target/arm: Allow VFP and Neon to be disabled via a CPU property
[qemu/ar7.git] / target / arm / cpu.c
blobaf879d5311e3fd4bc264c07c273bf455ad8c4f72
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu-common.h"
23 #include "target/arm/idau.h"
24 #include "qemu/module.h"
25 #include "qapi/error.h"
26 #include "qapi/visitor.h"
27 #include "cpu.h"
28 #include "internals.h"
29 #include "exec/exec-all.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/loader.h"
33 #endif
34 #include "sysemu/sysemu.h"
35 #include "sysemu/tcg.h"
36 #include "sysemu/hw_accel.h"
37 #include "kvm_arm.h"
38 #include "disas/capstone.h"
39 #include "fpu/softfloat.h"
41 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
43 ARMCPU *cpu = ARM_CPU(cs);
44 CPUARMState *env = &cpu->env;
46 if (is_a64(env)) {
47 env->pc = value;
48 env->thumb = 0;
49 } else {
50 env->regs[15] = value & ~1;
51 env->thumb = value & 1;
55 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
57 ARMCPU *cpu = ARM_CPU(cs);
58 CPUARMState *env = &cpu->env;
61 * It's OK to look at env for the current mode here, because it's
62 * never possible for an AArch64 TB to chain to an AArch32 TB.
64 if (is_a64(env)) {
65 env->pc = tb->pc;
66 } else {
67 env->regs[15] = tb->pc;
71 static bool arm_cpu_has_work(CPUState *cs)
73 ARMCPU *cpu = ARM_CPU(cs);
75 return (cpu->power_state != PSCI_OFF)
76 && cs->interrupt_request &
77 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
78 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
79 | CPU_INTERRUPT_EXITTB);
82 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
83 void *opaque)
85 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
87 entry->hook = hook;
88 entry->opaque = opaque;
90 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
94 void *opaque)
96 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
98 entry->hook = hook;
99 entry->opaque = opaque;
101 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
106 /* Reset a single ARMCPRegInfo register */
107 ARMCPRegInfo *ri = value;
108 ARMCPU *cpu = opaque;
110 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
111 return;
114 if (ri->resetfn) {
115 ri->resetfn(&cpu->env, ri);
116 return;
119 /* A zero offset is never possible as it would be regs[0]
120 * so we use it to indicate that reset is being handled elsewhere.
121 * This is basically only used for fields in non-core coprocessors
122 * (like the pxa2xx ones).
124 if (!ri->fieldoffset) {
125 return;
128 if (cpreg_field_is_64bit(ri)) {
129 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
130 } else {
131 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
135 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
137 /* Purely an assertion check: we've already done reset once,
138 * so now check that running the reset for the cpreg doesn't
139 * change its value. This traps bugs where two different cpregs
140 * both try to reset the same state field but to different values.
142 ARMCPRegInfo *ri = value;
143 ARMCPU *cpu = opaque;
144 uint64_t oldvalue, newvalue;
146 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
147 return;
150 oldvalue = read_raw_cp_reg(&cpu->env, ri);
151 cp_reg_reset(key, value, opaque);
152 newvalue = read_raw_cp_reg(&cpu->env, ri);
153 assert(oldvalue == newvalue);
156 /* CPUClass::reset() */
157 static void arm_cpu_reset(CPUState *s)
159 ARMCPU *cpu = ARM_CPU(s);
160 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
161 CPUARMState *env = &cpu->env;
163 acc->parent_reset(s);
165 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
167 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
168 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
170 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
171 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
172 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
173 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
175 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
176 s->halted = cpu->start_powered_off;
178 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
179 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
183 /* 64 bit CPUs always start in 64 bit mode */
184 env->aarch64 = 1;
185 #if defined(CONFIG_USER_ONLY)
186 env->pstate = PSTATE_MODE_EL0t;
187 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
188 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
189 /* Enable all PAC keys. */
190 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
191 SCTLR_EnDA | SCTLR_EnDB);
192 /* Enable all PAC instructions */
193 env->cp15.hcr_el2 |= HCR_API;
194 env->cp15.scr_el3 |= SCR_API;
195 /* and to the FP/Neon instructions */
196 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
197 /* and to the SVE instructions */
198 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
199 env->cp15.cptr_el[3] |= CPTR_EZ;
200 /* with maximum vector length */
201 env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
202 env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
203 env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
205 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
206 * turning on both here will produce smaller code and otherwise
207 * make no difference to the user-level emulation.
209 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
210 #else
211 /* Reset into the highest available EL */
212 if (arm_feature(env, ARM_FEATURE_EL3)) {
213 env->pstate = PSTATE_MODE_EL3h;
214 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
215 env->pstate = PSTATE_MODE_EL2h;
216 } else {
217 env->pstate = PSTATE_MODE_EL1h;
219 env->pc = cpu->rvbar;
220 #endif
221 } else {
222 #if defined(CONFIG_USER_ONLY)
223 /* Userspace expects access to cp10 and cp11 for FP/Neon */
224 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
225 #endif
228 #if defined(CONFIG_USER_ONLY)
229 env->uncached_cpsr = ARM_CPU_MODE_USR;
230 /* For user mode we must enable access to coprocessors */
231 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
232 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
233 env->cp15.c15_cpar = 3;
234 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
235 env->cp15.c15_cpar = 1;
237 #else
240 * If the highest available EL is EL2, AArch32 will start in Hyp
241 * mode; otherwise it starts in SVC. Note that if we start in
242 * AArch64 then these values in the uncached_cpsr will be ignored.
244 if (arm_feature(env, ARM_FEATURE_EL2) &&
245 !arm_feature(env, ARM_FEATURE_EL3)) {
246 env->uncached_cpsr = ARM_CPU_MODE_HYP;
247 } else {
248 env->uncached_cpsr = ARM_CPU_MODE_SVC;
250 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
252 if (arm_feature(env, ARM_FEATURE_M)) {
253 uint32_t initial_msp; /* Loaded from 0x0 */
254 uint32_t initial_pc; /* Loaded from 0x4 */
255 uint8_t *rom;
256 uint32_t vecbase;
258 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
259 env->v7m.secure = true;
260 } else {
261 /* This bit resets to 0 if security is supported, but 1 if
262 * it is not. The bit is not present in v7M, but we set it
263 * here so we can avoid having to make checks on it conditional
264 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
266 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
269 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
270 * that it resets to 1, so QEMU always does that rather than making
271 * it dependent on CPU model. In v8M it is RES1.
273 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
274 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
275 if (arm_feature(env, ARM_FEATURE_V8)) {
276 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
277 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
278 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
280 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
281 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
282 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
285 if (arm_feature(env, ARM_FEATURE_VFP)) {
286 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
287 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
288 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
290 /* Unlike A/R profile, M profile defines the reset LR value */
291 env->regs[14] = 0xffffffff;
293 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
295 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
296 vecbase = env->v7m.vecbase[env->v7m.secure];
297 rom = rom_ptr(vecbase, 8);
298 if (rom) {
299 /* Address zero is covered by ROM which hasn't yet been
300 * copied into physical memory.
302 initial_msp = ldl_p(rom);
303 initial_pc = ldl_p(rom + 4);
304 } else {
305 /* Address zero not covered by a ROM blob, or the ROM blob
306 * is in non-modifiable memory and this is a second reset after
307 * it got copied into memory. In the latter case, rom_ptr
308 * will return a NULL pointer and we should use ldl_phys instead.
310 initial_msp = ldl_phys(s->as, vecbase);
311 initial_pc = ldl_phys(s->as, vecbase + 4);
314 env->regs[13] = initial_msp & 0xFFFFFFFC;
315 env->regs[15] = initial_pc & ~1;
316 env->thumb = initial_pc & 1;
319 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
320 * executing as AArch32 then check if highvecs are enabled and
321 * adjust the PC accordingly.
323 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
324 env->regs[15] = 0xFFFF0000;
327 /* M profile requires that reset clears the exclusive monitor;
328 * A profile does not, but clearing it makes more sense than having it
329 * set with an exclusive access on address zero.
331 arm_clear_exclusive(env);
333 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
334 #endif
336 if (arm_feature(env, ARM_FEATURE_PMSA)) {
337 if (cpu->pmsav7_dregion > 0) {
338 if (arm_feature(env, ARM_FEATURE_V8)) {
339 memset(env->pmsav8.rbar[M_REG_NS], 0,
340 sizeof(*env->pmsav8.rbar[M_REG_NS])
341 * cpu->pmsav7_dregion);
342 memset(env->pmsav8.rlar[M_REG_NS], 0,
343 sizeof(*env->pmsav8.rlar[M_REG_NS])
344 * cpu->pmsav7_dregion);
345 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
346 memset(env->pmsav8.rbar[M_REG_S], 0,
347 sizeof(*env->pmsav8.rbar[M_REG_S])
348 * cpu->pmsav7_dregion);
349 memset(env->pmsav8.rlar[M_REG_S], 0,
350 sizeof(*env->pmsav8.rlar[M_REG_S])
351 * cpu->pmsav7_dregion);
353 } else if (arm_feature(env, ARM_FEATURE_V7)) {
354 memset(env->pmsav7.drbar, 0,
355 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
356 memset(env->pmsav7.drsr, 0,
357 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
358 memset(env->pmsav7.dracr, 0,
359 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
362 env->pmsav7.rnr[M_REG_NS] = 0;
363 env->pmsav7.rnr[M_REG_S] = 0;
364 env->pmsav8.mair0[M_REG_NS] = 0;
365 env->pmsav8.mair0[M_REG_S] = 0;
366 env->pmsav8.mair1[M_REG_NS] = 0;
367 env->pmsav8.mair1[M_REG_S] = 0;
370 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
371 if (cpu->sau_sregion > 0) {
372 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
373 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
375 env->sau.rnr = 0;
376 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
377 * the Cortex-M33 does.
