Makefile: disable Sphinx nitpicking
[qemu/ar7.git] / memory.c
blobd7b9bb6951f4f8654209ac1bed4fb7cd3f344e91
1 /*
2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
6 * Authors:
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "cpu.h"
19 #include "exec/memory.h"
20 #include "exec/address-spaces.h"
21 #include "qapi/visitor.h"
22 #include "qemu/bitops.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qemu/qemu-print.h"
26 #include "qom/object.h"
27 #include "trace-root.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/tcg.h"
34 #include "sysemu/accel.h"
35 #include "hw/boards.h"
36 #include "migration/vmstate.h"
38 //#define DEBUG_UNASSIGNED
40 static unsigned memory_region_transaction_depth;
41 static bool memory_region_update_pending;
42 static bool ioeventfd_update_pending;
43 bool global_dirty_log;
45 static QTAILQ_HEAD(, MemoryListener) memory_listeners
46 = QTAILQ_HEAD_INITIALIZER(memory_listeners);
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49 = QTAILQ_HEAD_INITIALIZER(address_spaces);
51 static GHashTable *flat_views;
53 typedef struct AddrRange AddrRange;
56 * Note that signed integers are needed for negative offsetting in aliases
57 * (large MemoryRegion::alias_offset).
59 struct AddrRange {
60 Int128 start;
61 Int128 size;
64 static AddrRange addrrange_make(Int128 start, Int128 size)
66 return (AddrRange) { start, size };
69 static bool addrrange_equal(AddrRange r1, AddrRange r2)
71 return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
74 static Int128 addrrange_end(AddrRange r)
76 return int128_add(r.start, r.size);
79 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
81 int128_addto(&range.start, delta);
82 return range;
85 static bool addrrange_contains(AddrRange range, Int128 addr)
87 return int128_ge(addr, range.start)
88 && int128_lt(addr, addrrange_end(range));
91 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
93 return addrrange_contains(r1, r2.start)
94 || addrrange_contains(r2, r1.start);
97 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
99 Int128 start = int128_max(r1.start, r2.start);
100 Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
101 return addrrange_make(start, int128_sub(end, start));
104 enum ListenerDirection { Forward, Reverse };
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
107 do { \
108 MemoryListener *_listener; \
110 switch (_direction) { \
111 case Forward: \
112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
113 if (_listener->_callback) { \
114 _listener->_callback(_listener, ##_args); \
117 break; \
118 case Reverse: \
119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120 if (_listener->_callback) { \
121 _listener->_callback(_listener, ##_args); \
124 break; \
125 default: \
126 abort(); \
128 } while (0)
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
131 do { \
132 MemoryListener *_listener; \
134 switch (_direction) { \
135 case Forward: \
136 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
137 if (_listener->_callback) { \
138 _listener->_callback(_listener, _section, ##_args); \
141 break; \
142 case Reverse: \
143 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
148 break; \
149 default: \
150 abort(); \
152 } while (0)
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
156 do { \
157 MemoryRegionSection mrs = section_from_flat_range(fr, \
158 address_space_to_flatview(as)); \
159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
160 } while(0)
162 struct CoalescedMemoryRange {
163 AddrRange addr;
164 QTAILQ_ENTRY(CoalescedMemoryRange) link;
167 struct MemoryRegionIoeventfd {
168 AddrRange addr;
169 bool match_data;
170 uint64_t data;
171 EventNotifier *e;
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd *a,
175 MemoryRegionIoeventfd *b)
177 if (int128_lt(a->addr.start, b->addr.start)) {
178 return true;
179 } else if (int128_gt(a->addr.start, b->addr.start)) {
180 return false;
181 } else if (int128_lt(a->addr.size, b->addr.size)) {
182 return true;
183 } else if (int128_gt(a->addr.size, b->addr.size)) {
184 return false;
185 } else if (a->match_data < b->match_data) {
186 return true;
187 } else if (a->match_data > b->match_data) {
188 return false;
189 } else if (a->match_data) {
190 if (a->data < b->data) {
191 return true;
192 } else if (a->data > b->data) {
193 return false;
196 if (a->e < b->e) {
197 return true;
198 } else if (a->e > b->e) {
199 return false;
201 return false;
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd *a,
205 MemoryRegionIoeventfd *b)
207 return !memory_region_ioeventfd_before(a, b)
208 && !memory_region_ioeventfd_before(b, a);
211 /* Range of memory in the global map. Addresses are absolute. */
212 struct FlatRange {
213 MemoryRegion *mr;
214 hwaddr offset_in_region;
215 AddrRange addr;
216 uint8_t dirty_log_mask;
217 bool romd_mode;
218 bool readonly;
219 bool nonvolatile;
222 #define FOR_EACH_FLAT_RANGE(var, view) \
223 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
225 static inline MemoryRegionSection
226 section_from_flat_range(FlatRange *fr, FlatView *fv)
228 return (MemoryRegionSection) {
229 .mr = fr->mr,
230 .fv = fv,
231 .offset_within_region = fr->offset_in_region,
232 .size = fr->addr.size,
233 .offset_within_address_space = int128_get64(fr->addr.start),
234 .readonly = fr->readonly,
235 .nonvolatile = fr->nonvolatile,
239 static bool flatrange_equal(FlatRange *a, FlatRange *b)
241 return a->mr == b->mr
242 && addrrange_equal(a->addr, b->addr)
243 && a->offset_in_region == b->offset_in_region
244 && a->romd_mode == b->romd_mode
245 && a->readonly == b->readonly
246 && a->nonvolatile == b->nonvolatile;
249 static FlatView *flatview_new(MemoryRegion *mr_root)
251 FlatView *view;
253 view = g_new0(FlatView, 1);
254 view->ref = 1;
255 view->root = mr_root;
256 memory_region_ref(mr_root);
257 trace_flatview_new(view, mr_root);
259 return view;
262 /* Insert a range into a given position. Caller is responsible for maintaining
263 * sorting order.
265 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
267 if (view->nr == view->nr_allocated) {
268 view->nr_allocated = MAX(2 * view->nr, 10);
269 view->ranges = g_realloc(view->ranges,
270 view->nr_allocated * sizeof(*view->ranges));
272 memmove(view->ranges + pos + 1, view->ranges + pos,
273 (view->nr - pos) * sizeof(FlatRange));
274 view->ranges[pos] = *range;
275 memory_region_ref(range->mr);
276 ++view->nr;
279 static void flatview_destroy(FlatView *view)
281 int i;
283 trace_flatview_destroy(view, view->root);
284 if (view->dispatch) {
285 address_space_dispatch_free(view->dispatch);
287 for (i = 0; i < view->nr; i++) {
288 memory_region_unref(view->ranges[i].mr);
290 g_free(view->ranges);
291 memory_region_unref(view->root);
292 g_free(view);
295 static bool flatview_ref(FlatView *view)
297 return atomic_fetch_inc_nonzero(&view->ref) > 0;
300 void flatview_unref(FlatView *view)
302 if (atomic_fetch_dec(&view->ref) == 1) {
303 trace_flatview_destroy_rcu(view, view->root);
304 assert(view->root);
305 call_rcu(view, flatview_destroy, rcu);
309 static bool can_merge(FlatRange *r1, FlatRange *r2)
311 return int128_eq(addrrange_end(r1->addr), r2->addr.start)
312 && r1->mr == r2->mr
313 && int128_eq(int128_add(int128_make64(r1->offset_in_region),
314 r1->addr.size),
315 int128_make64(r2->offset_in_region))
316 && r1->dirty_log_mask == r2->dirty_log_mask
317 && r1->romd_mode == r2->romd_mode
318 && r1->readonly == r2->readonly
319 && r1->nonvolatile == r2->nonvolatile;
322 /* Attempt to simplify a view by merging adjacent ranges */
323 static void flatview_simplify(FlatView *view)
325 unsigned i, j, k;
327 i = 0;
328 while (i < view->nr) {
329 j = i + 1;
330 while (j < view->nr
331 && can_merge(&view->ranges[j-1], &view->ranges[j])) {
332 int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
333 ++j;
335 ++i;
336 for (k = i; k < j; k++) {
337 memory_region_unref(view->ranges[k].mr);
339 memmove(&view->ranges[i], &view->ranges[j],
340 (view->nr - j) * sizeof(view->ranges[j]));
341 view->nr -= j - i;
345 static bool memory_region_big_endian(MemoryRegion *mr)
347 #ifdef TARGET_WORDS_BIGENDIAN
348 return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
349 #else
350 return mr->ops->endianness == DEVICE_BIG_ENDIAN;
351 #endif
354 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, MemOp op)
356 if ((op & MO_BSWAP) != devend_memop(mr->ops->endianness)) {
357 switch (op & MO_SIZE) {
358 case MO_8:
359 break;
360 case MO_16:
361 *data = bswap16(*data);
362 break;
363 case MO_32:
364 *data = bswap32(*data);
365 break;
366 case MO_64:
367 *data = bswap64(*data);
368 break;
369 default:
370 g_assert_not_reached();
375 static inline void memory_region_shift_read_access(uint64_t *value,
376 signed shift,
377 uint64_t mask,
378 uint64_t tmp)
380 if (shift >= 0) {
381 *value |= (tmp & mask) << shift;
382 } else {
