blockdev: Error out on negative throttling option values
[qemu/ar7.git] / target-arm / cpu.c
blob3f5f8e8cb505787d84c8a211f7fb7b765cb36565
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "cpu.h"
23 #include "internals.h"
24 #include "qemu-common.h"
25 #include "hw/qdev-properties.h"
26 #if !defined(CONFIG_USER_ONLY)
27 #include "hw/loader.h"
28 #endif
29 #include "hw/arm/arm.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/kvm.h"
32 #include "kvm_arm.h"
34 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
36 ARMCPU *cpu = ARM_CPU(cs);
38 cpu->env.regs[15] = value;
41 static bool arm_cpu_has_work(CPUState *cs)
43 ARMCPU *cpu = ARM_CPU(cs);
45 return !cpu->powered_off
46 && cs->interrupt_request &
47 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
48 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
49 | CPU_INTERRUPT_EXITTB);
52 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
54 /* Reset a single ARMCPRegInfo register */
55 ARMCPRegInfo *ri = value;
56 ARMCPU *cpu = opaque;
58 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
59 return;
62 if (ri->resetfn) {
63 ri->resetfn(&cpu->env, ri);
64 return;
67 /* A zero offset is never possible as it would be regs[0]
68 * so we use it to indicate that reset is being handled elsewhere.
69 * This is basically only used for fields in non-core coprocessors
70 * (like the pxa2xx ones).
72 if (!ri->fieldoffset) {
73 return;
76 if (cpreg_field_is_64bit(ri)) {
77 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
78 } else {
79 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
83 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
85 /* Purely an assertion check: we've already done reset once,
86 * so now check that running the reset for the cpreg doesn't
87 * change its value. This traps bugs where two different cpregs
88 * both try to reset the same state field but to different values.
90 ARMCPRegInfo *ri = value;
91 ARMCPU *cpu = opaque;
92 uint64_t oldvalue, newvalue;
94 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
95 return;
98 oldvalue = read_raw_cp_reg(&cpu->env, ri);
99 cp_reg_reset(key, value, opaque);
100 newvalue = read_raw_cp_reg(&cpu->env, ri);
101 assert(oldvalue == newvalue);
104 /* CPUClass::reset() */
105 static void arm_cpu_reset(CPUState *s)
107 ARMCPU *cpu = ARM_CPU(s);
108 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
109 CPUARMState *env = &cpu->env;
111 acc->parent_reset(s);
113 memset(env, 0, offsetof(CPUARMState, features));
114 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
115 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
117 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
118 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
119 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
120 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
122 cpu->powered_off = cpu->start_powered_off;
123 s->halted = cpu->start_powered_off;
125 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
126 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
129 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
130 /* 64 bit CPUs always start in 64 bit mode */
131 env->aarch64 = 1;
132 #if defined(CONFIG_USER_ONLY)
133 env->pstate = PSTATE_MODE_EL0t;
134 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
135 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
136 /* and to the FP/Neon instructions */
137 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
138 #else
139 /* Reset into the highest available EL */
140 if (arm_feature(env, ARM_FEATURE_EL3)) {
141 env->pstate = PSTATE_MODE_EL3h;
142 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
143 env->pstate = PSTATE_MODE_EL2h;
144 } else {
145 env->pstate = PSTATE_MODE_EL1h;
147 env->pc = cpu->rvbar;
148 #endif
149 } else {
150 #if defined(CONFIG_USER_ONLY)
151 /* Userspace expects access to cp10 and cp11 for FP/Neon */
152 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
153 #endif
156 #if defined(CONFIG_USER_ONLY)
157 env->uncached_cpsr = ARM_CPU_MODE_USR;
158 /* For user mode we must enable access to coprocessors */
159 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
160 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
161 env->cp15.c15_cpar = 3;
162 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
163 env->cp15.c15_cpar = 1;
165 #else
166 /* SVC mode with interrupts disabled. */
167 env->uncached_cpsr = ARM_CPU_MODE_SVC;
168 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
169 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
170 * clear at reset. Initial SP and PC are loaded from ROM.
172 if (IS_M(env)) {
173 uint32_t initial_msp; /* Loaded from 0x0 */
174 uint32_t initial_pc; /* Loaded from 0x4 */
175 uint8_t *rom;
177 env->daif &= ~PSTATE_I;
178 rom = rom_ptr(0);
179 if (rom) {
180 /* Address zero is covered by ROM which hasn't yet been
181 * copied into physical memory.
183 initial_msp = ldl_p(rom);
184 initial_pc = ldl_p(rom + 4);
185 } else {
186 /* Address zero not covered by a ROM blob, or the ROM blob
187 * is in non-modifiable memory and this is a second reset after
188 * it got copied into memory. In the latter case, rom_ptr
189 * will return a NULL pointer and we should use ldl_phys instead.
191 initial_msp = ldl_phys(s->as, 0);
192 initial_pc = ldl_phys(s->as, 4);
195 env->regs[13] = initial_msp & 0xFFFFFFFC;
196 env->regs[15] = initial_pc & ~1;
197 env->thumb = initial_pc & 1;
200 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
201 * executing as AArch32 then check if highvecs are enabled and
202 * adjust the PC accordingly.
