->type == MUSCA_B1) {
388 qdev_prop_set_bit(ssedev, "CPU0_FPU", true);
389 qdev_prop_set_bit(ssedev, "CPU0_DSP", true);
391 sysbus_realize(SYS_BUS_DEVICE(&mms->sse), &error_fatal);
394 * We need to create splitters to feed the IRQ inputs
395 * for each CPU in the SSE-200 from each device in the board.
397 for (i = 0; i < mmc->num_irqs; i++) {
398 char *name = g_strdup_printf("musca-irq-splitter%d", i);
399 SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
401 object_initialize_child_with_props(OBJECT(machine), name, splitter,
402 sizeof(*splitter), TYPE_SPLIT_IRQ,
403 &error_fatal, NULL);
404 g_free(name);
406 object_property_set_int(OBJECT(splitter), "num-lines", 2,
407 &error_fatal);
408 qdev_realize(DEVICE(splitter), NULL, &error_fatal);
409 qdev_connect_gpio_out(DEVICE(splitter), 0,
410 qdev_get_gpio_in_named(ssedev, "EXP_IRQ", i));
411 qdev_connect_gpio_out(DEVICE(splitter), 1,
412 qdev_get_gpio_in_named(ssedev,
413 "EXP_CPU1_IRQ", i));
417 * The sec_resp_cfg output from the SSE-200 must be split into multiple
418 * lines, one for each of the PPCs we create here.
420 object_initialize_child_with_props(OBJECT(machine), "sec-resp-splitter",
421 &mms->sec_resp_splitter,
422 sizeof(mms->sec_resp_splitter),
423 TYPE_SPLIT_IRQ, &error_fatal, NULL);
425 object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines",
426 ARRAY_SIZE(mms->ppc), &error_fatal);
427 qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal);
428 dev_splitter = DEVICE(&mms->sec_resp_splitter);
429 qdev_connect_gpio_out_named(ssedev, "sec_resp_cfg", 0,
430 qdev_get_gpio_in(dev_splitter, 0));
433 * Most of the devices in the board are behind Peripheral Protection
434 * Controllers. The required order for initializing things is:
435 * + initialize the PPC
436 * + initialize, configure and realize downstream devices
437 * + connect downstream device MemoryRegions to the PPC
438 * + realize the PPC
439 * + map the PPC's MemoryRegions to the places in the address map
440 * where the downstream devices should appear
441 * + wire up the PPC's control lines to the SSE object
443 * The PPC mapping differs for the -A and -B1 variants; the -A version
444 * is much simpler, using only a single port of a single PPC and putting
445 * all the devices behind that.
447 const PPCInfo a_ppcs[] = { {
448 .name = "ahb_ppcexp0",
449 .ports = {
450 { "musca-devices", make_musca_a_devs, 0, 0x40100000, 0x100000 },
456 * Devices listed with an 0x4.. address appear in both the NS 0x4.. region
457 * and the 0x5.. S region. Devices listed with an 0x5.. address appear
458 * only in the S region.
460 const PPCInfo b1_ppcs[] = { {
461 .name = "apb_ppcexp0",
462 .ports = {
463 { "eflash0", make_unimp_dev, &mms->eflash[0],
464 0x52400000, 0x1000 },
465 { "eflash1", make_unimp_dev, &mms->eflash[1],
466 0x52500000, 0x1000 },
467 { "qspi", make_unimp_dev, &mms->qspi, 0x42800000, 0x100000 },
468 { "mpc0", make_mpc, &mms->mpc[0], 0x52000000, 0x1000 },
469 { "mpc1", make_mpc, &mms->mpc[1], 0x52100000, 0x1000 },
470 { "mpc2", make_mpc, &mms->mpc[2], 0x52200000, 0x1000 },
471 { "mpc3", make_mpc, &mms->mpc[3], 0x52300000, 0x1000 },
472 { "mhu0", make_unimp_dev, &mms->mhu[0], 0x42600000, 0x100000 },
473 { "mhu1", make_unimp_dev, &mms->mhu[1], 0x42700000, 0x100000 },
474 { }, /* port 9: unused */
475 { }, /* port 10: unused */
476 { }, /* port 11: unused */
477 { }, /* port 12: unused */
478 { }, /* port 13: unused */
479 { "mpc4", make_mpc, &mms->mpc[4], 0x52e00000, 0x1000 },
481 }, {
482 .name = "apb_ppcexp1",
483 .ports = {
484 { "pwm0", make_unimp_dev, &mms->pwm[0], 0x40101000, 0x1000 },
485 { "pwm1", make_unimp_dev, &mms->pwm[1], 0x40102000, 0x1000 },
486 { "pwm2", make_unimp_dev, &mms->pwm[2], 0x40103000, 0x1000 },
487 { "i2s", make_unimp_dev, &mms->i2s, 0x40104000, 0x1000 },
488 { "uart0", make_uart, &mms->uart[0], 0x40105000, 0x1000 },
489 { "uart1", make_uart, &mms->uart[1], 0x40106000, 0x1000 },
490 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40108000, 0x1000 },
491 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40109000, 0x1000 },
492 { "spi", make_unimp_dev, &mms->spi, 0x4010a000, 0x1000 },
493 { "scc", make_unimp_dev, &mms->scc, 0x5010b000, 0x1000 },
494 { "timer", make_unimp_dev, &mms->timer, 0x4010c000, 0x1000 },
495 { "rtc", make_rtc, &mms->rtc, 0x4010d000, 0x1000 },
496 { "pvt", make_unimp_dev, &mms->pvt, 0x4010e000, 0x1000 },
497 { "sdio", make_unimp_dev, &mms->sdio, 0x4010f000, 0x1000 },
499 }, {
500 .name = "ahb_ppcexp0",
501 .ports = {
502 { }, /* port 0: unused */
503 { "gpio", make_unimp_dev, &mms->gpio, 0x41000000, 0x1000 },