383 *value |= (tmp & mask) >> -shift;
387 static inline uint64_t memory_region_shift_write_access(uint64_t *value,
388 signed shift,
389 uint64_t mask)
391 uint64_t tmp;
393 if (shift >= 0) {
394 tmp = (*value >> shift) & mask;
395 } else {
396 tmp = (*value << -shift) & mask;
399 return tmp;
402 static hwaddr memory_region_to_absolute_addr(MemoryRegion *mr, hwaddr offset)
404 MemoryRegion *root;
405 hwaddr abs_addr = offset;
407 abs_addr += mr->addr;
408 for (root = mr; root->container; ) {
409 root = root->container;
410 abs_addr += root->addr;
413 return abs_addr;
416 static int get_cpu_index(void)
418 if (current_cpu) {
419 return current_cpu->cpu_index;
421 return -1;
424 static MemTxResult memory_region_read_accessor(MemoryRegion *mr,
425 hwaddr addr,
426 uint64_t *value,
427 unsigned size,
428 signed shift,
429 uint64_t mask,
430 MemTxAttrs attrs)
432 uint64_t tmp;
434 tmp = mr->ops->read(mr->opaque, addr, size);
435 if (mr->subpage) {
436 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
437 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
438 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
439 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
441 memory_region_shift_read_access(value, shift, mask, tmp);
442 return MEMTX_OK;
445 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
446 hwaddr addr,
447 uint64_t *value,
448 unsigned size,
449 signed shift,
450 uint64_t mask,
451 MemTxAttrs attrs)
453 uint64_t tmp = 0;
454 MemTxResult r;
456 r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
457 if (mr->subpage) {
458 trace_memory_region_subpage_read(get_cpu_index(), mr, addr, tmp, size);
459 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED) {
460 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
461 trace_memory_region_ops_read(get_cpu_index(), mr, abs_addr, tmp, size);
463 memory_region_shift_read_access(value, shift, mask, tmp);
464 return r;
467 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
468 hwaddr addr,
469 uint64_t *value,
470 unsigned size,
471 signed shift,
472 uint64_t mask,
473 MemTxAttrs attrs)
475 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
477 if (mr->subpage) {
478 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
479 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
480 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
481 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
483 mr->ops->write(mr->opaque, addr, tmp, size);
484 return MEMTX_OK;
487 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
488 hwaddr addr,
489 uint64_t *value,
490 unsigned size,
491 signed shift,
492 uint64_t mask,
493 MemTxAttrs attrs)
495 uint64_t tmp = memory_region_shift_write_access(value, shift, mask);
497 if (mr->subpage) {
498 trace_memory_region_subpage_write(get_cpu_index(), mr, addr, tmp, size);
499 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED) {
500 hwaddr abs_addr = memory_region_to_absolute_addr(mr, addr);
501 trace_memory_region_ops_write(get_cpu_index(), mr, abs_addr, tmp, size);
503 return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
506 static MemTxResult access_with_adjusted_size(hwaddr addr,
507 uint64_t *value,
508 unsigned size,
509 unsigned access_size_min,
510 unsigned access_size_max,
511 MemTxResult (*access_fn)
512 (MemoryRegion *mr,
513 hwaddr addr,
514 uint64_t *value,
515 unsigned size,
516 signed shift,
517 uint64_t mask,
518 MemTxAttrs attrs),
519 MemoryRegion *mr,
520 MemTxAttrs attrs)
522 uint64_t access_mask;
523 unsigned access_size;
524 unsigned i;
525 MemTxResult r = MEMTX_OK;
527 if (!access_size_min) {
528 access_size_min = 1;
530 if (!access_size_max) {
531 access_size_max = 4;
534 /* FIXME: support unaligned access? */
535 access_size = MAX(MIN(size, access_size_max), access_size_min);
536 access_mask = MAKE_64BIT_MASK(0, access_size * 8);
537 if (memory_region_big_endian(mr)) {
538 for (i = 0; i < size; i += access_size) {
539 r |= access_fn(mr, addr + i, value, access_size,
540 (size - access_size - i) * 8, access_mask, attrs);
542 } else {
543 for (i = 0; i < size; i += access_size) {
544 r |= access_fn(mr, addr + i, value, access_size, i * 8,
545 access_mask, attrs);
548 return r;
551 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
553 AddressSpace *as;
555 while (mr->container) {
556 mr = mr->container;
558 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
559 if (mr == as->root) {
560 return as;
563 return NULL;
566 /* Render a memory region into the global view. Ranges in @view obscure
567 * ranges in @mr.
569 static void render_memory_region(FlatView *view,
570 MemoryRegion *mr,
571 Int128 base,
572 AddrRange clip,
573 bool readonly,
574 bool nonvolatile)
576 MemoryRegion *subregion;
577 unsigned i;
578 hwaddr offset_in_region;
579 Int128 remain;
580 Int128 now;
581 FlatRange fr;
582 AddrRange tmp;
584 if (!mr->enabled) {
585 return;
588 int128_addto(&base, int128_make64(mr->addr));
589 readonly |= mr->readonly;
590 nonvolatile |= mr->nonvolatile;
592 tmp = addrrange_make(base, mr->size);
594 if (!addrrange_intersects(tmp, clip)) {
595 return;
598 clip = addrrange_intersection(tmp, clip);
600 if (mr->alias) {
601 int128_subfrom(&base, int128_make64(mr->alias->addr));
602 int128_subfrom(&base, int128_make64(mr->alias_offset));
603 render_memory_region(view, mr->alias, base, clip,
604 readonly, nonvolatile);
605 return;
608 /* Render subregions in priority order. */
609 QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
610 render_memory_region(view, subregion, base, clip,
611 readonly, nonvolatile);
614 if (!mr->terminates) {
615 return;
618 offset_in_region = int128_get64(int128_sub(clip.start, base));
619 base = clip.start;
620 remain = clip.size;
622 fr.mr = mr;
623 fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
624 fr.romd_mode = mr->romd_mode;
625 fr.readonly = readonly;
626 fr.nonvolatile = nonvolatile;
628 /* Render the region itself into any gaps left by the current view. */
629 for (i = 0; i < view->nr && int128_nz(remain); ++i) {
630 if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
631 continue;
633 if (int128_lt(base, view->ranges[i].addr.start)) {
634 now = int128_min(remain,
635 int128_sub(view->ranges[i].addr.start, base));
636 fr.offset_in_region = offset_in_region;
637 fr.addr = addrrange_make(base, now);
638 flatview_insert(view, i, &fr);
639 ++i;
640 int128_addto(&base, now);
641 offset_in_region += int128_get64(now);
642 int128_subfrom(&remain, now);
644 now = int128_sub(int128_min(int128_add(base, remain),
645 addrrange_end(view->ranges[i].addr)),
646 base);
647 int128_addto(&base, now);
648 offset_in_region += int128_get64(now);
649 int128_subfrom(&remain, now);
651 if (int128_nz(remain)) {
652 fr.offset_in_region = offset_in_region;
653 fr.addr = addrrange_make(base, remain);
654 flatview_insert(view, i, &fr);
658 static MemoryRegion *memory_region_get_flatview_root(MemoryRegion *mr)
660 while (mr->enabled) {
661 if (mr->alias) {
662 if (!mr->alias_offset && int128_ge(mr->size, mr->alias->size)) {
663 /* The alias is included in its entirety. Use it as
664 * the "real" root, so that we can share more FlatViews.
666 mr = mr->alias;
667 continue;
669 } else if (!mr->terminates) {
670 unsigned int found = 0;
671 MemoryRegion *child, *next = NULL;
672 QTAILQ_FOREACH(child, &mr->subregions, subregions_link) {
673 if (child->enabled) {
674 if (++found > 1) {
675 next = NULL;
676 break;
678 if (!child->addr && int128_ge(mr->size, child->size)) {
679 /* A child is included in its entirety. If it's the only
680 * enabled one, use it in the hope of finding an alias down the
681 * way. This will also let us share FlatViews.
683 next = child;
687 if (found == 0) {
688 return NULL;
690 if (next) {
691 mr = next;
692 continue;
696 return mr;
699 return NULL;
702 /* Render a memory topology into a list of disjoint absolute ranges. */
703 static FlatView *generate_memory_topology(MemoryRegion *mr)
705 int i;
706 FlatView *view;
708 view = flatview_new(mr);
710 if (mr) {
711 render_memory_region(view, mr, int128_zero(),
712 addrrange_make(int128_zero(), int128_2_64()),
713 false, false);
715 flatview_simplify(view);
717 view->dispatch = address_space_dispatch_new(view);
718 for (i = 0; i < view->nr; i++) {
719 MemoryRegionSection mrs =
720 section_from_flat_range(&view->ranges[i], view);
721 flatview_add_to_dispatch(view, &mrs);
723 address_space_dispatch_compact(view->dispatch);
724 g_hash_table_replace(flat_views, mr, view);
726 return view;
729 static void address_space_add_del_ioeventfds(AddressSpace *as,
730 MemoryRegionIoeventfd *fds_new,
731 unsigned fds_new_nb,
732 MemoryRegionIoeventfd *fds_old,
733 unsigned fds_old_nb)
735 unsigned iold, inew;
736 MemoryRegionIoeventfd *fd;
737 MemoryRegionSection section;
739 /* Generate a symmetric difference of the old and new fd sets, adding
740 * and deleting as necessary.