204 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
205 env->regs[15] = 0xFFFF0000;
208 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
209 #endif
210 set_flush_to_zero(1, &env->vfp.standard_fp_status);
211 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
212 set_default_nan_mode(1, &env->vfp.standard_fp_status);
213 set_float_detect_tininess(float_tininess_before_rounding,
214 &env->vfp.fp_status);
215 set_float_detect_tininess(float_tininess_before_rounding,
216 &env->vfp.standard_fp_status);
217 tlb_flush(s, 1);
219 #ifndef CONFIG_USER_ONLY
220 if (kvm_enabled()) {
221 kvm_arm_reset_vcpu(cpu);
223 #endif
225 hw_breakpoint_update_all(cpu);
226 hw_watchpoint_update_all(cpu);
229 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
231 CPUClass *cc = CPU_GET_CLASS(cs);
232 CPUARMState *env = cs->env_ptr;
233 uint32_t cur_el = arm_current_el(env);
234 bool secure = arm_is_secure(env);
235 uint32_t target_el;
236 uint32_t excp_idx;
237 bool ret = false;
239 if (interrupt_request & CPU_INTERRUPT_FIQ) {
240 excp_idx = EXCP_FIQ;
241 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
242 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
243 cs->exception_index = excp_idx;
244 env->exception.target_el = target_el;
245 cc->do_interrupt(cs);
246 ret = true;
249 if (interrupt_request & CPU_INTERRUPT_HARD) {
250 excp_idx = EXCP_IRQ;
251 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
252 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
253 cs->exception_index = excp_idx;
254 env->exception.target_el = target_el;
255 cc->do_interrupt(cs);
256 ret = true;
259 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
260 excp_idx = EXCP_VIRQ;
261 target_el = 1;
262 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
263 cs->exception_index = excp_idx;
264 env->exception.target_el = target_el;
265 cc->do_interrupt(cs);
266 ret = true;
269 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
270 excp_idx = EXCP_VFIQ;
271 target_el = 1;
272 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
273 cs->exception_index = excp_idx;
274 env->exception.target_el = target_el;
275 cc->do_interrupt(cs);
276 ret = true;
280 return ret;
283 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
284 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
286 CPUClass *cc = CPU_GET_CLASS(cs);
287 ARMCPU *cpu = ARM_CPU(cs);
288 CPUARMState *env = &cpu->env;
289 bool ret = false;
292 if (interrupt_request & CPU_INTERRUPT_FIQ
293 && !(env->daif & PSTATE_F)) {
294 cs->exception_index = EXCP_FIQ;
295 cc->do_interrupt(cs);
296 ret = true;
298 /* ARMv7-M interrupt return works by loading a magic value
299 * into the PC. On real hardware the load causes the
300 * return to occur. The qemu implementation performs the
301 * jump normally, then does the exception return when the
302 * CPU tries to execute code at the magic address.
303 * This will cause the magic PC value to be pushed to
304 * the stack if an interrupt occurred at the wrong time.
305 * We avoid this by disabling interrupts when
306 * pc contains a magic address.
308 if (interrupt_request & CPU_INTERRUPT_HARD
309 && !(env->daif & PSTATE_I)
310 && (env->regs[15] < 0xfffffff0)) {
311 cs->exception_index = EXCP_IRQ;
312 cc->do_interrupt(cs);
313 ret = true;
315 return ret;
317 #endif
319 #ifndef CONFIG_USER_ONLY
320 static void arm_cpu_set_irq(void *opaque, int irq, int level)
322 ARMCPU *cpu = opaque;
323 CPUARMState *env = &cpu->env;
324 CPUState *cs = CPU(cpu);
325 static const int mask[] = {
326 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
327 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
328 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
329 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
332 switch (irq) {
333 case ARM_CPU_VIRQ:
334 case ARM_CPU_VFIQ:
335 assert(arm_feature(env, ARM_FEATURE_EL2));
336 /* fall through */
337 case ARM_CPU_IRQ:
338 case ARM_CPU_FIQ:
339 if (level) {
340 cpu_interrupt(cs, mask[irq]);
341 } else {
342 cpu_reset_interrupt(cs, mask[irq]);
344 break;
345 default:
346 g_assert_not_reached();
350 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
352 #ifdef CONFIG_KVM
353 ARMCPU *cpu = opaque;
354 CPUState *cs = CPU(cpu);
355 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
357 switch (irq) {
358 case ARM_CPU_IRQ:
359 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
360 break;
361 case ARM_CPU_FIQ:
362 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
363 break;
364 default:
365 g_assert_not_reached();
367 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
368 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
369 #endif
372 static bool arm_cpu_is_big_endian(CPUState *cs)
374 ARMCPU *cpu = ARM_CPU(cs);
375 CPUARMState *env = &cpu->env;
376 int cur_el;
378 cpu_synchronize_state(cs);
380 /* In 32bit guest endianness is determined by looking at CPSR's E bit */
381 if (!is_a64(env)) {
382 return (env->uncached_cpsr & CPSR_E) ? 1 : 0;
385 cur_el = arm_current_el(env);
387 if (cur_el == 0) {
388 return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
391 return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
394 #endif
396 static inline void set_feature(CPUARMState *env, int feature)
398 env->features |= 1ULL << feature;
401 static inline void unset_feature(CPUARMState *env, int feature)
403 env->features &= ~(1ULL << feature);
406 static int
407 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
409 return print_insn_arm(pc | 1, info);
412 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
414 ARMCPU *ac = ARM_CPU(cpu);
415 CPUARMState *env = &ac->env;
417 if (is_a64(env)) {
418 /* We might not be compiled with the A64 disassembler
419 * because it needs a C++ compiler. Leave print_insn
420 * unset in this case to use the caller default behaviour.
422 #if defined(CONFIG_ARM_A64_DIS)
423 info->print_insn = print_insn_arm_a64;
424 #endif
425 } else if (env->thumb) {
426 info->print_insn = print_insn_thumb1;
427 } else {
428 info->print_insn = print_insn_arm;
430 if (env->bswap_code) {
431 #ifdef TARGET_WORDS_BIGENDIAN
432 info->endian = BFD_ENDIAN_LITTLE;
433 #else
434 info->endian = BFD_ENDIAN_BIG;
435 #endif
439 #define ARM_CPUS_PER_CLUSTER 8
441 static void arm_cpu_initfn(Object *obj)
443 CPUState *cs = CPU(obj);
444 ARMCPU *cpu = ARM_CPU(obj);
445 static bool inited;
446 uint32_t Aff1, Aff0;
448 cs->env_ptr = &cpu->env;
449 cpu_exec_init(cs, &error_abort);
450 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
451 g_free, g_free);
453 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
454 * We don't support setting cluster ID ([16..23]) (known as Aff2
455 * in later ARM ARM versions), or any of the higher affinity level fields,
456 * so these bits always RAZ.