379 env->sau.ctrl = 0;
382 set_flush_to_zero(1, &env->vfp.standard_fp_status);
383 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
384 set_default_nan_mode(1, &env->vfp.standard_fp_status);
385 set_float_detect_tininess(float_tininess_before_rounding,
386 &env->vfp.fp_status);
387 set_float_detect_tininess(float_tininess_before_rounding,
388 &env->vfp.standard_fp_status);
389 set_float_detect_tininess(float_tininess_before_rounding,
390 &env->vfp.fp_status_f16);
391 #ifndef CONFIG_USER_ONLY
392 if (kvm_enabled()) {
393 kvm_arm_reset_vcpu(cpu);
395 #endif
397 hw_breakpoint_update_all(cpu);
398 hw_watchpoint_update_all(cpu);
401 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
403 CPUClass *cc = CPU_GET_CLASS(cs);
404 CPUARMState *env = cs->env_ptr;
405 uint32_t cur_el = arm_current_el(env);
406 bool secure = arm_is_secure(env);
407 uint32_t target_el;
408 uint32_t excp_idx;
409 bool ret = false;
411 if (interrupt_request & CPU_INTERRUPT_FIQ) {
412 excp_idx = EXCP_FIQ;
413 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
414 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
415 cs->exception_index = excp_idx;
416 env->exception.target_el = target_el;
417 cc->do_interrupt(cs);
418 ret = true;
421 if (interrupt_request & CPU_INTERRUPT_HARD) {
422 excp_idx = EXCP_IRQ;
423 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
424 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
425 cs->exception_index = excp_idx;
426 env->exception.target_el = target_el;
427 cc->do_interrupt(cs);
428 ret = true;
431 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
432 excp_idx = EXCP_VIRQ;
433 target_el = 1;
434 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
435 cs->exception_index = excp_idx;
436 env->exception.target_el = target_el;
437 cc->do_interrupt(cs);
438 ret = true;
441 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
442 excp_idx = EXCP_VFIQ;
443 target_el = 1;
444 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
445 cs->exception_index = excp_idx;
446 env->exception.target_el = target_el;
447 cc->do_interrupt(cs);
448 ret = true;
452 return ret;
455 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
456 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
458 CPUClass *cc = CPU_GET_CLASS(cs);
459 ARMCPU *cpu = ARM_CPU(cs);
460 CPUARMState *env = &cpu->env;
461 bool ret = false;
463 /* ARMv7-M interrupt masking works differently than -A or -R.
464 * There is no FIQ/IRQ distinction. Instead of I and F bits
465 * masking FIQ and IRQ interrupts, an exception is taken only
466 * if it is higher priority than the current execution priority
467 * (which depends on state like BASEPRI, FAULTMASK and the
468 * currently active exception).
470 if (interrupt_request & CPU_INTERRUPT_HARD
471 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
472 cs->exception_index = EXCP_IRQ;
473 cc->do_interrupt(cs);
474 ret = true;
476 return ret;
478 #endif
480 void arm_cpu_update_virq(ARMCPU *cpu)
483 * Update the interrupt level for VIRQ, which is the logical OR of
484 * the HCR_EL2.VI bit and the input line level from the GIC.
486 CPUARMState *env = &cpu->env;
487 CPUState *cs = CPU(cpu);
489 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
490 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
492 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
493 if (new_state) {
494 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
495 } else {
496 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
501 void arm_cpu_update_vfiq(ARMCPU *cpu)
504 * Update the interrupt level for VFIQ, which is the logical OR of
505 * the HCR_EL2.VF bit and the input line level from the GIC.
507 CPUARMState *env = &cpu->env;
508 CPUState *cs = CPU(cpu);
510 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
511 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
513 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
514 if (new_state) {
515 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
516 } else {
517 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
522 #ifndef CONFIG_USER_ONLY
523 static void arm_cpu_set_irq(void *opaque, int irq, int level)
525 ARMCPU *cpu = opaque;
526 CPUARMState *env = &cpu->env;
527 CPUState *cs = CPU(cpu);
528 static const int mask[] = {
529 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
530 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
531 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
532 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
535 if (level) {
536 env->irq_line_state |= mask[irq];
537 } else {
538 env->irq_line_state &= ~mask[irq];
541 switch (irq) {
542 case ARM_CPU_VIRQ:
543 assert(arm_feature(env, ARM_FEATURE_EL2));
544 arm_cpu_update_virq(cpu);
545 break;
546 case ARM_CPU_VFIQ:
547 assert(arm_feature(env, ARM_FEATURE_EL2));
548 arm_cpu_update_vfiq(cpu);
549 break;
550 case ARM_CPU_IRQ:
551 case ARM_CPU_FIQ:
552 if (level) {
553 cpu_interrupt(cs, mask[irq]);
554 } else {
555 cpu_reset_interrupt(cs, mask[irq]);
557 break;
558 default:
559 g_assert_not_reached();
563 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
565 #ifdef CONFIG_KVM
566 ARMCPU *cpu = opaque;
567 CPUARMState *env = &cpu->env;
568 CPUState *cs = CPU(cpu);
569 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
570 uint32_t linestate_bit;
572 switch (irq) {
573 case ARM_CPU_IRQ:
574 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
575 linestate_bit = CPU_INTERRUPT_HARD;
576 break;
577 case ARM_CPU_FIQ:
578 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
579 linestate_bit = CPU_INTERRUPT_FIQ;
580 break;
581 default:
582 g_assert_not_reached();
585 if (level) {
586 env->irq_line_state |= linestate_bit;
587 } else {
588 env->irq_line_state &= ~linestate_bit;
591 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
592 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
593 #endif
596 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
598 ARMCPU *cpu = ARM_CPU(cs);
599 CPUARMState *env = &cpu->env;
601 cpu_synchronize_state(cs);
602 return arm_cpu_data_is_big_endian(env);
605 #endif
607 static inline void set_feature(CPUARMState *env, int feature)
609 env->features |= 1ULL << feature;
612 static inline void unset_feature(CPUARMState *env, int feature)
614 env->features &= ~(1ULL << feature);
617 static int
618 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
620 return print_insn_arm(pc | 1, info);
623 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
625 ARMCPU *ac = ARM_CPU(cpu);
626 CPUARMState *env = &ac->env;
627 bool sctlr_b;
629 if (is_a64(env)) {
630 /* We might not be compiled with the A64 disassembler
631 * because it needs a C++ compiler. Leave print_insn
632 * unset in this case to use the caller default behaviour.
634 #if defined(CONFIG_ARM_A64_DIS)
635 info->print_insn = print_insn_arm_a64;
636 #endif
637 info->cap_arch = CS_ARCH_ARM64;
638 info->cap_insn_unit = 4;
639 info->cap_insn_split = 4;
640 } else {
641 int cap_mode;
642 if (env->thumb) {
643 info->print_insn = print_insn_thumb1;
644 info->cap_insn_unit = 2;
645 info->cap_insn_split = 4;
646 cap_mode = CS_MODE_THUMB;
647 } else {
648 info->print_insn = print_insn_arm;
649 info->cap_insn_unit = 4;
650 info->cap_insn_split = 4;
651 cap_mode = CS_MODE_ARM;
653 if (arm_feature(env, ARM_FEATURE_V8)) {
654 cap_mode |= CS_MODE_V8;
656 if (arm_feature(env, ARM_FEATURE_M)) {
657 cap_mode |= CS_MODE_MCLASS;
659 info->cap_arch = CS_ARCH_ARM;
660 info->cap_mode = cap_mode;
663 sctlr_b = arm_sctlr_b(env);
664 if (bswap_code(sctlr_b)) {
665 #ifdef TARGET_WORDS_BIGENDIAN
666 info->endian = BFD_ENDIAN_LITTLE;
667 #else
668 info->endian = BFD_ENDIAN_BIG;
669 #endif
671 info->flags &= ~INSN_ARM_BE32;
672 #ifndef CONFIG_USER_ONLY
673 if (sctlr_b) {
674 info->flags |= INSN_ARM_BE32;
676 #endif
679 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
681 uint32_t Aff1 = idx / clustersz;
682 uint32_t Aff0 = idx % clustersz;
683 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
686 static void cpreg_hashtable_data_destroy(gpointer data)
689 * Destroy function for cpu->cp_regs hashtable data entries.
690 * We must free the name string because it was g_strdup()ed in
691 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
692 * from r->name because we know we definitely allocated it.