743 iold = inew = 0;
744 while (iold < fds_old_nb || inew < fds_new_nb) {
745 if (iold < fds_old_nb
746 && (inew == fds_new_nb
747 || memory_region_ioeventfd_before(&fds_old[iold],
748 &fds_new[inew]))) {
749 fd = &fds_old[iold];
750 section = (MemoryRegionSection) {
751 .fv = address_space_to_flatview(as),
752 .offset_within_address_space = int128_get64(fd->addr.start),
753 .size = fd->addr.size,
755 MEMORY_LISTENER_CALL(as, eventfd_del, Forward, &section,
756 fd->match_data, fd->data, fd->e);
757 ++iold;
758 } else if (inew < fds_new_nb
759 && (iold == fds_old_nb
760 || memory_region_ioeventfd_before(&fds_new[inew],
761 &fds_old[iold]))) {
762 fd = &fds_new[inew];
763 section = (MemoryRegionSection) {
764 .fv = address_space_to_flatview(as),
765 .offset_within_address_space = int128_get64(fd->addr.start),
766 .size = fd->addr.size,
768 MEMORY_LISTENER_CALL(as, eventfd_add, Reverse, &section,
769 fd->match_data, fd->data, fd->e);
770 ++inew;
771 } else {
772 ++iold;
773 ++inew;
778 FlatView *address_space_get_flatview(AddressSpace *as)
780 FlatView *view;
782 RCU_READ_LOCK_GUARD();
783 do {
784 view = address_space_to_flatview(as);
785 /* If somebody has replaced as->current_map concurrently,
786 * flatview_ref returns false.
788 } while (!flatview_ref(view));
789 return view;
792 static void address_space_update_ioeventfds(AddressSpace *as)
794 FlatView *view;
795 FlatRange *fr;
796 unsigned ioeventfd_nb = 0;
797 MemoryRegionIoeventfd *ioeventfds = NULL;
798 AddrRange tmp;
799 unsigned i;
801 view = address_space_get_flatview(as);
802 FOR_EACH_FLAT_RANGE(fr, view) {
803 for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
804 tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
805 int128_sub(fr->addr.start,
806 int128_make64(fr->offset_in_region)));
807 if (addrrange_intersects(fr->addr, tmp)) {
808 ++ioeventfd_nb;
809 ioeventfds = g_realloc(ioeventfds,
810 ioeventfd_nb * sizeof(*ioeventfds));
811 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
812 ioeventfds[ioeventfd_nb-1].addr = tmp;
817 address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
818 as->ioeventfds, as->ioeventfd_nb);
820 g_free(as->ioeventfds);
821 as->ioeventfds = ioeventfds;
822 as->ioeventfd_nb = ioeventfd_nb;
823 flatview_unref(view);
827 * Notify the memory listeners about the coalesced IO change events of
828 * range `cmr'. Only the part that has intersection of the specified
829 * FlatRange will be sent.
831 static void flat_range_coalesced_io_notify(FlatRange *fr, AddressSpace *as,
832 CoalescedMemoryRange *cmr, bool add)
834 AddrRange tmp;
836 tmp = addrrange_shift(cmr->addr,
837 int128_sub(fr->addr.start,
838 int128_make64(fr->offset_in_region)));
839 if (!addrrange_intersects(tmp, fr->addr)) {
840 return;
842 tmp = addrrange_intersection(tmp, fr->addr);
844 if (add) {
845 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, coalesced_io_add,
846 int128_get64(tmp.start),
847 int128_get64(tmp.size));
848 } else {
849 MEMORY_LISTENER_UPDATE_REGION(fr, as, Reverse, coalesced_io_del,
850 int128_get64(tmp.start),
851 int128_get64(tmp.size));
855 static void flat_range_coalesced_io_del(FlatRange *fr, AddressSpace *as)
857 CoalescedMemoryRange *cmr;
859 QTAILQ_FOREACH(cmr, &fr->mr->coalesced, link) {
860 flat_range_coalesced_io_notify(fr, as, cmr, false);
864 static void flat_range_coalesced_io_add(FlatRange *fr, AddressSpace *as)
866 MemoryRegion *mr = fr->mr;
867 CoalescedMemoryRange *cmr;
869 if (QTAILQ_EMPTY(&mr->coalesced)) {
870 return;
873 QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
874 flat_range_coalesced_io_notify(fr, as, cmr, true);
878 static void address_space_update_topology_pass(AddressSpace *as,
879 const FlatView *old_view,
880 const FlatView *new_view,
881 bool adding)
883 unsigned iold, inew;
884 FlatRange *frold, *frnew;
886 /* Generate a symmetric difference of the old and new memory maps.
887 * Kill ranges in the old map, and instantiate ranges in the new map.
889 iold = inew = 0;
890 while (iold < old_view->nr || inew < new_view->nr) {
891 if (iold < old_view->nr) {
892 frold = &old_view->ranges[iold];
893 } else {
894 frold = NULL;
896 if (inew < new_view->nr) {
897 frnew = &new_view->ranges[inew];
898 } else {
899 frnew = NULL;
902 if (frold
903 && (!frnew
904 || int128_lt(frold->addr.start, frnew->addr.start)
905 || (int128_eq(frold->addr.start, frnew->addr.start)
906 && !flatrange_equal(frold, frnew)))) {
907 /* In old but not in new, or in both but attributes changed. */
909 if (!adding) {
910 flat_range_coalesced_io_del(frold, as);
911 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
914 ++iold;
915 } else if (frold && frnew && flatrange_equal(frold, frnew)) {
916 /* In both and unchanged (except logging may have changed) */
918 if (adding) {
919 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
920 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
921 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
922 frold->dirty_log_mask,
923 frnew->dirty_log_mask);
925 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
926 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
927 frold->dirty_log_mask,
928 frnew->dirty_log_mask);
932 ++iold;
933 ++inew;
934 } else {
935 /* In new */
937 if (adding) {
938 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
939 flat_range_coalesced_io_add(frnew, as);
942 ++inew;
947 static void flatviews_init(void)
949 static FlatView *empty_view;
951 if (flat_views) {
952 return;
955 flat_views = g_hash_table_new_full(g_direct_hash, g_direct_equal, NULL,
956 (GDestroyNotify) flatview_unref);
957 if (!empty_view) {
958 empty_view = generate_memory_topology(NULL);
959 /* We keep it alive forever in the global variable. */
960 flatview_ref(empty_view);
961 } else {
962 g_hash_table_replace(flat_views, NULL, empty_view);
963 flatview_ref(empty_view);
967 static void flatviews_reset(void)
969 AddressSpace *as;
971 if (flat_views) {
972 g_hash_table_unref(flat_views);
973 flat_views = NULL;
975 flatviews_init();
977 /* Render unique FVs */
978 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
979 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
981 if (g_hash_table_lookup(flat_views, physmr)) {
982 continue;
985 generate_memory_topology(physmr);
989 static void address_space_set_flatview(AddressSpace *as)
991 FlatView *old_view = address_space_to_flatview(as);
992 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
993 FlatView *new_view = g_hash_table_lookup(flat_views, physmr);
995 assert(new_view);
997 if (old_view == new_view) {
998 return;
1001 if (old_view) {
1002 flatview_ref(old_view);
1005 flatview_ref(new_view);
1007 if (!QTAILQ_EMPTY(&as->listeners)) {
1008 FlatView tmpview = { .nr = 0 }, *old_view2 = old_view;
1010 if (!old_view2) {
1011 old_view2 = &tmpview;
1013 address_space_update_topology_pass(as, old_view2, new_view, false);
1014 address_space_update_topology_pass(as, old_view2, new_view, true);
1017 /* Writes are protected by the BQL. */
1018 atomic_rcu_set(&as->current_map, new_view);
1019 if (old_view) {
1020 flatview_unref(old_view);
1023 /* Note that all the old MemoryRegions are still alive up to this
1024 * point. This relieves most MemoryListeners from the need to
1025 * ref/unref the MemoryRegions they get---unless they use them
1026 * outside the iothread mutex, in which case precise reference
1027 * counting is necessary.