458 Aff1 = cs->cpu_index / ARM_CPUS_PER_CLUSTER;
459 Aff0 = cs->cpu_index % ARM_CPUS_PER_CLUSTER;
460 cpu->mp_affinity = (Aff1 << ARM_AFF1_SHIFT) | Aff0;
462 #ifndef CONFIG_USER_ONLY
463 /* Our inbound IRQ and FIQ lines */
464 if (kvm_enabled()) {
465 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
466 * the same interface as non-KVM CPUs.
468 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
469 } else {
470 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
473 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
474 arm_gt_ptimer_cb, cpu);
475 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
476 arm_gt_vtimer_cb, cpu);
477 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
478 arm_gt_htimer_cb, cpu);
479 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
480 arm_gt_stimer_cb, cpu);
481 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
482 ARRAY_SIZE(cpu->gt_timer_outputs));
483 #endif
485 /* DTB consumers generally don't in fact care what the 'compatible'
486 * string is, so always provide some string and trust that a hypothetical
487 * picky DTB consumer will also provide a helpful error message.
489 cpu->dtb_compatible = "qemu,unknown";
490 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
491 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
493 if (tcg_enabled()) {
494 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
495 if (!inited) {
496 inited = true;
497 arm_translate_init();
502 static Property arm_cpu_reset_cbar_property =
503 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
505 static Property arm_cpu_reset_hivecs_property =
506 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
508 static Property arm_cpu_rvbar_property =
509 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
511 static Property arm_cpu_has_el3_property =
512 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
514 static Property arm_cpu_has_mpu_property =
515 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
517 static Property arm_cpu_pmsav7_dregion_property =
518 DEFINE_PROP_UINT32("pmsav7-dregion", ARMCPU, pmsav7_dregion, 16);
520 static void arm_cpu_post_init(Object *obj)
522 ARMCPU *cpu = ARM_CPU(obj);
524 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
525 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
526 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
527 &error_abort);
530 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
531 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
532 &error_abort);
535 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
536 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
537 &error_abort);
540 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
541 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
542 * prevent "has_el3" from existing on CPUs which cannot support EL3.
544 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
545 &error_abort);
548 if (arm_feature(&cpu->env, ARM_FEATURE_MPU)) {
549 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
550 &error_abort);
551 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
552 qdev_property_add_static(DEVICE(obj),
553 &arm_cpu_pmsav7_dregion_property,
554 &error_abort);
560 static void arm_cpu_finalizefn(Object *obj)
562 ARMCPU *cpu = ARM_CPU(obj);
563 g_hash_table_destroy(cpu->cp_regs);
566 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
568 CPUState *cs = CPU(dev);
569 ARMCPU *cpu = ARM_CPU(dev);
570 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
571 CPUARMState *env = &cpu->env;
573 /* Some features automatically imply others: */
574 if (arm_feature(env, ARM_FEATURE_V8)) {
575 set_feature(env, ARM_FEATURE_V7);
576 set_feature(env, ARM_FEATURE_ARM_DIV);
577 set_feature(env, ARM_FEATURE_LPAE);
579 if (arm_feature(env, ARM_FEATURE_V7)) {
580 set_feature(env, ARM_FEATURE_VAPA);
581 set_feature(env, ARM_FEATURE_THUMB2);
582 set_feature(env, ARM_FEATURE_MPIDR);
583 if (!arm_feature(env, ARM_FEATURE_M)) {
584 set_feature(env, ARM_FEATURE_V6K);
585 } else {
586 set_feature(env, ARM_FEATURE_V6);
589 if (arm_feature(env, ARM_FEATURE_V6K)) {
590 set_feature(env, ARM_FEATURE_V6);
591 set_feature(env, ARM_FEATURE_MVFR);
593 if (arm_feature(env, ARM_FEATURE_V6)) {
594 set_feature(env, ARM_FEATURE_V5);
595 if (!arm_feature(env, ARM_FEATURE_M)) {
596 set_feature(env, ARM_FEATURE_AUXCR);
599 if (arm_feature(env, ARM_FEATURE_V5)) {
600 set_feature(env, ARM_FEATURE_V4T);
602 if (arm_feature(env, ARM_FEATURE_M)) {
603 set_feature(env, ARM_FEATURE_THUMB_DIV);
605 if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
606 set_feature(env, ARM_FEATURE_THUMB_DIV);
608 if (arm_feature(env, ARM_FEATURE_VFP4)) {
609 set_feature(env, ARM_FEATURE_VFP3);
610 set_feature(env, ARM_FEATURE_VFP_FP16);
612 if (arm_feature(env, ARM_FEATURE_VFP3)) {
613 set_feature(env, ARM_FEATURE_VFP);
615 if (arm_feature(env, ARM_FEATURE_LPAE)) {
616 set_feature(env, ARM_FEATURE_V7MP);
617 set_feature(env, ARM_FEATURE_PXN);
619 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
620 set_feature(env, ARM_FEATURE_CBAR);
622 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
623 !arm_feature(env, ARM_FEATURE_M)) {
624 set_feature(env, ARM_FEATURE_THUMB_DSP);
627 if (cpu->reset_hivecs) {
628 cpu->reset_sctlr |= (1 << 13);
631 if (!cpu->has_el3) {
632 /* If the has_el3 CPU property is disabled then we need to disable the
633 * feature.
