ppc/kvm: Skip writing DPDES back when in run time state
[qemu/ar7.git] / target / ppc / kvm.c
blob820724cc7d15121a023008ae0c186e701146f4f4
1 /*
2 * PowerPC implementation of KVM hooks
4 * Copyright IBM Corp. 2007
5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
17 #include "qemu/osdep.h"
18 #include <dirent.h>
19 #include <sys/ioctl.h>
20 #include <sys/vfs.h>
22 #include <linux/kvm.h>
24 #include "qemu-common.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "cpu.h"
28 #include "cpu-models.h"
29 #include "qemu/timer.h"
30 #include "sysemu/hw_accel.h"
31 #include "kvm_ppc.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/device_tree.h"
34 #include "mmu-hash64.h"
36 #include "hw/sysbus.h"
37 #include "hw/ppc/spapr.h"
38 #include "hw/ppc/spapr_cpu_core.h"
39 #include "hw/hw.h"
40 #include "hw/ppc/ppc.h"
41 #include "migration/qemu-file-types.h"
42 #include "sysemu/watchdog.h"
43 #include "trace.h"
44 #include "exec/gdbstub.h"
45 #include "exec/memattrs.h"
46 #include "exec/ram_addr.h"
47 #include "sysemu/hostmem.h"
48 #include "qemu/cutils.h"
49 #include "qemu/main-loop.h"
50 #include "qemu/mmap-alloc.h"
51 #include "elf.h"
52 #include "sysemu/kvm_int.h"
54 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_LAST_INFO
60 static int cap_interrupt_unset;
61 static int cap_segstate;
62 static int cap_booke_sregs;
63 static int cap_ppc_smt;
64 static int cap_ppc_smt_possible;
65 static int cap_spapr_tce;
66 static int cap_spapr_tce_64;
67 static int cap_spapr_multitce;
68 static int cap_spapr_vfio;
69 static int cap_hior;
70 static int cap_one_reg;
71 static int cap_epr;
72 static int cap_ppc_watchdog;
73 static int cap_papr;
74 static int cap_htab_fd;
75 static int cap_fixup_hcalls;
76 static int cap_htm; /* Hardware transactional memory support */
77 static int cap_mmu_radix;
78 static int cap_mmu_hash_v3;
79 static int cap_xive;
80 static int cap_resize_hpt;
81 static int cap_ppc_pvr_compat;
82 static int cap_ppc_safe_cache;
83 static int cap_ppc_safe_bounds_check;
84 static int cap_ppc_safe_indirect_branch;
85 static int cap_ppc_count_cache_flush_assist;
86 static int cap_ppc_nested_kvm_hv;
87 static int cap_large_decr;
89 static uint32_t debug_inst_opcode;
92 * Check whether we are running with KVM-PR (instead of KVM-HV). This
93 * should only be used for fallback tests - generally we should use
94 * explicit capabilities for the features we want, rather than
95 * assuming what is/isn't available depending on the KVM variant.
97 static bool kvmppc_is_pr(KVMState *ks)
99 /* Assume KVM-PR if the GET_PVINFO capability is available */
100 return kvm_vm_check_extension(ks, KVM_CAP_PPC_GET_PVINFO) != 0;
103 static int kvm_ppc_register_host_cpu_type(MachineState *ms);
104 static void kvmppc_get_cpu_characteristics(KVMState *s);
105 static int kvmppc_get_dec_bits(void);
107 int kvm_arch_init(MachineState *ms, KVMState *s)
109 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
110 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
111 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
112 cap_ppc_smt_possible = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT_POSSIBLE);
113 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
114 cap_spapr_tce_64 = kvm_check_extension(s, KVM_CAP_SPAPR_TCE_64);
115 cap_spapr_multitce = kvm_check_extension(s, KVM_CAP_SPAPR_MULTITCE);
116 cap_spapr_vfio = kvm_vm_check_extension(s, KVM_CAP_SPAPR_TCE_VFIO);
117 cap_one_reg = kvm_check_extension(s, KVM_CAP_ONE_REG);
118 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
119 cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
120 cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
122 * Note: we don't set cap_papr here, because this capability is
123 * only activated after this by kvmppc_set_papr()
125 cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
126 cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
127 cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
128 cap_htm = kvm_vm_check_extension(s, KVM_CAP_PPC_HTM);
129 cap_mmu_radix = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_RADIX);
130 cap_mmu_hash_v3 = kvm_vm_check_extension(s, KVM_CAP_PPC_MMU_HASH_V3);
131 cap_xive = kvm_vm_check_extension(s, KVM_CAP_PPC_IRQ_XIVE);
132 cap_resize_hpt = kvm_vm_check_extension(s, KVM_CAP_SPAPR_RESIZE_HPT);
133 kvmppc_get_cpu_characteristics(s);
134 cap_ppc_nested_kvm_hv = kvm_vm_check_extension(s, KVM_CAP_PPC_NESTED_HV);
135 cap_large_decr = kvmppc_get_dec_bits();
137 * Note: setting it to false because there is not such capability
138 * in KVM at this moment.
140 * TODO: call kvm_vm_check_extension() with the right capability
141 * after the kernel starts implementing it.
143 cap_ppc_pvr_compat = false;
145 if (!kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL)) {
146 error_report("KVM: Host kernel doesn't have level irq capability");
147 exit(1);
150 kvm_ppc_register_host_cpu_type(ms);
152 return 0;
155 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
157 return 0;
160 static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
162 CPUPPCState *cenv = &cpu->env;
163 CPUState *cs = CPU(cpu);
164 struct kvm_sregs sregs;
165 int ret;
167 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
169 * What we're really trying to say is "if we're on BookE, we
170 * use the native PVR for now". This is the only sane way to
171 * check it though, so we potentially confuse users that they
172 * can run BookE guests on BookS. Let's hope nobody dares
173 * enough :)
175 return 0;
176 } else {
177 if (!cap_segstate) {
178 fprintf(stderr, "kvm error: missing PVR setting capability\n");
179 return -ENOSYS;
183 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
184 if (ret) {
185 return ret;
188 sregs.pvr = cenv->spr[SPR_PVR];
189 return kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
192 /* Set up a shared TLB array with KVM */
193 static int kvm_booke206_tlb_init(PowerPCCPU *cpu)
195 CPUPPCState *env = &cpu->env;
196 CPUState *cs = CPU(cpu);
197 struct kvm_book3e_206_tlb_params params = {};
198 struct kvm_config_tlb cfg = {};
199 unsigned int entries = 0;
200 int ret, i;
202 if (!kvm_enabled() ||
203 !kvm_check_extension(cs->kvm_state, KVM_CAP_SW_TLB)) {
204 return 0;
207 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
209 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
210 params.tlb_sizes[i] = booke206_tlb_size(env, i);
211 params.tlb_ways[i] = booke206_tlb_ways(env, i);
212 entries += params.tlb_sizes[i];
215 assert(entries == env->nb_tlb);
216 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
218 env->tlb_dirty = true;
220 cfg.array = (uintptr_t)env->tlb.tlbm;
221 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
222 cfg.params = (uintptr_t)&params;
223 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
225 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_SW_TLB, 0, (uintptr_t)&cfg);
226 if (ret < 0) {
227 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
228 __func__, strerror(-ret));
229 return ret;
232 env->kvm_sw_tlb = true;
233 return 0;
237 #if defined(TARGET_PPC64)
238 static void kvm_get_smmu_info(struct kvm_ppc_smmu_info *info, Error **errp)
240 int ret;
242 assert(kvm_state != NULL);
244 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
245 error_setg(errp, "KVM doesn't expose the MMU features it supports");
246 error_append_hint(errp, "Consider switching to a newer KVM\n");
247 return;
250 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_SMMU_INFO, info);
251 if (ret == 0) {
252 return;
255 error_setg_errno(errp, -ret,
256 "KVM failed to provide the MMU features it supports");
259 struct ppc_radix_page_info *kvm_get_radix_page_info(void)
261 KVMState *s = KVM_STATE(current_machine->accelerator);
262 struct ppc_radix_page_info *radix_page_info;
263 struct kvm_ppc_rmmu_info rmmu_info;
264 int i;
266 if (!kvm_check_extension(s, KVM_CAP_PPC_MMU_RADIX)) {
267 return NULL;
269 if (kvm_vm_ioctl(s, KVM_PPC_GET_RMMU_INFO, &rmmu_info)) {
270 return NULL;
272 radix_page_info = g_malloc0(sizeof(*radix_page_info));
273 radix_page_info->count = 0;
274 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
275 if (rmmu_info.ap_encodings[i]) {
276 radix_page_info->entries[i] = rmmu_info.ap_encodings[i];
277 radix_page_info->count++;
280 return radix_page_info;
283 target_ulong kvmppc_configure_v3_mmu(PowerPCCPU *cpu,
284 bool radix, bool gtse,
285 uint64_t proc_tbl)
287 CPUState *cs = CPU(cpu);
288 int ret;
289 uint64_t flags = 0;
290 struct kvm_ppc_mmuv3_cfg cfg = {
291 .process_table = proc_tbl,
294 if (radix) {
295 flags |= KVM_PPC_MMUV3_RADIX;
297 if (gtse) {
298 flags |= KVM_PPC_MMUV3_GTSE;
300 cfg.flags = flags;
301 ret = kvm_vm_ioctl(cs->kvm_state, KVM_PPC_CONFIGURE_V3_MMU, &cfg);
302 switch (ret) {
303 case 0:
304 return H_SUCCESS;
305 case -EINVAL:
306 return H_PARAMETER;
307 case -ENODEV:
308 return H_NOT_AVAILABLE;
309 default:
310 return H_HARDWARE;
314 bool kvmppc_hpt_needs_host_contiguous_pages(void)
316 static struct kvm_ppc_smmu_info smmu_info;
318 if (!kvm_enabled()) {
319 return false;
322 kvm_get_smmu_info(&smmu_info, &error_fatal);
323 return !!(smmu_info.flags & KVM_PPC_PAGE_SIZES_REAL);
326 void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
328 struct kvm_ppc_smmu_info smmu_info;
329 int iq, ik, jq, jk;
330 Error *local_err = NULL;
332 /* For now, we only have anything to check on hash64 MMUs */
333 if (!cpu->hash64_opts || !kvm_enabled()) {
334 return;
337 kvm_get_smmu_info(&smmu_info, &local_err);
338 if (local_err) {
339 error_propagate(errp, local_err);
340 return;
343 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)
344 && !(smmu_info.flags & KVM_PPC_1T_SEGMENTS)) {
345 error_setg(errp,
346 "KVM does not support 1TiB segments which guest expects");
347 return;
350 if (smmu_info.slb_size < cpu->hash64_opts->slb_size) {
351 error_setg(errp, "KVM only supports %u SLB entries, but guest needs %u",
352 smmu_info.slb_size, cpu->hash64_opts->slb_size);
353 return;
357 * Verify that every pagesize supported by the cpu model is
358 * supported by KVM with the same encodings
360 for (iq = 0; iq < ARRAY_SIZE(cpu->hash64_opts->sps); iq++) {
361 PPCHash64SegmentPageSizes *qsps = &cpu->hash64_opts->sps[iq];
362 struct kvm_ppc_one_seg_page_size *ksps;
364 for (ik = 0; ik < ARRAY_SIZE(smmu_info.sps); ik++) {
365 if (qsps->page_shift == smmu_info.sps[ik].page_shift) {
366 break;
369 if (ik >= ARRAY_SIZE(smmu_info.sps)) {
370 error_setg(errp, "KVM doesn't support for base page shift %u",
371 qsps->page_shift);
372 return;
375 ksps = &smmu_info.sps[ik];
376 if (ksps->slb_enc != qsps->slb_enc) {
377 error_setg(errp,
378 "KVM uses SLB encoding 0x%x for page shift %u, but guest expects 0x%x",
379 ksps->slb_enc, ksps->page_shift, qsps->slb_enc);
380 return;
383 for (jq = 0; jq < ARRAY_SIZE(qsps->enc); jq++) {
384 for (jk = 0; jk < ARRAY_SIZE(ksps->enc); jk++) {
385 if (qsps->enc[jq].page_shift == ksps->enc[jk].page_shift) {
386 break;
390 if (jk >= ARRAY_SIZE(ksps->enc)) {
391 error_setg(errp, "KVM doesn't support page shift %u/%u",
392 qsps->enc[jq].page_shift, qsps->page_shift);
393 return;
395 if (qsps->enc[jq].pte_enc != ksps->enc[jk].pte_enc) {
396 error_setg(errp,
397 "KVM uses PTE encoding 0x%x for page shift %u/%u, but guest expects 0x%x",
398 ksps->enc[jk].pte_enc, qsps->enc[jq].page_shift,
399 qsps->page_shift, qsps->enc[jq].pte_enc);
400 return;
405 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
407 * Mostly what guest pagesizes we can use are related to the
408 * host pages used to map guest RAM, which is handled in the
409 * platform code. Cache-Inhibited largepages (64k) however are
410 * used for I/O, so if they're mapped to the host at all it
411 * will be a normal mapping, not a special hugepage one used
412 * for RAM.