1029 if (old_view) {
1030 flatview_unref(old_view);
1034 static void address_space_update_topology(AddressSpace *as)
1036 MemoryRegion *physmr = memory_region_get_flatview_root(as->root);
1038 flatviews_init();
1039 if (!g_hash_table_lookup(flat_views, physmr)) {
1040 generate_memory_topology(physmr);
1042 address_space_set_flatview(as);
1045 void memory_region_transaction_begin(void)
1047 qemu_flush_coalesced_mmio_buffer();
1048 ++memory_region_transaction_depth;
1051 void memory_region_transaction_commit(void)
1053 AddressSpace *as;
1055 assert(memory_region_transaction_depth);
1056 assert(qemu_mutex_iothread_locked());
1058 --memory_region_transaction_depth;
1059 if (!memory_region_transaction_depth) {
1060 if (memory_region_update_pending) {
1061 flatviews_reset();
1063 MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
1065 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1066 address_space_set_flatview(as);
1067 address_space_update_ioeventfds(as);
1069 memory_region_update_pending = false;
1070 ioeventfd_update_pending = false;
1071 MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
1072 } else if (ioeventfd_update_pending) {
1073 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1074 address_space_update_ioeventfds(as);
1076 ioeventfd_update_pending = false;
1081 static void memory_region_destructor_none(MemoryRegion *mr)
1085 static void memory_region_destructor_ram(MemoryRegion *mr)
1087 qemu_ram_free(mr->ram_block);
1090 static bool memory_region_need_escape(char c)
1092 return c == '/' || c == '[' || c == '\\' || c == ']';
1095 static char *memory_region_escape_name(const char *name)
1097 const char *p;
1098 char *escaped, *q;
1099 uint8_t c;
1100 size_t bytes = 0;
1102 for (p = name; *p; p++) {
1103 bytes += memory_region_need_escape(*p) ? 4 : 1;
1105 if (bytes == p - name) {
1106 return g_memdup(name, bytes + 1);
1109 escaped = g_malloc(bytes + 1);
1110 for (p = name, q = escaped; *p; p++) {
1111 c = *p;
1112 if (unlikely(memory_region_need_escape(c))) {
1113 *q++ = '\\';
1114 *q++ = 'x';
1115 *q++ = "0123456789abcdef"[c >> 4];
1116 c = "0123456789abcdef"[c & 15];
1118 *q++ = c;
1120 *q = 0;
1121 return escaped;
1124 static void memory_region_do_init(MemoryRegion *mr,
1125 Object *owner,
1126 const char *name,
1127 uint64_t size)
1129 mr->size = int128_make64(size);
1130 if (size == UINT64_MAX) {
1131 mr->size = int128_2_64();
1133 mr->name = g_strdup(name);
1134 mr->owner = owner;
1135 mr->ram_block = NULL;
1137 if (name) {
1138 char *escaped_name = memory_region_escape_name(name);
1139 char *name_array = g_strdup_printf("%s[*]", escaped_name);
1141 if (!owner) {
1142 owner = container_get(qdev_get_machine(), "/unattached");
1145 object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
1146 object_unref(OBJECT(mr));
1147 g_free(name_array);
1148 g_free(escaped_name);
1152 void memory_region_init(MemoryRegion *mr,
1153 Object *owner,
1154 const char *name,
1155 uint64_t size)
1157 object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
1158 memory_region_do_init(mr, owner, name, size);
1161 static void memory_region_get_addr(Object *obj, Visitor *v, const char *name,
1162 void *opaque, Error **errp)
1164 MemoryRegion *mr = MEMORY_REGION(obj);
1165 uint64_t value = mr->addr;
1167 visit_type_uint64(v, name, &value, errp);
1170 static void memory_region_get_container(Object *obj, Visitor *v,
1171 const char *name, void *opaque,
1172 Error **errp)
1174 MemoryRegion *mr = MEMORY_REGION(obj);
1175 gchar *path = (gchar *)"";
1177 if (mr->container) {
1178 path = object_get_canonical_path(OBJECT(mr->container));
1180 visit_type_str(v, name, &path, errp);
1181 if (mr->container) {
1182 g_free(path);
1186 static Object *memory_region_resolve_container(Object *obj, void *opaque,
1187 const char *part)
1189 MemoryRegion *mr = MEMORY_REGION(obj);
1191 return OBJECT(mr->container);
1194 static void memory_region_get_priority(Object *obj, Visitor *v,
1195 const char *name, void *opaque,
1196 Error **errp)
1198 MemoryRegion *mr = MEMORY_REGION(obj);
1199 int32_t value = mr->priority;
1201 visit_type_int32(v, name, &value, errp);
1204 static void memory_region_get_size(Object *obj, Visitor *v, const char *name,
1205 void *opaque, Error **errp)
1207 MemoryRegion *mr = MEMORY_REGION(obj);
1208 uint64_t value = memory_region_size(mr);
1210 visit_type_uint64(v, name, &value, errp);
1213 static void memory_region_initfn(Object *obj)
1215 MemoryRegion *mr = MEMORY_REGION(obj);
1216 ObjectProperty *op;
1218 mr->ops = &unassigned_mem_ops;
1219 mr->enabled = true;
1220 mr->romd_mode = true;
1221 mr->global_locking = true;
1222 mr->destructor = memory_region_destructor_none;
1223 QTAILQ_INIT(&mr->subregions);
1224 QTAILQ_INIT(&mr->coalesced);
1226 op = object_property_add(OBJECT(mr), "container",
1227 "link<" TYPE_MEMORY_REGION ">",
1228 memory_region_get_container,
1229 NULL, /* memory_region_set_container */
1230 NULL, NULL, &error_abort);
1231 op->resolve = memory_region_resolve_container;
1233 object_property_add(OBJECT(mr), "addr", "uint64",
1234 memory_region_get_addr,
1235 NULL, /* memory_region_set_addr */
1236 NULL, NULL, &error_abort);
1237 object_property_add(OBJECT(mr), "priority", "uint32",
1238 memory_region_get_priority,
1239 NULL, /* memory_region_set_priority */
1240 NULL, NULL, &error_abort);
1241 object_property_add(OBJECT(mr), "size", "uint64",
1242 memory_region_get_size,
1243 NULL, /* memory_region_set_size, */
1244 NULL, NULL, &error_abort);
1247 static void iommu_memory_region_initfn(Object *obj)
1249 MemoryRegion *mr = MEMORY_REGION(obj);
1251 mr->is_iommu = true;
1254 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1255 unsigned size)
1257 #ifdef DEBUG_UNASSIGNED
1258 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1259 #endif
1260 return 0;
1263 static void unassigned_mem_write(void *opaque, hwaddr addr,
1264 uint64_t val, unsigned size)
1266 #ifdef DEBUG_UNASSIGNED
1267 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1268 #endif
1271 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1272 unsigned size, bool is_write,
1273 MemTxAttrs attrs)
1275 return false;
1278 const MemoryRegionOps unassigned_mem_ops = {
1279 .valid.accepts = unassigned_mem_accepts,
1280 .endianness = DEVICE_NATIVE_ENDIAN,
1283 static uint64_t memory_region_ram_device_read(void *opaque,
1284 hwaddr addr, unsigned size)
1286 MemoryRegion *mr = opaque;
1287 uint64_t data = (uint64_t)~0;
1289 switch (size) {
1290 case 1:
1291 data = *(uint8_t *)(mr->ram_block->host + addr);
1292 break;
1293 case 2:
1294 data = *(uint16_t *)(mr->ram_block->host + addr);
1295 break;
1296 case 4:
1297 data = *(uint32_t *)(mr->ram_block->host + addr);
1298 break;
1299 case 8:
1300 data = *(uint64_t *)(mr->ram_block->host + addr);
1301 break;
1304 trace_memory_region_ram_device_read(get_cpu_index(), mr, addr, data, size);
1306 return data;
1309 static void memory_region_ram_device_write(void *opaque, hwaddr addr,
1310 uint64_t data, unsigned size)
1312 MemoryRegion *mr = opaque;
1314 trace_memory_region_ram_device_write(get_cpu_index(), mr, addr, data, size);
1316 switch (size) {
1317 case 1:
1318 *(uint8_t *)(mr->ram_block->host + addr) = (uint8_t)data;
1319 break;
1320 case 2:
1321 *(uint16_t *)(mr->ram_block->host + addr) = (uint16_t)data;
1322 break;
1323 case 4:
1324 *(uint32_t *)(mr->ram_block->host + addr) = (uint32_t)data;
1325 break;
1326 case 8:
1327 *(uint64_t *)(mr->ram_block->host + addr) = data;
1328 break;
1332 static const MemoryRegionOps ram_device_mem_ops = {
1333 .read = memory_region_ram_device_read,
1334 .write = memory_region_ram_device_write,
1335 .endianness = DEVICE_HOST_ENDIAN,
1336 .valid = {
1337 .min_access_size = 1,
1338 .max_access_size = 8,
1339 .unaligned = true,
1341 .impl = {
1342 .min_access_size = 1,
1343 .max_access_size = 8,
1344 .unaligned = true,
1348 bool memory_region_access_valid(MemoryRegion *mr,
1349 hwaddr addr,
1350 unsigned size,
1351 bool is_write,
1352 MemTxAttrs attrs)
1354 int access_size_min, access_size_max;
1355 int access_size, i;
1357 if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1358 return false;
1361 if (!mr->ops->valid.accepts) {
1362 return true;
1365 access_size_min = mr->ops->valid.min_access_size;
1366 if (!mr->ops->valid.min_access_size) {
1367 access_size_min = 1;
1370 access_size_max = mr->ops->valid.max_access_size;
1371 if (!mr->ops->valid.max_access_size) {
1372 access_size_max = 4;
1375 access_size = MAX(MIN(size, access_size_max), access_size_min);
1376 for (i = 0; i < size; i += access_size) {
1377 if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1378 is_write, attrs)) {
1379 return false;
1383 return true;
1386 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1387 hwaddr addr,
1388 uint64_t *pval,
1389 unsigned size,
1390 MemTxAttrs attrs)
1392 *pval = 0;
1394 if (mr->ops->read) {
1395 return access_with_adjusted_size(addr, pval, size,
1396 mr->ops->impl.min_access_size,
1397 mr->ops->impl.max_access_size,
1398 memory_region_read_accessor,
1399 mr, attrs);
1400 } else {
1401 return access_with_adjusted_size(addr, pval, size,
1402 mr->ops->impl.min_access_size,
1403 mr->ops->impl.max_access_size,
1404 memory_region_read_with_attrs_accessor,
1405 mr, attrs);
1409 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1410 hwaddr addr,
1411 uint64_t *pval,
1412 MemOp op,
1413 MemTxAttrs attrs)
1415 unsigned size = memop_size(op);