635 unset_feature(env, ARM_FEATURE_EL3);
637 /* Disable the security extension feature bits in the processor feature
638 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
640 cpu->id_pfr1 &= ~0xf0;
641 cpu->id_aa64pfr0 &= ~0xf000;
644 if (!cpu->has_mpu) {
645 unset_feature(env, ARM_FEATURE_MPU);
648 if (arm_feature(env, ARM_FEATURE_MPU) &&
649 arm_feature(env, ARM_FEATURE_V7)) {
650 uint32_t nr = cpu->pmsav7_dregion;
652 if (nr > 0xff) {
653 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
654 return;
657 if (nr) {
658 env->pmsav7.drbar = g_new0(uint32_t, nr);
659 env->pmsav7.drsr = g_new0(uint32_t, nr);
660 env->pmsav7.dracr = g_new0(uint32_t, nr);
664 register_cp_regs_for_features(cpu);
665 arm_cpu_register_gdb_regs_for_features(cpu);
667 init_cpreg_list(cpu);
669 qemu_init_vcpu(cs);
670 cpu_reset(cs);
672 acc->parent_realize(dev, errp);
675 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
677 ObjectClass *oc;
678 char *typename;
679 char **cpuname;
681 if (!cpu_model) {
682 return NULL;
685 cpuname = g_strsplit(cpu_model, ",", 1);
686 typename = g_strdup_printf("%s-" TYPE_ARM_CPU, cpuname[0]);
687 oc = object_class_by_name(typename);
688 g_strfreev(cpuname);
689 g_free(typename);
690 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
691 object_class_is_abstract(oc)) {
692 return NULL;
694 return oc;
697 /* CPU models. These are not needed for the AArch64 linux-user build. */
698 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
700 static void arm926_initfn(Object *obj)
702 ARMCPU *cpu = ARM_CPU(obj);
704 cpu->dtb_compatible = "arm,arm926";
705 set_feature(&cpu->env, ARM_FEATURE_V5);
706 set_feature(&cpu->env, ARM_FEATURE_VFP);
707 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
708 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
709 cpu->midr = 0x41069265;
710 cpu->reset_fpsid = 0x41011090;
711 cpu->ctr = 0x1dd20d2;
712 cpu->reset_sctlr = 0x00090078;
715 static void arm946_initfn(Object *obj)
717 ARMCPU *cpu = ARM_CPU(obj);
719 cpu->dtb_compatible = "arm,arm946";
720 set_feature(&cpu->env, ARM_FEATURE_V5);
721 set_feature(&cpu->env, ARM_FEATURE_MPU);
722 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
723 cpu->midr = 0x41059461;
724 cpu->ctr = 0x0f004006;
725 cpu->reset_sctlr = 0x00000078;
728 static void arm1026_initfn(Object *obj)
730 ARMCPU *cpu = ARM_CPU(obj);
732 cpu->dtb_compatible = "arm,arm1026";
733 set_feature(&cpu->env, ARM_FEATURE_V5);
734 set_feature(&cpu->env, ARM_FEATURE_VFP);
735 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
736 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
737 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
738 cpu->midr = 0x4106a262;
739 cpu->reset_fpsid = 0x410110a0;
740 cpu->ctr = 0x1dd20d2;
741 cpu->reset_sctlr = 0x00090078;
742 cpu->reset_auxcr = 1;
744 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
745 ARMCPRegInfo ifar = {
746 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
747 .access = PL1_RW,
748 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
749 .resetvalue = 0
751 define_one_arm_cp_reg(cpu, &ifar);
755 static void arm1136_r2_initfn(Object *obj)
757 ARMCPU *cpu = ARM_CPU(obj);
758 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
759 * older core than plain "arm1136". In particular this does not
760 * have the v6K features.
761 * These ID register values are correct for 1136 but may be wrong
762 * for 1136_r2 (in particular r0p2 does not actually implement most
763 * of the ID registers).
766 cpu->dtb_compatible = "arm,arm1136";
767 set_feature(&cpu->env, ARM_FEATURE_V6);
768 set_feature(&cpu->env, ARM_FEATURE_VFP);
769 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
770 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
771 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
772 cpu->midr = 0x4107b362;
773 cpu->reset_fpsid = 0x410120b4;
774 cpu->mvfr0 = 0x11111111;
775 cpu->mvfr1 = 0x00000000;
776 cpu->ctr = 0x1dd20d2;
777 cpu->reset_sctlr = 0x00050078;
778 cpu->id_pfr0 = 0x111;
779 cpu->id_pfr1 = 0x1;
780 cpu->id_dfr0 = 0x2;
781 cpu->id_afr0 = 0x3;
782 cpu->id_mmfr0 = 0x01130003;
783 cpu->id_mmfr1 = 0x10030302;
784 cpu->id_mmfr2 = 0x01222110;
785 cpu->id_isar0 = 0x00140011;
786 cpu->id_isar1 = 0x12002111;
787 cpu->id_isar2 = 0x11231111;
788 cpu->id_isar3 = 0x01102131;
789 cpu->id_isar4 = 0x141;
790 cpu->reset_auxcr = 7;
793 static void arm1136_initfn(Object *obj)
795 ARMCPU *cpu = ARM_CPU(obj);
797 cpu->dtb_compatible = "arm,arm1136";
798 set_feature(&cpu->env, ARM_FEATURE_V6K);
799 set_feature(&cpu->env, ARM_FEATURE_V6);
800 set_feature(&cpu->env, ARM_FEATURE_VFP);
801 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
802 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
803 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
804 cpu->midr = 0x4117b363;
805 cpu->reset_fpsid = 0x410120b4;
806 cpu->mvfr0 = 0x11111111;
807 cpu->mvfr1 = 0x00000000;
808 cpu->ctr = 0x1dd20d2;
809 cpu->reset_sctlr = 0x00050078;
810 cpu->id_pfr0 = 0x111;
811 cpu->id_pfr1 = 0x1;
812 cpu->id_dfr0 = 0x2;
813 cpu->id_afr0 = 0x3;
814 cpu->id_mmfr0 = 0x01130003;
815 cpu->id_mmfr1 = 0x10030302;
816 cpu->id_mmfr2 = 0x01222110;
817 cpu->id_isar0 = 0x00140011;
818 cpu->id_isar1 = 0x12002111;
819 cpu->id_isar2 = 0x11231111;
820 cpu->id_isar3 = 0x01102131;
821 cpu->id_isar4 = 0x141;
822 cpu->reset_auxcr = 7;
825 static void arm1176_initfn(Object *obj)
827 ARMCPU *cpu = ARM_CPU(obj);
829 cpu->dtb_compatible = "arm,arm1176";
830 set_feature(&cpu->env, ARM_FEATURE_V6K);