414 if (getpagesize() < 0x10000) {
415 error_setg(errp,
416 "KVM can't supply 64kiB CI pages, which guest expects");
420 #endif /* !defined (TARGET_PPC64) */
422 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
424 return POWERPC_CPU(cpu)->vcpu_id;
428 * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports
429 * only 1 watchpoint, so array size of 4 is sufficient for now.
431 #define MAX_HW_BKPTS 4
433 static struct HWBreakpoint {
434 target_ulong addr;
435 int type;
436 } hw_debug_points[MAX_HW_BKPTS];
438 static CPUWatchpoint hw_watchpoint;
440 /* Default there is no breakpoint and watchpoint supported */
441 static int max_hw_breakpoint;
442 static int max_hw_watchpoint;
443 static int nb_hw_breakpoint;
444 static int nb_hw_watchpoint;
446 static void kvmppc_hw_debug_points_init(CPUPPCState *cenv)
448 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
449 max_hw_breakpoint = 2;
450 max_hw_watchpoint = 2;
453 if ((max_hw_breakpoint + max_hw_watchpoint) > MAX_HW_BKPTS) {
454 fprintf(stderr, "Error initializing h/w breakpoints\n");
455 return;
459 int kvm_arch_init_vcpu(CPUState *cs)
461 PowerPCCPU *cpu = POWERPC_CPU(cs);
462 CPUPPCState *cenv = &cpu->env;
463 int ret;
465 /* Synchronize sregs with kvm */
466 ret = kvm_arch_sync_sregs(cpu);
467 if (ret) {
468 if (ret == -EINVAL) {
469 error_report("Register sync failed... If you're using kvm-hv.ko,"
470 " only \"-cpu host\" is possible");
472 return ret;
475 switch (cenv->mmu_model) {
476 case POWERPC_MMU_BOOKE206:
477 /* This target supports access to KVM's guest TLB */
478 ret = kvm_booke206_tlb_init(cpu);
479 break;
480 case POWERPC_MMU_2_07:
481 if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
483 * KVM-HV has transactional memory on POWER8 also without
484 * the KVM_CAP_PPC_HTM extension, so enable it here
485 * instead as long as it's availble to userspace on the
486 * host.
488 if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
489 cap_htm = true;
492 break;
493 default:
494 break;
497 kvm_get_one_reg(cs, KVM_REG_PPC_DEBUG_INST, &debug_inst_opcode);
498 kvmppc_hw_debug_points_init(cenv);
500 return ret;
503 int kvm_arch_destroy_vcpu(CPUState *cs)
505 return 0;
508 static void kvm_sw_tlb_put(PowerPCCPU *cpu)
510 CPUPPCState *env = &cpu->env;
511 CPUState *cs = CPU(cpu);
512 struct kvm_dirty_tlb dirty_tlb;
513 unsigned char *bitmap;
514 int ret;
516 if (!env->kvm_sw_tlb) {
517 return;
520 bitmap = g_malloc((env->nb_tlb + 7) / 8);
521 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
523 dirty_tlb.bitmap = (uintptr_t)bitmap;
524 dirty_tlb.num_dirty = env->nb_tlb;
526 ret = kvm_vcpu_ioctl(cs, KVM_DIRTY_TLB, &dirty_tlb);
527 if (ret) {
528 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
529 __func__, strerror(-ret));
532 g_free(bitmap);
535 static void kvm_get_one_spr(CPUState *cs, uint64_t id, int spr)
537 PowerPCCPU *cpu = POWERPC_CPU(cs);
538 CPUPPCState *env = &cpu->env;
539 union {
540 uint32_t u32;
541 uint64_t u64;
542 } val;
543 struct kvm_one_reg reg = {
544 .id = id,
545 .addr = (uintptr_t) &val,
547 int ret;
549 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
550 if (ret != 0) {
551 trace_kvm_failed_spr_get(spr, strerror(errno));
552 } else {
553 switch (id & KVM_REG_SIZE_MASK) {
554 case KVM_REG_SIZE_U32:
555 env->spr[spr] = val.u32;
556 break;
558 case KVM_REG_SIZE_U64:
559 env->spr[spr] = val.u64;
560 break;
562 default:
563 /* Don't handle this size yet */
564 abort();
569 static void kvm_put_one_spr(CPUState *cs, uint64_t id, int spr)
571 PowerPCCPU *cpu = POWERPC_CPU(cs);
572 CPUPPCState *env = &cpu->env;
573 union {
574 uint32_t u32;
575 uint64_t u64;
576 } val;
577 struct kvm_one_reg reg = {
578 .id = id,
579 .addr = (uintptr_t) &val,
581 int ret;
583 switch (id & KVM_REG_SIZE_MASK) {
584 case KVM_REG_SIZE_U32:
585 val.u32 = env->spr[spr];
586 break;
588 case KVM_REG_SIZE_U64:
589 val.u64 = env->spr[spr];
590 break;
592 default:
593 /* Don't handle this size yet */
594 abort();
597 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
598 if (ret != 0) {
599 trace_kvm_failed_spr_set(spr, strerror(errno));
603 static int kvm_put_fp(CPUState *cs)
605 PowerPCCPU *cpu = POWERPC_CPU(cs);
606 CPUPPCState *env = &cpu->env;
607 struct kvm_one_reg reg;
608 int i;
609 int ret;
611 if (env->insns_flags & PPC_FLOAT) {
612 uint64_t fpscr = env->fpscr;
613 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
615 reg.id = KVM_REG_PPC_FPSCR;
616 reg.addr = (uintptr_t)&fpscr;
617 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
618 if (ret < 0) {
619 trace_kvm_failed_fpscr_set(strerror(errno));
620 return ret;
623 for (i = 0; i < 32; i++) {
624 uint64_t vsr[2];
625 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
626 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
628 #ifdef HOST_WORDS_BIGENDIAN
629 vsr[0] = float64_val(*fpr);
630 vsr[1] = *vsrl;
631 #else
632 vsr[0] = *vsrl;
633 vsr[1] = float64_val(*fpr);
634 #endif
635 reg.addr = (uintptr_t) &vsr;
636 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
638 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
639 if (ret < 0) {
640 trace_kvm_failed_fp_set(vsx ? "VSR" : "FPR", i,
641 strerror(errno));
642 return ret;
647 if (env->insns_flags & PPC_ALTIVEC) {
648 reg.id = KVM_REG_PPC_VSCR;
649 reg.addr = (uintptr_t)&env->vscr;
650 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
651 if (ret < 0) {
652 trace_kvm_failed_vscr_set(strerror(errno));
653 return ret;
656 for (i = 0; i < 32; i++) {
657 reg.id = KVM_REG_PPC_VR(i);
658 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
659 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
660 if (ret < 0) {
661 trace_kvm_failed_vr_set(i, strerror(errno));
662 return ret;
667 return 0;
670 static int kvm_get_fp(CPUState *cs)
672 PowerPCCPU *cpu = POWERPC_CPU(cs);
673 CPUPPCState *env = &cpu->env;
674 struct kvm_one_reg reg;
675 int i;
676 int ret;
678 if (env->insns_flags & PPC_FLOAT) {
679 uint64_t fpscr;
680 bool vsx = !!(env->insns_flags2 & PPC2_VSX);
682 reg.id = KVM_REG_PPC_FPSCR;
683 reg.addr = (uintptr_t)&fpscr;
684 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
685 if (ret < 0) {
686 trace_kvm_failed_fpscr_get(strerror(errno));
687 return ret;
688 } else {
689 env->fpscr = fpscr;
692 for (i = 0; i < 32; i++) {
693 uint64_t vsr[2];
694 uint64_t *fpr = cpu_fpr_ptr(&cpu->env, i);
695 uint64_t *vsrl = cpu_vsrl_ptr(&cpu->env, i);
697 reg.addr = (uintptr_t) &vsr;
698 reg.id = vsx ? KVM_REG_PPC_VSR(i) : KVM_REG_PPC_FPR(i);
700 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
701 if (ret < 0) {
702 trace_kvm_failed_fp_get(vsx ? "VSR" : "FPR", i,
703 strerror(errno));
704 return ret;
705 } else {
706 #ifdef HOST_WORDS_BIGENDIAN
707 *fpr = vsr[0];
708 if (vsx) {
709 *vsrl = vsr[1];
711 #else
712 *fpr = vsr[1];
713 if (vsx) {
714 *vsrl = vsr[0];
716 #endif
721 if (env->insns_flags & PPC_ALTIVEC) {
722 reg.id = KVM_REG_PPC_VSCR;
723 reg.addr = (uintptr_t)&env->vscr;
724 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
725 if (ret < 0) {
726 trace_kvm_failed_vscr_get(strerror(errno));
727 return ret;
730 for (i = 0; i < 32; i++) {
731 reg.id = KVM_REG_PPC_VR(i);
732 reg.addr = (uintptr_t)cpu_avr_ptr(env, i);
733 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
734 if (ret < 0) {
735 trace_kvm_failed_vr_get(i, strerror(errno));
736 return ret;
741 return 0;
744 #if defined(TARGET_PPC64)
745 static int kvm_get_vpa(CPUState *cs)
747 PowerPCCPU *cpu = POWERPC_CPU(cs);
748 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
749 struct kvm_one_reg reg;
750 int ret;
752 reg.id = KVM_REG_PPC_VPA_ADDR;
753 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
754 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
755 if (ret < 0) {
756 trace_kvm_failed_vpa_addr_get(strerror(errno));
757 return ret;
760 assert((uintptr_t)&spapr_cpu->slb_shadow_size
761 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
762 reg.id = KVM_REG_PPC_VPA_SLB;
763 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
764 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
765 if (ret < 0) {
766 trace_kvm_failed_slb_get(strerror(errno));
767 return ret;
770 assert((uintptr_t)&spapr_cpu->dtl_size
771 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
772 reg.id = KVM_REG_PPC_VPA_DTL;
773 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
774 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
775 if (ret < 0) {
776 trace_kvm_failed_dtl_get(strerror(errno));
777 return ret;
780 return 0;
783 static int kvm_put_vpa(CPUState *cs)
785 PowerPCCPU *cpu = POWERPC_CPU(cs);
786 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
787 struct kvm_one_reg reg;
788 int ret;
791 * SLB shadow or DTL can't be registered unless a master VPA is
792 * registered. That means when restoring state, if a VPA *is*
793 * registered, we need to set that up first. If not, we need to
794 * deregister the others before deregistering the master VPA
796 assert(spapr_cpu->vpa_addr
797 || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
799 if (spapr_cpu->vpa_addr) {
800 reg.id = KVM_REG_PPC_VPA_ADDR;
801 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
802 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
803 if (ret < 0) {
804 trace_kvm_failed_vpa_addr_set(strerror(errno));
805 return ret;
809 assert((uintptr_t)&spapr_cpu->slb_shadow_size
810 == ((uintptr_t)&spapr_cpu->slb_shadow_addr + 8));
811 reg.id = KVM_REG_PPC_VPA_SLB;
812 reg.addr = (uintptr_t)&spapr_cpu->slb_shadow_addr;
813 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
814 if (ret < 0) {
815 trace_kvm_failed_slb_set(strerror(errno));
816 return ret;
819 assert((uintptr_t)&spapr_cpu->dtl_size
820 == ((uintptr_t)&spapr_cpu->dtl_addr + 8));
821 reg.id = KVM_REG_PPC_VPA_DTL;
822 reg.addr = (uintptr_t)&spapr_cpu->dtl_addr;
823 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
824 if (ret < 0) {
825 trace_kvm_failed_dtl_set(strerror(errno));
826 return ret;
829 if (!spapr_cpu->vpa_addr) {
830 reg.id = KVM_REG_PPC_VPA_ADDR;
831 reg.addr = (uintptr_t)&spapr_cpu->vpa_addr;
832 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
833 if (ret < 0) {
834 trace_kvm_failed_null_vpa_addr_set(strerror(errno));
835 return ret;
839 return 0;
841 #endif /* TARGET_PPC64 */
843 int kvmppc_put_books_sregs(PowerPCCPU *cpu)
845 CPUPPCState *env = &cpu->env;
846 struct kvm_sregs sregs;
847 int i;
849 sregs.pvr = env->spr[SPR_PVR];
851 if (cpu->vhyp) {
852 PPCVirtualHypervisorClass *vhc =
