blockdev: Error out on negative throttling option values
[qemu/ar7.git] / block / io.c
blob5bb353a8ca3cdf41ee5b778e5cb00fcc0c3514c1
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "block/throttle-groups.h"
31 #include "qemu/error-report.h"
33 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
35 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
36 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
37 BlockCompletionFunc *cb, void *opaque);
38 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
39 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
40 BlockCompletionFunc *cb, void *opaque);
41 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
42 int64_t sector_num, int nb_sectors,
43 QEMUIOVector *iov);
44 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
45 int64_t sector_num, int nb_sectors,
46 QEMUIOVector *iov);
47 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
48 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
49 BdrvRequestFlags flags);
50 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
51 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
52 BdrvRequestFlags flags);
53 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
54 int64_t sector_num,
55 QEMUIOVector *qiov,
56 int nb_sectors,
57 BdrvRequestFlags flags,
58 BlockCompletionFunc *cb,
59 void *opaque,
60 bool is_write);
61 static void coroutine_fn bdrv_co_do_rw(void *opaque);
62 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
63 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
65 /* throttling disk I/O limits */
66 void bdrv_set_io_limits(BlockDriverState *bs,
67 ThrottleConfig *cfg)
69 int i;
71 throttle_group_config(bs, cfg);
73 for (i = 0; i < 2; i++) {
74 qemu_co_enter_next(&bs->throttled_reqs[i]);
78 /* this function drain all the throttled IOs */
79 static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
81 bool drained = false;
82 bool enabled = bs->io_limits_enabled;
83 int i;
85 bs->io_limits_enabled = false;
87 for (i = 0; i < 2; i++) {
88 while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
89 drained = true;
93 bs->io_limits_enabled = enabled;
95 return drained;
98 void bdrv_io_limits_disable(BlockDriverState *bs)
100 bs->io_limits_enabled = false;
101 bdrv_start_throttled_reqs(bs);
102 throttle_group_unregister_bs(bs);
105 /* should be called before bdrv_set_io_limits if a limit is set */
106 void bdrv_io_limits_enable(BlockDriverState *bs, const char *group)
108 assert(!bs->io_limits_enabled);
109 throttle_group_register_bs(bs, group);
110 bs->io_limits_enabled = true;
113 void bdrv_io_limits_update_group(BlockDriverState *bs, const char *group)
115 /* this bs is not part of any group */
116 if (!bs->throttle_state) {
117 return;
120 /* this bs is a part of the same group than the one we want */
121 if (!g_strcmp0(throttle_group_get_name(bs), group)) {
122 return;
125 /* need to change the group this bs belong to */
126 bdrv_io_limits_disable(bs);
127 bdrv_io_limits_enable(bs, group);
130 void bdrv_setup_io_funcs(BlockDriver *bdrv)
132 /* Block drivers without coroutine functions need emulation */
133 if (!bdrv->bdrv_co_readv) {
134 bdrv->bdrv_co_readv = bdrv_co_readv_em;
135 bdrv->bdrv_co_writev = bdrv_co_writev_em;
137 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
138 * the block driver lacks aio we need to emulate that too.
140 if (!bdrv->bdrv_aio_readv) {
141 /* add AIO emulation layer */
142 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
143 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
148 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
150 BlockDriver *drv = bs->drv;
151 Error *local_err = NULL;
153 memset(&bs->bl, 0, sizeof(bs->bl));
155 if (!drv) {
156 return;
159 /* Take some limits from the children as a default */
160 if (bs->file) {
161 bdrv_refresh_limits(bs->file->bs, &local_err);
162 if (local_err) {
163 error_propagate(errp, local_err);
164 return;
166 bs->bl.opt_transfer_length = bs->file->bs->bl.opt_transfer_length;
167 bs->bl.max_transfer_length = bs->file->bs->bl.max_transfer_length;
168 bs->bl.min_mem_alignment = bs->file->bs->bl.min_mem_alignment;
169 bs->bl.opt_mem_alignment = bs->file->bs->bl.opt_mem_alignment;
170 bs->bl.max_iov = bs->file->bs->bl.max_iov;
171 } else {
172 bs->bl.min_mem_alignment = 512;
173 bs->bl.opt_mem_alignment = getpagesize();
175 /* Safe default since most protocols use readv()/writev()/etc */
176 bs->bl.max_iov = IOV_MAX;
179 if (bs->backing) {
180 bdrv_refresh_limits(bs->backing->bs, &local_err);
181 if (local_err) {
182 error_propagate(errp, local_err);
183 return;
185 bs->bl.opt_transfer_length =
186 MAX(bs->bl.opt_transfer_length,
187 bs->backing->bs->bl.opt_transfer_length);
188 bs->bl.max_transfer_length =
189 MIN_NON_ZERO(bs->bl.max_transfer_length,
190 bs->backing->bs->bl.max_transfer_length);
191 bs->bl.opt_mem_alignment =
192 MAX(bs->bl.opt_mem_alignment,
193 bs->backing->bs->bl.opt_mem_alignment);
194 bs->bl.min_mem_alignment =
195 MAX(bs->bl.min_mem_alignment,
196 bs->backing->bs->bl.min_mem_alignment);
197 bs->bl.max_iov =
198 MIN(bs->bl.max_iov,
199 bs->backing->bs->bl.max_iov);
202 /* Then let the driver override it */
203 if (drv->bdrv_refresh_limits) {
204 drv->bdrv_refresh_limits(bs, errp);
209 * The copy-on-read flag is actually a reference count so multiple users may
210 * use the feature without worrying about clobbering its previous state.
211 * Copy-on-read stays enabled until all users have called to disable it.
213 void bdrv_enable_copy_on_read(BlockDriverState *bs)
215 bs->copy_on_read++;
218 void bdrv_disable_copy_on_read(BlockDriverState *bs)
220 assert(bs->copy_on_read > 0);
221 bs->copy_on_read--;
224 /* Check if any requests are in-flight (including throttled requests) */
225 bool bdrv_requests_pending(BlockDriverState *bs)
227 BdrvChild *child;
229 if (!QLIST_EMPTY(&bs->tracked_requests)) {
230 return true;
232 if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
233 return true;
235 if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
236 return true;
239 QLIST_FOREACH(child, &bs->children, next) {
240 if (bdrv_requests_pending(child->bs)) {
241 return true;
245 return false;
248 static void bdrv_drain_recurse(BlockDriverState *bs)
250 BdrvChild *child;
252 if (bs->drv && bs->drv->bdrv_drain) {
253 bs->drv->bdrv_drain(bs);
255 QLIST_FOREACH(child, &bs->children, next) {
256 bdrv_drain_recurse(child->bs);
261 * Wait for pending requests to complete on a single BlockDriverState subtree,
262 * and suspend block driver's internal I/O until next request arrives.
264 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
265 * AioContext.
267 * Only this BlockDriverState's AioContext is run, so in-flight requests must
268 * not depend on events in other AioContexts. In that case, use
269 * bdrv_drain_all() instead.
271 void bdrv_drain(BlockDriverState *bs)
273 bool busy = true;
275 bdrv_drain_recurse(bs);
276 while (busy) {
277 /* Keep iterating */
278 bdrv_flush_io_queue(bs);
279 busy = bdrv_requests_pending(bs);
280 busy |= aio_poll(bdrv_get_aio_context(bs), busy);
285 * Wait for pending requests to complete across all BlockDriverStates
287 * This function does not flush data to disk, use bdrv_flush_all() for that
288 * after calling this function.
290 void bdrv_drain_all(void)
292 /* Always run first iteration so any pending completion BHs run */
293 bool busy = true;
294 BlockDriverState *bs = NULL;
295 GSList *aio_ctxs = NULL, *ctx;
297 while ((bs = bdrv_next(bs))) {
298 AioContext *aio_context = bdrv_get_aio_context(bs);
300 aio_context_acquire(aio_context);
301 if (bs->job) {
302 block_job_pause(bs->job);
304 aio_context_release(aio_context);
306 if (!g_slist_find(aio_ctxs, aio_context)) {
307 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
311 /* Note that completion of an asynchronous I/O operation can trigger any
312 * number of other I/O operations on other devices---for example a
313 * coroutine can submit an I/O request to another device in response to
314 * request completion. Therefore we must keep looping until there was no
315 * more activity rather than simply draining each device independently.