694 ARMCPRegInfo *r = data;
696 g_free((void *)r->name);
697 g_free(r);
700 static void arm_cpu_initfn(Object *obj)
702 ARMCPU *cpu = ARM_CPU(obj);
704 cpu_set_cpustate_pointers(cpu);
705 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
706 g_free, cpreg_hashtable_data_destroy);
708 QLIST_INIT(&cpu->pre_el_change_hooks);
709 QLIST_INIT(&cpu->el_change_hooks);
711 #ifndef CONFIG_USER_ONLY
712 /* Our inbound IRQ and FIQ lines */
713 if (kvm_enabled()) {
714 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
715 * the same interface as non-KVM CPUs.
717 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
718 } else {
719 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
722 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
723 ARRAY_SIZE(cpu->gt_timer_outputs));
725 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
726 "gicv3-maintenance-interrupt", 1);
727 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
728 "pmu-interrupt", 1);
729 #endif
731 /* DTB consumers generally don't in fact care what the 'compatible'
732 * string is, so always provide some string and trust that a hypothetical
733 * picky DTB consumer will also provide a helpful error message.
735 cpu->dtb_compatible = "qemu,unknown";
736 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
737 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
739 if (tcg_enabled()) {
740 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
744 static Property arm_cpu_reset_cbar_property =
745 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
747 static Property arm_cpu_reset_hivecs_property =
748 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
750 static Property arm_cpu_rvbar_property =
751 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
753 static Property arm_cpu_has_el2_property =
754 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
756 static Property arm_cpu_has_el3_property =
757 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
759 static Property arm_cpu_cfgend_property =
760 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
762 /* use property name "pmu" to match other archs and virt tools */
763 static Property arm_cpu_has_pmu_property =
764 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
766 static Property arm_cpu_has_vfp_property =
767 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
769 static Property arm_cpu_has_neon_property =
770 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
772 static Property arm_cpu_has_mpu_property =
773 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
775 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
776 * because the CPU initfn will have already set cpu->pmsav7_dregion to
777 * the right value for that particular CPU type, and we don't want
778 * to override that with an incorrect constant value.
780 static Property arm_cpu_pmsav7_dregion_property =
781 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
782 pmsav7_dregion,
783 qdev_prop_uint32, uint32_t);
785 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
786 void *opaque, Error **errp)
788 ARMCPU *cpu = ARM_CPU(obj);
790 visit_type_uint32(v, name, &cpu->init_svtor, errp);
793 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
794 void *opaque, Error **errp)
796 ARMCPU *cpu = ARM_CPU(obj);
798 visit_type_uint32(v, name, &cpu->init_svtor, errp);
801 void arm_cpu_post_init(Object *obj)
803 ARMCPU *cpu = ARM_CPU(obj);
805 /* M profile implies PMSA. We have to do this here rather than
806 * in realize with the other feature-implication checks because
807 * we look at the PMSA bit to see if we should add some properties.
809 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
810 set_feature(&cpu->env, ARM_FEATURE_PMSA);
812 /* Similarly for the VFP feature bits */
813 if (arm_feature(&cpu->env, ARM_FEATURE_VFP4)) {
814 set_feature(&cpu->env, ARM_FEATURE_VFP3);
816 if (arm_feature(&cpu->env, ARM_FEATURE_VFP3)) {
817 set_feature(&cpu->env, ARM_FEATURE_VFP);
820 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
821 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
822 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
823 &error_abort);
826 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
827 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
828 &error_abort);
831 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
832 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
833 &error_abort);
836 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
837 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
838 * prevent "has_el3" from existing on CPUs which cannot support EL3.
840 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
841 &error_abort);
843 #ifndef CONFIG_USER_ONLY
844 object_property_add_link(obj, "secure-memory",
845 TYPE_MEMORY_REGION,
846 (Object **)&cpu->secure_memory,
847 qdev_prop_allow_set_link_before_realize,
848 OBJ_PROP_LINK_STRONG,
849 &error_abort);
850 #endif
853 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
854 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
855 &error_abort);
858 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
859 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
860 &error_abort);
864 * Allow user to turn off VFP and Neon support, but only for TCG --
865 * KVM does not currently allow us to lie to the guest about its
866 * ID/feature registers, so the guest always sees what the host has.
868 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
869 cpu->has_vfp = true;
870 if (!kvm_enabled()) {
871 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property,
872 &error_abort);
876 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
877 cpu->has_neon = true;
878 if (!kvm_enabled()) {
879 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property,
880 &error_abort);
884 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
885 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
886 &error_abort);
887 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
888 qdev_property_add_static(DEVICE(obj),
889 &arm_cpu_pmsav7_dregion_property,
890 &error_abort);
894 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
895 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
896 qdev_prop_allow_set_link_before_realize,
897 OBJ_PROP_LINK_STRONG,
898 &error_abort);
900 * M profile: initial value of the Secure VTOR. We can't just use
901 * a simple DEFINE_PROP_UINT32 for this because we want to permit
902 * the property to be set after realize.
904 object_property_add(obj, "init-svtor", "uint32",
905 arm_get_init_svtor, arm_set_init_svtor,
906 NULL, NULL, &error_abort);
909 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
910 &error_abort);
913 static void arm_cpu_finalizefn(Object *obj)
915 ARMCPU *cpu = ARM_CPU(obj);
916 ARMELChangeHook *hook, *next;
918 g_hash_table_destroy(cpu->cp_regs);
920 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
921 QLIST_REMOVE(hook, node);
922 g_free(hook);
924 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
925 QLIST_REMOVE(hook, node);
926 g_free(hook);
928 #ifndef CONFIG_USER_ONLY
929 if (cpu->pmu_timer) {
930 timer_del(cpu->pmu_timer);
931 timer_deinit(cpu->pmu_timer);
932 timer_free(cpu->pmu_timer);
934 #endif
937 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
939 CPUState *cs = CPU(dev);
940 ARMCPU *cpu = ARM_CPU(dev);
941 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
942 CPUARMState *env = &cpu->env;
943 int pagebits;
944 Error *local_err = NULL;
945 bool no_aa32 = false;
947 /* If we needed to query the host kernel for the CPU features
948 * then it's possible that might have failed in the initfn, but
949 * this is the first point where we can report it.
951 if (cpu->host_cpu_probe_failed) {
952 if (!kvm_enabled()) {
953 error_setg(errp, "The 'host' CPU type can only be used with KVM");
954 } else {
955 error_setg(errp, "Failed to retrieve host CPU features");
957 return;
960 #ifndef CONFIG_USER_ONLY
961 /* The NVIC and M-profile CPU are two halves of a single piece of
962 * hardware; trying to use one without the other is a command line
963 * error and will result in segfaults if not caught here.
965 if (arm_feature(env, ARM_FEATURE_M)) {
966 if (!env->nvic) {
967 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
968 return;
970 } else {
971 if (env->nvic) {
972 error_setg(errp, "This board can only be used with Cortex-M CPUs");
973 return;
977 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
978 arm_gt_ptimer_cb, cpu);
979 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
980 arm_gt_vtimer_cb, cpu);
981 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
982 arm_gt_htimer_cb, cpu);
983 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
984 arm_gt_stimer_cb, cpu);
985 #endif
987 cpu_exec_realizefn(cs, &local_err);
988 if (local_err != NULL) {
989 error_propagate(errp, local_err);
990 return;
993 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
994 cpu->has_vfp != cpu->has_neon) {
996 * This is an architectural requirement for AArch64; AArch32 is
997 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
999 error_setg(errp,
1000 "AArch64 CPUs must have both VFP and Neon or neither");
1001 return;
1004 if (!cpu->has_vfp) {
1005 uint64_t t;
1006 uint32_t u;
1008 unset_feature(env, ARM_FEATURE_VFP);
1009 unset_feature(env, ARM_FEATURE_VFP3);
1010 unset_feature(env, ARM_FEATURE_VFP4);
1012 t = cpu->isar.id_aa64isar1;
1013 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1014 cpu->isar.id_aa64isar1 = t;
1016 t = cpu->isar.id_aa64pfr0;
1017 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1018 cpu->isar.id_aa64pfr0 = t;
1020 u = cpu->isar.id_isar6;
1021 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1022 cpu->isar.id_isar6 = u;
1024 u = cpu->isar.mvfr0;
1025 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1026 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1027 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1028 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1029 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1030 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1031 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1032 cpu->isar.mvfr0 = u;
1034 u = cpu->isar.mvfr1;
1035 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1036 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1037 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1038 cpu->isar.mvfr1 = u;
1040 u = cpu->isar.mvfr2;
1041 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1042 cpu->isar.mvfr2 = u;
1045 if (!cpu->has_neon) {
1046 uint64_t t;
1047 uint32_t u;
1049 unset_feature(env, ARM_FEATURE_NEON);
1051 t = cpu->isar.id_aa64isar0;
1052 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1053 cpu->isar.id_aa64isar0 = t;
1055 t = cpu->isar.id_aa64isar1;
1056 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1057 cpu->isar.id_aa64isar1 = t;
1059 t = cpu->isar.id_aa64pfr0;
1060 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1061 cpu->isar.id_aa64pfr0 = t;
1063 u = cpu->isar.id_isar5;
1064 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1065 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1066 cpu->isar.id_isar5 = u;
1068 u = cpu->isar.id_isar6;
1069 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1070 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1071 cpu->isar.id_isar6 = u;
1073 u = cpu->isar.mvfr1;
1074 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1075 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1076 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1077 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1078 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1079 cpu->isar.mvfr1 = u;
1081 u = cpu->isar.mvfr2;
1082 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1083 cpu->isar.mvfr2 = u;
1086 if (!cpu->has_neon && !cpu->has_vfp) {
1087 uint64_t t;
1088 uint32_t u;
1090 t = cpu->isar.id_aa64isar0;
1091 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1092 cpu->isar.id_aa64isar0 = t;
1094 t = cpu->isar.id_aa64isar1;
1095 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1096 cpu->isar.id_aa64isar1 = t;
1098 u = cpu->isar.mvfr0;
1099 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1100 cpu->isar.mvfr0 = u;
1103 /* Some features automatically imply others: */
1104 if (arm_feature(env, ARM_FEATURE_V8)) {
1105 if (arm_feature(env, ARM_FEATURE_M)) {
1106 set_feature(env, ARM_FEATURE_V7);
1107 } else {
1108 set_feature(env, ARM_FEATURE_V7VE);
1113 * There exist AArch64 cpus without AArch32 support. When KVM
1114 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1115 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1117 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1118 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1121 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1122 /* v7 Virtualization Extensions. In real hardware this implies
1123 * EL2 and also the presence of the Security Extensions.