853 PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
854 sregs.u.s.sdr1 = vhc->encode_hpt_for_kvm_pr(cpu->vhyp);
855 } else {
856 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
859 /* Sync SLB */
860 #ifdef TARGET_PPC64
861 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
862 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
863 if (env->slb[i].esid & SLB_ESID_V) {
864 sregs.u.s.ppc64.slb[i].slbe |= i;
866 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
868 #endif
870 /* Sync SRs */
871 for (i = 0; i < 16; i++) {
872 sregs.u.s.ppc32.sr[i] = env->sr[i];
875 /* Sync BATs */
876 for (i = 0; i < 8; i++) {
877 /* Beware. We have to swap upper and lower bits here */
878 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
879 | env->DBAT[1][i];
880 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
881 | env->IBAT[1][i];
884 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
887 int kvm_arch_put_registers(CPUState *cs, int level)
889 PowerPCCPU *cpu = POWERPC_CPU(cs);
890 CPUPPCState *env = &cpu->env;
891 struct kvm_regs regs;
892 int ret;
893 int i;
895 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
896 if (ret < 0) {
897 return ret;
900 regs.ctr = env->ctr;
901 regs.lr = env->lr;
902 regs.xer = cpu_read_xer(env);
903 regs.msr = env->msr;
904 regs.pc = env->nip;
906 regs.srr0 = env->spr[SPR_SRR0];
907 regs.srr1 = env->spr[SPR_SRR1];
909 regs.sprg0 = env->spr[SPR_SPRG0];
910 regs.sprg1 = env->spr[SPR_SPRG1];
911 regs.sprg2 = env->spr[SPR_SPRG2];
912 regs.sprg3 = env->spr[SPR_SPRG3];
913 regs.sprg4 = env->spr[SPR_SPRG4];
914 regs.sprg5 = env->spr[SPR_SPRG5];
915 regs.sprg6 = env->spr[SPR_SPRG6];
916 regs.sprg7 = env->spr[SPR_SPRG7];
918 regs.pid = env->spr[SPR_BOOKE_PID];
920 for (i = 0; i < 32; i++) {
921 regs.gpr[i] = env->gpr[i];
924 regs.cr = 0;
925 for (i = 0; i < 8; i++) {
926 regs.cr |= (env->crf[i] & 15) << (4 * (7 - i));
929 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
930 if (ret < 0) {
931 return ret;
934 kvm_put_fp(cs);
936 if (env->tlb_dirty) {
937 kvm_sw_tlb_put(cpu);
938 env->tlb_dirty = false;
941 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
942 ret = kvmppc_put_books_sregs(cpu);
943 if (ret < 0) {
944 return ret;
948 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
949 kvm_put_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
952 if (cap_one_reg) {
953 int i;
956 * We deliberately ignore errors here, for kernels which have
957 * the ONE_REG calls, but don't support the specific
958 * registers, there's a reasonable chance things will still
959 * work, at least until we try to migrate.
961 for (i = 0; i < 1024; i++) {
962 uint64_t id = env->spr_cb[i].one_reg_id;
964 if (id != 0) {
965 kvm_put_one_spr(cs, id, i);
969 #ifdef TARGET_PPC64
970 if (msr_ts) {
971 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
972 kvm_set_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
974 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
975 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
977 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
978 kvm_set_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
979 kvm_set_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
980 kvm_set_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
981 kvm_set_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
982 kvm_set_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
983 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
984 kvm_set_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
985 kvm_set_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
986 kvm_set_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
989 if (cap_papr) {
990 if (kvm_put_vpa(cs) < 0) {
991 trace_kvm_failed_put_vpa();
995 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
997 if (level > KVM_PUT_RUNTIME_STATE) {
998 kvm_put_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1000 #endif /* TARGET_PPC64 */
1003 return ret;
1006 static void kvm_sync_excp(CPUPPCState *env, int vector, int ivor)
1008 env->excp_vectors[vector] = env->spr[ivor] + env->spr[SPR_BOOKE_IVPR];
1011 static int kvmppc_get_booke_sregs(PowerPCCPU *cpu)
1013 CPUPPCState *env = &cpu->env;
1014 struct kvm_sregs sregs;
1015 int ret;
1017 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1018 if (ret < 0) {
1019 return ret;
1022 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
1023 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
1024 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
1025 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
1026 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
1027 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
1028 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
1029 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
1030 env->spr[SPR_DECR] = sregs.u.e.dec;
1031 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
1032 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
1033 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
1036 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
1037 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
1038 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
1039 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
1040 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
1041 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
1044 if (sregs.u.e.features & KVM_SREGS_E_64) {
1045 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
1048 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
1049 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
1052 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
1053 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
1054 kvm_sync_excp(env, POWERPC_EXCP_CRITICAL, SPR_BOOKE_IVOR0);
1055 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
1056 kvm_sync_excp(env, POWERPC_EXCP_MCHECK, SPR_BOOKE_IVOR1);
1057 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
1058 kvm_sync_excp(env, POWERPC_EXCP_DSI, SPR_BOOKE_IVOR2);
1059 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
1060 kvm_sync_excp(env, POWERPC_EXCP_ISI, SPR_BOOKE_IVOR3);
1061 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
1062 kvm_sync_excp(env, POWERPC_EXCP_EXTERNAL, SPR_BOOKE_IVOR4);
1063 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
1064 kvm_sync_excp(env, POWERPC_EXCP_ALIGN, SPR_BOOKE_IVOR5);
1065 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
1066 kvm_sync_excp(env, POWERPC_EXCP_PROGRAM, SPR_BOOKE_IVOR6);
1067 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
1068 kvm_sync_excp(env, POWERPC_EXCP_FPU, SPR_BOOKE_IVOR7);
1069 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
1070 kvm_sync_excp(env, POWERPC_EXCP_SYSCALL, SPR_BOOKE_IVOR8);
1071 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
1072 kvm_sync_excp(env, POWERPC_EXCP_APU, SPR_BOOKE_IVOR9);
1073 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
1074 kvm_sync_excp(env, POWERPC_EXCP_DECR, SPR_BOOKE_IVOR10);
1075 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
1076 kvm_sync_excp(env, POWERPC_EXCP_FIT, SPR_BOOKE_IVOR11);
1077 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
1078 kvm_sync_excp(env, POWERPC_EXCP_WDT, SPR_BOOKE_IVOR12);
1079 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
1080 kvm_sync_excp(env, POWERPC_EXCP_DTLB, SPR_BOOKE_IVOR13);
1081 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
1082 kvm_sync_excp(env, POWERPC_EXCP_ITLB, SPR_BOOKE_IVOR14);
1083 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
1084 kvm_sync_excp(env, POWERPC_EXCP_DEBUG, SPR_BOOKE_IVOR15);
1086 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
1087 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
1088 kvm_sync_excp(env, POWERPC_EXCP_SPEU, SPR_BOOKE_IVOR32);
1089 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
1090 kvm_sync_excp(env, POWERPC_EXCP_EFPDI, SPR_BOOKE_IVOR33);
1091 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
1092 kvm_sync_excp(env, POWERPC_EXCP_EFPRI, SPR_BOOKE_IVOR34);
1095 if (sregs.u.e.features & KVM_SREGS_E_PM) {
1096 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
1097 kvm_sync_excp(env, POWERPC_EXCP_EPERFM, SPR_BOOKE_IVOR35);
1100 if (sregs.u.e.features & KVM_SREGS_E_PC) {
1101 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
1102 kvm_sync_excp(env, POWERPC_EXCP_DOORI, SPR_BOOKE_IVOR36);
1103 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
1104 kvm_sync_excp(env, POWERPC_EXCP_DOORCI, SPR_BOOKE_IVOR37);
1108 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
1109 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
1110 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
1111 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
1112 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
1113 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
1114 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
1115 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
1116 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
1117 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
1118 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
1121 if (sregs.u.e.features & KVM_SREGS_EXP) {
1122 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
1125 if (sregs.u.e.features & KVM_SREGS_E_PD) {
1126 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
1127 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
1130 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
1131 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
1132 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
1133 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
1135 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
1136 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
1137 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
1141 return 0;
1144 static int kvmppc_get_books_sregs(PowerPCCPU *cpu)
1146 CPUPPCState *env = &cpu->env;
1147 struct kvm_sregs sregs;
1148 int ret;
1149 int i;
1151 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1152 if (ret < 0) {
1153 return ret;
1156 if (!cpu->vhyp) {
1157 ppc_store_sdr1(env, sregs.u.s.sdr1);
1160 /* Sync SLB */
1161 #ifdef TARGET_PPC64
1163 * The packed SLB array we get from KVM_GET_SREGS only contains
1164 * information about valid entries. So we flush our internal copy
1165 * to get rid of stale ones, then put all valid SLB entries back
1166 * in.