317 while (busy) {
318 busy = false;
320 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
321 AioContext *aio_context = ctx->data;
322 bs = NULL;
324 aio_context_acquire(aio_context);
325 while ((bs = bdrv_next(bs))) {
326 if (aio_context == bdrv_get_aio_context(bs)) {
327 bdrv_flush_io_queue(bs);
328 if (bdrv_requests_pending(bs)) {
329 busy = true;
330 aio_poll(aio_context, busy);
334 busy |= aio_poll(aio_context, false);
335 aio_context_release(aio_context);
339 bs = NULL;
340 while ((bs = bdrv_next(bs))) {
341 AioContext *aio_context = bdrv_get_aio_context(bs);
343 aio_context_acquire(aio_context);
344 if (bs->job) {
345 block_job_resume(bs->job);
347 aio_context_release(aio_context);
349 g_slist_free(aio_ctxs);
353 * Remove an active request from the tracked requests list
355 * This function should be called when a tracked request is completing.
357 static void tracked_request_end(BdrvTrackedRequest *req)
359 if (req->serialising) {
360 req->bs->serialising_in_flight--;
363 QLIST_REMOVE(req, list);
364 qemu_co_queue_restart_all(&req->wait_queue);
368 * Add an active request to the tracked requests list
370 static void tracked_request_begin(BdrvTrackedRequest *req,
371 BlockDriverState *bs,
372 int64_t offset,
373 unsigned int bytes,
374 enum BdrvTrackedRequestType type)
376 *req = (BdrvTrackedRequest){
377 .bs = bs,
378 .offset = offset,
379 .bytes = bytes,
380 .type = type,
381 .co = qemu_coroutine_self(),
382 .serialising = false,
383 .overlap_offset = offset,
384 .overlap_bytes = bytes,
387 qemu_co_queue_init(&req->wait_queue);
389 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
392 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
394 int64_t overlap_offset = req->offset & ~(align - 1);
395 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
396 - overlap_offset;
398 if (!req->serialising) {
399 req->bs->serialising_in_flight++;
400 req->serialising = true;
403 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
404 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
408 * Round a region to cluster boundaries
410 void bdrv_round_to_clusters(BlockDriverState *bs,
411 int64_t sector_num, int nb_sectors,
412 int64_t *cluster_sector_num,
413 int *cluster_nb_sectors)
415 BlockDriverInfo bdi;
417 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
418 *cluster_sector_num = sector_num;
419 *cluster_nb_sectors = nb_sectors;
420 } else {
421 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
422 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
423 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
424 nb_sectors, c);
428 static int bdrv_get_cluster_size(BlockDriverState *bs)
430 BlockDriverInfo bdi;
431 int ret;
433 ret = bdrv_get_info(bs, &bdi);
434 if (ret < 0 || bdi.cluster_size == 0) {
435 return bs->request_alignment;
436 } else {
437 return bdi.cluster_size;
441 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
442 int64_t offset, unsigned int bytes)
444 /* aaaa bbbb */
445 if (offset >= req->overlap_offset + req->overlap_bytes) {
446 return false;
448 /* bbbb aaaa */
449 if (req->overlap_offset >= offset + bytes) {
450 return false;
452 return true;
455 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
457 BlockDriverState *bs = self->bs;
458 BdrvTrackedRequest *req;
459 bool retry;
460 bool waited = false;
462 if (!bs->serialising_in_flight) {
463 return false;
466 do {
467 retry = false;
468 QLIST_FOREACH(req, &bs->tracked_requests, list) {
469 if (req == self || (!req->serialising && !self->serialising)) {
470 continue;
472 if (tracked_request_overlaps(req, self->overlap_offset,
473 self->overlap_bytes))
475 /* Hitting this means there was a reentrant request, for
476 * example, a block driver issuing nested requests. This must
477 * never happen since it means deadlock.
479 assert(qemu_coroutine_self() != req->co);
481 /* If the request is already (indirectly) waiting for us, or
482 * will wait for us as soon as it wakes up, then just go on
483 * (instead of producing a deadlock in the former case). */
484 if (!req->waiting_for) {
485 self->waiting_for = req;
486 qemu_co_queue_wait(&req->wait_queue);
487 self->waiting_for = NULL;
488 retry = true;
489 waited = true;
490 break;
494 } while (retry);
496 return waited;
499 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
500 size_t size)
502 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
503 return -EIO;
506 if (!bdrv_is_inserted(bs)) {
507 return -ENOMEDIUM;
510 if (offset < 0) {
511 return -EIO;
514 return 0;
517 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
518 int nb_sectors)
520 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
521 return -EIO;
524 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
525 nb_sectors * BDRV_SECTOR_SIZE);
528 typedef struct RwCo {
529 BlockDriverState *bs;
530 int64_t offset;
531 QEMUIOVector *qiov;
532 bool is_write;
533 int ret;
534 BdrvRequestFlags flags;
535 } RwCo;
537 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
539 RwCo *rwco = opaque;
541 if (!rwco->is_write) {
542 rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
543 rwco->qiov->size, rwco->qiov,
544 rwco->flags);
545 } else {
546 rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
547 rwco->qiov->size, rwco->qiov,
548 rwco->flags);
553 * Process a vectored synchronous request using coroutines
555 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
556 QEMUIOVector *qiov, bool is_write,
557 BdrvRequestFlags flags)
559 Coroutine *co;
560 RwCo rwco = {
561 .bs = bs,
562 .offset = offset,
563 .qiov = qiov,
564 .is_write = is_write,
565 .ret = NOT_DONE,
566 .flags = flags,
570 * In sync call context, when the vcpu is blocked, this throttling timer
571 * will not fire; so the I/O throttling function has to be disabled here
572 * if it has been enabled.
574 if (bs->io_limits_enabled) {
575 fprintf(stderr, "Disabling I/O throttling on '%s' due "
576 "to synchronous I/O.\n", bdrv_get_device_name(bs));
577 bdrv_io_limits_disable(bs);
580 if (qemu_in_coroutine()) {
581 /* Fast-path if already in coroutine context */
582 bdrv_rw_co_entry(&rwco);
583 } else {
584 AioContext *aio_context = bdrv_get_aio_context(bs);
586 co = qemu_coroutine_create(bdrv_rw_co_entry);
587 qemu_coroutine_enter(co, &rwco);
588 while (rwco.ret == NOT_DONE) {
589 aio_poll(aio_context, true);
592 return rwco.ret;
596 * Process a synchronous request using coroutines
598 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
599 int nb_sectors, bool is_write, BdrvRequestFlags flags)
601 QEMUIOVector qiov;
602 struct iovec iov = {
603 .iov_base = (void *)buf,
604 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
607 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
608 return -EINVAL;
611 qemu_iovec_init_external(&qiov, &iov, 1);
612 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
613 &qiov, is_write, flags);
616 /* return < 0 if error. See bdrv_write() for the return codes */
617 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
618 uint8_t *buf, int nb_sectors)
620 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
623 /* Just like bdrv_read(), but with I/O throttling temporarily disabled */
624 int bdrv_read_unthrottled(BlockDriverState *bs, int64_t sector_num,
625 uint8_t *buf, int nb_sectors)
627 bool enabled;
628 int ret;
630 enabled = bs->io_limits_enabled;
631 bs->io_limits_enabled = false;
632 ret = bdrv_read(bs, sector_num, buf, nb_sectors);
633 bs->io_limits_enabled = enabled;
634 return ret;
637 /* Return < 0 if error. Important errors are:
638 -EIO generic I/O error (may happen for all errors)
639 -ENOMEDIUM No media inserted.
640 -EINVAL Invalid sector number or nb_sectors
641 -EACCES Trying to write a read-only device
643 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
644 const uint8_t *buf, int nb_sectors)
646 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
649 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
650 int nb_sectors, BdrvRequestFlags flags)
652 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
653 BDRV_REQ_ZERO_WRITE | flags);
657 * Completely zero out a block device with the help of bdrv_write_zeroes.