1124 * For QEMU, for backwards-compatibility we implement some
1125 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1126 * include the various other features that V7VE implies.
1127 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1128 * Security Extensions is ARM_FEATURE_EL3.
1130 assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
1131 set_feature(env, ARM_FEATURE_LPAE);
1132 set_feature(env, ARM_FEATURE_V7);
1134 if (arm_feature(env, ARM_FEATURE_V7)) {
1135 set_feature(env, ARM_FEATURE_VAPA);
1136 set_feature(env, ARM_FEATURE_THUMB2);
1137 set_feature(env, ARM_FEATURE_MPIDR);
1138 if (!arm_feature(env, ARM_FEATURE_M)) {
1139 set_feature(env, ARM_FEATURE_V6K);
1140 } else {
1141 set_feature(env, ARM_FEATURE_V6);
1144 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1145 * non-EL3 configs. This is needed by some legacy boards.
1147 set_feature(env, ARM_FEATURE_VBAR);
1149 if (arm_feature(env, ARM_FEATURE_V6K)) {
1150 set_feature(env, ARM_FEATURE_V6);
1151 set_feature(env, ARM_FEATURE_MVFR);
1153 if (arm_feature(env, ARM_FEATURE_V6)) {
1154 set_feature(env, ARM_FEATURE_V5);
1155 if (!arm_feature(env, ARM_FEATURE_M)) {
1156 assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
1157 set_feature(env, ARM_FEATURE_AUXCR);
1160 if (arm_feature(env, ARM_FEATURE_V5)) {
1161 set_feature(env, ARM_FEATURE_V4T);
1163 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1164 set_feature(env, ARM_FEATURE_V7MP);
1165 set_feature(env, ARM_FEATURE_PXN);
1167 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1168 set_feature(env, ARM_FEATURE_CBAR);
1170 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1171 !arm_feature(env, ARM_FEATURE_M)) {
1172 set_feature(env, ARM_FEATURE_THUMB_DSP);
1176 * We rely on no XScale CPU having VFP so we can use the same bits in the
1177 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1179 assert(!(arm_feature(env, ARM_FEATURE_VFP) &&
1180 arm_feature(env, ARM_FEATURE_XSCALE)));
1182 if (arm_feature(env, ARM_FEATURE_V7) &&
1183 !arm_feature(env, ARM_FEATURE_M) &&
1184 !arm_feature(env, ARM_FEATURE_PMSA)) {
1185 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1186 * can use 4K pages.
1188 pagebits = 12;
1189 } else {
1190 /* For CPUs which might have tiny 1K pages, or which have an
1191 * MPU and might have small region sizes, stick with 1K pages.
1193 pagebits = 10;
1195 if (!set_preferred_target_page_bits(pagebits)) {
1196 /* This can only ever happen for hotplugging a CPU, or if
1197 * the board code incorrectly creates a CPU which it has
1198 * promised via minimum_page_size that it will not.
1200 error_setg(errp, "This CPU requires a smaller page size than the "
1201 "system is using");
1202 return;
1205 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1206 * We don't support setting cluster ID ([16..23]) (known as Aff2
1207 * in later ARM ARM versions), or any of the higher affinity level fields,
1208 * so these bits always RAZ.
1210 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1211 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1212 ARM_DEFAULT_CPUS_PER_CLUSTER);
1215 if (cpu->reset_hivecs) {
1216 cpu->reset_sctlr |= (1 << 13);
1219 if (cpu->cfgend) {
1220 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1221 cpu->reset_sctlr |= SCTLR_EE;
1222 } else {
1223 cpu->reset_sctlr |= SCTLR_B;
1227 if (!cpu->has_el3) {
1228 /* If the has_el3 CPU property is disabled then we need to disable the
1229 * feature.
1231 unset_feature(env, ARM_FEATURE_EL3);
1233 /* Disable the security extension feature bits in the processor feature
1234 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1236 cpu->id_pfr1 &= ~0xf0;
1237 cpu->isar.id_aa64pfr0 &= ~0xf000;
1240 if (!cpu->has_el2) {
1241 unset_feature(env, ARM_FEATURE_EL2);
1244 if (!cpu->has_pmu) {
1245 unset_feature(env, ARM_FEATURE_PMU);
1247 if (arm_feature(env, ARM_FEATURE_PMU)) {
1248 pmu_init(cpu);
1250 if (!kvm_enabled()) {
1251 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1252 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1255 #ifndef CONFIG_USER_ONLY
1256 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1257 cpu);
1258 #endif
1259 } else {
1260 cpu->id_aa64dfr0 &= ~0xf00;
1261 cpu->id_dfr0 &= ~(0xf << 24);
1262 cpu->pmceid0 = 0;
1263 cpu->pmceid1 = 0;
1266 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1267 /* Disable the hypervisor feature bits in the processor feature
1268 * registers if we don't have EL2. These are id_pfr1[15:12] and
1269 * id_aa64pfr0_el1[11:8].
1271 cpu->isar.id_aa64pfr0 &= ~0xf00;
1272 cpu->id_pfr1 &= ~0xf000;
1275 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1276 * to false or by setting pmsav7-dregion to 0.
1278 if (!cpu->has_mpu) {
1279 cpu->pmsav7_dregion = 0;
1281 if (cpu->pmsav7_dregion == 0) {
1282 cpu->has_mpu = false;
1285 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1286 arm_feature(env, ARM_FEATURE_V7)) {
1287 uint32_t nr = cpu->pmsav7_dregion;
1289 if (nr > 0xff) {
1290 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1291 return;
1294 if (nr) {
1295 if (arm_feature(env, ARM_FEATURE_V8)) {
1296 /* PMSAv8 */
1297 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1298 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1299 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1300 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1301 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1303 } else {
1304 env->pmsav7.drbar = g_new0(uint32_t, nr);
1305 env->pmsav7.drsr = g_new0(uint32_t, nr);
1306 env->pmsav7.dracr = g_new0(uint32_t, nr);
1311 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1312 uint32_t nr = cpu->sau_sregion;
1314 if (nr > 0xff) {
1315 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1316 return;
1319 if (nr) {
1320 env->sau.rbar = g_new0(uint32_t, nr);
1321 env->sau.rlar = g_new0(uint32_t, nr);
1325 if (arm_feature(env, ARM_FEATURE_EL3)) {
1326 set_feature(env, ARM_FEATURE_VBAR);
1329 register_cp_regs_for_features(cpu);
1330 arm_cpu_register_gdb_regs_for_features(cpu);
1332 init_cpreg_list(cpu);
1334 #ifndef CONFIG_USER_ONLY
1335 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1336 cs->num_ases = 2;
1338 if (!cpu->secure_memory) {
1339 cpu->secure_memory = cs->memory;
1341 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1342 cpu->secure_memory);
1343 } else {
1344 cs->num_ases = 1;
1346 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1348 /* No core_count specified, default to smp_cpus. */
1349 if (cpu->core_count == -1) {
1350 cpu->core_count = smp_cpus;
1352 #endif
1354 qemu_init_vcpu(cs);
1355 cpu_reset(cs);
1357 acc->parent_realize(dev, errp);
1360 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1362 ObjectClass *oc;
1363 char *typename;
1364 char **cpuname;
1365 const char *cpunamestr;
1367 cpuname = g_strsplit(cpu_model, ",", 1);
1368 cpunamestr = cpuname[0];
1369 #ifdef CONFIG_USER_ONLY
1370 /* For backwards compatibility usermode emulation allows "-cpu any",
1371 * which has the same semantics as "-cpu max".
1373 if (!strcmp(cpunamestr, "any")) {
1374 cpunamestr = "max";
1376 #endif
1377 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1378 oc = object_class_by_name(typename);
1379 g_strfreev(cpuname);
1380 g_free(typename);
1381 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1382 object_class_is_abstract(oc)) {
1383 return NULL;
1385 return oc;
1388 /* CPU models. These are not needed for the AArch64 linux-user build. */
1389 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1391 static void arm926_initfn(Object *obj)
1393 ARMCPU *cpu = ARM_CPU(obj);
1395 cpu->dtb_compatible = "arm,arm926";
1396 set_feature(&cpu->env, ARM_FEATURE_V5);
1397 set_feature(&cpu->env, ARM_FEATURE_VFP);
1398 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1399 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1400 cpu->midr = 0x41069265;
1401 cpu->reset_fpsid = 0x41011090;
1402 cpu->ctr = 0x1dd20d2;
1403 cpu->reset_sctlr = 0x00090078;
1406 * ARMv5 does not have the ID_ISAR registers, but we can still
1407 * set the field to indicate Jazelle support within QEMU.