1168 memset(env->slb, 0, sizeof(env->slb));
1169 for (i = 0; i < ARRAY_SIZE(env->slb); i++) {
1170 target_ulong rb = sregs.u.s.ppc64.slb[i].slbe;
1171 target_ulong rs = sregs.u.s.ppc64.slb[i].slbv;
1173 * Only restore valid entries
1175 if (rb & SLB_ESID_V) {
1176 ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs);
1179 #endif
1181 /* Sync SRs */
1182 for (i = 0; i < 16; i++) {
1183 env->sr[i] = sregs.u.s.ppc32.sr[i];
1186 /* Sync BATs */
1187 for (i = 0; i < 8; i++) {
1188 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
1189 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
1190 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
1191 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
1194 return 0;
1197 int kvm_arch_get_registers(CPUState *cs)
1199 PowerPCCPU *cpu = POWERPC_CPU(cs);
1200 CPUPPCState *env = &cpu->env;
1201 struct kvm_regs regs;
1202 uint32_t cr;
1203 int i, ret;
1205 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
1206 if (ret < 0) {
1207 return ret;
1210 cr = regs.cr;
1211 for (i = 7; i >= 0; i--) {
1212 env->crf[i] = cr & 15;
1213 cr >>= 4;
1216 env->ctr = regs.ctr;
1217 env->lr = regs.lr;
1218 cpu_write_xer(env, regs.xer);
1219 env->msr = regs.msr;
1220 env->nip = regs.pc;
1222 env->spr[SPR_SRR0] = regs.srr0;
1223 env->spr[SPR_SRR1] = regs.srr1;
1225 env->spr[SPR_SPRG0] = regs.sprg0;
1226 env->spr[SPR_SPRG1] = regs.sprg1;
1227 env->spr[SPR_SPRG2] = regs.sprg2;
1228 env->spr[SPR_SPRG3] = regs.sprg3;
1229 env->spr[SPR_SPRG4] = regs.sprg4;
1230 env->spr[SPR_SPRG5] = regs.sprg5;
1231 env->spr[SPR_SPRG6] = regs.sprg6;
1232 env->spr[SPR_SPRG7] = regs.sprg7;
1234 env->spr[SPR_BOOKE_PID] = regs.pid;
1236 for (i = 0; i < 32; i++) {
1237 env->gpr[i] = regs.gpr[i];
1240 kvm_get_fp(cs);
1242 if (cap_booke_sregs) {
1243 ret = kvmppc_get_booke_sregs(cpu);
1244 if (ret < 0) {
1245 return ret;
1249 if (cap_segstate) {
1250 ret = kvmppc_get_books_sregs(cpu);
1251 if (ret < 0) {
1252 return ret;
1256 if (cap_hior) {
1257 kvm_get_one_spr(cs, KVM_REG_PPC_HIOR, SPR_HIOR);
1260 if (cap_one_reg) {
1261 int i;
1264 * We deliberately ignore errors here, for kernels which have
1265 * the ONE_REG calls, but don't support the specific
1266 * registers, there's a reasonable chance things will still
1267 * work, at least until we try to migrate.
1269 for (i = 0; i < 1024; i++) {
1270 uint64_t id = env->spr_cb[i].one_reg_id;
1272 if (id != 0) {
1273 kvm_get_one_spr(cs, id, i);
1277 #ifdef TARGET_PPC64
1278 if (msr_ts) {
1279 for (i = 0; i < ARRAY_SIZE(env->tm_gpr); i++) {
1280 kvm_get_one_reg(cs, KVM_REG_PPC_TM_GPR(i), &env->tm_gpr[i]);
1282 for (i = 0; i < ARRAY_SIZE(env->tm_vsr); i++) {
1283 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSR(i), &env->tm_vsr[i]);
1285 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CR, &env->tm_cr);
1286 kvm_get_one_reg(cs, KVM_REG_PPC_TM_LR, &env->tm_lr);
1287 kvm_get_one_reg(cs, KVM_REG_PPC_TM_CTR, &env->tm_ctr);
1288 kvm_get_one_reg(cs, KVM_REG_PPC_TM_FPSCR, &env->tm_fpscr);
1289 kvm_get_one_reg(cs, KVM_REG_PPC_TM_AMR, &env->tm_amr);
1290 kvm_get_one_reg(cs, KVM_REG_PPC_TM_PPR, &env->tm_ppr);
1291 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VRSAVE, &env->tm_vrsave);
1292 kvm_get_one_reg(cs, KVM_REG_PPC_TM_VSCR, &env->tm_vscr);
1293 kvm_get_one_reg(cs, KVM_REG_PPC_TM_DSCR, &env->tm_dscr);
1294 kvm_get_one_reg(cs, KVM_REG_PPC_TM_TAR, &env->tm_tar);
1297 if (cap_papr) {
1298 if (kvm_get_vpa(cs) < 0) {
1299 trace_kvm_failed_get_vpa();
1303 kvm_get_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &env->tb_env->tb_offset);
1304 kvm_get_one_spr(cs, KVM_REG_PPC_DPDES, SPR_DPDES);
1305 #endif
1308 return 0;
1311 int kvmppc_set_interrupt(PowerPCCPU *cpu, int irq, int level)
1313 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
1315 if (irq != PPC_INTERRUPT_EXT) {
1316 return 0;
1319 if (!kvm_enabled() || !cap_interrupt_unset) {
1320 return 0;
1323 kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1325 return 0;
1328 #if defined(TARGET_PPC64)
1329 #define PPC_INPUT_INT PPC970_INPUT_INT
1330 #else
1331 #define PPC_INPUT_INT PPC6xx_INPUT_INT
1332 #endif
1334 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1336 return;
1339 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1341 return MEMTXATTRS_UNSPECIFIED;
1344 int kvm_arch_process_async_events(CPUState *cs)
1346 return cs->halted;
1349 static int kvmppc_handle_halt(PowerPCCPU *cpu)
1351 CPUState *cs = CPU(cpu);
1352 CPUPPCState *env = &cpu->env;
1354 if (!(cs->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
1355 cs->halted = 1;
1356 cs->exception_index = EXCP_HLT;
1359 return 0;
1362 /* map dcr access to existing qemu dcr emulation */
1363 static int kvmppc_handle_dcr_read(CPUPPCState *env,
1364 uint32_t dcrn, uint32_t *data)
1366 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
1367 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
1370 return 0;
1373 static int kvmppc_handle_dcr_write(CPUPPCState *env,
1374 uint32_t dcrn, uint32_t data)
1376 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
1377 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
1380 return 0;
1383 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1385 /* Mixed endian case is not handled */
1386 uint32_t sc = debug_inst_opcode;
1388 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1389 sizeof(sc), 0) ||
1390 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 1)) {
1391 return -EINVAL;
1394 return 0;
1397 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1399 uint32_t sc;
1401 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&sc, sizeof(sc), 0) ||
1402 sc != debug_inst_opcode ||
1403 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
1404 sizeof(sc), 1)) {
1405 return -EINVAL;
1408 return 0;
1411 static int find_hw_breakpoint(target_ulong addr, int type)
1413 int n;
1415 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1416 <= ARRAY_SIZE(hw_debug_points));
1418 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1419 if (hw_debug_points[n].addr == addr &&
1420 hw_debug_points[n].type == type) {
1421 return n;
1425 return -1;
1428 static int find_hw_watchpoint(target_ulong addr, int *flag)
1430 int n;
1432 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_ACCESS);
1433 if (n >= 0) {
1434 *flag = BP_MEM_ACCESS;
1435 return n;
1438 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_WRITE);
1439 if (n >= 0) {
1440 *flag = BP_MEM_WRITE;
1441 return n;
1444 n = find_hw_breakpoint(addr, GDB_WATCHPOINT_READ);
1445 if (n >= 0) {
1446 *flag = BP_MEM_READ;
1447 return n;
1450 return -1;
1453 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1454 target_ulong len, int type)
1456 if ((nb_hw_breakpoint + nb_hw_watchpoint) >= ARRAY_SIZE(hw_debug_points)) {
1457 return -ENOBUFS;
1460 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].addr = addr;
1461 hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint].type = type;
1463 switch (type) {
1464 case GDB_BREAKPOINT_HW:
1465 if (nb_hw_breakpoint >= max_hw_breakpoint) {
1466 return -ENOBUFS;
1469 if (find_hw_breakpoint(addr, type) >= 0) {
1470 return -EEXIST;
1473 nb_hw_breakpoint++;
1474 break;
1476 case GDB_WATCHPOINT_WRITE:
1477 case GDB_WATCHPOINT_READ:
1478 case GDB_WATCHPOINT_ACCESS:
1479 if (nb_hw_watchpoint >= max_hw_watchpoint) {
1480 return -ENOBUFS;
1483 if (find_hw_breakpoint(addr, type) >= 0) {
1484 return -EEXIST;
1487 nb_hw_watchpoint++;
1488 break;
1490 default:
1491 return -ENOSYS;
1494 return 0;
1497 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1498 target_ulong len, int type)
1500 int n;
1502 n = find_hw_breakpoint(addr, type);
1503 if (n < 0) {
1504 return -ENOENT;
1507 switch (type) {
1508 case GDB_BREAKPOINT_HW:
1509 nb_hw_breakpoint--;
1510 break;
1512 case GDB_WATCHPOINT_WRITE:
1513 case GDB_WATCHPOINT_READ:
1514 case GDB_WATCHPOINT_ACCESS:
1515 nb_hw_watchpoint--;
1516 break;
1518 default:
1519 return -ENOSYS;
1521 hw_debug_points[n] = hw_debug_points[nb_hw_breakpoint + nb_hw_watchpoint];
1523 return 0;
1526 void kvm_arch_remove_all_hw_breakpoints(void)
1528 nb_hw_breakpoint = nb_hw_watchpoint = 0;
1531 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1533 int n;
1535 /* Software Breakpoint updates */
1536 if (kvm_sw_breakpoints_active(cs)) {
1537 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1540 assert((nb_hw_breakpoint + nb_hw_watchpoint)