658 * The operation is sped up by checking the block status and only writing
659 * zeroes to the device if they currently do not return zeroes. Optional
660 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
662 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
664 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
666 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
667 int n;
669 target_sectors = bdrv_nb_sectors(bs);
670 if (target_sectors < 0) {
671 return target_sectors;
674 for (;;) {
675 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
676 if (nb_sectors <= 0) {
677 return 0;
679 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n);
680 if (ret < 0) {
681 error_report("error getting block status at sector %" PRId64 ": %s",
682 sector_num, strerror(-ret));
683 return ret;
685 if (ret & BDRV_BLOCK_ZERO) {
686 sector_num += n;
687 continue;
689 ret = bdrv_write_zeroes(bs, sector_num, n, flags);
690 if (ret < 0) {
691 error_report("error writing zeroes at sector %" PRId64 ": %s",
692 sector_num, strerror(-ret));
693 return ret;
695 sector_num += n;
699 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
701 QEMUIOVector qiov;
702 struct iovec iov = {
703 .iov_base = (void *)buf,
704 .iov_len = bytes,
706 int ret;
708 if (bytes < 0) {
709 return -EINVAL;
712 qemu_iovec_init_external(&qiov, &iov, 1);
713 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
714 if (ret < 0) {
715 return ret;
718 return bytes;
721 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
723 int ret;
725 ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
726 if (ret < 0) {
727 return ret;
730 return qiov->size;
733 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
734 const void *buf, int bytes)
736 QEMUIOVector qiov;
737 struct iovec iov = {
738 .iov_base = (void *) buf,
739 .iov_len = bytes,
742 if (bytes < 0) {
743 return -EINVAL;
746 qemu_iovec_init_external(&qiov, &iov, 1);
747 return bdrv_pwritev(bs, offset, &qiov);
751 * Writes to the file and ensures that no writes are reordered across this
752 * request (acts as a barrier)
754 * Returns 0 on success, -errno in error cases.
756 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
757 const void *buf, int count)
759 int ret;
761 ret = bdrv_pwrite(bs, offset, buf, count);
762 if (ret < 0) {
763 return ret;
766 /* No flush needed for cache modes that already do it */
767 if (bs->enable_write_cache) {
768 bdrv_flush(bs);
771 return 0;
774 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
775 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
777 /* Perform I/O through a temporary buffer so that users who scribble over
778 * their read buffer while the operation is in progress do not end up
779 * modifying the image file. This is critical for zero-copy guest I/O
780 * where anything might happen inside guest memory.
782 void *bounce_buffer;
784 BlockDriver *drv = bs->drv;
785 struct iovec iov;
786 QEMUIOVector bounce_qiov;
787 int64_t cluster_sector_num;
788 int cluster_nb_sectors;
789 size_t skip_bytes;
790 int ret;
792 /* Cover entire cluster so no additional backing file I/O is required when
793 * allocating cluster in the image file.
795 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
796 &cluster_sector_num, &cluster_nb_sectors);
798 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
799 cluster_sector_num, cluster_nb_sectors);
801 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
802 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
803 if (bounce_buffer == NULL) {
804 ret = -ENOMEM;
805 goto err;
808 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
810 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
811 &bounce_qiov);
812 if (ret < 0) {
813 goto err;
816 if (drv->bdrv_co_write_zeroes &&
817 buffer_is_zero(bounce_buffer, iov.iov_len)) {
818 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
819 cluster_nb_sectors, 0);
820 } else {
821 /* This does not change the data on the disk, it is not necessary
822 * to flush even in cache=writethrough mode.
824 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
825 &bounce_qiov);
828 if (ret < 0) {
829 /* It might be okay to ignore write errors for guest requests. If this
830 * is a deliberate copy-on-read then we don't want to ignore the error.
831 * Simply report it in all cases.
833 goto err;
836 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
837 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
838 nb_sectors * BDRV_SECTOR_SIZE);
840 err:
841 qemu_vfree(bounce_buffer);
842 return ret;
846 * Forwards an already correctly aligned request to the BlockDriver. This
847 * handles copy on read and zeroing after EOF; any other features must be
848 * implemented by the caller.
850 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
851 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
852 int64_t align, QEMUIOVector *qiov, int flags)
854 BlockDriver *drv = bs->drv;
855 int ret;
857 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
858 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
860 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
861 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
862 assert(!qiov || bytes == qiov->size);
864 /* Handle Copy on Read and associated serialisation */
865 if (flags & BDRV_REQ_COPY_ON_READ) {
866 /* If we touch the same cluster it counts as an overlap. This
867 * guarantees that allocating writes will be serialized and not race
868 * with each other for the same cluster. For example, in copy-on-read
869 * it ensures that the CoR read and write operations are atomic and
870 * guest writes cannot interleave between them. */
871 mark_request_serialising(req, bdrv_get_cluster_size(bs));
874 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
875 wait_serialising_requests(req);
878 if (flags & BDRV_REQ_COPY_ON_READ) {
879 int pnum;
881 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
882 if (ret < 0) {
883 goto out;
886 if (!ret || pnum != nb_sectors) {
887 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
888 goto out;
892 /* Forward the request to the BlockDriver */
893 if (!bs->zero_beyond_eof) {
894 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
895 } else {
896 /* Read zeros after EOF */
897 int64_t total_sectors, max_nb_sectors;
899 total_sectors = bdrv_nb_sectors(bs);
900 if (total_sectors < 0) {
901 ret = total_sectors;
902 goto out;
905 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
906 align >> BDRV_SECTOR_BITS);
907 if (nb_sectors < max_nb_sectors) {
908 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
909 } else if (max_nb_sectors > 0) {
910 QEMUIOVector local_qiov;
912 qemu_iovec_init(&local_qiov, qiov->niov);
913 qemu_iovec_concat(&local_qiov, qiov, 0,
914 max_nb_sectors * BDRV_SECTOR_SIZE);
916 ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
917 &local_qiov);
919 qemu_iovec_destroy(&local_qiov);
920 } else {
921 ret = 0;
924 /* Reading beyond end of file is supposed to produce zeroes */
925 if (ret == 0 && total_sectors < sector_num + nb_sectors) {
926 uint64_t offset = MAX(0, total_sectors - sector_num);
927 uint64_t bytes = (sector_num + nb_sectors - offset) *
928 BDRV_SECTOR_SIZE;
929 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
933 out:
934 return ret;
938 * Handle a read request in coroutine context
940 static int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
941 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
942 BdrvRequestFlags flags)
944 BlockDriver *drv = bs->drv;
945 BdrvTrackedRequest req;
947 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
948 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
949 uint8_t *head_buf = NULL;
950 uint8_t *tail_buf = NULL;
951 QEMUIOVector local_qiov;
952 bool use_local_qiov = false;
953 int ret;
955 if (!drv) {
956 return -ENOMEDIUM;
959 ret = bdrv_check_byte_request(bs, offset, bytes);
960 if (ret < 0) {
961 return ret;
964 /* Don't do copy-on-read if we read data before write operation */
965 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
966 flags |= BDRV_REQ_COPY_ON_READ;
969 /* throttling disk I/O */
970 if (bs->io_limits_enabled) {
971 throttle_group_co_io_limits_intercept(bs, bytes, false);
974 /* Align read if necessary by padding qiov */
975 if (offset & (align - 1)) {
976 head_buf = qemu_blockalign(bs, align);
977 qemu_iovec_init(&local_qiov, qiov->niov + 2);
978 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
979 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
980 use_local_qiov = true;
982 bytes += offset & (align - 1);
983 offset = offset & ~(align - 1);
986 if ((offset + bytes) & (align - 1)) {
987 if (!use_local_qiov) {
988 qemu_iovec_init(&local_qiov, qiov->niov + 1);
989 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
990 use_local_qiov = true;
992 tail_buf = qemu_blockalign(bs, align);
993 qemu_iovec_add(&local_qiov, tail_buf,
994 align - ((offset + bytes) & (align - 1)));
996 bytes = ROUND_UP(bytes, align);
999 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1000 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
1001 use_local_qiov ? &local_qiov : qiov,
1002 flags);
1003 tracked_request_end(&req);
1005 if (use_local_qiov) {
1006 qemu_iovec_destroy(&local_qiov);
1007 qemu_vfree(head_buf);
1008 qemu_vfree(tail_buf);
1011 return ret;
1014 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
1015 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1016 BdrvRequestFlags flags)
1018 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1019 return -EINVAL;
1022 return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
1023 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1026 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1027 int nb_sectors, QEMUIOVector *qiov)
1029 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1031 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1034 int coroutine_fn bdrv_co_readv_no_serialising(BlockDriverState *bs,
1035 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1037 trace_bdrv_co_readv_no_serialising(bs, sector_num, nb_sectors);
1039 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1040 BDRV_REQ_NO_SERIALISING);
1043 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1044 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1046 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1048 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1049 BDRV_REQ_COPY_ON_READ);
1052 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1054 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1055 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1057 BlockDriver *drv = bs->drv;
1058 QEMUIOVector qiov;
1059 struct iovec iov = {0};
1060 int ret = 0;
1062 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1063 BDRV_REQUEST_MAX_SECTORS);
1065 while (nb_sectors > 0 && !ret) {
1066 int num = nb_sectors;
1068 /* Align request. Block drivers can expect the "bulk" of the request
1069 * to be aligned.