1409 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1412 static void arm946_initfn(Object *obj)
1414 ARMCPU *cpu = ARM_CPU(obj);
1416 cpu->dtb_compatible = "arm,arm946";
1417 set_feature(&cpu->env, ARM_FEATURE_V5);
1418 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1419 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1420 cpu->midr = 0x41059461;
1421 cpu->ctr = 0x0f004006;
1422 cpu->reset_sctlr = 0x00000078;
1425 static void arm1026_initfn(Object *obj)
1427 ARMCPU *cpu = ARM_CPU(obj);
1429 cpu->dtb_compatible = "arm,arm1026";
1430 set_feature(&cpu->env, ARM_FEATURE_V5);
1431 set_feature(&cpu->env, ARM_FEATURE_VFP);
1432 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1433 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1434 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1435 cpu->midr = 0x4106a262;
1436 cpu->reset_fpsid = 0x410110a0;
1437 cpu->ctr = 0x1dd20d2;
1438 cpu->reset_sctlr = 0x00090078;
1439 cpu->reset_auxcr = 1;
1442 * ARMv5 does not have the ID_ISAR registers, but we can still
1443 * set the field to indicate Jazelle support within QEMU.
1445 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1448 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1449 ARMCPRegInfo ifar = {
1450 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1451 .access = PL1_RW,
1452 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1453 .resetvalue = 0
1455 define_one_arm_cp_reg(cpu, &ifar);
1459 static void arm1136_r2_initfn(Object *obj)
1461 ARMCPU *cpu = ARM_CPU(obj);
1462 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1463 * older core than plain "arm1136". In particular this does not
1464 * have the v6K features.
1465 * These ID register values are correct for 1136 but may be wrong
1466 * for 1136_r2 (in particular r0p2 does not actually implement most
1467 * of the ID registers).
1470 cpu->dtb_compatible = "arm,arm1136";
1471 set_feature(&cpu->env, ARM_FEATURE_V6);
1472 set_feature(&cpu->env, ARM_FEATURE_VFP);
1473 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1474 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1475 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1476 cpu->midr = 0x4107b362;
1477 cpu->reset_fpsid = 0x410120b4;
1478 cpu->isar.mvfr0 = 0x11111111;
1479 cpu->isar.mvfr1 = 0x00000000;
1480 cpu->ctr = 0x1dd20d2;
1481 cpu->reset_sctlr = 0x00050078;
1482 cpu->id_pfr0 = 0x111;
1483 cpu->id_pfr1 = 0x1;
1484 cpu->id_dfr0 = 0x2;
1485 cpu->id_afr0 = 0x3;
1486 cpu->id_mmfr0 = 0x01130003;
1487 cpu->id_mmfr1 = 0x10030302;
1488 cpu->id_mmfr2 = 0x01222110;
1489 cpu->isar.id_isar0 = 0x00140011;
1490 cpu->isar.id_isar1 = 0x12002111;
1491 cpu->isar.id_isar2 = 0x11231111;
1492 cpu->isar.id_isar3 = 0x01102131;
1493 cpu->isar.id_isar4 = 0x141;
1494 cpu->reset_auxcr = 7;
1497 static void arm1136_initfn(Object *obj)
1499 ARMCPU *cpu = ARM_CPU(obj);
1501 cpu->dtb_compatible = "arm,arm1136";
1502 set_feature(&cpu->env, ARM_FEATURE_V6K);
1503 set_feature(&cpu->env, ARM_FEATURE_V6);
1504 set_feature(&cpu->env, ARM_FEATURE_VFP);
1505 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1506 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1507 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1508 cpu->midr = 0x4117b363;
1509 cpu->reset_fpsid = 0x410120b4;
1510 cpu->isar.mvfr0 = 0x11111111;
1511 cpu->isar.mvfr1 = 0x00000000;
1512 cpu->ctr = 0x1dd20d2;
1513 cpu->reset_sctlr = 0x00050078;
1514 cpu->id_pfr0 = 0x111;
1515 cpu->id_pfr1 = 0x1;
1516 cpu->id_dfr0 = 0x2;
1517 cpu->id_afr0 = 0x3;
1518 cpu->id_mmfr0 = 0x01130003;
1519 cpu->id_mmfr1 = 0x10030302;
1520 cpu->id_mmfr2 = 0x01222110;
1521 cpu->isar.id_isar0 = 0x00140011;
1522 cpu->isar.id_isar1 = 0x12002111;
1523 cpu->isar.id_isar2 = 0x11231111;
1524 cpu->isar.id_isar3 = 0x01102131;
1525 cpu->isar.id_isar4 = 0x141;
1526 cpu->reset_auxcr = 7;
1529 static void arm1176_initfn(Object *obj)
1531 ARMCPU *cpu = ARM_CPU(obj);
1533 cpu->dtb_compatible = "arm,arm1176";
1534 set_feature(&cpu->env, ARM_FEATURE_V6K);
1535 set_feature(&cpu->env, ARM_FEATURE_VFP);
1536 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1537 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1538 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1539 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1540 set_feature(&cpu->env, ARM_FEATURE_EL3);
1541 cpu->midr = 0x410fb767;
1542 cpu->reset_fpsid = 0x410120b5;
1543 cpu->isar.mvfr0 = 0x11111111;
1544 cpu->isar.mvfr1 = 0x00000000;
1545 cpu->ctr = 0x1dd20d2;
1546 cpu->reset_sctlr = 0x00050078;
1547 cpu->id_pfr0 = 0x111;
1548 cpu->id_pfr1 = 0x11;
1549 cpu->id_dfr0 = 0x33;
1550 cpu->id_afr0 = 0;
1551 cpu->id_mmfr0 = 0x01130003;
1552 cpu->id_mmfr1 = 0x10030302;
1553 cpu->id_mmfr2 = 0x01222100;
1554 cpu->isar.id_isar0 = 0x0140011;
1555 cpu->isar.id_isar1 = 0x12002111;
1556 cpu->isar.id_isar2 = 0x11231121;
1557 cpu->isar.id_isar3 = 0x01102131;
1558 cpu->isar.id_isar4 = 0x01141;
1559 cpu->reset_auxcr = 7;
1562 static void arm11mpcore_initfn(Object *obj)
1564 ARMCPU *cpu = ARM_CPU(obj);
1566 cpu->dtb_compatible = "arm,arm11mpcore";
1567 set_feature(&cpu->env, ARM_FEATURE_V6K);
1568 set_feature(&cpu->env, ARM_FEATURE_VFP);
1569 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1570 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1571 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1572 cpu->midr = 0x410fb022;
1573 cpu->reset_fpsid = 0x410120b4;
1574 cpu->isar.mvfr0 = 0x11111111;
1575 cpu->isar.mvfr1 = 0x00000000;
1576 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1577 cpu->id_pfr0 = 0x111;
1578 cpu->id_pfr1 = 0x1;
1579 cpu->id_dfr0 = 0;
1580 cpu->id_afr0 = 0x2;
1581 cpu->id_mmfr0 = 0x01100103;
1582 cpu->id_mmfr1 = 0x10020302;
1583 cpu->id_mmfr2 = 0x01222000;
1584 cpu->isar.id_isar0 = 0x00100011;
1585 cpu->isar.id_isar1 = 0x12002111;
1586 cpu->isar.id_isar2 = 0x11221011;
1587 cpu->isar.id_isar3 = 0x01102131;
1588 cpu->isar.id_isar4 = 0x141;
1589 cpu->reset_auxcr = 1;
1592 static void cortex_m0_initfn(Object *obj)
1594 ARMCPU *cpu = ARM_CPU(obj);
1595 set_feature(&cpu->env, ARM_FEATURE_V6);
1596 set_feature(&cpu->env, ARM_FEATURE_M);
1598 cpu->midr = 0x410cc200;
1601 static void cortex_m3_initfn(Object *obj)
1603 ARMCPU *cpu = ARM_CPU(obj);
1604 set_feature(&cpu->env, ARM_FEATURE_V7);
1605 set_feature(&cpu->env, ARM_FEATURE_M);
1606 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1607 cpu->midr = 0x410fc231;
1608 cpu->pmsav7_dregion = 8;
1609 cpu->id_pfr0 = 0x00000030;
1610 cpu->id_pfr1 = 0x00000200;
1611 cpu->id_dfr0 = 0x00100000;
1612 cpu->id_afr0 = 0x00000000;
1613 cpu->id_mmfr0 = 0x00000030;
1614 cpu->id_mmfr1 = 0x00000000;
1615 cpu->id_mmfr2 = 0x00000000;
1616 cpu->id_mmfr3 = 0x00000000;
1617 cpu->isar.id_isar0 = 0x01141110;
1618 cpu->isar.id_isar1 = 0x02111000;
1619 cpu->isar.id_isar2 = 0x21112231;
1620 cpu->isar.id_isar3 = 0x01111110;
1621 cpu->isar.id_isar4 = 0x01310102;
1622 cpu->isar.id_isar5 = 0x00000000;
1623 cpu->isar.id_isar6 = 0x00000000;
1626 static void cortex_m4_initfn(Object *obj)
1628 ARMCPU *cpu = ARM_CPU(obj);
1630 set_feature(&cpu->env, ARM_FEATURE_V7);
1631 set_feature(&cpu->env, ARM_FEATURE_M);
1632 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1633 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1634 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1635 cpu->midr = 0x410fc240; /* r0p0 */
1636 cpu->pmsav7_dregion = 8;
1637 cpu->isar.mvfr0 = 0x10110021;
1638 cpu->isar.mvfr1 = 0x11000011;
1639 cpu->isar.mvfr2 = 0x00000000;
1640 cpu->id_pfr0 = 0x00000030;
1641 cpu->id_pfr1 = 0x00000200;
1642 cpu->id_dfr0 = 0x00100000;
1643 cpu->id_afr0 = 0x00000000;
1644 cpu->id_mmfr0 = 0x00000030;
1645 cpu->id_mmfr1 = 0x00000000;
1646 cpu->id_mmfr2 = 0x00000000;
1647 cpu->id_mmfr3 = 0x00000000;
1648 cpu->isar.id_isar0 = 0x01141110;
1649 cpu->isar.id_isar1 = 0x02111000;
1650 cpu->isar.id_isar2 = 0x21112231;
1651 cpu->isar.id_isar3 = 0x01111110;
1652 cpu->isar.id_isar4 = 0x01310102;
1653 cpu->isar.id_isar5 = 0x00000000;