1541 <= ARRAY_SIZE(hw_debug_points));
1542 assert((nb_hw_breakpoint + nb_hw_watchpoint) <= ARRAY_SIZE(dbg->arch.bp));
1544 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1545 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1546 memset(dbg->arch.bp, 0, sizeof(dbg->arch.bp));
1547 for (n = 0; n < nb_hw_breakpoint + nb_hw_watchpoint; n++) {
1548 switch (hw_debug_points[n].type) {
1549 case GDB_BREAKPOINT_HW:
1550 dbg->arch.bp[n].type = KVMPPC_DEBUG_BREAKPOINT;
1551 break;
1552 case GDB_WATCHPOINT_WRITE:
1553 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE;
1554 break;
1555 case GDB_WATCHPOINT_READ:
1556 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_READ;
1557 break;
1558 case GDB_WATCHPOINT_ACCESS:
1559 dbg->arch.bp[n].type = KVMPPC_DEBUG_WATCH_WRITE |
1560 KVMPPC_DEBUG_WATCH_READ;
1561 break;
1562 default:
1563 cpu_abort(cs, "Unsupported breakpoint type\n");
1565 dbg->arch.bp[n].addr = hw_debug_points[n].addr;
1570 static int kvm_handle_hw_breakpoint(CPUState *cs,
1571 struct kvm_debug_exit_arch *arch_info)
1573 int handle = 0;
1574 int n;
1575 int flag = 0;
1577 if (nb_hw_breakpoint + nb_hw_watchpoint > 0) {
1578 if (arch_info->status & KVMPPC_DEBUG_BREAKPOINT) {
1579 n = find_hw_breakpoint(arch_info->address, GDB_BREAKPOINT_HW);
1580 if (n >= 0) {
1581 handle = 1;
1583 } else if (arch_info->status & (KVMPPC_DEBUG_WATCH_READ |
1584 KVMPPC_DEBUG_WATCH_WRITE)) {
1585 n = find_hw_watchpoint(arch_info->address, &flag);
1586 if (n >= 0) {
1587 handle = 1;
1588 cs->watchpoint_hit = &hw_watchpoint;
1589 hw_watchpoint.vaddr = hw_debug_points[n].addr;
1590 hw_watchpoint.flags = flag;
1594 return handle;
1597 static int kvm_handle_singlestep(void)
1599 return 1;
1602 static int kvm_handle_sw_breakpoint(void)
1604 return 1;
1607 static int kvm_handle_debug(PowerPCCPU *cpu, struct kvm_run *run)
1609 CPUState *cs = CPU(cpu);
1610 CPUPPCState *env = &cpu->env;
1611 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1613 if (cs->singlestep_enabled) {
1614 return kvm_handle_singlestep();
1617 if (arch_info->status) {
1618 return kvm_handle_hw_breakpoint(cs, arch_info);
1621 if (kvm_find_sw_breakpoint(cs, arch_info->address)) {
1622 return kvm_handle_sw_breakpoint();
1626 * QEMU is not able to handle debug exception, so inject
1627 * program exception to guest;
1628 * Yes program exception NOT debug exception !!
1629 * When QEMU is using debug resources then debug exception must
1630 * be always set. To achieve this we set MSR_DE and also set
1631 * MSRP_DEP so guest cannot change MSR_DE.
1632 * When emulating debug resource for guest we want guest
1633 * to control MSR_DE (enable/disable debug interrupt on need).
1634 * Supporting both configurations are NOT possible.
1635 * So the result is that we cannot share debug resources
1636 * between QEMU and Guest on BOOKE architecture.
1637 * In the current design QEMU gets the priority over guest,
1638 * this means that if QEMU is using debug resources then guest
1639 * cannot use them;
1640 * For software breakpoint QEMU uses a privileged instruction;
1641 * So there cannot be any reason that we are here for guest
1642 * set debug exception, only possibility is guest executed a
1643 * privileged / illegal instruction and that's why we are
1644 * injecting a program interrupt.
1646 cpu_synchronize_state(cs);
1648 * env->nip is PC, so increment this by 4 to use
1649 * ppc_cpu_do_interrupt(), which set srr0 = env->nip - 4.
1651 env->nip += 4;
1652 cs->exception_index = POWERPC_EXCP_PROGRAM;
1653 env->error_code = POWERPC_EXCP_INVAL;
1654 ppc_cpu_do_interrupt(cs);
1656 return 0;
1659 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1661 PowerPCCPU *cpu = POWERPC_CPU(cs);
1662 CPUPPCState *env = &cpu->env;
1663 int ret;
1665 qemu_mutex_lock_iothread();
1667 switch (run->exit_reason) {
1668 case KVM_EXIT_DCR:
1669 if (run->dcr.is_write) {
1670 trace_kvm_handle_dcr_write();
1671 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
1672 } else {
1673 trace_kvm_handle_dcr_read();
1674 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
1676 break;
1677 case KVM_EXIT_HLT:
1678 trace_kvm_handle_halt();
1679 ret = kvmppc_handle_halt(cpu);
1680 break;
1681 #if defined(TARGET_PPC64)
1682 case KVM_EXIT_PAPR_HCALL:
1683 trace_kvm_handle_papr_hcall();
1684 run->papr_hcall.ret = spapr_hypercall(cpu,
1685 run->papr_hcall.nr,
1686 run->papr_hcall.args);
1687 ret = 0;
1688 break;
1689 #endif
1690 case KVM_EXIT_EPR:
1691 trace_kvm_handle_epr();
1692 run->epr.epr = ldl_phys(cs->as, env->mpic_iack);
1693 ret = 0;
1694 break;
1695 case KVM_EXIT_WATCHDOG:
1696 trace_kvm_handle_watchdog_expiry();
1697 watchdog_perform_action();
1698 ret = 0;
1699 break;
1701 case KVM_EXIT_DEBUG:
1702 trace_kvm_handle_debug_exception();
1703 if (kvm_handle_debug(cpu, run)) {
1704 ret = EXCP_DEBUG;
1705 break;
1707 /* re-enter, this exception was guest-internal */
1708 ret = 0;
1709 break;
1711 default:
1712 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1713 ret = -1;
1714 break;
1717 qemu_mutex_unlock_iothread();
1718 return ret;
1721 int kvmppc_or_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1723 CPUState *cs = CPU(cpu);
1724 uint32_t bits = tsr_bits;
1725 struct kvm_one_reg reg = {
1726 .id = KVM_REG_PPC_OR_TSR,
1727 .addr = (uintptr_t) &bits,
1730 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1733 int kvmppc_clear_tsr_bits(PowerPCCPU *cpu, uint32_t tsr_bits)
1736 CPUState *cs = CPU(cpu);
1737 uint32_t bits = tsr_bits;
1738 struct kvm_one_reg reg = {
1739 .id = KVM_REG_PPC_CLEAR_TSR,
1740 .addr = (uintptr_t) &bits,
1743 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1746 int kvmppc_set_tcr(PowerPCCPU *cpu)
1748 CPUState *cs = CPU(cpu);
1749 CPUPPCState *env = &cpu->env;
1750 uint32_t tcr = env->spr[SPR_BOOKE_TCR];
1752 struct kvm_one_reg reg = {
1753 .id = KVM_REG_PPC_TCR,
1754 .addr = (uintptr_t) &tcr,
1757 return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
1760 int kvmppc_booke_watchdog_enable(PowerPCCPU *cpu)
1762 CPUState *cs = CPU(cpu);
1763 int ret;
1765 if (!kvm_enabled()) {
1766 return -1;
1769 if (!cap_ppc_watchdog) {
1770 printf("warning: KVM does not support watchdog");
1771 return -1;
1774 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_BOOKE_WATCHDOG, 0);
1775 if (ret < 0) {
1776 fprintf(stderr, "%s: couldn't enable KVM_CAP_PPC_BOOKE_WATCHDOG: %s\n",
1777 __func__, strerror(-ret));
1778 return ret;
1781 return ret;
1784 static int read_cpuinfo(const char *field, char *value, int len)
1786 FILE *f;
1787 int ret = -1;
1788 int field_len = strlen(field);
1789 char line[512];
1791 f = fopen("/proc/cpuinfo", "r");
1792 if (!f) {
1793 return -1;
1796 do {
1797 if (!fgets(line, sizeof(line), f)) {
1798 break;
1800 if (!strncmp(line, field, field_len)) {
1801 pstrcpy(value, len, line);
1802 ret = 0;
1803 break;
1805 } while (*line);
1807 fclose(f);
1809 return ret;
1812 uint32_t kvmppc_get_tbfreq(void)
1814 char line[512];
1815 char *ns;
1816 uint32_t retval = NANOSECONDS_PER_SECOND;
1818 if (read_cpuinfo("timebase", line, sizeof(line))) {
1819 return retval;
1822 ns = strchr(line, ':');
1823 if (!ns) {
1824 return retval;
1827 ns++;
1829 return atoi(ns);
1832 bool kvmppc_get_host_serial(char **value)
1834 return g_file_get_contents("/proc/device-tree/system-id", value, NULL,
1835 NULL);
1838 bool kvmppc_get_host_model(char **value)
1840 return g_file_get_contents("/proc/device-tree/model", value, NULL, NULL);
1843 /* Try to find a device tree node for a CPU with clock-frequency property */
1844 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
1846 struct dirent *dirp;
1847 DIR *dp;
1849 dp = opendir(PROC_DEVTREE_CPU);
1850 if (!dp) {
1851 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
1852 return -1;
1855 buf[0] = '\0';
1856 while ((dirp = readdir(dp)) != NULL) {
1857 FILE *f;
1858 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
1859 dirp->d_name);
1860 f = fopen(buf, "r");
1861 if (f) {
1862 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
1863 fclose(f);
1864 break;
1866 buf[0] = '\0';
1868 closedir(dp);
1869 if (buf[0] == '\0') {
1870 printf("Unknown host!\n");
1871 return -1;
1874 return 0;
1877 static uint64_t kvmppc_read_int_dt(const char *filename)
1879 union {
1880 uint32_t v32;
1881 uint64_t v64;
1882 } u;
1883 FILE *f;
1884 int len;