1071 if (bs->bl.write_zeroes_alignment
1072 && num > bs->bl.write_zeroes_alignment) {
1073 if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1074 /* Make a small request up to the first aligned sector. */
1075 num = bs->bl.write_zeroes_alignment;
1076 num -= sector_num % bs->bl.write_zeroes_alignment;
1077 } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1078 /* Shorten the request to the last aligned sector. num cannot
1079 * underflow because num > bs->bl.write_zeroes_alignment.
1081 num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1085 /* limit request size */
1086 if (num > max_write_zeroes) {
1087 num = max_write_zeroes;
1090 ret = -ENOTSUP;
1091 /* First try the efficient write zeroes operation */
1092 if (drv->bdrv_co_write_zeroes) {
1093 ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1096 if (ret == -ENOTSUP) {
1097 /* Fall back to bounce buffer if write zeroes is unsupported */
1098 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1099 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1100 num = MIN(num, max_xfer_len);
1101 iov.iov_len = num * BDRV_SECTOR_SIZE;
1102 if (iov.iov_base == NULL) {
1103 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1104 if (iov.iov_base == NULL) {
1105 ret = -ENOMEM;
1106 goto fail;
1108 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1110 qemu_iovec_init_external(&qiov, &iov, 1);
1112 ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1114 /* Keep bounce buffer around if it is big enough for all
1115 * all future requests.
1117 if (num < max_xfer_len) {
1118 qemu_vfree(iov.iov_base);
1119 iov.iov_base = NULL;
1123 sector_num += num;
1124 nb_sectors -= num;
1127 fail:
1128 qemu_vfree(iov.iov_base);
1129 return ret;
1133 * Forwards an already correctly aligned write request to the BlockDriver.
1135 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1136 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1137 QEMUIOVector *qiov, int flags)
1139 BlockDriver *drv = bs->drv;
1140 bool waited;
1141 int ret;
1143 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1144 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1146 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1147 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1148 assert(!qiov || bytes == qiov->size);
1150 waited = wait_serialising_requests(req);
1151 assert(!waited || !req->serialising);
1152 assert(req->overlap_offset <= offset);
1153 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1155 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1157 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1158 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1159 qemu_iovec_is_zero(qiov)) {
1160 flags |= BDRV_REQ_ZERO_WRITE;
1161 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1162 flags |= BDRV_REQ_MAY_UNMAP;
1166 if (ret < 0) {
1167 /* Do nothing, write notifier decided to fail this request */
1168 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1169 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1170 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1171 } else {
1172 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1173 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1175 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1177 if (ret == 0 && !bs->enable_write_cache) {
1178 ret = bdrv_co_flush(bs);
1181 bdrv_set_dirty(bs, sector_num, nb_sectors);
1183 if (bs->wr_highest_offset < offset + bytes) {
1184 bs->wr_highest_offset = offset + bytes;
1187 if (ret >= 0) {
1188 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1191 return ret;
1194 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1195 int64_t offset,
1196 unsigned int bytes,
1197 BdrvRequestFlags flags,
1198 BdrvTrackedRequest *req)
1200 uint8_t *buf = NULL;
1201 QEMUIOVector local_qiov;
1202 struct iovec iov;
1203 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1204 unsigned int head_padding_bytes, tail_padding_bytes;
1205 int ret = 0;
1207 head_padding_bytes = offset & (align - 1);
1208 tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1211 assert(flags & BDRV_REQ_ZERO_WRITE);
1212 if (head_padding_bytes || tail_padding_bytes) {
1213 buf = qemu_blockalign(bs, align);
1214 iov = (struct iovec) {
1215 .iov_base = buf,
1216 .iov_len = align,
1218 qemu_iovec_init_external(&local_qiov, &iov, 1);
1220 if (head_padding_bytes) {
1221 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1223 /* RMW the unaligned part before head. */
1224 mark_request_serialising(req, align);
1225 wait_serialising_requests(req);
1226 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1227 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1228 align, &local_qiov, 0);
1229 if (ret < 0) {
1230 goto fail;
1232 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1234 memset(buf + head_padding_bytes, 0, zero_bytes);
1235 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1236 &local_qiov,
1237 flags & ~BDRV_REQ_ZERO_WRITE);
1238 if (ret < 0) {
1239 goto fail;
1241 offset += zero_bytes;
1242 bytes -= zero_bytes;
1245 assert(!bytes || (offset & (align - 1)) == 0);
1246 if (bytes >= align) {
1247 /* Write the aligned part in the middle. */
1248 uint64_t aligned_bytes = bytes & ~(align - 1);
1249 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes,
1250 NULL, flags);
1251 if (ret < 0) {
1252 goto fail;
1254 bytes -= aligned_bytes;
1255 offset += aligned_bytes;
1258 assert(!bytes || (offset & (align - 1)) == 0);
1259 if (bytes) {
1260 assert(align == tail_padding_bytes + bytes);
1261 /* RMW the unaligned part after tail. */
1262 mark_request_serialising(req, align);
1263 wait_serialising_requests(req);
1264 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1265 ret = bdrv_aligned_preadv(bs, req, offset, align,
1266 align, &local_qiov, 0);
1267 if (ret < 0) {
1268 goto fail;
1270 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1272 memset(buf, 0, bytes);
1273 ret = bdrv_aligned_pwritev(bs, req, offset, align,
1274 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1276 fail:
1277 qemu_vfree(buf);
1278 return ret;
1283 * Handle a write request in coroutine context
1285 static int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1286 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1287 BdrvRequestFlags flags)
1289 BdrvTrackedRequest req;
1290 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1291 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1292 uint8_t *head_buf = NULL;
1293 uint8_t *tail_buf = NULL;
1294 QEMUIOVector local_qiov;
1295 bool use_local_qiov = false;
1296 int ret;
1298 if (!bs->drv) {
1299 return -ENOMEDIUM;
1301 if (bs->read_only) {
1302 return -EPERM;
1304 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1306 ret = bdrv_check_byte_request(bs, offset, bytes);
1307 if (ret < 0) {
1308 return ret;
1311 /* throttling disk I/O */
1312 if (bs->io_limits_enabled) {
1313 throttle_group_co_io_limits_intercept(bs, bytes, true);
1317 * Align write if necessary by performing a read-modify-write cycle.
1318 * Pad qiov with the read parts and be sure to have a tracked request not
1319 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1321 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1323 if (!qiov) {
1324 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1325 goto out;
1328 if (offset & (align - 1)) {
1329 QEMUIOVector head_qiov;
1330 struct iovec head_iov;
1332 mark_request_serialising(&req, align);
1333 wait_serialising_requests(&req);
1335 head_buf = qemu_blockalign(bs, align);
1336 head_iov = (struct iovec) {
1337 .iov_base = head_buf,
1338 .iov_len = align,
1340 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1342 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1343 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1344 align, &head_qiov, 0);
1345 if (ret < 0) {
1346 goto fail;
1348 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1350 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1351 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1352 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1353 use_local_qiov = true;
1355 bytes += offset & (align - 1);
1356 offset = offset & ~(align - 1);
1359 if ((offset + bytes) & (align - 1)) {
1360 QEMUIOVector tail_qiov;
1361 struct iovec tail_iov;
1362 size_t tail_bytes;
1363 bool waited;
1365 mark_request_serialising(&req, align);
1366 waited = wait_serialising_requests(&req);
1367 assert(!waited || !use_local_qiov);
1369 tail_buf = qemu_blockalign(bs, align);
1370 tail_iov = (struct iovec) {
1371 .iov_base = tail_buf,
1372 .iov_len = align,
1374 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1376 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1377 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1378 align, &tail_qiov, 0);
1379 if (ret < 0) {
1380 goto fail;
1382 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1384 if (!use_local_qiov) {
1385 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1386 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1387 use_local_qiov = true;
1390 tail_bytes = (offset + bytes) & (align - 1);
1391 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1393 bytes = ROUND_UP(bytes, align);
1396 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1397 use_local_qiov ? &local_qiov : qiov,
1398 flags);
1400 fail:
1402 if (use_local_qiov) {
1403 qemu_iovec_destroy(&local_qiov);
1405 qemu_vfree(head_buf);
1406 qemu_vfree(tail_buf);
1407 out:
1408 tracked_request_end(&req);
1409 return ret;
1412 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1413 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1414 BdrvRequestFlags flags)
1416 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1417 return -EINVAL;
1420 return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1421 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1424 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1425 int nb_sectors, QEMUIOVector *qiov)
1427 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1429 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1432 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1433 int64_t sector_num, int nb_sectors,
1434 BdrvRequestFlags flags)
1436 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1438 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1439 flags &= ~BDRV_REQ_MAY_UNMAP;
1442 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1443 BDRV_REQ_ZERO_WRITE | flags);
1446 int bdrv_flush_all(void)
1448 BlockDriverState *bs = NULL;
1449 int result = 0;
1451 while ((bs = bdrv_next(bs))) {
1452 AioContext *aio_context = bdrv_get_aio_context(bs);
1453 int ret;
1455 aio_context_acquire(aio_context);
1456 ret = bdrv_flush(bs);
1457 if (ret < 0 && !result) {
1458 result = ret;
1460 aio_context_release(aio_context);
1463 return result;
1466 typedef struct BdrvCoGetBlockStatusData {
1467 BlockDriverState *bs;
1468 BlockDriverState *base;
1469 int64_t sector_num;
1470 int nb_sectors;
1471 int *pnum;
1472 int64_t ret;
1473 bool done;
1474 } BdrvCoGetBlockStatusData;
1477 * Returns the allocation status of the specified sectors.