831 set_feature(&cpu->env, ARM_FEATURE_VFP);
832 set_feature(&cpu->env, ARM_FEATURE_VAPA);
833 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
834 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
835 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
836 set_feature(&cpu->env, ARM_FEATURE_EL3);
837 cpu->midr = 0x410fb767;
838 cpu->reset_fpsid = 0x410120b5;
839 cpu->mvfr0 = 0x11111111;
840 cpu->mvfr1 = 0x00000000;
841 cpu->ctr = 0x1dd20d2;
842 cpu->reset_sctlr = 0x00050078;
843 cpu->id_pfr0 = 0x111;
844 cpu->id_pfr1 = 0x11;
845 cpu->id_dfr0 = 0x33;
846 cpu->id_afr0 = 0;
847 cpu->id_mmfr0 = 0x01130003;
848 cpu->id_mmfr1 = 0x10030302;
849 cpu->id_mmfr2 = 0x01222100;
850 cpu->id_isar0 = 0x0140011;
851 cpu->id_isar1 = 0x12002111;
852 cpu->id_isar2 = 0x11231121;
853 cpu->id_isar3 = 0x01102131;
854 cpu->id_isar4 = 0x01141;
855 cpu->reset_auxcr = 7;
858 static void arm11mpcore_initfn(Object *obj)
860 ARMCPU *cpu = ARM_CPU(obj);
862 cpu->dtb_compatible = "arm,arm11mpcore";
863 set_feature(&cpu->env, ARM_FEATURE_V6K);
864 set_feature(&cpu->env, ARM_FEATURE_VFP);
865 set_feature(&cpu->env, ARM_FEATURE_VAPA);
866 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
867 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
868 cpu->midr = 0x410fb022;
869 cpu->reset_fpsid = 0x410120b4;
870 cpu->mvfr0 = 0x11111111;
871 cpu->mvfr1 = 0x00000000;
872 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
873 cpu->id_pfr0 = 0x111;
874 cpu->id_pfr1 = 0x1;
875 cpu->id_dfr0 = 0;
876 cpu->id_afr0 = 0x2;
877 cpu->id_mmfr0 = 0x01100103;
878 cpu->id_mmfr1 = 0x10020302;
879 cpu->id_mmfr2 = 0x01222000;
880 cpu->id_isar0 = 0x00100011;
881 cpu->id_isar1 = 0x12002111;
882 cpu->id_isar2 = 0x11221011;
883 cpu->id_isar3 = 0x01102131;
884 cpu->id_isar4 = 0x141;
885 cpu->reset_auxcr = 1;
888 static void cortex_m3_initfn(Object *obj)
890 ARMCPU *cpu = ARM_CPU(obj);
891 set_feature(&cpu->env, ARM_FEATURE_V7);
892 set_feature(&cpu->env, ARM_FEATURE_M);
893 cpu->midr = 0x410fc231;
896 static void cortex_m4_initfn(Object *obj)
898 ARMCPU *cpu = ARM_CPU(obj);
900 set_feature(&cpu->env, ARM_FEATURE_V7);
901 set_feature(&cpu->env, ARM_FEATURE_M);
902 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
903 cpu->midr = 0x410fc240; /* r0p0 */
905 static void arm_v7m_class_init(ObjectClass *oc, void *data)
907 CPUClass *cc = CPU_CLASS(oc);
909 #ifndef CONFIG_USER_ONLY
910 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
911 #endif
913 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
916 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
917 /* Dummy the TCM region regs for the moment */
918 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
919 .access = PL1_RW, .type = ARM_CP_CONST },
920 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
921 .access = PL1_RW, .type = ARM_CP_CONST },
922 REGINFO_SENTINEL
925 static void cortex_r5_initfn(Object *obj)
927 ARMCPU *cpu = ARM_CPU(obj);
929 set_feature(&cpu->env, ARM_FEATURE_V7);
930 set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
931 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
932 set_feature(&cpu->env, ARM_FEATURE_V7MP);
933 set_feature(&cpu->env, ARM_FEATURE_MPU);
934 cpu->midr = 0x411fc153; /* r1p3 */
935 cpu->id_pfr0 = 0x0131;
936 cpu->id_pfr1 = 0x001;
937 cpu->id_dfr0 = 0x010400;
938 cpu->id_afr0 = 0x0;
939 cpu->id_mmfr0 = 0x0210030;
940 cpu->id_mmfr1 = 0x00000000;
941 cpu->id_mmfr2 = 0x01200000;
942 cpu->id_mmfr3 = 0x0211;
943 cpu->id_isar0 = 0x2101111;
944 cpu->id_isar1 = 0x13112111;
945 cpu->id_isar2 = 0x21232141;
946 cpu->id_isar3 = 0x01112131;
947 cpu->id_isar4 = 0x0010142;
948 cpu->id_isar5 = 0x0;
949 cpu->mp_is_up = true;
950 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
953 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
954 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
955 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
956 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
957 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
958 REGINFO_SENTINEL
961 static void cortex_a8_initfn(Object *obj)
963 ARMCPU *cpu = ARM_CPU(obj);
965 cpu->dtb_compatible = "arm,cortex-a8";
966 set_feature(&cpu->env, ARM_FEATURE_V7);
967 set_feature(&cpu->env, ARM_FEATURE_VFP3);
968 set_feature(&cpu->env, ARM_FEATURE_NEON);
969 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
970 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
971 set_feature(&cpu->env, ARM_FEATURE_EL3);
972 cpu->midr = 0x410fc080;
973 cpu->reset_fpsid = 0x410330c0;
974 cpu->mvfr0 = 0x11110222;
975 cpu->mvfr1 = 0x00011100;
976 cpu->ctr = 0x82048004;
977 cpu->reset_sctlr = 0x00c50078;
978 cpu->id_pfr0 = 0x1031;
979 cpu->id_pfr1 = 0x11;
980 cpu->id_dfr0 = 0x400;
981 cpu->id_afr0 = 0;
982 cpu->id_mmfr0 = 0x31100003;
983 cpu->id_mmfr1 = 0x20000000;
984 cpu->id_mmfr2 = 0x01202000;
985 cpu->id_mmfr3 = 0x11;
986 cpu->id_isar0 = 0x00101111;
987 cpu->id_isar1 = 0x12112111;
988 cpu->id_isar2 = 0x21232031;
989 cpu->id_isar3 = 0x11112131;
990 cpu->id_isar4 = 0x00111142;
991 cpu->dbgdidr = 0x15141000;
992 cpu->clidr = (1 << 27) | (2 << 24) | 3;
993 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
994 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
995 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
996 cpu->reset_auxcr = 2;
997 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1000 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1001 /* power_control should be set to maximum latency. Again,
1002 * default to 0 and set by private hook