1886 f = fopen(filename, "rb");
1887 if (!f) {
1888 return -1;
1891 len = fread(&u, 1, sizeof(u), f);
1892 fclose(f);
1893 switch (len) {
1894 case 4:
1895 /* property is a 32-bit quantity */
1896 return be32_to_cpu(u.v32);
1897 case 8:
1898 return be64_to_cpu(u.v64);
1901 return 0;
1905 * Read a CPU node property from the host device tree that's a single
1906 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
1907 * (can't find or open the property, or doesn't understand the format)
1909 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
1911 char buf[PATH_MAX], *tmp;
1912 uint64_t val;
1914 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
1915 return -1;
1918 tmp = g_strdup_printf("%s/%s", buf, propname);
1919 val = kvmppc_read_int_dt(tmp);
1920 g_free(tmp);
1922 return val;
1925 uint64_t kvmppc_get_clockfreq(void)
1927 return kvmppc_read_int_cpu_dt("clock-frequency");
1930 static int kvmppc_get_dec_bits(void)
1932 int nr_bits = kvmppc_read_int_cpu_dt("ibm,dec-bits");
1934 if (nr_bits > 0) {
1935 return nr_bits;
1937 return 0;
1940 static int kvmppc_get_pvinfo(CPUPPCState *env, struct kvm_ppc_pvinfo *pvinfo)
1942 CPUState *cs = env_cpu(env);
1944 if (kvm_vm_check_extension(cs->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
1945 !kvm_vm_ioctl(cs->kvm_state, KVM_PPC_GET_PVINFO, pvinfo)) {
1946 return 0;
1949 return 1;
1952 int kvmppc_get_hasidle(CPUPPCState *env)
1954 struct kvm_ppc_pvinfo pvinfo;
1956 if (!kvmppc_get_pvinfo(env, &pvinfo) &&
1957 (pvinfo.flags & KVM_PPC_PVINFO_FLAGS_EV_IDLE)) {
1958 return 1;
1961 return 0;
1964 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
1966 uint32_t *hc = (uint32_t *)buf;
1967 struct kvm_ppc_pvinfo pvinfo;
1969 if (!kvmppc_get_pvinfo(env, &pvinfo)) {
1970 memcpy(buf, pvinfo.hcall, buf_len);
1971 return 0;
1975 * Fallback to always fail hypercalls regardless of endianness:
1977 * tdi 0,r0,72 (becomes b .+8 in wrong endian, nop in good endian)
1978 * li r3, -1
1979 * b .+8 (becomes nop in wrong endian)
1980 * bswap32(li r3, -1)
1983 hc[0] = cpu_to_be32(0x08000048);
1984 hc[1] = cpu_to_be32(0x3860ffff);
1985 hc[2] = cpu_to_be32(0x48000008);
1986 hc[3] = cpu_to_be32(bswap32(0x3860ffff));
1988 return 1;
1991 static inline int kvmppc_enable_hcall(KVMState *s, target_ulong hcall)
1993 return kvm_vm_enable_cap(s, KVM_CAP_PPC_ENABLE_HCALL, 0, hcall, 1);
1996 void kvmppc_enable_logical_ci_hcalls(void)
1999 * FIXME: it would be nice if we could detect the cases where
2000 * we're using a device which requires the in kernel
2001 * implementation of these hcalls, but the kernel lacks them and
2002 * produce a warning.
2004 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_LOAD);
2005 kvmppc_enable_hcall(kvm_state, H_LOGICAL_CI_STORE);
2008 void kvmppc_enable_set_mode_hcall(void)
2010 kvmppc_enable_hcall(kvm_state, H_SET_MODE);
2013 void kvmppc_enable_clear_ref_mod_hcalls(void)
2015 kvmppc_enable_hcall(kvm_state, H_CLEAR_REF);
2016 kvmppc_enable_hcall(kvm_state, H_CLEAR_MOD);
2019 void kvmppc_enable_h_page_init(void)
2021 kvmppc_enable_hcall(kvm_state, H_PAGE_INIT);
2024 void kvmppc_set_papr(PowerPCCPU *cpu)
2026 CPUState *cs = CPU(cpu);
2027 int ret;
2029 if (!kvm_enabled()) {
2030 return;
2033 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_PAPR, 0);
2034 if (ret) {
2035 error_report("This vCPU type or KVM version does not support PAPR");
2036 exit(1);
2040 * Update the capability flag so we sync the right information
2041 * with kvm
2043 cap_papr = 1;
2046 int kvmppc_set_compat(PowerPCCPU *cpu, uint32_t compat_pvr)
2048 return kvm_set_one_reg(CPU(cpu), KVM_REG_PPC_ARCH_COMPAT, &compat_pvr);
2051 void kvmppc_set_mpic_proxy(PowerPCCPU *cpu, int mpic_proxy)
2053 CPUState *cs = CPU(cpu);
2054 int ret;
2056 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_PPC_EPR, 0, mpic_proxy);
2057 if (ret && mpic_proxy) {
2058 error_report("This KVM version does not support EPR");
2059 exit(1);
2063 int kvmppc_smt_threads(void)
2065 return cap_ppc_smt ? cap_ppc_smt : 1;
2068 int kvmppc_set_smt_threads(int smt)
2070 int ret;
2072 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_SMT, 0, smt, 0);
2073 if (!ret) {
2074 cap_ppc_smt = smt;
2076 return ret;
2079 void kvmppc_hint_smt_possible(Error **errp)
2081 int i;
2082 GString *g;
2083 char *s;
2085 assert(kvm_enabled());
2086 if (cap_ppc_smt_possible) {
2087 g = g_string_new("Available VSMT modes:");
2088 for (i = 63; i >= 0; i--) {
2089 if ((1UL << i) & cap_ppc_smt_possible) {
2090 g_string_append_printf(g, " %lu", (1UL << i));
2093 s = g_string_free(g, false);
2094 error_append_hint(errp, "%s.\n", s);
2095 g_free(s);
2096 } else {
2097 error_append_hint(errp,
2098 "This KVM seems to be too old to support VSMT.\n");
2103 #ifdef TARGET_PPC64
2104 uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
2106 struct kvm_ppc_smmu_info info;
2107 long rampagesize, best_page_shift;
2108 int i;
2111 * Find the largest hardware supported page size that's less than
2112 * or equal to the (logical) backing page size of guest RAM
2114 kvm_get_smmu_info(&info, &error_fatal);
2115 rampagesize = qemu_minrampagesize();
2116 best_page_shift = 0;
2118 for (i = 0; i < KVM_PPC_PAGE_SIZES_MAX_SZ; i++) {
2119 struct kvm_ppc_one_seg_page_size *sps = &info.sps[i];
2121 if (!sps->page_shift) {
2122 continue;
2125 if ((sps->page_shift > best_page_shift)
2126 && ((1UL << sps->page_shift) <= rampagesize)) {
2127 best_page_shift = sps->page_shift;
2131 return MIN(current_size,
2132 1ULL << (best_page_shift + hash_shift - 7));
2134 #endif
2136 bool kvmppc_spapr_use_multitce(void)
2138 return cap_spapr_multitce;
2141 int kvmppc_spapr_enable_inkernel_multitce(void)
2143 int ret;
2145 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2146 H_PUT_TCE_INDIRECT, 1);
2147 if (!ret) {
2148 ret = kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_ENABLE_HCALL, 0,
2149 H_STUFF_TCE, 1);
2152 return ret;
2155 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
2156 uint64_t bus_offset, uint32_t nb_table,
2157 int *pfd, bool need_vfio)
2159 long len;
2160 int fd;
2161 void *table;
2164 * Must set fd to -1 so we don't try to munmap when called for
2165 * destroying the table, which the upper layers -will- do
2167 *pfd = -1;
2168 if (!cap_spapr_tce || (need_vfio && !cap_spapr_vfio)) {
2169 return NULL;
2172 if (cap_spapr_tce_64) {
2173 struct kvm_create_spapr_tce_64 args = {
2174 .liobn = liobn,
2175 .page_shift = page_shift,
2176 .offset = bus_offset >> page_shift,
2177 .size = nb_table,
2178 .flags = 0
2180 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE_64, &args);
2181 if (fd < 0) {
2182 fprintf(stderr,
2183 "KVM: Failed to create TCE64 table for liobn 0x%x\n",
2184 liobn);
2185 return NULL;
2187 } else if (cap_spapr_tce) {
2188 uint64_t window_size = (uint64_t) nb_table << page_shift;
2189 struct kvm_create_spapr_tce args = {
2190 .liobn = liobn,
2191 .window_size = window_size,
2193 if ((window_size != args.window_size) || bus_offset) {
2194 return NULL;
2196 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
2197 if (fd < 0) {
2198 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
2199 liobn);
2200 return NULL;
2202 } else {
2203 return NULL;
2206 len = nb_table * sizeof(uint64_t);
2207 /* FIXME: round this up to page size */
2209 table = mmap(NULL, len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
2210 if (table == MAP_FAILED) {
2211 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
2212 liobn);
2213 close(fd);
2214 return NULL;
2217 *pfd = fd;
2218 return table;
2221 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t nb_table)
2223 long len;
2225 if (fd < 0) {
2226 return -1;
2229 len = nb_table * sizeof(uint64_t);
2230 if ((munmap(table, len) < 0) ||
2231 (close(fd) < 0)) {
2232 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
2233 strerror(errno));
2234 /* Leak the table */
2237 return 0;
2240 int kvmppc_reset_htab(int shift_hint)
2242 uint32_t shift = shift_hint;
2244 if (!kvm_enabled()) {
2245 /* Full emulation, tell caller to allocate htab itself */
2246 return 0;
2248 if (kvm_vm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
2249 int ret;
2250 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
2251 if (ret == -ENOTTY) {
2253 * At least some versions of PR KVM advertise the
2254 * capability, but don't implement the ioctl(). Oops.