1654 cpu->isar.id_isar6 = 0x00000000;
1657 static void cortex_m33_initfn(Object *obj)
1659 ARMCPU *cpu = ARM_CPU(obj);
1661 set_feature(&cpu->env, ARM_FEATURE_V8);
1662 set_feature(&cpu->env, ARM_FEATURE_M);
1663 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1664 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1665 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1666 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1667 cpu->midr = 0x410fd213; /* r0p3 */
1668 cpu->pmsav7_dregion = 16;
1669 cpu->sau_sregion = 8;
1670 cpu->isar.mvfr0 = 0x10110021;
1671 cpu->isar.mvfr1 = 0x11000011;
1672 cpu->isar.mvfr2 = 0x00000040;
1673 cpu->id_pfr0 = 0x00000030;
1674 cpu->id_pfr1 = 0x00000210;
1675 cpu->id_dfr0 = 0x00200000;
1676 cpu->id_afr0 = 0x00000000;
1677 cpu->id_mmfr0 = 0x00101F40;
1678 cpu->id_mmfr1 = 0x00000000;
1679 cpu->id_mmfr2 = 0x01000000;
1680 cpu->id_mmfr3 = 0x00000000;
1681 cpu->isar.id_isar0 = 0x01101110;
1682 cpu->isar.id_isar1 = 0x02212000;
1683 cpu->isar.id_isar2 = 0x20232232;
1684 cpu->isar.id_isar3 = 0x01111131;
1685 cpu->isar.id_isar4 = 0x01310132;
1686 cpu->isar.id_isar5 = 0x00000000;
1687 cpu->isar.id_isar6 = 0x00000000;
1688 cpu->clidr = 0x00000000;
1689 cpu->ctr = 0x8000c000;
1692 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1694 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1695 CPUClass *cc = CPU_CLASS(oc);
1697 acc->info = data;
1698 #ifndef CONFIG_USER_ONLY
1699 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1700 #endif
1702 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1705 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1706 /* Dummy the TCM region regs for the moment */
1707 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1708 .access = PL1_RW, .type = ARM_CP_CONST },
1709 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1710 .access = PL1_RW, .type = ARM_CP_CONST },
1711 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1712 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1713 REGINFO_SENTINEL
1716 static void cortex_r5_initfn(Object *obj)
1718 ARMCPU *cpu = ARM_CPU(obj);
1720 set_feature(&cpu->env, ARM_FEATURE_V7);
1721 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1722 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1723 cpu->midr = 0x411fc153; /* r1p3 */
1724 cpu->id_pfr0 = 0x0131;
1725 cpu->id_pfr1 = 0x001;
1726 cpu->id_dfr0 = 0x010400;
1727 cpu->id_afr0 = 0x0;
1728 cpu->id_mmfr0 = 0x0210030;
1729 cpu->id_mmfr1 = 0x00000000;
1730 cpu->id_mmfr2 = 0x01200000;
1731 cpu->id_mmfr3 = 0x0211;
1732 cpu->isar.id_isar0 = 0x02101111;
1733 cpu->isar.id_isar1 = 0x13112111;
1734 cpu->isar.id_isar2 = 0x21232141;
1735 cpu->isar.id_isar3 = 0x01112131;
1736 cpu->isar.id_isar4 = 0x0010142;
1737 cpu->isar.id_isar5 = 0x0;
1738 cpu->isar.id_isar6 = 0x0;
1739 cpu->mp_is_up = true;
1740 cpu->pmsav7_dregion = 16;
1741 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1744 static void cortex_r5f_initfn(Object *obj)
1746 ARMCPU *cpu = ARM_CPU(obj);
1748 cortex_r5_initfn(obj);
1749 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1750 cpu->isar.mvfr0 = 0x10110221;
1751 cpu->isar.mvfr1 = 0x00000011;
1754 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1755 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1756 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1757 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1758 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1759 REGINFO_SENTINEL
1762 static void cortex_a8_initfn(Object *obj)
1764 ARMCPU *cpu = ARM_CPU(obj);
1766 cpu->dtb_compatible = "arm,cortex-a8";
1767 set_feature(&cpu->env, ARM_FEATURE_V7);
1768 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1769 set_feature(&cpu->env, ARM_FEATURE_NEON);
1770 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1771 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1772 set_feature(&cpu->env, ARM_FEATURE_EL3);
1773 cpu->midr = 0x410fc080;
1774 cpu->reset_fpsid = 0x410330c0;
1775 cpu->isar.mvfr0 = 0x11110222;
1776 cpu->isar.mvfr1 = 0x00011111;
1777 cpu->ctr = 0x82048004;
1778 cpu->reset_sctlr = 0x00c50078;
1779 cpu->id_pfr0 = 0x1031;
1780 cpu->id_pfr1 = 0x11;
1781 cpu->id_dfr0 = 0x400;
1782 cpu->id_afr0 = 0;
1783 cpu->id_mmfr0 = 0x31100003;
1784 cpu->id_mmfr1 = 0x20000000;
1785 cpu->id_mmfr2 = 0x01202000;
1786 cpu->id_mmfr3 = 0x11;
1787 cpu->isar.id_isar0 = 0x00101111;
1788 cpu->isar.id_isar1 = 0x12112111;
1789 cpu->isar.id_isar2 = 0x21232031;
1790 cpu->isar.id_isar3 = 0x11112131;
1791 cpu->isar.id_isar4 = 0x00111142;
1792 cpu->dbgdidr = 0x15141000;
1793 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1794 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1795 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1796 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1797 cpu->reset_auxcr = 2;
1798 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1801 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1802 /* power_control should be set to maximum latency. Again,
1803 * default to 0 and set by private hook
1805 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1806 .access = PL1_RW, .resetvalue = 0,
1807 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1808 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1809 .access = PL1_RW, .resetvalue = 0,
1810 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1811 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1812 .access = PL1_RW, .resetvalue = 0,
1813 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1814 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1815 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1816 /* TLB lockdown control */
1817 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1818 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1819 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1820 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1821 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1822 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1823 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1824 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1825 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1826 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1827 REGINFO_SENTINEL
1830 static void cortex_a9_initfn(Object *obj)
1832 ARMCPU *cpu = ARM_CPU(obj);
1834 cpu->dtb_compatible = "arm,cortex-a9";
1835 set_feature(&cpu->env, ARM_FEATURE_V7);
1836 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1837 set_feature(&cpu->env, ARM_FEATURE_NEON);
1838 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1839 set_feature(&cpu->env, ARM_FEATURE_EL3);
1840 /* Note that A9 supports the MP extensions even for
1841 * A9UP and single-core A9MP (which are both different
1842 * and valid configurations; we don't model A9UP).
1844 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1845 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1846 cpu->midr = 0x410fc090;
1847 cpu->reset_fpsid = 0x41033090;
1848 cpu->isar.mvfr0 = 0x11110222;
1849 cpu->isar.mvfr1 = 0x01111111;
1850 cpu->ctr = 0x80038003;
1851 cpu->reset_sctlr = 0x00c50078;
1852 cpu->id_pfr0 = 0x1031;
1853 cpu->id_pfr1 = 0x11;
1854 cpu->id_dfr0 = 0x000;
1855 cpu->id_afr0 = 0;
1856 cpu->id_mmfr0 = 0x00100103;
1857 cpu->id_mmfr1 = 0x20000000;
1858 cpu->id_mmfr2 = 0x01230000;
1859 cpu->id_mmfr3 = 0x00002111;
1860 cpu->isar.id_isar0 = 0x00101111;
1861 cpu->isar.id_isar1 = 0x13112111;
1862 cpu->isar.id_isar2 = 0x21232041;
1863 cpu->isar.id_isar3 = 0x11112131;
1864 cpu->isar.id_isar4 = 0x00111142;
1865 cpu->dbgdidr = 0x35141000;
1866 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1867 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1868 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1869 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1872 #ifndef CONFIG_USER_ONLY
1873 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1875 /* Linux wants the number of processors from here.