1004 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1005 .access = PL1_RW, .resetvalue = 0,
1006 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1007 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1008 .access = PL1_RW, .resetvalue = 0,
1009 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1010 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1011 .access = PL1_RW, .resetvalue = 0,
1012 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1013 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1014 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1015 /* TLB lockdown control */
1016 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1017 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1018 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1019 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1020 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1021 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1022 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1023 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1024 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1025 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1026 REGINFO_SENTINEL
1029 static void cortex_a9_initfn(Object *obj)
1031 ARMCPU *cpu = ARM_CPU(obj);
1033 cpu->dtb_compatible = "arm,cortex-a9";
1034 set_feature(&cpu->env, ARM_FEATURE_V7);
1035 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1036 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1037 set_feature(&cpu->env, ARM_FEATURE_NEON);
1038 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1039 set_feature(&cpu->env, ARM_FEATURE_EL3);
1040 /* Note that A9 supports the MP extensions even for
1041 * A9UP and single-core A9MP (which are both different
1042 * and valid configurations; we don't model A9UP).
1044 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1045 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1046 cpu->midr = 0x410fc090;
1047 cpu->reset_fpsid = 0x41033090;
1048 cpu->mvfr0 = 0x11110222;
1049 cpu->mvfr1 = 0x01111111;
1050 cpu->ctr = 0x80038003;
1051 cpu->reset_sctlr = 0x00c50078;
1052 cpu->id_pfr0 = 0x1031;
1053 cpu->id_pfr1 = 0x11;
1054 cpu->id_dfr0 = 0x000;
1055 cpu->id_afr0 = 0;
1056 cpu->id_mmfr0 = 0x00100103;
1057 cpu->id_mmfr1 = 0x20000000;
1058 cpu->id_mmfr2 = 0x01230000;
1059 cpu->id_mmfr3 = 0x00002111;
1060 cpu->id_isar0 = 0x00101111;
1061 cpu->id_isar1 = 0x13112111;
1062 cpu->id_isar2 = 0x21232041;
1063 cpu->id_isar3 = 0x11112131;
1064 cpu->id_isar4 = 0x00111142;
1065 cpu->dbgdidr = 0x35141000;
1066 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1067 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1068 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1069 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1072 #ifndef CONFIG_USER_ONLY
1073 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1075 /* Linux wants the number of processors from here.
1076 * Might as well set the interrupt-controller bit too.
1078 return ((smp_cpus - 1) << 24) | (1 << 23);
1080 #endif
1082 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1083 #ifndef CONFIG_USER_ONLY
1084 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1085 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1086 .writefn = arm_cp_write_ignore, },
1087 #endif
1088 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1089 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1090 REGINFO_SENTINEL
1093 static void cortex_a15_initfn(Object *obj)
1095 ARMCPU *cpu = ARM_CPU(obj);
1097 cpu->dtb_compatible = "arm,cortex-a15";
1098 set_feature(&cpu->env, ARM_FEATURE_V7);
1099 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1100 set_feature(&cpu->env, ARM_FEATURE_NEON);
1101 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1102 set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1103 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1104 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1105 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1106 set_feature(&cpu->env, ARM_FEATURE_LPAE);
1107 set_feature(&cpu->env, ARM_FEATURE_EL3);
1108 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1109 cpu->midr = 0x412fc0f1;
1110 cpu->reset_fpsid = 0x410430f0;
1111 cpu->mvfr0 = 0x10110222;
1112 cpu->mvfr1 = 0x11111111;
1113 cpu->ctr = 0x8444c004;
1114 cpu->reset_sctlr = 0x00c50078;
1115 cpu->id_pfr0 = 0x00001131;
1116 cpu->id_pfr1 = 0x00011011;
1117 cpu->id_dfr0 = 0x02010555;
1118 cpu->id_afr0 = 0x00000000;
1119 cpu->id_mmfr0 = 0x10201105;
1120 cpu->id_mmfr1 = 0x20000000;
1121 cpu->id_mmfr2 = 0x01240000;
1122 cpu->id_mmfr3 = 0x02102211;
1123 cpu->id_isar0 = 0x02101110;
1124 cpu->id_isar1 = 0x13112111;
1125 cpu->id_isar2 = 0x21232041;
1126 cpu->id_isar3 = 0x11112131;
1127 cpu->id_isar4 = 0x10011142;
1128 cpu->dbgdidr = 0x3515f021;
1129 cpu->clidr = 0x0a200023;
1130 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1131 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1132 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1133 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1136 static void ti925t_initfn(Object *obj)
1138 ARMCPU *cpu = ARM_CPU(obj);
1139 set_feature(&cpu->env, ARM_FEATURE_V4T);
1140 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1141 cpu->midr = ARM_CPUID_TI925T;
1142 cpu->ctr = 0x5109149;
1143 cpu->reset_sctlr = 0x00000070;
1146 static void sa1100_initfn(Object *obj)
1148 ARMCPU *cpu = ARM_CPU(obj);
1150 cpu->dtb_compatible = "intel,sa1100";