1416 MemTxResult r;
1418 if (!memory_region_access_valid(mr, addr, size, false, attrs)) {
1419 *pval = unassigned_mem_read(mr, addr, size);
1420 return MEMTX_DECODE_ERROR;
1423 r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1424 adjust_endianness(mr, pval, op);
1425 return r;
1428 /* Return true if an eventfd was signalled */
1429 static bool memory_region_dispatch_write_eventfds(MemoryRegion *mr,
1430 hwaddr addr,
1431 uint64_t data,
1432 unsigned size,
1433 MemTxAttrs attrs)
1435 MemoryRegionIoeventfd ioeventfd = {
1436 .addr = addrrange_make(int128_make64(addr), int128_make64(size)),
1437 .data = data,
1439 unsigned i;
1441 for (i = 0; i < mr->ioeventfd_nb; i++) {
1442 ioeventfd.match_data = mr->ioeventfds[i].match_data;
1443 ioeventfd.e = mr->ioeventfds[i].e;
1445 if (memory_region_ioeventfd_equal(&ioeventfd, &mr->ioeventfds[i])) {
1446 event_notifier_set(ioeventfd.e);
1447 return true;
1451 return false;
1454 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1455 hwaddr addr,
1456 uint64_t data,
1457 MemOp op,
1458 MemTxAttrs attrs)
1460 unsigned size = memop_size(op);
1462 if (!memory_region_access_valid(mr, addr, size, true, attrs)) {
1463 unassigned_mem_write(mr, addr, data, size);
1464 return MEMTX_DECODE_ERROR;
1467 adjust_endianness(mr, &data, op);
1469 if ((!kvm_eventfds_enabled()) &&
1470 memory_region_dispatch_write_eventfds(mr, addr, data, size, attrs)) {
1471 return MEMTX_OK;
1474 if (mr->ops->write) {
1475 return access_with_adjusted_size(addr, &data, size,
1476 mr->ops->impl.min_access_size,
1477 mr->ops->impl.max_access_size,
1478 memory_region_write_accessor, mr,
1479 attrs);
1480 } else {
1481 return
1482 access_with_adjusted_size(addr, &data, size,
1483 mr->ops->impl.min_access_size,
1484 mr->ops->impl.max_access_size,
1485 memory_region_write_with_attrs_accessor,
1486 mr, attrs);
1490 void memory_region_init_io(MemoryRegion *mr,
1491 Object *owner,
1492 const MemoryRegionOps *ops,
1493 void *opaque,
1494 const char *name,
1495 uint64_t size)
1497 memory_region_init(mr, owner, name, size);
1498 mr->ops = ops ? ops : &unassigned_mem_ops;
1499 mr->opaque = opaque;
1500 mr->terminates = true;
1503 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
1504 Object *owner,
1505 const char *name,
1506 uint64_t size,
1507 Error **errp)
1509 memory_region_init_ram_shared_nomigrate(mr, owner, name, size, false, errp);
1512 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
1513 Object *owner,
1514 const char *name,
1515 uint64_t size,
1516 bool share,
1517 Error **errp)
1519 Error *err = NULL;
1520 memory_region_init(mr, owner, name, size);
1521 mr->ram = true;
1522 mr->terminates = true;
1523 mr->destructor = memory_region_destructor_ram;
1524 mr->ram_block = qemu_ram_alloc(size, share, mr, &err);
1525 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1526 if (err) {
1527 mr->size = int128_zero();
1528 object_unparent(OBJECT(mr));
1529 error_propagate(errp, err);
1533 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1534 Object *owner,
1535 const char *name,
1536 uint64_t size,
1537 uint64_t max_size,
1538 void (*resized)(const char*,
1539 uint64_t length,
1540 void *host),
1541 Error **errp)
1543 Error *err = NULL;
1544 memory_region_init(mr, owner, name, size);
1545 mr->ram = true;
1546 mr->terminates = true;
1547 mr->destructor = memory_region_destructor_ram;
1548 mr->ram_block = qemu_ram_alloc_resizeable(size, max_size, resized,
1549 mr, &err);
1550 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1551 if (err) {
1552 mr->size = int128_zero();
1553 object_unparent(OBJECT(mr));
1554 error_propagate(errp, err);
1558 #ifdef CONFIG_POSIX
1559 void memory_region_init_ram_from_file(MemoryRegion *mr,
1560 struct Object *owner,
1561 const char *name,
1562 uint64_t size,
1563 uint64_t align,
1564 uint32_t ram_flags,
1565 const char *path,
1566 Error **errp)
1568 Error *err = NULL;
1569 memory_region_init(mr, owner, name, size);
1570 mr->ram = true;
1571 mr->terminates = true;
1572 mr->destructor = memory_region_destructor_ram;
1573 mr->align = align;
1574 mr->ram_block = qemu_ram_alloc_from_file(size, mr, ram_flags, path, &err);
1575 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1576 if (err) {
1577 mr->size = int128_zero();
1578 object_unparent(OBJECT(mr));
1579 error_propagate(errp, err);
1583 void memory_region_init_ram_from_fd(MemoryRegion *mr,
1584 struct Object *owner,
1585 const char *name,
1586 uint64_t size,
1587 bool share,
1588 int fd,
1589 Error **errp)
1591 Error *err = NULL;
1592 memory_region_init(mr, owner, name, size);
1593 mr->ram = true;
1594 mr->terminates = true;
1595 mr->destructor = memory_region_destructor_ram;
1596 mr->ram_block = qemu_ram_alloc_from_fd(size, mr,
1597 share ? RAM_SHARED : 0,
1598 fd, &err);
1599 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1600 if (err) {
1601 mr->size = int128_zero();
1602 object_unparent(OBJECT(mr));
1603 error_propagate(errp, err);
1606 #endif
1608 void memory_region_init_ram_ptr(MemoryRegion *mr,
1609 Object *owner,
1610 const char *name,
1611 uint64_t size,
1612 void *ptr)
1614 memory_region_init(mr, owner, name, size);
1615 mr->ram = true;
1616 mr->terminates = true;
1617 mr->destructor = memory_region_destructor_ram;
1618 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1620 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1621 assert(ptr != NULL);
1622 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1625 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
1626 Object *owner,
1627 const char *name,
1628 uint64_t size,
1629 void *ptr)
1631 memory_region_init(mr, owner, name, size);
1632 mr->ram = true;
1633 mr->terminates = true;
1634 mr->ram_device = true;
1635 mr->ops = &ram_device_mem_ops;
1636 mr->opaque = mr;
1637 mr->destructor = memory_region_destructor_ram;
1638 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1639 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1640 assert(ptr != NULL);
1641 mr->ram_block = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_fatal);
1644 void memory_region_init_alias(MemoryRegion *mr,
1645 Object *owner,
1646 const char *name,
1647 MemoryRegion *orig,
1648 hwaddr offset,
1649 uint64_t size)
1651 memory_region_init(mr, owner, name, size);
1652 mr->alias = orig;
1653 mr->alias_offset = offset;
1656 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
1657 struct Object *owner,
1658 const char *name,
1659 uint64_t size,
1660 Error **errp)
1662 Error *err = NULL;
1663 memory_region_init(mr, owner, name, size);
1664 mr->ram = true;
1665 mr->readonly = true;
1666 mr->terminates = true;
1667 mr->destructor = memory_region_destructor_ram;
1668 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1669 mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1670 if (err) {
1671 mr->size = int128_zero();
1672 object_unparent(OBJECT(mr));
1673 error_propagate(errp, err);
1677 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
1678 Object *owner,
1679 const MemoryRegionOps *ops,
1680 void *opaque,
1681 const char *name,
1682 uint64_t size,
1683 Error **errp)
1685 Error *err = NULL;
1686 assert(ops);
1687 memory_region_init(mr, owner, name, size);
1688 mr->ops = ops;
1689 mr->opaque = opaque;
1690 mr->terminates = true;
1691 mr->rom_device = true;
1692 mr->destructor = memory_region_destructor_ram;
1693 mr->ram_block = qemu_ram_alloc(size, false, mr, &err);
1694 if (err) {
1695 mr->size = int128_zero();
1696 object_unparent(OBJECT(mr));
1697 error_propagate(errp, err);
1701 void memory_region_init_iommu(void *_iommu_mr,
1702 size_t instance_size,
1703 const char *mrtypename,
1704 Object *owner,
1705 const char *name,
1706 uint64_t size)
1708 struct IOMMUMemoryRegion *iommu_mr;
1709 struct MemoryRegion *mr;
1711 object_initialize(_iommu_mr, instance_size, mrtypename);
1712 mr = MEMORY_REGION(_iommu_mr);
1713 memory_region_do_init(mr, owner, name, size);
1714 iommu_mr = IOMMU_MEMORY_REGION(mr);
1715 mr->terminates = true; /* then re-forwards */
1716 QLIST_INIT(&iommu_mr->iommu_notify);
1717 iommu_mr->iommu_notify_flags = IOMMU_NOTIFIER_NONE;
1720 static void memory_region_finalize(Object *obj)
1722 MemoryRegion *mr = MEMORY_REGION(obj);
1724 assert(!mr->container);
1726 /* We know the region is not visible in any address space (it
1727 * does not have a container and cannot be a root either because
1728 * it has no references, so we can blindly clear mr->enabled.
1729 * memory_region_set_enabled instead could trigger a transaction
1730 * and cause an infinite loop.
1732 mr->enabled = false;
1733 memory_region_transaction_begin();
1734 while (!QTAILQ_EMPTY(&mr->subregions)) {
1735 MemoryRegion *subregion = QTAILQ_FIRST(&mr->subregions);
1736 memory_region_del_subregion(mr, subregion);
1738 memory_region_transaction_commit();
1740 mr->destructor(mr);
1741 memory_region_clear_coalescing(mr);
1742 g_free((char *)mr->name);
1743 g_free(mr->ioeventfds);
1746 Object *memory_region_owner(MemoryRegion *mr)
1748 Object *obj = OBJECT(mr);
1749 return obj->parent;
1752 void memory_region_ref(MemoryRegion *mr)
1754 /* MMIO callbacks most likely will access data that belongs
1755 * to the owner, hence the need to ref/unref the owner whenever
1756 * the memory region is in use.
1758 * The memory region is a child of its owner. As long as the
1759 * owner doesn't call unparent itself on the memory region,
1760 * ref-ing the owner will also keep the memory region alive.