1876 * Might as well set the interrupt-controller bit too.
1878 return ((smp_cpus - 1) << 24) | (1 << 23);
1880 #endif
1882 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1883 #ifndef CONFIG_USER_ONLY
1884 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1885 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1886 .writefn = arm_cp_write_ignore, },
1887 #endif
1888 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1889 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1890 REGINFO_SENTINEL
1893 static void cortex_a7_initfn(Object *obj)
1895 ARMCPU *cpu = ARM_CPU(obj);
1897 cpu->dtb_compatible = "arm,cortex-a7";
1898 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1899 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1900 set_feature(&cpu->env, ARM_FEATURE_NEON);
1901 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1902 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1903 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1904 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1905 set_feature(&cpu->env, ARM_FEATURE_EL2);
1906 set_feature(&cpu->env, ARM_FEATURE_EL3);
1907 set_feature(&cpu->env, ARM_FEATURE_PMU);
1908 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1909 cpu->midr = 0x410fc075;
1910 cpu->reset_fpsid = 0x41023075;
1911 cpu->isar.mvfr0 = 0x10110222;
1912 cpu->isar.mvfr1 = 0x11111111;
1913 cpu->ctr = 0x84448003;
1914 cpu->reset_sctlr = 0x00c50078;
1915 cpu->id_pfr0 = 0x00001131;
1916 cpu->id_pfr1 = 0x00011011;
1917 cpu->id_dfr0 = 0x02010555;
1918 cpu->id_afr0 = 0x00000000;
1919 cpu->id_mmfr0 = 0x10101105;
1920 cpu->id_mmfr1 = 0x40000000;
1921 cpu->id_mmfr2 = 0x01240000;
1922 cpu->id_mmfr3 = 0x02102211;
1923 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1924 * table 4-41 gives 0x02101110, which includes the arm div insns.
1926 cpu->isar.id_isar0 = 0x02101110;
1927 cpu->isar.id_isar1 = 0x13112111;
1928 cpu->isar.id_isar2 = 0x21232041;
1929 cpu->isar.id_isar3 = 0x11112131;
1930 cpu->isar.id_isar4 = 0x10011142;
1931 cpu->dbgdidr = 0x3515f005;
1932 cpu->clidr = 0x0a200023;
1933 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1934 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1935 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1936 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1939 static void cortex_a15_initfn(Object *obj)
1941 ARMCPU *cpu = ARM_CPU(obj);
1943 cpu->dtb_compatible = "arm,cortex-a15";
1944 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1945 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1946 set_feature(&cpu->env, ARM_FEATURE_NEON);
1947 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1948 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1949 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1950 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1951 set_feature(&cpu->env, ARM_FEATURE_EL2);
1952 set_feature(&cpu->env, ARM_FEATURE_EL3);
1953 set_feature(&cpu->env, ARM_FEATURE_PMU);
1954 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1955 cpu->midr = 0x412fc0f1;
1956 cpu->reset_fpsid = 0x410430f0;
1957 cpu->isar.mvfr0 = 0x10110222;
1958 cpu->isar.mvfr1 = 0x11111111;
1959 cpu->ctr = 0x8444c004;
1960 cpu->reset_sctlr = 0x00c50078;
1961 cpu->id_pfr0 = 0x00001131;
1962 cpu->id_pfr1 = 0x00011011;
1963 cpu->id_dfr0 = 0x02010555;
1964 cpu->id_afr0 = 0x00000000;
1965 cpu->id_mmfr0 = 0x10201105;
1966 cpu->id_mmfr1 = 0x20000000;
1967 cpu->id_mmfr2 = 0x01240000;
1968 cpu->id_mmfr3 = 0x02102211;
1969 cpu->isar.id_isar0 = 0x02101110;
1970 cpu->isar.id_isar1 = 0x13112111;
1971 cpu->isar.id_isar2 = 0x21232041;
1972 cpu->isar.id_isar3 = 0x11112131;
1973 cpu->isar.id_isar4 = 0x10011142;
1974 cpu->dbgdidr = 0x3515f021;
1975 cpu->clidr = 0x0a200023;
1976 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1977 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1978 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1979 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1982 static void ti925t_initfn(Object *obj)
1984 ARMCPU *cpu = ARM_CPU(obj);
1985 set_feature(&cpu->env, ARM_FEATURE_V4T);
1986 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1987 cpu->midr = ARM_CPUID_TI925T;
1988 cpu->ctr = 0x5109149;
1989 cpu->reset_sctlr = 0x00000070;
1992 static void sa1100_initfn(Object *obj)
1994 ARMCPU *cpu = ARM_CPU(obj);
1996 cpu->dtb_compatible = "intel,sa1100";
1997 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1998 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1999 cpu->midr = 0x4401A11B;
2000 cpu->reset_sctlr = 0x00000070;
2003 static void sa1110_initfn(Object *obj)
2005 ARMCPU *cpu = ARM_CPU(obj);
2006 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
2007 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
2008 cpu->midr = 0x6901B119;
2009 cpu->reset_sctlr = 0x00000070;
2012 static void pxa250_initfn(Object *obj)
2014 ARMCPU *cpu = ARM_CPU(obj);
2016 cpu->dtb_compatible = "marvell,xscale";
2017 set_feature(&cpu->env, ARM_FEATURE_V5);
2018 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2019 cpu->midr = 0x69052100;
2020 cpu->ctr = 0xd172172;
2021 cpu->reset_sctlr = 0x00000078;
2024 static void pxa255_initfn(Object *obj)
2026 ARMCPU *cpu = ARM_CPU(obj);
2028 cpu->dtb_compatible = "marvell,xscale";
2029 set_feature(&cpu->env, ARM_FEATURE_V5);
2030 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2031 cpu->midr = 0x69052d00;
2032 cpu->ctr = 0xd172172;
2033 cpu->reset_sctlr = 0x00000078;
2036 static void pxa260_initfn(Object *obj)
2038 ARMCPU *cpu = ARM_CPU(obj);
2040 cpu->dtb_compatible = "marvell,xscale";
2041 set_feature(&cpu->env, ARM_FEATURE_V5);
2042 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2043 cpu->midr = 0x69052903;
2044 cpu->ctr = 0xd172172;
2045 cpu->reset_sctlr = 0x00000078;
2048 static void pxa261_initfn(Object *obj)
2050 ARMCPU *cpu = ARM_CPU(obj);
2052 cpu->dtb_compatible = "marvell,xscale";
2053 set_feature(&cpu->env, ARM_FEATURE_V5);
2054 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2055 cpu->midr = 0x69052d05;
2056 cpu->ctr = 0xd172172;
2057 cpu->reset_sctlr = 0x00000078;
2060 static void pxa262_initfn(Object *obj)
2062 ARMCPU *cpu = ARM_CPU(obj);
2064 cpu->dtb_compatible = "marvell,xscale";
2065 set_feature(&cpu->env, ARM_FEATURE_V5);
2066 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2067 cpu->midr = 0x69052d06;
2068 cpu->ctr = 0xd172172;
2069 cpu->reset_sctlr = 0x00000078;
2072 static void pxa270a0_initfn(Object *obj)
2074 ARMCPU *cpu = ARM_CPU(obj);
2076 cpu->dtb_compatible = "marvell,xscale";
2077 set_feature(&cpu->env, ARM_FEATURE_V5);
2078 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2079 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2080 cpu->midr = 0x69054110;
2081 cpu->ctr = 0xd172172;
2082 cpu->reset_sctlr = 0x00000078;
2085 static void pxa270a1_initfn(Object *obj)
2087 ARMCPU *cpu = ARM_CPU(obj);
2089 cpu->dtb_compatible = "marvell,xscale";
2090 set_feature(&cpu->env, ARM_FEATURE_V5);
2091 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2092 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2093 cpu->midr = 0x69054111;
2094 cpu->ctr = 0xd172172;
2095 cpu->reset_sctlr = 0x00000078;
2098 static void pxa270b0_initfn(Object *obj)
2100 ARMCPU *cpu = ARM_CPU(obj);
2102 cpu->dtb_compatible = "marvell,xscale";
2103 set_feature(&cpu->env, ARM_FEATURE_V5);
2104 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2105 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2106 cpu->midr = 0x69054112;
2107 cpu->ctr = 0xd172172;
2108 cpu->reset_sctlr = 0x00000078;
2111 static void pxa270b1_initfn(Object *obj)
2113 ARMCPU *cpu = ARM_CPU(obj);
2115 cpu->dtb_compatible = "marvell,xscale";
2116 set_feature(&cpu->env, ARM_FEATURE_V5);
2117 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2118 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2119 cpu->midr = 0x69054113;
2120 cpu->ctr = 0xd172172;
2121 cpu->reset_sctlr = 0x00000078;
2124 static void pxa270c0_initfn(Object *obj)
2126 ARMCPU *cpu = ARM_CPU(obj);
2128 cpu->dtb_compatible = "marvell,xscale";
2129 set_feature(&cpu->env, ARM_FEATURE_V5);
2130 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2131 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2132 cpu->midr = 0x69054114;
2133 cpu->ctr = 0xd172172;
2134 cpu->reset_sctlr = 0x00000078;
2137 static void pxa270c5_initfn(Object *obj)
2139 ARMCPU *cpu = ARM_CPU(obj);
2141 cpu->dtb_compatible = "marvell,xscale";
2142 set_feature(&cpu->env, ARM_FEATURE_V5);
2143 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
2144 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
2145 cpu->midr = 0x69054117;
2146 cpu->ctr = 0xd172172;
2147 cpu->reset_sctlr = 0x00000078;
2150 #ifndef TARGET_AARCH64
2151 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
2152 * otherwise, a CPU with as many features enabled as our emulation supports.