1478 * Drivers not implementing the functionality are assumed to not support
1479 * backing files, hence all their sectors are reported as allocated.
1481 * If 'sector_num' is beyond the end of the disk image the return value is 0
1482 * and 'pnum' is set to 0.
1484 * 'pnum' is set to the number of sectors (including and immediately following
1485 * the specified sector) that are known to be in the same
1486 * allocated/unallocated state.
1488 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1489 * beyond the end of the disk image it will be clamped.
1491 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1492 int64_t sector_num,
1493 int nb_sectors, int *pnum)
1495 int64_t total_sectors;
1496 int64_t n;
1497 int64_t ret, ret2;
1499 total_sectors = bdrv_nb_sectors(bs);
1500 if (total_sectors < 0) {
1501 return total_sectors;
1504 if (sector_num >= total_sectors) {
1505 *pnum = 0;
1506 return 0;
1509 n = total_sectors - sector_num;
1510 if (n < nb_sectors) {
1511 nb_sectors = n;
1514 if (!bs->drv->bdrv_co_get_block_status) {
1515 *pnum = nb_sectors;
1516 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1517 if (bs->drv->protocol_name) {
1518 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1520 return ret;
1523 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum);
1524 if (ret < 0) {
1525 *pnum = 0;
1526 return ret;
1529 if (ret & BDRV_BLOCK_RAW) {
1530 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1531 return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1532 *pnum, pnum);
1535 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1536 ret |= BDRV_BLOCK_ALLOCATED;
1537 } else {
1538 if (bdrv_unallocated_blocks_are_zero(bs)) {
1539 ret |= BDRV_BLOCK_ZERO;
1540 } else if (bs->backing) {
1541 BlockDriverState *bs2 = bs->backing->bs;
1542 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1543 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1544 ret |= BDRV_BLOCK_ZERO;
1549 if (bs->file &&
1550 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1551 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1552 int file_pnum;
1554 ret2 = bdrv_co_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1555 *pnum, &file_pnum);
1556 if (ret2 >= 0) {
1557 /* Ignore errors. This is just providing extra information, it
1558 * is useful but not necessary.
1560 if (!file_pnum) {
1561 /* !file_pnum indicates an offset at or beyond the EOF; it is
1562 * perfectly valid for the format block driver to point to such
1563 * offsets, so catch it and mark everything as zero */
1564 ret |= BDRV_BLOCK_ZERO;
1565 } else {
1566 /* Limit request to the range reported by the protocol driver */
1567 *pnum = file_pnum;
1568 ret |= (ret2 & BDRV_BLOCK_ZERO);
1573 return ret;
1576 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1577 BlockDriverState *base,
1578 int64_t sector_num,
1579 int nb_sectors,
1580 int *pnum)
1582 BlockDriverState *p;
1583 int64_t ret = 0;
1585 assert(bs != base);
1586 for (p = bs; p != base; p = backing_bs(p)) {
1587 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum);
1588 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1589 break;
1591 /* [sector_num, pnum] unallocated on this layer, which could be only
1592 * the first part of [sector_num, nb_sectors]. */
1593 nb_sectors = MIN(nb_sectors, *pnum);
1595 return ret;
1598 /* Coroutine wrapper for bdrv_get_block_status_above() */
1599 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1601 BdrvCoGetBlockStatusData *data = opaque;
1603 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1604 data->sector_num,
1605 data->nb_sectors,
1606 data->pnum);
1607 data->done = true;
1611 * Synchronous wrapper around bdrv_co_get_block_status_above().
1613 * See bdrv_co_get_block_status_above() for details.
1615 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1616 BlockDriverState *base,
1617 int64_t sector_num,
1618 int nb_sectors, int *pnum)
1620 Coroutine *co;
1621 BdrvCoGetBlockStatusData data = {
1622 .bs = bs,
1623 .base = base,
1624 .sector_num = sector_num,
1625 .nb_sectors = nb_sectors,
1626 .pnum = pnum,
1627 .done = false,
1630 if (qemu_in_coroutine()) {
1631 /* Fast-path if already in coroutine context */
1632 bdrv_get_block_status_above_co_entry(&data);
1633 } else {
1634 AioContext *aio_context = bdrv_get_aio_context(bs);
1636 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry);
1637 qemu_coroutine_enter(co, &data);
1638 while (!data.done) {
1639 aio_poll(aio_context, true);
1642 return data.ret;
1645 int64_t bdrv_get_block_status(BlockDriverState *bs,
1646 int64_t sector_num,
1647 int nb_sectors, int *pnum)
1649 return bdrv_get_block_status_above(bs, backing_bs(bs),
1650 sector_num, nb_sectors, pnum);
1653 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1654 int nb_sectors, int *pnum)
1656 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum);
1657 if (ret < 0) {
1658 return ret;
1660 return !!(ret & BDRV_BLOCK_ALLOCATED);
1664 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1666 * Return true if the given sector is allocated in any image between
1667 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1668 * sector is allocated in any image of the chain. Return false otherwise.
1670 * 'pnum' is set to the number of sectors (including and immediately following
1671 * the specified sector) that are known to be in the same
1672 * allocated/unallocated state.
1675 int bdrv_is_allocated_above(BlockDriverState *top,
1676 BlockDriverState *base,
1677 int64_t sector_num,
1678 int nb_sectors, int *pnum)
1680 BlockDriverState *intermediate;
1681 int ret, n = nb_sectors;
1683 intermediate = top;
1684 while (intermediate && intermediate != base) {
1685 int pnum_inter;
1686 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1687 &pnum_inter);
1688 if (ret < 0) {
1689 return ret;
1690 } else if (ret) {
1691 *pnum = pnum_inter;
1692 return 1;
1696 * [sector_num, nb_sectors] is unallocated on top but intermediate
1697 * might have
1699 * [sector_num+x, nr_sectors] allocated.