1761 * Memory regions without an owner are supposed to never go away;
1762 * we do not ref/unref them because it slows down DMA sensibly.
1764 if (mr && mr->owner) {
1765 object_ref(mr->owner);
1769 void memory_region_unref(MemoryRegion *mr)
1771 if (mr && mr->owner) {
1772 object_unref(mr->owner);
1776 uint64_t memory_region_size(MemoryRegion *mr)
1778 if (int128_eq(mr->size, int128_2_64())) {
1779 return UINT64_MAX;
1781 return int128_get64(mr->size);
1784 const char *memory_region_name(const MemoryRegion *mr)
1786 if (!mr->name) {
1787 ((MemoryRegion *)mr)->name =
1788 object_get_canonical_path_component(OBJECT(mr));
1790 return mr->name;
1793 bool memory_region_is_ram_device(MemoryRegion *mr)
1795 return mr->ram_device;
1798 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1800 uint8_t mask = mr->dirty_log_mask;
1801 if (global_dirty_log && mr->ram_block) {
1802 mask |= (1 << DIRTY_MEMORY_MIGRATION);
1804 return mask;
1807 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1809 return memory_region_get_dirty_log_mask(mr) & (1 << client);
1812 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion *iommu_mr,
1813 Error **errp)
1815 IOMMUNotifierFlag flags = IOMMU_NOTIFIER_NONE;
1816 IOMMUNotifier *iommu_notifier;
1817 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1818 int ret = 0;
1820 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1821 flags |= iommu_notifier->notifier_flags;
1824 if (flags != iommu_mr->iommu_notify_flags && imrc->notify_flag_changed) {
1825 ret = imrc->notify_flag_changed(iommu_mr,
1826 iommu_mr->iommu_notify_flags,
1827 flags, errp);
1830 if (!ret) {
1831 iommu_mr->iommu_notify_flags = flags;
1833 return ret;
1836 int memory_region_register_iommu_notifier(MemoryRegion *mr,
1837 IOMMUNotifier *n, Error **errp)
1839 IOMMUMemoryRegion *iommu_mr;
1840 int ret;
1842 if (mr->alias) {
1843 return memory_region_register_iommu_notifier(mr->alias, n, errp);
1846 /* We need to register for at least one bitfield */
1847 iommu_mr = IOMMU_MEMORY_REGION(mr);
1848 assert(n->notifier_flags != IOMMU_NOTIFIER_NONE);
1849 assert(n->start <= n->end);
1850 assert(n->iommu_idx >= 0 &&
1851 n->iommu_idx < memory_region_iommu_num_indexes(iommu_mr));
1853 QLIST_INSERT_HEAD(&iommu_mr->iommu_notify, n, node);
1854 ret = memory_region_update_iommu_notify_flags(iommu_mr, errp);
1855 if (ret) {
1856 QLIST_REMOVE(n, node);
1858 return ret;
1861 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr)
1863 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1865 if (imrc->get_min_page_size) {
1866 return imrc->get_min_page_size(iommu_mr);
1868 return TARGET_PAGE_SIZE;
1871 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
1873 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
1874 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1875 hwaddr addr, granularity;
1876 IOMMUTLBEntry iotlb;
1878 /* If the IOMMU has its own replay callback, override */
1879 if (imrc->replay) {
1880 imrc->replay(iommu_mr, n);
1881 return;
1884 granularity = memory_region_iommu_get_min_page_size(iommu_mr);
1886 for (addr = 0; addr < memory_region_size(mr); addr += granularity) {
1887 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, n->iommu_idx);
1888 if (iotlb.perm != IOMMU_NONE) {
1889 n->notify(n, &iotlb);
1892 /* if (2^64 - MR size) < granularity, it's possible to get an
1893 * infinite loop here. This should catch such a wraparound */
1894 if ((addr + granularity) < addr) {
1895 break;
1900 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1901 IOMMUNotifier *n)
1903 IOMMUMemoryRegion *iommu_mr;
1905 if (mr->alias) {
1906 memory_region_unregister_iommu_notifier(mr->alias, n);
1907 return;
1909 QLIST_REMOVE(n, node);
1910 iommu_mr = IOMMU_MEMORY_REGION(mr);
1911 memory_region_update_iommu_notify_flags(iommu_mr, NULL);
1914 void memory_region_notify_one(IOMMUNotifier *notifier,
1915 IOMMUTLBEntry *entry)
1917 IOMMUNotifierFlag request_flags;
1918 hwaddr entry_end = entry->iova + entry->addr_mask;
1921 * Skip the notification if the notification does not overlap
1922 * with registered range.
1924 if (notifier->start > entry_end || notifier->end < entry->iova) {
1925 return;
1928 assert(entry->iova >= notifier->start && entry_end <= notifier->end);
1930 if (entry->perm & IOMMU_RW) {
1931 request_flags = IOMMU_NOTIFIER_MAP;
1932 } else {
1933 request_flags = IOMMU_NOTIFIER_UNMAP;
1936 if (notifier->notifier_flags & request_flags) {
1937 notifier->notify(notifier, entry);
1941 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1942 int iommu_idx,
1943 IOMMUTLBEntry entry)
1945 IOMMUNotifier *iommu_notifier;
1947 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr)));
1949 IOMMU_NOTIFIER_FOREACH(iommu_notifier, iommu_mr) {
1950 if (iommu_notifier->iommu_idx == iommu_idx) {
1951 memory_region_notify_one(iommu_notifier, &entry);
1956 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1957 enum IOMMUMemoryRegionAttr attr,
1958 void *data)
1960 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1962 if (!imrc->get_attr) {
1963 return -EINVAL;
1966 return imrc->get_attr(iommu_mr, attr, data);
1969 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1970 MemTxAttrs attrs)
1972 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1974 if (!imrc->attrs_to_index) {
1975 return 0;
1978 return imrc->attrs_to_index(iommu_mr, attrs);
1981 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr)
1983 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr);
1985 if (!imrc->num_indexes) {
1986 return 1;
1989 return imrc->num_indexes(iommu_mr);
1992 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1994 uint8_t mask = 1 << client;
1995 uint8_t old_logging;
1997 assert(client == DIRTY_MEMORY_VGA);
1998 old_logging = mr->vga_logging_count;
1999 mr->vga_logging_count += log ? 1 : -1;
2000 if (!!old_logging == !!mr->vga_logging_count) {
2001 return;
2004 memory_region_transaction_begin();
2005 mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
2006 memory_region_update_pending |= mr->enabled;
2007 memory_region_transaction_commit();
2010 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
2011 hwaddr size)
2013 assert(mr->ram_block);
2014 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
2015 size,
2016 memory_region_get_dirty_log_mask(mr));
2019 static void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
2021 MemoryListener *listener;
2022 AddressSpace *as;
2023 FlatView *view;
2024 FlatRange *fr;
2026 /* If the same address space has multiple log_sync listeners, we
2027 * visit that address space's FlatView multiple times. But because
2028 * log_sync listeners are rare, it's still cheaper than walking each
2029 * address space once.
2031 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2032 if (!listener->log_sync) {
2033 continue;
2035 as = listener->address_space;
2036 view = address_space_get_flatview(as);
2037 FOR_EACH_FLAT_RANGE(fr, view) {
2038 if (fr->dirty_log_mask && (!mr || fr->mr == mr)) {
2039 MemoryRegionSection mrs = section_from_flat_range(fr, view);
2040 listener->log_sync(listener, &mrs);
2043 flatview_unref(view);
2047 void memory_region_clear_dirty_bitmap(MemoryRegion *mr, hwaddr start,
2048 hwaddr len)
2050 MemoryRegionSection mrs;
2051 MemoryListener *listener;
2052 AddressSpace *as;
2053 FlatView *view;
2054 FlatRange *fr;
2055 hwaddr sec_start, sec_end, sec_size;
2057 QTAILQ_FOREACH(listener, &memory_listeners, link) {
2058 if (!listener->log_clear) {
2059 continue;
2061 as = listener->address_space;
2062 view = address_space_get_flatview(as);
2063 FOR_EACH_FLAT_RANGE(fr, view) {
2064 if (!fr->dirty_log_mask || fr->mr != mr) {
2066 * Clear dirty bitmap operation only applies to those
2067 * regions whose dirty logging is at least enabled
2069 continue;
2072 mrs = section_from_flat_range(fr, view);
2074 sec_start = MAX(mrs.offset_within_region, start);
2075 sec_end = mrs.offset_within_region + int128_get64(mrs.size);
2076 sec_end = MIN(sec_end, start + len);
2078 if (sec_start >= sec_end) {
2080 * If this memory region section has no intersection
2081 * with the requested range, skip.