2153 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
2154 * this only needs to handle 32 bits.
2156 static void arm_max_initfn(Object *obj)
2158 ARMCPU *cpu = ARM_CPU(obj);
2160 if (kvm_enabled()) {
2161 kvm_arm_set_cpu_features_from_host(cpu);
2162 } else {
2163 cortex_a15_initfn(obj);
2165 /* old-style VFP short-vector support */
2166 cpu->isar.mvfr0 = FIELD_DP32(cpu->isar.mvfr0, MVFR0, FPSHVEC, 1);
2168 #ifdef CONFIG_USER_ONLY
2169 /* We don't set these in system emulation mode for the moment,
2170 * since we don't correctly set (all of) the ID registers to
2171 * advertise them.
2173 set_feature(&cpu->env, ARM_FEATURE_V8);
2175 uint32_t t;
2177 t = cpu->isar.id_isar5;
2178 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2179 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2180 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2181 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2182 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2183 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2184 cpu->isar.id_isar5 = t;
2186 t = cpu->isar.id_isar6;
2187 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2188 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2189 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2190 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2191 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2192 cpu->isar.id_isar6 = t;
2194 t = cpu->isar.mvfr2;
2195 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2196 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2197 cpu->isar.mvfr2 = t;
2199 t = cpu->id_mmfr4;
2200 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2201 cpu->id_mmfr4 = t;
2203 #endif
2206 #endif
2208 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2210 struct ARMCPUInfo {
2211 const char *name;
2212 void (*initfn)(Object *obj);
2213 void (*class_init)(ObjectClass *oc, void *data);
2216 static const ARMCPUInfo arm_cpus[] = {
2217 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2218 { .name = "arm926", .initfn = arm926_initfn },
2219 { .name = "arm946", .initfn = arm946_initfn },
2220 { .name = "arm1026", .initfn = arm1026_initfn },
2221 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2222 * older core than plain "arm1136". In particular this does not
2223 * have the v6K features.
2225 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
2226 { .name = "arm1136", .initfn = arm1136_initfn },
2227 { .name = "arm1176", .initfn = arm1176_initfn },
2228 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2229 { .name = "cortex-m0", .initfn = cortex_m0_initfn,
2230 .class_init = arm_v7m_class_init },
2231 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
2232 .class_init = arm_v7m_class_init },
2233 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
2234 .class_init = arm_v7m_class_init },
2235 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
2236 .class_init = arm_v7m_class_init },
2237 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
2238 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
2239 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2240 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2241 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2242 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2243 { .name = "ti925t", .initfn = ti925t_initfn },
2244 { .name = "sa1100", .initfn = sa1100_initfn },
2245 { .name = "sa1110", .initfn = sa1110_initfn },
2246 { .name = "pxa250", .initfn = pxa250_initfn },
2247 { .name = "pxa255", .initfn = pxa255_initfn },
2248 { .name = "pxa260", .initfn = pxa260_initfn },
2249 { .name = "pxa261", .initfn = pxa261_initfn },
2250 { .name = "pxa262", .initfn = pxa262_initfn },
2251 /* "pxa270" is an alias for "pxa270-a0" */
2252 { .name = "pxa270", .initfn = pxa270a0_initfn },
2253 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
2254 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
2255 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
2256 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
2257 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
2258 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
2259 #ifndef TARGET_AARCH64
2260 { .name = "max", .initfn = arm_max_initfn },
2261 #endif
2262 #ifdef CONFIG_USER_ONLY
2263 { .name = "any", .initfn = arm_max_initfn },
2264 #endif
2265 #endif
2266 { .name = NULL }
2269 static Property arm_cpu_properties[] = {
2270 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2271 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2272 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2273 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2274 mp_affinity, ARM64_AFFINITY_INVALID),
2275 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2276 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2277 DEFINE_PROP_END_OF_LIST()
2280 static gchar *arm_gdb_arch_name(CPUState *cs)
2282 ARMCPU *cpu = ARM_CPU(cs);
2283 CPUARMState *env = &cpu->env;
2285 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2286 return g_strdup("iwmmxt");
2288 return g_strdup("arm");
2291 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2293 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2294 CPUClass *cc = CPU_CLASS(acc);
2295 DeviceClass *dc = DEVICE_CLASS(oc);
2297 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2298 &acc->parent_realize);
2299 dc->props = arm_cpu_properties;
2301 acc->parent_reset = cc->reset;
2302 cc->reset = arm_cpu_reset;
2304 cc->class_by_name = arm_cpu_class_by_name;
2305 cc->has_work = arm_cpu_has_work;
2306 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2307 cc->dump_state = arm_cpu_dump_state;
2308 cc->set_pc = arm_cpu_set_pc;
2309 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2310 cc->gdb_read_register = arm_cpu_gdb_read_register;
2311 cc->gdb_write_register = arm_cpu_gdb_write_register;
2312 #ifndef CONFIG_USER_ONLY
2313 cc->do_interrupt = arm_cpu_do_interrupt;
2314 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2315 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2316 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2317 cc->asidx_from_attrs = arm_asidx_from_attrs;
2318 cc->vmsd = &vmstate_arm_cpu;
2319 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2320 cc->write_elf64_note = arm_cpu_write_elf64_note;
2321 cc->write_elf32_note = arm_cpu_write_elf32_note;
2322 #endif
2323 cc->gdb_num_core_regs = 26;
2324 cc->gdb_core_xml_file = "arm-core.xml";
2325 cc->gdb_arch_name = arm_gdb_arch_name;
2326 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2327 cc->gdb_stop_before_watchpoint = true;
2328 cc->debug_excp_handler = arm_debug_excp_handler;
2329 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2330 #if !defined(CONFIG_USER_ONLY)
2331 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2332 #endif
2334 cc->disas_set_info = arm_disas_set_info;
2335 #ifdef CONFIG_TCG
2336 cc->tcg_initialize = arm_translate_init;
2337 cc->tlb_fill = arm_cpu_tlb_fill;
2338 #endif
2341 #ifdef CONFIG_KVM
2342 static void arm_host_initfn(Object *obj)
2344 ARMCPU *cpu = ARM_CPU(obj);
2346 kvm_arm_set_cpu_features_from_host(cpu);
2347 arm_cpu_post_init(obj);
2350 static const TypeInfo host_arm_cpu_type_info = {
2351 .name = TYPE_ARM_HOST_CPU,
2352 #ifdef TARGET_AARCH64
2353 .parent = TYPE_AARCH64_CPU,
2354 #else
2355 .parent = TYPE_ARM_CPU,
2356 #endif
2357 .instance_init = arm_host_initfn,
2360 #endif
2362 static void arm_cpu_instance_init(Object *obj)
2364 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2366 acc->info->initfn(obj);
2367 arm_cpu_post_init(obj);
2370 static void cpu_register_class_init(ObjectClass *oc, void *data)
2372 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2374 acc->info = data;
2377 static void cpu_register(const ARMCPUInfo *info)
2379 TypeInfo type_info = {
2380 .parent = TYPE_ARM_CPU,
2381 .instance_size = sizeof(ARMCPU),
2382 .instance_init = arm_cpu_instance_init,
2383 .class_size = sizeof(ARMCPUClass),
2384 .class_init = info->class_init ?: cpu_register_class_init,
2385 .class_data = (void *)info,
2388 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2389 type_register(&type_info);
2390 g_free((void *)type_info.name);
2393 static const TypeInfo arm_cpu_type_info = {
2394 .name = TYPE_ARM_CPU,
2395 .parent = TYPE_CPU,
2396 .instance_size = sizeof(ARMCPU),
2397 .instance_init = arm_cpu_initfn,
2398 .instance_finalize = arm_cpu_finalizefn,
2399 .abstract = true,
2400 .class_size = sizeof(ARMCPUClass),
2401 .class_init = arm_cpu_class_init,
2404 static const TypeInfo idau_interface_type_info = {
2405 .name = TYPE_IDAU_INTERFACE,
2406 .parent = TYPE_INTERFACE,
2407 .class_size = sizeof(IDAUInterfaceClass),
2410 static void arm_cpu_register_types(void)
2412 const ARMCPUInfo *info = arm_cpus;
2414 type_register_static(&arm_cpu_type_info);
2415 type_register_static(&idau_interface_type_info);
2417 while (info->name) {
2418 cpu_register(info);
2419 info++;
2422 #ifdef CONFIG_KVM
2423 type_register_static(&host_arm_cpu_type_info);
2424 #endif
2427 type_init(arm_cpu_register_types)