2255 * Return 0 so that we allocate the htab in qemu, as is
2256 * correct for PR.
2258 return 0;
2259 } else if (ret < 0) {
2260 return ret;
2262 return shift;
2266 * We have a kernel that predates the htab reset calls. For PR
2267 * KVM, we need to allocate the htab ourselves, for an HV KVM of
2268 * this era, it has allocated a 16MB fixed size hash table
2269 * already.
2271 if (kvmppc_is_pr(kvm_state)) {
2272 /* PR - tell caller to allocate htab */
2273 return 0;
2274 } else {
2275 /* HV - assume 16MB kernel allocated htab */
2276 return 24;
2280 static inline uint32_t mfpvr(void)
2282 uint32_t pvr;
2284 asm ("mfpvr %0"
2285 : "=r"(pvr));
2286 return pvr;
2289 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
2291 if (on) {
2292 *word |= flags;
2293 } else {
2294 *word &= ~flags;
2298 static void kvmppc_host_cpu_class_init(ObjectClass *oc, void *data)
2300 PowerPCCPUClass *pcc = POWERPC_CPU_CLASS(oc);
2301 uint32_t dcache_size = kvmppc_read_int_cpu_dt("d-cache-size");
2302 uint32_t icache_size = kvmppc_read_int_cpu_dt("i-cache-size");
2304 /* Now fix up the class with information we can query from the host */
2305 pcc->pvr = mfpvr();
2307 alter_insns(&pcc->insns_flags, PPC_ALTIVEC,
2308 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_ALTIVEC);
2309 alter_insns(&pcc->insns_flags2, PPC2_VSX,
2310 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_VSX);
2311 alter_insns(&pcc->insns_flags2, PPC2_DFP,
2312 qemu_getauxval(AT_HWCAP) & PPC_FEATURE_HAS_DFP);
2314 if (dcache_size != -1) {
2315 pcc->l1_dcache_size = dcache_size;
2318 if (icache_size != -1) {
2319 pcc->l1_icache_size = icache_size;
2322 #if defined(TARGET_PPC64)
2323 pcc->radix_page_info = kvm_get_radix_page_info();
2325 if ((pcc->pvr & 0xffffff00) == CPU_POWERPC_POWER9_DD1) {
2327 * POWER9 DD1 has some bugs which make it not really ISA 3.00
2328 * compliant. More importantly, advertising ISA 3.00
2329 * architected mode may prevent guests from activating
2330 * necessary DD1 workarounds.
2332 pcc->pcr_supported &= ~(PCR_COMPAT_3_00 | PCR_COMPAT_2_07
2333 | PCR_COMPAT_2_06 | PCR_COMPAT_2_05);
2335 #endif /* defined(TARGET_PPC64) */
2338 bool kvmppc_has_cap_epr(void)
2340 return cap_epr;
2343 bool kvmppc_has_cap_fixup_hcalls(void)
2345 return cap_fixup_hcalls;
2348 bool kvmppc_has_cap_htm(void)
2350 return cap_htm;
2353 bool kvmppc_has_cap_mmu_radix(void)
2355 return cap_mmu_radix;
2358 bool kvmppc_has_cap_mmu_hash_v3(void)
2360 return cap_mmu_hash_v3;
2363 static bool kvmppc_power8_host(void)
2365 bool ret = false;
2366 #ifdef TARGET_PPC64
2368 uint32_t base_pvr = CPU_POWERPC_POWER_SERVER_MASK & mfpvr();
2369 ret = (base_pvr == CPU_POWERPC_POWER8E_BASE) ||
2370 (base_pvr == CPU_POWERPC_POWER8NVL_BASE) ||
2371 (base_pvr == CPU_POWERPC_POWER8_BASE);
2373 #endif /* TARGET_PPC64 */
2374 return ret;
2377 static int parse_cap_ppc_safe_cache(struct kvm_ppc_cpu_char c)
2379 bool l1d_thread_priv_req = !kvmppc_power8_host();
2381 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_L1D_FLUSH_PR) {
2382 return 2;
2383 } else if ((!l1d_thread_priv_req ||
2384 c.character & c.character_mask & H_CPU_CHAR_L1D_THREAD_PRIV) &&
2385 (c.character & c.character_mask
2386 & (H_CPU_CHAR_L1D_FLUSH_ORI30 | H_CPU_CHAR_L1D_FLUSH_TRIG2))) {
2387 return 1;
2390 return 0;
2393 static int parse_cap_ppc_safe_bounds_check(struct kvm_ppc_cpu_char c)
2395 if (~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_BNDS_CHK_SPEC_BAR) {
2396 return 2;
2397 } else if (c.character & c.character_mask & H_CPU_CHAR_SPEC_BAR_ORI31) {
2398 return 1;
2401 return 0;
2404 static int parse_cap_ppc_safe_indirect_branch(struct kvm_ppc_cpu_char c)
2406 if ((~c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) &&
2407 (~c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) &&
2408 (~c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED)) {
2409 return SPAPR_CAP_FIXED_NA;
2410 } else if (c.behaviour & c.behaviour_mask & H_CPU_BEHAV_FLUSH_COUNT_CACHE) {
2411 return SPAPR_CAP_WORKAROUND;
2412 } else if (c.character & c.character_mask & H_CPU_CHAR_CACHE_COUNT_DIS) {
2413 return SPAPR_CAP_FIXED_CCD;
2414 } else if (c.character & c.character_mask & H_CPU_CHAR_BCCTRL_SERIALISED) {
2415 return SPAPR_CAP_FIXED_IBS;
2418 return 0;
2421 static int parse_cap_ppc_count_cache_flush_assist(struct kvm_ppc_cpu_char c)
2423 if (c.character & c.character_mask & H_CPU_CHAR_BCCTR_FLUSH_ASSIST) {
2424 return 1;
2426 return 0;
2429 bool kvmppc_has_cap_xive(void)
2431 return cap_xive;
2434 static void kvmppc_get_cpu_characteristics(KVMState *s)
2436 struct kvm_ppc_cpu_char c;
2437 int ret;
2439 /* Assume broken */
2440 cap_ppc_safe_cache = 0;
2441 cap_ppc_safe_bounds_check = 0;
2442 cap_ppc_safe_indirect_branch = 0;
2444 ret = kvm_vm_check_extension(s, KVM_CAP_PPC_GET_CPU_CHAR);
2445 if (!ret) {
2446 return;
2448 ret = kvm_vm_ioctl(s, KVM_PPC_GET_CPU_CHAR, &c);
2449 if (ret < 0) {
2450 return;
2453 cap_ppc_safe_cache = parse_cap_ppc_safe_cache(c);
2454 cap_ppc_safe_bounds_check = parse_cap_ppc_safe_bounds_check(c);
2455 cap_ppc_safe_indirect_branch = parse_cap_ppc_safe_indirect_branch(c);
2456 cap_ppc_count_cache_flush_assist =
2457 parse_cap_ppc_count_cache_flush_assist(c);
2460 int kvmppc_get_cap_safe_cache(void)
2462 return cap_ppc_safe_cache;
2465 int kvmppc_get_cap_safe_bounds_check(void)
2467 return cap_ppc_safe_bounds_check;
2470 int kvmppc_get_cap_safe_indirect_branch(void)
2472 return cap_ppc_safe_indirect_branch;
2475 int kvmppc_get_cap_count_cache_flush_assist(void)
2477 return cap_ppc_count_cache_flush_assist;
2480 bool kvmppc_has_cap_nested_kvm_hv(void)
2482 return !!cap_ppc_nested_kvm_hv;
2485 int kvmppc_set_cap_nested_kvm_hv(int enable)
2487 return kvm_vm_enable_cap(kvm_state, KVM_CAP_PPC_NESTED_HV, 0, enable);
2490 bool kvmppc_has_cap_spapr_vfio(void)
2492 return cap_spapr_vfio;
2495 int kvmppc_get_cap_large_decr(void)
2497 return cap_large_decr;
2500 int kvmppc_enable_cap_large_decr(PowerPCCPU *cpu, int enable)
2502 CPUState *cs = CPU(cpu);
2503 uint64_t lpcr;
2505 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2506 /* Do we need to modify the LPCR? */
2507 if (!!(lpcr & LPCR_LD) != !!enable) {
2508 if (enable) {
2509 lpcr |= LPCR_LD;
2510 } else {
2511 lpcr &= ~LPCR_LD;
2513 kvm_set_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2514 kvm_get_one_reg(cs, KVM_REG_PPC_LPCR_64, &lpcr);
2516 if (!!(lpcr & LPCR_LD) != !!enable) {
2517 return -1;
2521 return 0;
2524 PowerPCCPUClass *kvm_ppc_get_host_cpu_class(void)
2526 uint32_t host_pvr = mfpvr();
2527 PowerPCCPUClass *pvr_pcc;
2529 pvr_pcc = ppc_cpu_class_by_pvr(host_pvr);
2530 if (pvr_pcc == NULL) {
2531 pvr_pcc = ppc_cpu_class_by_pvr_mask(host_pvr);
2534 return pvr_pcc;
2537 static int kvm_ppc_register_host_cpu_type(MachineState *ms)
2539 TypeInfo type_info = {
2540 .name = TYPE_HOST_POWERPC_CPU,
2541 .class_init = kvmppc_host_cpu_class_init,
2543 MachineClass *mc = MACHINE_GET_CLASS(ms);
2544 PowerPCCPUClass *pvr_pcc;
2545 ObjectClass *oc;
2546 DeviceClass *dc;
2547 int i;
2549 pvr_pcc = kvm_ppc_get_host_cpu_class();
2550 if (pvr_pcc == NULL) {
2551 return -1;
2553 type_info.parent = object_class_get_name(OBJECT_CLASS(pvr_pcc));
2554 type_register(&type_info);
2555 if (object_dynamic_cast(OBJECT(ms), TYPE_SPAPR_MACHINE)) {
2556 /* override TCG default cpu type with 'host' cpu model */
2557 mc->default_cpu_type = TYPE_HOST_POWERPC_CPU;
2560 oc = object_class_by_name(type_info.name);
2561 g_assert(oc);
2564 * Update generic CPU family class alias (e.g. on a POWER8NVL host,
2565 * we want "POWER8" to be a "family" alias that points to the current
2566 * host CPU type, too)
2568 dc = DEVICE_CLASS(ppc_cpu_get_family_class(pvr_pcc));
2569 for (i = 0; ppc_cpu_aliases[i].alias != NULL; i++) {