1701 if (n > pnum_inter &&
1702 (intermediate == top ||
1703 sector_num + pnum_inter < intermediate->total_sectors)) {
1704 n = pnum_inter;
1707 intermediate = backing_bs(intermediate);
1710 *pnum = n;
1711 return 0;
1714 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1715 const uint8_t *buf, int nb_sectors)
1717 BlockDriver *drv = bs->drv;
1718 int ret;
1720 if (!drv) {
1721 return -ENOMEDIUM;
1723 if (!drv->bdrv_write_compressed) {
1724 return -ENOTSUP;
1726 ret = bdrv_check_request(bs, sector_num, nb_sectors);
1727 if (ret < 0) {
1728 return ret;
1731 assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1733 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1736 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1737 int64_t pos, int size)
1739 QEMUIOVector qiov;
1740 struct iovec iov = {
1741 .iov_base = (void *) buf,
1742 .iov_len = size,
1745 qemu_iovec_init_external(&qiov, &iov, 1);
1746 return bdrv_writev_vmstate(bs, &qiov, pos);
1749 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1751 BlockDriver *drv = bs->drv;
1753 if (!drv) {
1754 return -ENOMEDIUM;
1755 } else if (drv->bdrv_save_vmstate) {
1756 return drv->bdrv_save_vmstate(bs, qiov, pos);
1757 } else if (bs->file) {
1758 return bdrv_writev_vmstate(bs->file->bs, qiov, pos);
1761 return -ENOTSUP;
1764 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1765 int64_t pos, int size)
1767 BlockDriver *drv = bs->drv;
1768 if (!drv)
1769 return -ENOMEDIUM;
1770 if (drv->bdrv_load_vmstate)
1771 return drv->bdrv_load_vmstate(bs, buf, pos, size);
1772 if (bs->file)
1773 return bdrv_load_vmstate(bs->file->bs, buf, pos, size);
1774 return -ENOTSUP;
1777 /**************************************************************/
1778 /* async I/Os */
1780 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1781 QEMUIOVector *qiov, int nb_sectors,
1782 BlockCompletionFunc *cb, void *opaque)
1784 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1786 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1787 cb, opaque, false);
1790 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1791 QEMUIOVector *qiov, int nb_sectors,
1792 BlockCompletionFunc *cb, void *opaque)
1794 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1796 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1797 cb, opaque, true);
1800 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1801 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1802 BlockCompletionFunc *cb, void *opaque)
1804 trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1806 return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1807 BDRV_REQ_ZERO_WRITE | flags,
1808 cb, opaque, true);
1812 typedef struct MultiwriteCB {
1813 int error;
1814 int num_requests;
1815 int num_callbacks;
1816 struct {
1817 BlockCompletionFunc *cb;
1818 void *opaque;
1819 QEMUIOVector *free_qiov;
1820 } callbacks[];
1821 } MultiwriteCB;
1823 static void multiwrite_user_cb(MultiwriteCB *mcb)
1825 int i;
1827 for (i = 0; i < mcb->num_callbacks; i++) {
1828 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1829 if (mcb->callbacks[i].free_qiov) {
1830 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1832 g_free(mcb->callbacks[i].free_qiov);
1836 static void multiwrite_cb(void *opaque, int ret)
1838 MultiwriteCB *mcb = opaque;
1840 trace_multiwrite_cb(mcb, ret);
1842 if (ret < 0 && !mcb->error) {
1843 mcb->error = ret;
1846 mcb->num_requests--;
1847 if (mcb->num_requests == 0) {
1848 multiwrite_user_cb(mcb);
1849 g_free(mcb);
1853 static int multiwrite_req_compare(const void *a, const void *b)
1855 const BlockRequest *req1 = a, *req2 = b;
1858 * Note that we can't simply subtract req2->sector from req1->sector
1859 * here as that could overflow the return value.
1861 if (req1->sector > req2->sector) {
1862 return 1;
1863 } else if (req1->sector < req2->sector) {
1864 return -1;
1865 } else {
1866 return 0;
1871 * Takes a bunch of requests and tries to merge them. Returns the number of
1872 * requests that remain after merging.
1874 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1875 int num_reqs, MultiwriteCB *mcb)
1877 int i, outidx;
1879 // Sort requests by start sector
1880 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1882 // Check if adjacent requests touch the same clusters. If so, combine them,
1883 // filling up gaps with zero sectors.
1884 outidx = 0;
1885 for (i = 1; i < num_reqs; i++) {
1886 int merge = 0;
1887 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1889 // Handle exactly sequential writes and overlapping writes.
1890 if (reqs[i].sector <= oldreq_last) {
1891 merge = 1;
1894 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 >
1895 bs->bl.max_iov) {
1896 merge = 0;
1899 if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1900 reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1901 merge = 0;
1904 if (merge) {
1905 size_t size;
1906 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1907 qemu_iovec_init(qiov,
1908 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1910 // Add the first request to the merged one. If the requests are
1911 // overlapping, drop the last sectors of the first request.
1912 size = (reqs[i].sector - reqs[outidx].sector) << 9;
1913 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1915 // We should need to add any zeros between the two requests
1916 assert (reqs[i].sector <= oldreq_last);
1918 // Add the second request
1919 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1921 // Add tail of first request, if necessary
1922 if (qiov->size < reqs[outidx].qiov->size) {
1923 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1924 reqs[outidx].qiov->size - qiov->size);
1927 reqs[outidx].nb_sectors = qiov->size >> 9;
1928 reqs[outidx].qiov = qiov;
1930 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1931 } else {
1932 outidx++;
1933 reqs[outidx].sector = reqs[i].sector;
1934 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1935 reqs[outidx].qiov = reqs[i].qiov;
1939 if (bs->blk) {
1940 block_acct_merge_done(blk_get_stats(bs->blk), BLOCK_ACCT_WRITE,
1941 num_reqs - outidx - 1);
1944 return outidx + 1;
1948 * Submit multiple AIO write requests at once.
1950 * On success, the function returns 0 and all requests in the reqs array have
1951 * been submitted. In error case this function returns -1, and any of the
1952 * requests may or may not be submitted yet. In particular, this means that the
1953 * callback will be called for some of the requests, for others it won't. The
1954 * caller must check the error field of the BlockRequest to wait for the right
1955 * callbacks (if error != 0, no callback will be called).
1957 * The implementation may modify the contents of the reqs array, e.g. to merge
1958 * requests. However, the fields opaque and error are left unmodified as they
1959 * are used to signal failure for a single request to the caller.
1961 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1963 MultiwriteCB *mcb;
1964 int i;
1966 /* don't submit writes if we don't have a medium */
1967 if (bs->drv == NULL) {
1968 for (i = 0; i < num_reqs; i++) {
1969 reqs[i].error = -ENOMEDIUM;
1971 return -1;
1974 if (num_reqs == 0) {
1975 return 0;
1978 // Create MultiwriteCB structure
1979 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
1980 mcb->num_requests = 0;
1981 mcb->num_callbacks = num_reqs;
1983 for (i = 0; i < num_reqs; i++) {
1984 mcb->callbacks[i].cb = reqs[i].cb;
1985 mcb->callbacks[i].opaque = reqs[i].opaque;
1988 // Check for mergable requests
1989 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
1991 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
1993 /* Run the aio requests. */
1994 mcb->num_requests = num_reqs;
1995 for (i = 0; i < num_reqs; i++) {
1996 bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
1997 reqs[i].nb_sectors, reqs[i].flags,
1998 multiwrite_cb, mcb,
1999 true);
2002 return 0;
2005 void bdrv_aio_cancel(BlockAIOCB *acb)
2007 qemu_aio_ref(acb);
2008 bdrv_aio_cancel_async(acb);
2009 while (acb->refcnt > 1) {
2010 if (acb->aiocb_info->get_aio_context) {
2011 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2012 } else if (acb->bs) {
2013 aio_poll(bdrv_get_aio_context(acb->bs), true);
2014 } else {
2015 abort();
2018 qemu_aio_unref(acb);
2021 /* Async version of aio cancel. The caller is not blocked if the acb implements
2022 * cancel_async, otherwise we do nothing and let the request normally complete.