2083 continue;
2086 /* Valid case; shrink the section if needed */
2087 mrs.offset_within_address_space +=
2088 sec_start - mrs.offset_within_region;
2089 mrs.offset_within_region = sec_start;
2090 sec_size = sec_end - sec_start;
2091 mrs.size = int128_make64(sec_size);
2092 listener->log_clear(listener, &mrs);
2094 flatview_unref(view);
2098 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
2099 hwaddr addr,
2100 hwaddr size,
2101 unsigned client)
2103 DirtyBitmapSnapshot *snapshot;
2104 assert(mr->ram_block);
2105 memory_region_sync_dirty_bitmap(mr);
2106 snapshot = cpu_physical_memory_snapshot_and_clear_dirty(mr, addr, size, client);
2107 memory_global_after_dirty_log_sync();
2108 return snapshot;
2111 bool memory_region_snapshot_get_dirty(MemoryRegion *mr, DirtyBitmapSnapshot *snap,
2112 hwaddr addr, hwaddr size)
2114 assert(mr->ram_block);
2115 return cpu_physical_memory_snapshot_get_dirty(snap,
2116 memory_region_get_ram_addr(mr) + addr, size);
2119 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
2121 if (mr->readonly != readonly) {
2122 memory_region_transaction_begin();
2123 mr->readonly = readonly;
2124 memory_region_update_pending |= mr->enabled;
2125 memory_region_transaction_commit();
2129 void memory_region_set_nonvolatile(MemoryRegion *mr, bool nonvolatile)
2131 if (mr->nonvolatile != nonvolatile) {
2132 memory_region_transaction_begin();
2133 mr->nonvolatile = nonvolatile;
2134 memory_region_update_pending |= mr->enabled;
2135 memory_region_transaction_commit();
2139 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
2141 if (mr->romd_mode != romd_mode) {
2142 memory_region_transaction_begin();
2143 mr->romd_mode = romd_mode;
2144 memory_region_update_pending |= mr->enabled;
2145 memory_region_transaction_commit();
2149 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
2150 hwaddr size, unsigned client)
2152 assert(mr->ram_block);
2153 cpu_physical_memory_test_and_clear_dirty(
2154 memory_region_get_ram_addr(mr) + addr, size, client);
2157 int memory_region_get_fd(MemoryRegion *mr)
2159 int fd;
2161 RCU_READ_LOCK_GUARD();
2162 while (mr->alias) {
2163 mr = mr->alias;
2165 fd = mr->ram_block->fd;
2167 return fd;
2170 void *memory_region_get_ram_ptr(MemoryRegion *mr)
2172 void *ptr;
2173 uint64_t offset = 0;
2175 RCU_READ_LOCK_GUARD();
2176 while (mr->alias) {
2177 offset += mr->alias_offset;
2178 mr = mr->alias;
2180 assert(mr->ram_block);
2181 ptr = qemu_map_ram_ptr(mr->ram_block, offset);
2183 return ptr;
2186 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset)
2188 RAMBlock *block;
2190 block = qemu_ram_block_from_host(ptr, false, offset);
2191 if (!block) {
2192 return NULL;
2195 return block->mr;
2198 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
2200 return mr->ram_block ? mr->ram_block->offset : RAM_ADDR_INVALID;
2203 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
2205 assert(mr->ram_block);
2207 qemu_ram_resize(mr->ram_block, newsize, errp);
2211 void memory_region_do_writeback(MemoryRegion *mr, hwaddr addr, hwaddr size)
2214 * Might be extended case needed to cover
2215 * different types of memory regions
2217 if (mr->ram_block && mr->dirty_log_mask) {
2218 qemu_ram_writeback(mr->ram_block, addr, size);
2223 * Call proper memory listeners about the change on the newly
2224 * added/removed CoalescedMemoryRange.
2226 static void memory_region_update_coalesced_range(MemoryRegion *mr,
2227 CoalescedMemoryRange *cmr,
2228 bool add)
2230 AddressSpace *as;
2231 FlatView *view;
2232 FlatRange *fr;
2234 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2235 view = address_space_get_flatview(as);
2236 FOR_EACH_FLAT_RANGE(fr, view) {
2237 if (fr->mr == mr) {
2238 flat_range_coalesced_io_notify(fr, as, cmr, add);
2241 flatview_unref(view);
2245 void memory_region_set_coalescing(MemoryRegion *mr)
2247 memory_region_clear_coalescing(mr);
2248 memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
2251 void memory_region_add_coalescing(MemoryRegion *mr,
2252 hwaddr offset,
2253 uint64_t size)
2255 CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
2257 cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
2258 QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
2259 memory_region_update_coalesced_range(mr, cmr, true);
2260 memory_region_set_flush_coalesced(mr);
2263 void memory_region_clear_coalescing(MemoryRegion *mr)
2265 CoalescedMemoryRange *cmr;
2267 if (QTAILQ_EMPTY(&mr->coalesced)) {
2268 return;
2271 qemu_flush_coalesced_mmio_buffer();
2272 mr->flush_coalesced_mmio = false;
2274 while (!QTAILQ_EMPTY(&mr->coalesced)) {
2275 cmr = QTAILQ_FIRST(&mr->coalesced);
2276 QTAILQ_REMOVE(&mr->coalesced, cmr, link);
2277 memory_region_update_coalesced_range(mr, cmr, false);
2278 g_free(cmr);
2282 void memory_region_set_flush_coalesced(MemoryRegion *mr)
2284 mr->flush_coalesced_mmio = true;
2287 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
2289 qemu_flush_coalesced_mmio_buffer();
2290 if (QTAILQ_EMPTY(&mr->coalesced)) {
2291 mr->flush_coalesced_mmio = false;
2295 void memory_region_clear_global_locking(MemoryRegion *mr)
2297 mr->global_locking = false;
2300 static bool userspace_eventfd_warning;
2302 void memory_region_add_eventfd(MemoryRegion *mr,
2303 hwaddr addr,
2304 unsigned size,
2305 bool match_data,
2306 uint64_t data,
2307 EventNotifier *e)
2309 MemoryRegionIoeventfd mrfd = {
2310 .addr.start = int128_make64(addr),
2311 .addr.size = int128_make64(size),
2312 .match_data = match_data,
2313 .data = data,
2314 .e = e,
2316 unsigned i;
2318 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2319 userspace_eventfd_warning))) {
2320 userspace_eventfd_warning = true;
2321 error_report("Using eventfd without MMIO binding in KVM. "
2322 "Suboptimal performance expected");
2325 if (size) {
2326 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2328 memory_region_transaction_begin();
2329 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2330 if (memory_region_ioeventfd_before(&mrfd, &mr->ioeventfds[i])) {
2331 break;
2334 ++mr->ioeventfd_nb;
2335 mr->ioeventfds = g_realloc(mr->ioeventfds,
2336 sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
2337 memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
2338 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
2339 mr->ioeventfds[i] = mrfd;
2340 ioeventfd_update_pending |= mr->enabled;
2341 memory_region_transaction_commit();
2344 void memory_region_del_eventfd(MemoryRegion *mr,
2345 hwaddr addr,
2346 unsigned size,
2347 bool match_data,
2348 uint64_t data,
2349 EventNotifier *e)
2351 MemoryRegionIoeventfd mrfd = {
2352 .addr.start = int128_make64(addr),
2353 .addr.size = int128_make64(size),
2354 .match_data = match_data,
2355 .data = data,
2356 .e = e,
2358 unsigned i;
2360 if (size) {
2361 adjust_endianness(mr, &mrfd.data, size_memop(size) | MO_TE);
2363 memory_region_transaction_begin();
2364 for (i = 0; i < mr->ioeventfd_nb; ++i) {
2365 if (memory_region_ioeventfd_equal(&mrfd, &mr->ioeventfds[i])) {
2366 break;
2369 assert(i != mr->ioeventfd_nb);
2370 memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
2371 sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
2372 --mr->ioeventfd_nb;
2373 mr->ioeventfds = g_realloc(mr->ioeventfds,
2374 sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
2375 ioeventfd_update_pending |= mr->enabled;
2376 memory_region_transaction_commit();
2379 static void memory_region_update_container_subregions(MemoryRegion *subregion)
2381 MemoryRegion *mr = subregion->container;
2382 MemoryRegion *other;
2384 memory_region_transaction_begin();
2386 memory_region_ref(subregion);
2387 QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
2388 if (subregion->priority >= other->priority) {
2389 QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
2390 goto done;
2393 QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
2394 done:
2395 memory_region_update_pending |= mr->enabled && subregion->enabled;
2396 memory_region_transaction_commit();
2399 static void memory_region_add_subregion_common(MemoryRegion *mr,
2400 hwaddr offset,
2401 MemoryRegion *subregion)
2403 assert(!subregion->container);
2404 subregion->container = mr;
2405 subregion->addr = offset;
2406 memory_region_update_container_subregions(subregion);
2409 void memory_region_add_subregion(MemoryRegion *mr,
2410 hwaddr offset,
2411 MemoryRegion *subregion)
2413 subregion->priority = 0;
2414 memory_region_add_subregion_common(mr, offset, subregion);
2417 void memory_region_add_subregion_overlap(MemoryRegion *mr,
2418 hwaddr offset,
2419 MemoryRegion *subregion,
2420 int priority)
2422 subregion->priority = priority;
2423 memory_region_add_subregion_common(mr, offset, subregion);
2426 void memory_region_del_subregion(MemoryRegion *mr,
2427 MemoryRegion *subregion)
2429 memory_region_transaction_begin();
2430 assert(subregion->container == mr);
2431 subregion->container = NULL;
2432 QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
2433 memory_region_unref(subregion);
2434 memory_region_update_pending |= mr->enabled && subregion->enabled;
2435 memory_region_transaction_commit();
2438 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
2440 if (enabled == mr->enabled) {
2441 return;
2443 memory_region_transaction_begin();
2444 mr->enabled = enabled;
2445 memory_region_update_pending = true;
2446 memory_region_transaction_commit();
2449 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
2451 Int128 s = int128_make64(size);
2453 if (size == UINT64_MAX) {
2454 s = int128_2_64();
2456 if (int128_eq(s, mr->size)) {
2457 return;
2459 memory_region_transaction_begin();
2460 mr->size = s;
2461 memory_region_update_pending = true;
2462 memory_region_transaction_commit();
2465 static void memory_region_readd_subregion(MemoryRegion *mr)
2467 MemoryRegion *container = mr->container;
2469 if (container) {
2470 memory_region_transaction_begin();
2471 memory_region_ref(mr);
2472 memory_region_del_subregion(container, mr);
2473 mr->container = container;
2474 memory_region_update_container_subregions(mr);
2475 memory_region_unref(mr);
2476 memory_region_transaction_commit();
2480 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
2482 if (addr != mr->addr) {
2483 mr->addr = addr;
2484 memory_region_readd_subregion(mr);
2488 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
2490 assert(mr->alias);
2492 if (offset == mr->alias_offset) {
2493 return;
2496 memory_region_transaction_begin();
2497 mr->alias_offset = offset;
2498 memory_region_update_pending |= mr->enabled;
2499 memory_region_transaction_commit();
2502 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
2504 return mr->align;
2507 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
2509 const AddrRange *addr = addr_;
2510 const FlatRange *fr = fr_;
2512 if (int128_le(addrrange_end(*addr), fr->addr.start)) {
2513 return -1;
2514 } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
2515 return 1;
2517 return 0;
2520 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
2522 return bsearch(&addr, view->ranges, view->nr,
2523 sizeof(FlatRange), cmp_flatrange_addr);
2526 bool memory_region_is_mapped(MemoryRegion *mr)
2528 return mr->container ? true : false;
2531 /* Same as memory_region_find, but it does not add a reference to the
2532 * returned region. It must be called from an RCU critical section.