1151 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1152 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1153 cpu->midr = 0x4401A11B;
1154 cpu->reset_sctlr = 0x00000070;
1157 static void sa1110_initfn(Object *obj)
1159 ARMCPU *cpu = ARM_CPU(obj);
1160 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1161 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1162 cpu->midr = 0x6901B119;
1163 cpu->reset_sctlr = 0x00000070;
1166 static void pxa250_initfn(Object *obj)
1168 ARMCPU *cpu = ARM_CPU(obj);
1170 cpu->dtb_compatible = "marvell,xscale";
1171 set_feature(&cpu->env, ARM_FEATURE_V5);
1172 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1173 cpu->midr = 0x69052100;
1174 cpu->ctr = 0xd172172;
1175 cpu->reset_sctlr = 0x00000078;
1178 static void pxa255_initfn(Object *obj)
1180 ARMCPU *cpu = ARM_CPU(obj);
1182 cpu->dtb_compatible = "marvell,xscale";
1183 set_feature(&cpu->env, ARM_FEATURE_V5);
1184 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1185 cpu->midr = 0x69052d00;
1186 cpu->ctr = 0xd172172;
1187 cpu->reset_sctlr = 0x00000078;
1190 static void pxa260_initfn(Object *obj)
1192 ARMCPU *cpu = ARM_CPU(obj);
1194 cpu->dtb_compatible = "marvell,xscale";
1195 set_feature(&cpu->env, ARM_FEATURE_V5);
1196 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1197 cpu->midr = 0x69052903;
1198 cpu->ctr = 0xd172172;
1199 cpu->reset_sctlr = 0x00000078;
1202 static void pxa261_initfn(Object *obj)
1204 ARMCPU *cpu = ARM_CPU(obj);
1206 cpu->dtb_compatible = "marvell,xscale";
1207 set_feature(&cpu->env, ARM_FEATURE_V5);
1208 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1209 cpu->midr = 0x69052d05;
1210 cpu->ctr = 0xd172172;
1211 cpu->reset_sctlr = 0x00000078;
1214 static void pxa262_initfn(Object *obj)
1216 ARMCPU *cpu = ARM_CPU(obj);
1218 cpu->dtb_compatible = "marvell,xscale";
1219 set_feature(&cpu->env, ARM_FEATURE_V5);
1220 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1221 cpu->midr = 0x69052d06;
1222 cpu->ctr = 0xd172172;
1223 cpu->reset_sctlr = 0x00000078;
1226 static void pxa270a0_initfn(Object *obj)
1228 ARMCPU *cpu = ARM_CPU(obj);
1230 cpu->dtb_compatible = "marvell,xscale";
1231 set_feature(&cpu->env, ARM_FEATURE_V5);
1232 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1233 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1234 cpu->midr = 0x69054110;
1235 cpu->ctr = 0xd172172;
1236 cpu->reset_sctlr = 0x00000078;
1239 static void pxa270a1_initfn(Object *obj)
1241 ARMCPU *cpu = ARM_CPU(obj);
1243 cpu->dtb_compatible = "marvell,xscale";
1244 set_feature(&cpu->env, ARM_FEATURE_V5);
1245 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1246 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1247 cpu->midr = 0x69054111;
1248 cpu->ctr = 0xd172172;
1249 cpu->reset_sctlr = 0x00000078;
1252 static void pxa270b0_initfn(Object *obj)
1254 ARMCPU *cpu = ARM_CPU(obj);
1256 cpu->dtb_compatible = "marvell,xscale";
1257 set_feature(&cpu->env, ARM_FEATURE_V5);
1258 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1259 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1260 cpu->midr = 0x69054112;
1261 cpu->ctr = 0xd172172;
1262 cpu->reset_sctlr = 0x00000078;
1265 static void pxa270b1_initfn(Object *obj)
1267 ARMCPU *cpu = ARM_CPU(obj);
1269 cpu->dtb_compatible = "marvell,xscale";
1270 set_feature(&cpu->env, ARM_FEATURE_V5);
1271 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1272 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1273 cpu->midr = 0x69054113;
1274 cpu->ctr = 0xd172172;
1275 cpu->reset_sctlr = 0x00000078;
1278 static void pxa270c0_initfn(Object *obj)
1280 ARMCPU *cpu = ARM_CPU(obj);
1282 cpu->dtb_compatible = "marvell,xscale";
1283 set_feature(&cpu->env, ARM_FEATURE_V5);
1284 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1285 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1286 cpu->midr = 0x69054114;
1287 cpu->ctr = 0xd172172;
1288 cpu->reset_sctlr = 0x00000078;
1291 static void pxa270c5_initfn(Object *obj)
1293 ARMCPU *cpu = ARM_CPU(obj);
1295 cpu->dtb_compatible = "marvell,xscale";
1296 set_feature(&cpu->env, ARM_FEATURE_V5);
1297 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1298 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1299 cpu->midr = 0x69054117;
1300 cpu->ctr = 0xd172172;
1301 cpu->reset_sctlr = 0x00000078;
1304 #ifdef CONFIG_USER_ONLY
1305 static void arm_any_initfn(Object *obj)
1307 ARMCPU *cpu = ARM_CPU(obj);
1308 set_feature(&cpu->env, ARM_FEATURE_V8);
1309 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1310 set_feature(&cpu->env, ARM_FEATURE_NEON);
1311 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1312 set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1313 set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1314 set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1315 set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1316 set_feature(&cpu->env, ARM_FEATURE_CRC);
1317 cpu->midr = 0xffffffff;
1319 #endif
1321 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1323 typedef struct ARMCPUInfo {
1324 const char *name;
1325 void (*initfn)(Object *obj);
1326 void (*class_init)(ObjectClass *oc, void *data);
1327 } ARMCPUInfo;
1329 static const ARMCPUInfo arm_cpus[] = {
1330 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1331 { .name = "arm926", .initfn = arm926_initfn },
1332 { .name = "arm946", .initfn = arm946_initfn },
1333 { .name = "arm1026", .initfn = arm1026_initfn },
1334 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1335 * older core than plain "arm1136". In particular this does not
1336 * have the v6K features.