2023 * In either case the completion callback must be called. */
2024 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2026 if (acb->aiocb_info->cancel_async) {
2027 acb->aiocb_info->cancel_async(acb);
2031 /**************************************************************/
2032 /* async block device emulation */
2034 typedef struct BlockAIOCBSync {
2035 BlockAIOCB common;
2036 QEMUBH *bh;
2037 int ret;
2038 /* vector translation state */
2039 QEMUIOVector *qiov;
2040 uint8_t *bounce;
2041 int is_write;
2042 } BlockAIOCBSync;
2044 static const AIOCBInfo bdrv_em_aiocb_info = {
2045 .aiocb_size = sizeof(BlockAIOCBSync),
2048 static void bdrv_aio_bh_cb(void *opaque)
2050 BlockAIOCBSync *acb = opaque;
2052 if (!acb->is_write && acb->ret >= 0) {
2053 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
2055 qemu_vfree(acb->bounce);
2056 acb->common.cb(acb->common.opaque, acb->ret);
2057 qemu_bh_delete(acb->bh);
2058 acb->bh = NULL;
2059 qemu_aio_unref(acb);
2062 static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
2063 int64_t sector_num,
2064 QEMUIOVector *qiov,
2065 int nb_sectors,
2066 BlockCompletionFunc *cb,
2067 void *opaque,
2068 int is_write)
2071 BlockAIOCBSync *acb;
2073 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
2074 acb->is_write = is_write;
2075 acb->qiov = qiov;
2076 acb->bounce = qemu_try_blockalign(bs, qiov->size);
2077 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
2079 if (acb->bounce == NULL) {
2080 acb->ret = -ENOMEM;
2081 } else if (is_write) {
2082 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
2083 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
2084 } else {
2085 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
2088 qemu_bh_schedule(acb->bh);
2090 return &acb->common;
2093 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
2094 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2095 BlockCompletionFunc *cb, void *opaque)
2097 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
2100 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
2101 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2102 BlockCompletionFunc *cb, void *opaque)
2104 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
2108 typedef struct BlockAIOCBCoroutine {
2109 BlockAIOCB common;
2110 BlockRequest req;
2111 bool is_write;
2112 bool need_bh;
2113 bool *done;
2114 QEMUBH* bh;
2115 } BlockAIOCBCoroutine;
2117 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2118 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2121 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2123 if (!acb->need_bh) {
2124 acb->common.cb(acb->common.opaque, acb->req.error);
2125 qemu_aio_unref(acb);
2129 static void bdrv_co_em_bh(void *opaque)
2131 BlockAIOCBCoroutine *acb = opaque;
2133 assert(!acb->need_bh);
2134 qemu_bh_delete(acb->bh);
2135 bdrv_co_complete(acb);
2138 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2140 acb->need_bh = false;
2141 if (acb->req.error != -EINPROGRESS) {
2142 BlockDriverState *bs = acb->common.bs;
2144 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2145 qemu_bh_schedule(acb->bh);
2149 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2150 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2152 BlockAIOCBCoroutine *acb = opaque;
2153 BlockDriverState *bs = acb->common.bs;
2155 if (!acb->is_write) {
2156 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2157 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2158 } else {
2159 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2160 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2163 bdrv_co_complete(acb);
2166 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2167 int64_t sector_num,
2168 QEMUIOVector *qiov,
2169 int nb_sectors,
2170 BdrvRequestFlags flags,
2171 BlockCompletionFunc *cb,
2172 void *opaque,
2173 bool is_write)
2175 Coroutine *co;
2176 BlockAIOCBCoroutine *acb;
2178 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2179 acb->need_bh = true;
2180 acb->req.error = -EINPROGRESS;
2181 acb->req.sector = sector_num;
2182 acb->req.nb_sectors = nb_sectors;
2183 acb->req.qiov = qiov;
2184 acb->req.flags = flags;
2185 acb->is_write = is_write;
2187 co = qemu_coroutine_create(bdrv_co_do_rw);
2188 qemu_coroutine_enter(co, acb);
2190 bdrv_co_maybe_schedule_bh(acb);
2191 return &acb->common;
2194 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2196 BlockAIOCBCoroutine *acb = opaque;
2197 BlockDriverState *bs = acb->common.bs;
2199 acb->req.error = bdrv_co_flush(bs);
2200 bdrv_co_complete(acb);
2203 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2204 BlockCompletionFunc *cb, void *opaque)
2206 trace_bdrv_aio_flush(bs, opaque);
2208 Coroutine *co;
2209 BlockAIOCBCoroutine *acb;
2211 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2212 acb->need_bh = true;
2213 acb->req.error = -EINPROGRESS;
2215 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2216 qemu_coroutine_enter(co, acb);
2218 bdrv_co_maybe_schedule_bh(acb);
2219 return &acb->common;
2222 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2224 BlockAIOCBCoroutine *acb = opaque;
2225 BlockDriverState *bs = acb->common.bs;
2227 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2228 bdrv_co_complete(acb);
2231 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2232 int64_t sector_num, int nb_sectors,
2233 BlockCompletionFunc *cb, void *opaque)
2235 Coroutine *co;
2236 BlockAIOCBCoroutine *acb;
2238 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2240 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2241 acb->need_bh = true;
2242 acb->req.error = -EINPROGRESS;
2243 acb->req.sector = sector_num;
2244 acb->req.nb_sectors = nb_sectors;
2245 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2246 qemu_coroutine_enter(co, acb);
2248 bdrv_co_maybe_schedule_bh(acb);
2249 return &acb->common;
2252 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2253 BlockCompletionFunc *cb, void *opaque)
2255 BlockAIOCB *acb;
2257 acb = g_malloc(aiocb_info->aiocb_size);
2258 acb->aiocb_info = aiocb_info;
2259 acb->bs = bs;
2260 acb->cb = cb;
2261 acb->opaque = opaque;
2262 acb->refcnt = 1;
2263 return acb;
2266 void qemu_aio_ref(void *p)
2268 BlockAIOCB *acb = p;
2269 acb->refcnt++;
2272 void qemu_aio_unref(void *p)
2274 BlockAIOCB *acb = p;
2275 assert(acb->refcnt > 0);
2276 if (--acb->refcnt == 0) {
2277 g_free(acb);
2281 /**************************************************************/
2282 /* Coroutine block device emulation */
2284 typedef struct CoroutineIOCompletion {
2285 Coroutine *coroutine;
2286 int ret;
2287 } CoroutineIOCompletion;
2289 static void bdrv_co_io_em_complete(void *opaque, int ret)
2291 CoroutineIOCompletion *co = opaque;
2293 co->ret = ret;
2294 qemu_coroutine_enter(co->coroutine, NULL);
2297 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2298 int nb_sectors, QEMUIOVector *iov,
2299 bool is_write)
2301 CoroutineIOCompletion co = {
2302 .coroutine = qemu_coroutine_self(),
2304 BlockAIOCB *acb;
2306 if (is_write) {
2307 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2308 bdrv_co_io_em_complete, &co);
2309 } else {
2310 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2311 bdrv_co_io_em_complete, &co);
2314 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2315 if (!acb) {
2316 return -EIO;
2318 qemu_coroutine_yield();
2320 return co.ret;
2323 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2324 int64_t sector_num, int nb_sectors,
2325 QEMUIOVector *iov)
2327 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2330 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2331 int64_t sector_num, int nb_sectors,
2332 QEMUIOVector *iov)
2334 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2337 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2339 RwCo *rwco = opaque;
2341 rwco->ret = bdrv_co_flush(rwco->bs);
2344 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2346 int ret;
2347 BdrvTrackedRequest req;
2349 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2350 bdrv_is_sg(bs)) {
2351 return 0;
2354 tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH);
2355 /* Write back cached data to the OS even with cache=unsafe */
2356 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2357 if (bs->drv->bdrv_co_flush_to_os) {
2358 ret = bs->drv->bdrv_co_flush_to_os(bs);
2359 if (ret < 0) {
2360 goto out;
2364 /* But don't actually force it to the disk with cache=unsafe */
2365 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2366 goto flush_parent;
2369 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2370 if (bs->drv->bdrv_co_flush_to_disk) {
2371 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2372 } else if (bs->drv->bdrv_aio_flush) {
2373 BlockAIOCB *acb;
2374 CoroutineIOCompletion co = {
2375 .coroutine = qemu_coroutine_self(),
2378 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2379 if (acb == NULL) {
2380 ret = -EIO;
2381 } else {
2382 qemu_coroutine_yield();
2383 ret = co.ret;
2385 } else {
2387 * Some block drivers always operate in either writethrough or unsafe
2388 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2389 * know how the server works (because the behaviour is hardcoded or
2390 * depends on server-side configuration), so we can't ensure that
2391 * everything is safe on disk. Returning an error doesn't work because
2392 * that would break guests even if the server operates in writethrough
2393 * mode.
2395 * Let's hope the user knows what he's doing.
2397 ret = 0;
2399 if (ret < 0) {
2400 goto out;
2403 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2404 * in the case of cache=unsafe, so there are no useless flushes.