508 switch (mmc->type) {
509 case MUSCA_A:
510 ppcs = a_ppcs;
511 num_ppcs = ARRAY_SIZE(a_ppcs);
512 break;
513 case MUSCA_B1:
514 ppcs = b1_ppcs;
515 num_ppcs = ARRAY_SIZE(b1_ppcs);
516 break;
517 default:
518 g_assert_not_reached();
520 assert(num_ppcs <= MUSCA_PPC_MAX);
522 for (i = 0; i < num_ppcs; i++) {
523 const PPCInfo *ppcinfo = &ppcs[i];
524 TZPPC *ppc = &mms->ppc[i];
525 DeviceState *ppcdev;
526 int port;
527 char *gpioname;
529 object_initialize_child(OBJECT(machine), ppcinfo->name, ppc,
530 TYPE_TZ_PPC);
531 ppcdev = DEVICE(ppc);
533 for (port = 0; port < TZ_NUM_PORTS; port++) {
534 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
535 MemoryRegion *mr;
536 char *portname;
538 if (!pinfo->devfn) {
539 continue;
542 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
543 portname = g_strdup_printf("port[%d]", port);
544 object_property_set_link(OBJECT(ppc), portname, OBJECT(mr),
545 &error_fatal);
546 g_free(portname);
549 sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal);
551 for (port = 0; port < TZ_NUM_PORTS; port++) {
552 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
554 if (!pinfo->devfn) {
555 continue;
557 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
559 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
560 qdev_connect_gpio_out_named(ssedev, gpioname, port,
561 qdev_get_gpio_in_named(ppcdev,
562 "cfg_nonsec",
563 port));
564 g_free(gpioname);
565 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
566 qdev_connect_gpio_out_named(ssedev, gpioname, port,
567 qdev_get_gpio_in_named(ppcdev,
568 "cfg_ap", port));
569 g_free(gpioname);
572 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
573 qdev_connect_gpio_out_named(ssedev, gpioname, 0,
574 qdev_get_gpio_in_named(ppcdev,
575 "irq_enable", 0));
576 g_free(gpioname);
577 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
578 qdev_connect_gpio_out_named(ssedev, gpioname, 0,
579 qdev_get_gpio_in_named(ppcdev,
580 "irq_clear", 0));
581 g_free(gpioname);
582 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
583 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
584 qdev_get_gpio_in_named(ssedev,
585 gpioname, 0));
586 g_free(gpioname);
588 qdev_connect_gpio_out(dev_splitter, i,
589 qdev_get_gpio_in_named(ppcdev,
590 "cfg_sec_resp", 0));
593 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x2000000);
596 static void musca_class_init(ObjectClass *oc, void *data)
598 MachineClass *mc = MACHINE_CLASS(oc);
600 mc->default_cpus = 2;
601 mc->min_cpus = mc->default_cpus;
602 mc->max_cpus = mc->default_cpus;
603 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
604 mc->init = musca_init;
607 static void musca_a_class_init(ObjectClass *oc, void *data)
609 MachineClass *mc = MACHINE_CLASS(oc);
610 MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
612 mc->desc = "ARM Musca-A board (dual Cortex-M33)";
613 mmc->type = MUSCA_A;
614 mmc->init_svtor = 0x10200000;
615 mmc->sram_addr_width = 15;
616 mmc->num_irqs = 64;
617 mmc->mpc_info = a_mpc_info;
618 mmc->num_mpcs = ARRAY_SIZE(a_mpc_info);
621 static void musca_b1_class_init(ObjectClass *oc, void *data)
623 MachineClass *mc = MACHINE_CLASS(oc);
624 MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
626 mc->desc = "ARM Musca-B1 board (dual Cortex-M33)";
627 mmc->type = MUSCA_B1;
629 * This matches the DAPlink firmware which boots from QSPI. There
630 * is also a firmware blob which boots from the eFlash, which
631 * uses init_svtor = 0x1A000000. QEMU doesn't currently support that,
632 * though we could in theory expose a machine property on the command
633 * line to allow the user to request eFlash boot.
635 mmc->init_svtor = 0x10000000;
636 mmc->sram_addr_width = 17;
637 mmc->num_irqs = 96;
638 mmc->mpc_info = b1_mpc_info;
639 mmc->num_mpcs = ARRAY_SIZE(b1_mpc_info);
642 static const TypeInfo musca_info = {
643 .name = TYPE_MUSCA_MACHINE,
644 .parent = TYPE_MACHINE,
645 .abstract = true,
646 .instance_size = sizeof(MuscaMachineState),
647 .class_size = sizeof(MuscaMachineClass),
648 .class_init = musca_class_init,
651 static const TypeInfo musca_a_info = {
652 .name = TYPE_MUSCA_A_MACHINE,
653 .parent = TYPE_MUSCA_MACHINE,
654 .class_init = musca_a_class_init,
657 static const TypeInfo musca_b1_info = {
658 .name = TYPE_MUSCA_B1_MACHINE,
659 .parent = TYPE_MUSCA_MACHINE,
660 .class_init = musca_b1_class_init,
663 static void musca_machine_init(void)
665 type_register_static(&musca_info);
666 type_register_static(&musca_a_info);
667 type_register_static(&musca_b1_info);
670 type_init(musca_machine_init);