2570 if (strcasecmp(ppc_cpu_aliases[i].alias, dc->desc) == 0) {
2571 char *suffix;
2573 ppc_cpu_aliases[i].model = g_strdup(object_class_get_name(oc));
2574 suffix = strstr(ppc_cpu_aliases[i].model, POWERPC_CPU_TYPE_SUFFIX);
2575 if (suffix) {
2576 *suffix = 0;
2578 break;
2582 return 0;
2585 int kvmppc_define_rtas_kernel_token(uint32_t token, const char *function)
2587 struct kvm_rtas_token_args args = {
2588 .token = token,
2591 if (!kvm_check_extension(kvm_state, KVM_CAP_PPC_RTAS)) {
2592 return -ENOENT;
2595 strncpy(args.name, function, sizeof(args.name) - 1);
2597 return kvm_vm_ioctl(kvm_state, KVM_PPC_RTAS_DEFINE_TOKEN, &args);
2600 int kvmppc_get_htab_fd(bool write, uint64_t index, Error **errp)
2602 struct kvm_get_htab_fd s = {
2603 .flags = write ? KVM_GET_HTAB_WRITE : 0,
2604 .start_index = index,
2606 int ret;
2608 if (!cap_htab_fd) {
2609 error_setg(errp, "KVM version doesn't support %s the HPT",
2610 write ? "writing" : "reading");
2611 return -ENOTSUP;
2614 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_GET_HTAB_FD, &s);
2615 if (ret < 0) {
2616 error_setg(errp, "Unable to open fd for %s HPT %s KVM: %s",
2617 write ? "writing" : "reading", write ? "to" : "from",
2618 strerror(errno));
2619 return -errno;
2622 return ret;
2625 int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
2627 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2628 uint8_t buf[bufsize];
2629 ssize_t rc;
2631 do {
2632 rc = read(fd, buf, bufsize);
2633 if (rc < 0) {
2634 fprintf(stderr, "Error reading data from KVM HTAB fd: %s\n",
2635 strerror(errno));
2636 return rc;
2637 } else if (rc) {
2638 uint8_t *buffer = buf;
2639 ssize_t n = rc;
2640 while (n) {
2641 struct kvm_get_htab_header *head =
2642 (struct kvm_get_htab_header *) buffer;
2643 size_t chunksize = sizeof(*head) +
2644 HASH_PTE_SIZE_64 * head->n_valid;
2646 qemu_put_be32(f, head->index);
2647 qemu_put_be16(f, head->n_valid);
2648 qemu_put_be16(f, head->n_invalid);
2649 qemu_put_buffer(f, (void *)(head + 1),
2650 HASH_PTE_SIZE_64 * head->n_valid);
2652 buffer += chunksize;
2653 n -= chunksize;
2656 } while ((rc != 0)
2657 && ((max_ns < 0) ||
2658 ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
2660 return (rc == 0) ? 1 : 0;
2663 int kvmppc_load_htab_chunk(QEMUFile *f, int fd, uint32_t index,
2664 uint16_t n_valid, uint16_t n_invalid)
2666 struct kvm_get_htab_header *buf;
2667 size_t chunksize = sizeof(*buf) + n_valid * HASH_PTE_SIZE_64;
2668 ssize_t rc;
2670 buf = alloca(chunksize);
2671 buf->index = index;
2672 buf->n_valid = n_valid;
2673 buf->n_invalid = n_invalid;
2675 qemu_get_buffer(f, (void *)(buf + 1), HASH_PTE_SIZE_64 * n_valid);
2677 rc = write(fd, buf, chunksize);
2678 if (rc < 0) {
2679 fprintf(stderr, "Error writing KVM hash table: %s\n",
2680 strerror(errno));
2681 return rc;
2683 if (rc != chunksize) {
2684 /* We should never get a short write on a single chunk */
2685 fprintf(stderr, "Short write, restoring KVM hash table\n");
2686 return -1;
2688 return 0;
2691 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
2693 return true;
2696 void kvm_arch_init_irq_routing(KVMState *s)
2700 void kvmppc_read_hptes(ppc_hash_pte64_t *hptes, hwaddr ptex, int n)
2702 int fd, rc;
2703 int i;
2705 fd = kvmppc_get_htab_fd(false, ptex, &error_abort);
2707 i = 0;
2708 while (i < n) {
2709 struct kvm_get_htab_header *hdr;
2710 int m = n < HPTES_PER_GROUP ? n : HPTES_PER_GROUP;
2711 char buf[sizeof(*hdr) + m * HASH_PTE_SIZE_64];
2713 rc = read(fd, buf, sizeof(buf));
2714 if (rc < 0) {
2715 hw_error("kvmppc_read_hptes: Unable to read HPTEs");
2718 hdr = (struct kvm_get_htab_header *)buf;
2719 while ((i < n) && ((char *)hdr < (buf + rc))) {
2720 int invalid = hdr->n_invalid, valid = hdr->n_valid;
2722 if (hdr->index != (ptex + i)) {
2723 hw_error("kvmppc_read_hptes: Unexpected HPTE index %"PRIu32
2724 " != (%"HWADDR_PRIu" + %d", hdr->index, ptex, i);
2727 if (n - i < valid) {
2728 valid = n - i;
2730 memcpy(hptes + i, hdr + 1, HASH_PTE_SIZE_64 * valid);
2731 i += valid;
2733 if ((n - i) < invalid) {
2734 invalid = n - i;
2736 memset(hptes + i, 0, invalid * HASH_PTE_SIZE_64);
2737 i += invalid;
2739 hdr = (struct kvm_get_htab_header *)
2740 ((char *)(hdr + 1) + HASH_PTE_SIZE_64 * hdr->n_valid);
2744 close(fd);
2747 void kvmppc_write_hpte(hwaddr ptex, uint64_t pte0, uint64_t pte1)
2749 int fd, rc;
2750 struct {
2751 struct kvm_get_htab_header hdr;
2752 uint64_t pte0;
2753 uint64_t pte1;
2754 } buf;
2756 fd = kvmppc_get_htab_fd(true, 0 /* Ignored */, &error_abort);
2758 buf.hdr.n_valid = 1;
2759 buf.hdr.n_invalid = 0;
2760 buf.hdr.index = ptex;
2761 buf.pte0 = cpu_to_be64(pte0);
2762 buf.pte1 = cpu_to_be64(pte1);
2764 rc = write(fd, &buf, sizeof(buf));
2765 if (rc != sizeof(buf)) {
2766 hw_error("kvmppc_write_hpte: Unable to update KVM HPT");
2768 close(fd);
2771 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2772 uint64_t address, uint32_t data, PCIDevice *dev)
2774 return 0;
2777 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2778 int vector, PCIDevice *dev)
2780 return 0;
2783 int kvm_arch_release_virq_post(int virq)
2785 return 0;
2788 int kvm_arch_msi_data_to_gsi(uint32_t data)
2790 return data & 0xffff;
2793 int kvmppc_enable_hwrng(void)
2795 if (!kvm_enabled() || !kvm_check_extension(kvm_state, KVM_CAP_PPC_HWRNG)) {
2796 return -1;
2799 return kvmppc_enable_hcall(kvm_state, H_RANDOM);
2802 void kvmppc_check_papr_resize_hpt(Error **errp)
2804 if (!kvm_enabled()) {
2805 return; /* No KVM, we're good */
2808 if (cap_resize_hpt) {
2809 return; /* Kernel has explicit support, we're good */
2812 /* Otherwise fallback on looking for PR KVM */
2813 if (kvmppc_is_pr(kvm_state)) {
2814 return;
2817 error_setg(errp,
2818 "Hash page table resizing not available with this KVM version");
2821 int kvmppc_resize_hpt_prepare(PowerPCCPU *cpu, target_ulong flags, int shift)
2823 CPUState *cs = CPU(cpu);
2824 struct kvm_ppc_resize_hpt rhpt = {
2825 .flags = flags,
2826 .shift = shift,
2829 if (!cap_resize_hpt) {
2830 return -ENOSYS;
2833 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_PREPARE, &rhpt);
2836 int kvmppc_resize_hpt_commit(PowerPCCPU *cpu, target_ulong flags, int shift)
2838 CPUState *cs = CPU(cpu);
2839 struct kvm_ppc_resize_hpt rhpt = {
2840 .flags = flags,
2841 .shift = shift,
2844 if (!cap_resize_hpt) {
2845 return -ENOSYS;
2848 return kvm_vm_ioctl(cs->kvm_state, KVM_PPC_RESIZE_HPT_COMMIT, &rhpt);
2852 * This is a helper function to detect a post migration scenario
2853 * in which a guest, running as KVM-HV, freezes in cpu_post_load because
2854 * the guest kernel can't handle a PVR value other than the actual host
2855 * PVR in KVM_SET_SREGS, even if pvr_match() returns true.
2857 * If we don't have cap_ppc_pvr_compat and we're not running in PR
2858 * (so, we're HV), return true. The workaround itself is done in
2859 * cpu_post_load.
2861 * The order here is important: we'll only check for KVM PR as a
2862 * fallback if the guest kernel can't handle the situation itself.
2863 * We need to avoid as much as possible querying the running KVM type
2864 * in QEMU level.
2866 bool kvmppc_pvr_workaround_required(PowerPCCPU *cpu)
2868 CPUState *cs = CPU(cpu);
2870 if (!kvm_enabled()) {
2871 return false;
2874 if (cap_ppc_pvr_compat) {
2875 return false;
2878 return !kvmppc_is_pr(cs->kvm_state);
2881 void kvmppc_set_reg_ppc_online(PowerPCCPU *cpu, unsigned int online)
2883 CPUState *cs = CPU(cpu);
2885 if (kvm_enabled()) {
2886 kvm_set_one_reg(cs, KVM_REG_PPC_ONLINE, &online);
2890 void kvmppc_set_reg_tb_offset(PowerPCCPU *cpu, int64_t tb_offset)
2892 CPUState *cs = CPU(cpu);
2894 if (kvm_enabled()) {
2895 kvm_set_one_reg(cs, KVM_REG_PPC_TB_OFFSET, &tb_offset);