2406 flush_parent:
2407 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2408 out:
2409 tracked_request_end(&req);
2410 return ret;
2413 int bdrv_flush(BlockDriverState *bs)
2415 Coroutine *co;
2416 RwCo rwco = {
2417 .bs = bs,
2418 .ret = NOT_DONE,
2421 if (qemu_in_coroutine()) {
2422 /* Fast-path if already in coroutine context */
2423 bdrv_flush_co_entry(&rwco);
2424 } else {
2425 AioContext *aio_context = bdrv_get_aio_context(bs);
2427 co = qemu_coroutine_create(bdrv_flush_co_entry);
2428 qemu_coroutine_enter(co, &rwco);
2429 while (rwco.ret == NOT_DONE) {
2430 aio_poll(aio_context, true);
2434 return rwco.ret;
2437 typedef struct DiscardCo {
2438 BlockDriverState *bs;
2439 int64_t sector_num;
2440 int nb_sectors;
2441 int ret;
2442 } DiscardCo;
2443 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2445 DiscardCo *rwco = opaque;
2447 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2450 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2451 int nb_sectors)
2453 BdrvTrackedRequest req;
2454 int max_discard, ret;
2456 if (!bs->drv) {
2457 return -ENOMEDIUM;
2460 ret = bdrv_check_request(bs, sector_num, nb_sectors);
2461 if (ret < 0) {
2462 return ret;
2463 } else if (bs->read_only) {
2464 return -EPERM;
2466 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2468 /* Do nothing if disabled. */
2469 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2470 return 0;
2473 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2474 return 0;
2477 tracked_request_begin(&req, bs, sector_num, nb_sectors,
2478 BDRV_TRACKED_DISCARD);
2479 bdrv_set_dirty(bs, sector_num, nb_sectors);
2481 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2482 while (nb_sectors > 0) {
2483 int ret;
2484 int num = nb_sectors;
2486 /* align request */
2487 if (bs->bl.discard_alignment &&
2488 num >= bs->bl.discard_alignment &&
2489 sector_num % bs->bl.discard_alignment) {
2490 if (num > bs->bl.discard_alignment) {
2491 num = bs->bl.discard_alignment;
2493 num -= sector_num % bs->bl.discard_alignment;
2496 /* limit request size */
2497 if (num > max_discard) {
2498 num = max_discard;
2501 if (bs->drv->bdrv_co_discard) {
2502 ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2503 } else {
2504 BlockAIOCB *acb;
2505 CoroutineIOCompletion co = {
2506 .coroutine = qemu_coroutine_self(),
2509 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2510 bdrv_co_io_em_complete, &co);
2511 if (acb == NULL) {
2512 ret = -EIO;
2513 goto out;
2514 } else {
2515 qemu_coroutine_yield();
2516 ret = co.ret;
2519 if (ret && ret != -ENOTSUP) {
2520 goto out;
2523 sector_num += num;
2524 nb_sectors -= num;
2526 ret = 0;
2527 out:
2528 tracked_request_end(&req);
2529 return ret;
2532 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2534 Coroutine *co;
2535 DiscardCo rwco = {
2536 .bs = bs,
2537 .sector_num = sector_num,
2538 .nb_sectors = nb_sectors,
2539 .ret = NOT_DONE,
2542 if (qemu_in_coroutine()) {
2543 /* Fast-path if already in coroutine context */
2544 bdrv_discard_co_entry(&rwco);
2545 } else {
2546 AioContext *aio_context = bdrv_get_aio_context(bs);
2548 co = qemu_coroutine_create(bdrv_discard_co_entry);
2549 qemu_coroutine_enter(co, &rwco);
2550 while (rwco.ret == NOT_DONE) {
2551 aio_poll(aio_context, true);
2555 return rwco.ret;
2558 typedef struct {
2559 CoroutineIOCompletion *co;
2560 QEMUBH *bh;
2561 } BdrvIoctlCompletionData;
2563 static void bdrv_ioctl_bh_cb(void *opaque)
2565 BdrvIoctlCompletionData *data = opaque;
2567 bdrv_co_io_em_complete(data->co, -ENOTSUP);
2568 qemu_bh_delete(data->bh);
2571 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf)
2573 BlockDriver *drv = bs->drv;
2574 BdrvTrackedRequest tracked_req;
2575 CoroutineIOCompletion co = {
2576 .coroutine = qemu_coroutine_self(),
2578 BlockAIOCB *acb;
2580 tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL);
2581 if (!drv || !drv->bdrv_aio_ioctl) {
2582 co.ret = -ENOTSUP;
2583 goto out;
2586 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2587 if (!acb) {
2588 BdrvIoctlCompletionData *data = g_new(BdrvIoctlCompletionData, 1);
2589 data->bh = aio_bh_new(bdrv_get_aio_context(bs),
2590 bdrv_ioctl_bh_cb, data);
2591 data->co = &co;
2592 qemu_bh_schedule(data->bh);
2594 qemu_coroutine_yield();
2595 out:
2596 tracked_request_end(&tracked_req);
2597 return co.ret;
2600 typedef struct {
2601 BlockDriverState *bs;
2602 int req;
2603 void *buf;
2604 int ret;
2605 } BdrvIoctlCoData;
2607 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque)
2609 BdrvIoctlCoData *data = opaque;
2610 data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf);
2613 /* needed for generic scsi interface */
2614 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2616 BdrvIoctlCoData data = {
2617 .bs = bs,
2618 .req = req,
2619 .buf = buf,
2620 .ret = -EINPROGRESS,
2623 if (qemu_in_coroutine()) {
2624 /* Fast-path if already in coroutine context */
2625 bdrv_co_ioctl_entry(&data);
2626 } else {
2627 Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry);
2629 qemu_coroutine_enter(co, &data);
2630 while (data.ret == -EINPROGRESS) {
2631 aio_poll(bdrv_get_aio_context(bs), true);
2634 return data.ret;
2637 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque)
2639 BlockAIOCBCoroutine *acb = opaque;
2640 acb->req.error = bdrv_co_do_ioctl(acb->common.bs,
2641 acb->req.req, acb->req.buf);
2642 bdrv_co_complete(acb);
2645 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2646 unsigned long int req, void *buf,
2647 BlockCompletionFunc *cb, void *opaque)
2649 BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info,
2650 bs, cb, opaque);
2651 Coroutine *co;
2653 acb->need_bh = true;
2654 acb->req.error = -EINPROGRESS;
2655 acb->req.req = req;
2656 acb->req.buf = buf;
2657 co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry);
2658 qemu_coroutine_enter(co, acb);
2660 bdrv_co_maybe_schedule_bh(acb);
2661 return &acb->common;
2664 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2666 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2669 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2671 return memset(qemu_blockalign(bs, size), 0, size);
2674 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2676 size_t align = bdrv_opt_mem_align(bs);
2678 /* Ensure that NULL is never returned on success */
2679 assert(align > 0);
2680 if (size == 0) {
2681 size = align;
2684 return qemu_try_memalign(align, size);
2687 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2689 void *mem = qemu_try_blockalign(bs, size);
2691 if (mem) {
2692 memset(mem, 0, size);
2695 return mem;
2699 * Check if all memory in this vector is sector aligned.
2701 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2703 int i;
2704 size_t alignment = bdrv_min_mem_align(bs);
2706 for (i = 0; i < qiov->niov; i++) {
2707 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2708 return false;
2710 if (qiov->iov[i].iov_len % alignment) {
2711 return false;
2715 return true;
2718 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2719 NotifierWithReturn *notifier)
2721 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2724 void bdrv_io_plug(BlockDriverState *bs)
2726 BlockDriver *drv = bs->drv;
2727 if (drv && drv->bdrv_io_plug) {
2728 drv->bdrv_io_plug(bs);
2729 } else if (bs->file) {
2730 bdrv_io_plug(bs->file->bs);
2734 void bdrv_io_unplug(BlockDriverState *bs)
2736 BlockDriver *drv = bs->drv;
2737 if (drv && drv->bdrv_io_unplug) {
2738 drv->bdrv_io_unplug(bs);
2739 } else if (bs->file) {
2740 bdrv_io_unplug(bs->file->bs);
2744 void bdrv_flush_io_queue(BlockDriverState *bs)
2746 BlockDriver *drv = bs->drv;
2747 if (drv && drv->bdrv_flush_io_queue) {
2748 drv->bdrv_flush_io_queue(bs);
2749 } else if (bs->file) {
2750 bdrv_flush_io_queue(bs->file->bs);
2752 bdrv_start_throttled_reqs(bs);
2755 void bdrv_drained_begin(BlockDriverState *bs)
2757 if (!bs->quiesce_counter++) {
2758 aio_disable_external(bdrv_get_aio_context(bs));
2760 bdrv_drain(bs);
2763 void bdrv_drained_end(BlockDriverState *bs)
2765 assert(bs->quiesce_counter > 0);
2766 if (--bs->quiesce_counter > 0) {
2767 return;
2769 aio_enable_external(bdrv_get_aio_context(bs));