1338 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
1339 { .name = "arm1136", .initfn = arm1136_initfn },
1340 { .name = "arm1176", .initfn = arm1176_initfn },
1341 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1342 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
1343 .class_init = arm_v7m_class_init },
1344 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
1345 .class_init = arm_v7m_class_init },
1346 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
1347 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
1348 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
1349 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
1350 { .name = "ti925t", .initfn = ti925t_initfn },
1351 { .name = "sa1100", .initfn = sa1100_initfn },
1352 { .name = "sa1110", .initfn = sa1110_initfn },
1353 { .name = "pxa250", .initfn = pxa250_initfn },
1354 { .name = "pxa255", .initfn = pxa255_initfn },
1355 { .name = "pxa260", .initfn = pxa260_initfn },
1356 { .name = "pxa261", .initfn = pxa261_initfn },
1357 { .name = "pxa262", .initfn = pxa262_initfn },
1358 /* "pxa270" is an alias for "pxa270-a0" */
1359 { .name = "pxa270", .initfn = pxa270a0_initfn },
1360 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
1361 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
1362 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
1363 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
1364 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
1365 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
1366 #ifdef CONFIG_USER_ONLY
1367 { .name = "any", .initfn = arm_any_initfn },
1368 #endif
1369 #endif
1370 { .name = NULL }
1373 static Property arm_cpu_properties[] = {
1374 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1375 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1376 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1377 DEFINE_PROP_END_OF_LIST()
1380 #ifdef CONFIG_USER_ONLY
1381 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1382 int mmu_idx)
1384 ARMCPU *cpu = ARM_CPU(cs);
1385 CPUARMState *env = &cpu->env;
1387 env->exception.vaddress = address;
1388 if (rw == 2) {
1389 cs->exception_index = EXCP_PREFETCH_ABORT;
1390 } else {
1391 cs->exception_index = EXCP_DATA_ABORT;
1393 return 1;
1395 #endif
1397 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1399 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1400 CPUClass *cc = CPU_CLASS(acc);
1401 DeviceClass *dc = DEVICE_CLASS(oc);
1403 acc->parent_realize = dc->realize;
1404 dc->realize = arm_cpu_realizefn;
1405 dc->props = arm_cpu_properties;
1407 acc->parent_reset = cc->reset;
1408 cc->reset = arm_cpu_reset;
1410 cc->class_by_name = arm_cpu_class_by_name;
1411 cc->has_work = arm_cpu_has_work;
1412 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1413 cc->dump_state = arm_cpu_dump_state;
1414 cc->set_pc = arm_cpu_set_pc;
1415 cc->gdb_read_register = arm_cpu_gdb_read_register;
1416 cc->gdb_write_register = arm_cpu_gdb_write_register;
1417 #ifdef CONFIG_USER_ONLY
1418 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1419 #else
1420 cc->do_interrupt = arm_cpu_do_interrupt;
1421 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1422 cc->get_phys_page_debug = arm_cpu_get_phys_page_debug;
1423 cc->vmsd = &vmstate_arm_cpu;
1424 cc->virtio_is_big_endian = arm_cpu_is_big_endian;
1425 cc->write_elf64_note = arm_cpu_write_elf64_note;
1426 cc->write_elf32_note = arm_cpu_write_elf32_note;
1427 #endif
1428 cc->gdb_num_core_regs = 26;
1429 cc->gdb_core_xml_file = "arm-core.xml";
1430 cc->gdb_stop_before_watchpoint = true;
1431 cc->debug_excp_handler = arm_debug_excp_handler;
1433 cc->disas_set_info = arm_disas_set_info;
1436 * Reason: arm_cpu_initfn() calls cpu_exec_init(), which saves
1437 * the object in cpus -> dangling pointer after final
1438 * object_unref().
1440 * Once this is fixed, the devices that create ARM CPUs should be
1441 * updated not to set cannot_destroy_with_object_finalize_yet,
1442 * unless they still screw up something else.
1444 dc->cannot_destroy_with_object_finalize_yet = true;
1447 static void cpu_register(const ARMCPUInfo *info)
1449 TypeInfo type_info = {
1450 .parent = TYPE_ARM_CPU,
1451 .instance_size = sizeof(ARMCPU),
1452 .instance_init = info->initfn,
1453 .class_size = sizeof(ARMCPUClass),
1454 .class_init = info->class_init,
1457 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1458 type_register(&type_info);
1459 g_free((void *)type_info.name);
1462 static const TypeInfo arm_cpu_type_info = {
1463 .name = TYPE_ARM_CPU,
1464 .parent = TYPE_CPU,
1465 .instance_size = sizeof(ARMCPU),
1466 .instance_init = arm_cpu_initfn,
1467 .instance_post_init = arm_cpu_post_init,
1468 .instance_finalize = arm_cpu_finalizefn,
1469 .abstract = true,
1470 .class_size = sizeof(ARMCPUClass),
1471 .class_init = arm_cpu_class_init,
1474 static void arm_cpu_register_types(void)
1476 const ARMCPUInfo *info = arm_cpus;
1478 type_register_static(&arm_cpu_type_info);
1480 while (info->name) {
1481 cpu_register(info);
1482 info++;
1486 type_init(arm_cpu_register_types)