2534 static MemoryRegionSection memory_region_find_rcu(MemoryRegion *mr,
2535 hwaddr addr, uint64_t size)
2537 MemoryRegionSection ret = { .mr = NULL };
2538 MemoryRegion *root;
2539 AddressSpace *as;
2540 AddrRange range;
2541 FlatView *view;
2542 FlatRange *fr;
2544 addr += mr->addr;
2545 for (root = mr; root->container; ) {
2546 root = root->container;
2547 addr += root->addr;
2550 as = memory_region_to_address_space(root);
2551 if (!as) {
2552 return ret;
2554 range = addrrange_make(int128_make64(addr), int128_make64(size));
2556 view = address_space_to_flatview(as);
2557 fr = flatview_lookup(view, range);
2558 if (!fr) {
2559 return ret;
2562 while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
2563 --fr;
2566 ret.mr = fr->mr;
2567 ret.fv = view;
2568 range = addrrange_intersection(range, fr->addr);
2569 ret.offset_within_region = fr->offset_in_region;
2570 ret.offset_within_region += int128_get64(int128_sub(range.start,
2571 fr->addr.start));
2572 ret.size = range.size;
2573 ret.offset_within_address_space = int128_get64(range.start);
2574 ret.readonly = fr->readonly;
2575 ret.nonvolatile = fr->nonvolatile;
2576 return ret;
2579 MemoryRegionSection memory_region_find(MemoryRegion *mr,
2580 hwaddr addr, uint64_t size)
2582 MemoryRegionSection ret;
2583 RCU_READ_LOCK_GUARD();
2584 ret = memory_region_find_rcu(mr, addr, size);
2585 if (ret.mr) {
2586 memory_region_ref(ret.mr);
2588 return ret;
2591 bool memory_region_present(MemoryRegion *container, hwaddr addr)
2593 MemoryRegion *mr;
2595 RCU_READ_LOCK_GUARD();
2596 mr = memory_region_find_rcu(container, addr, 1).mr;
2597 return mr && mr != container;
2600 void memory_global_dirty_log_sync(void)
2602 memory_region_sync_dirty_bitmap(NULL);
2605 void memory_global_after_dirty_log_sync(void)
2607 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync, Forward);
2610 static VMChangeStateEntry *vmstate_change;
2612 void memory_global_dirty_log_start(void)
2614 if (vmstate_change) {
2615 qemu_del_vm_change_state_handler(vmstate_change);
2616 vmstate_change = NULL;
2619 global_dirty_log = true;
2621 MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
2623 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2624 memory_region_transaction_begin();
2625 memory_region_update_pending = true;
2626 memory_region_transaction_commit();
2629 static void memory_global_dirty_log_do_stop(void)
2631 global_dirty_log = false;
2633 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2634 memory_region_transaction_begin();
2635 memory_region_update_pending = true;
2636 memory_region_transaction_commit();
2638 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
2641 static void memory_vm_change_state_handler(void *opaque, int running,
2642 RunState state)
2644 if (running) {
2645 memory_global_dirty_log_do_stop();
2647 if (vmstate_change) {
2648 qemu_del_vm_change_state_handler(vmstate_change);
2649 vmstate_change = NULL;
2654 void memory_global_dirty_log_stop(void)
2656 if (!runstate_is_running()) {
2657 if (vmstate_change) {
2658 return;
2660 vmstate_change = qemu_add_vm_change_state_handler(
2661 memory_vm_change_state_handler, NULL);
2662 return;
2665 memory_global_dirty_log_do_stop();
2668 static void listener_add_address_space(MemoryListener *listener,
2669 AddressSpace *as)
2671 FlatView *view;
2672 FlatRange *fr;
2674 if (listener->begin) {
2675 listener->begin(listener);
2677 if (global_dirty_log) {
2678 if (listener->log_global_start) {
2679 listener->log_global_start(listener);
2683 view = address_space_get_flatview(as);
2684 FOR_EACH_FLAT_RANGE(fr, view) {
2685 MemoryRegionSection section = section_from_flat_range(fr, view);
2687 if (listener->region_add) {
2688 listener->region_add(listener, &section);
2690 if (fr->dirty_log_mask && listener->log_start) {
2691 listener->log_start(listener, &section, 0, fr->dirty_log_mask);
2694 if (listener->commit) {
2695 listener->commit(listener);
2697 flatview_unref(view);
2700 static void listener_del_address_space(MemoryListener *listener,
2701 AddressSpace *as)
2703 FlatView *view;
2704 FlatRange *fr;
2706 if (listener->begin) {
2707 listener->begin(listener);
2709 view = address_space_get_flatview(as);
2710 FOR_EACH_FLAT_RANGE(fr, view) {
2711 MemoryRegionSection section = section_from_flat_range(fr, view);
2713 if (fr->dirty_log_mask && listener->log_stop) {
2714 listener->log_stop(listener, &section, fr->dirty_log_mask, 0);
2716 if (listener->region_del) {
2717 listener->region_del(listener, &section);
2720 if (listener->commit) {
2721 listener->commit(listener);
2723 flatview_unref(view);
2726 void memory_listener_register(MemoryListener *listener, AddressSpace *as)
2728 MemoryListener *other = NULL;
2730 listener->address_space = as;
2731 if (QTAILQ_EMPTY(&memory_listeners)
2732 || listener->priority >= QTAILQ_LAST(&memory_listeners)->priority) {
2733 QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2734 } else {
2735 QTAILQ_FOREACH(other, &memory_listeners, link) {
2736 if (listener->priority < other->priority) {
2737 break;
2740 QTAILQ_INSERT_BEFORE(other, listener, link);
2743 if (QTAILQ_EMPTY(&as->listeners)
2744 || listener->priority >= QTAILQ_LAST(&as->listeners)->priority) {
2745 QTAILQ_INSERT_TAIL(&as->listeners, listener, link_as);
2746 } else {
2747 QTAILQ_FOREACH(other, &as->listeners, link_as) {
2748 if (listener->priority < other->priority) {
2749 break;
2752 QTAILQ_INSERT_BEFORE(other, listener, link_as);
2755 listener_add_address_space(listener, as);
2758 void memory_listener_unregister(MemoryListener *listener)
2760 if (!listener->address_space) {
2761 return;
2764 listener_del_address_space(listener, listener->address_space);
2765 QTAILQ_REMOVE(&memory_listeners, listener, link);
2766 QTAILQ_REMOVE(&listener->address_space->listeners, listener, link_as);
2767 listener->address_space = NULL;
2770 void address_space_remove_listeners(AddressSpace *as)
2772 while (!QTAILQ_EMPTY(&as->listeners)) {
2773 memory_listener_unregister(QTAILQ_FIRST(&as->listeners));
2777 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2779 memory_region_ref(root);
2780 as->root = root;
2781 as->current_map = NULL;
2782 as->ioeventfd_nb = 0;
2783 as->ioeventfds = NULL;
2784 QTAILQ_INIT(&as->listeners);
2785 QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2786 as->name = g_strdup(name ? name : "anonymous");
2787 address_space_update_topology(as);
2788 address_space_update_ioeventfds(as);
2791 static void do_address_space_destroy(AddressSpace *as)
2793 assert(QTAILQ_EMPTY(&as->listeners));
2795 flatview_unref(as->current_map);
2796 g_free(as->name);
2797 g_free(as->ioeventfds);
2798 memory_region_unref(as->root);
2801 void address_space_destroy(AddressSpace *as)
2803 MemoryRegion *root = as->root;
2805 /* Flush out anything from MemoryListeners listening in on this */
2806 memory_region_transaction_begin();
2807 as->root = NULL;
2808 memory_region_transaction_commit();
2809 QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2811 /* At this point, as->dispatch and as->current_map are dummy
2812 * entries that the guest should never use. Wait for the old
2813 * values to expire before freeing the data.
2815 as->root = root;
2816 call_rcu(as, do_address_space_destroy, rcu);
2819 static const char *memory_region_type(MemoryRegion *mr)
2821 if (memory_region_is_ram_device(mr)) {
2822 return "ramd";
2823 } else if (memory_region_is_romd(mr)) {
2824 return "romd";
2825 } else if (memory_region_is_rom(mr)) {
2826 return "rom";
2827 } else if (memory_region_is_ram(mr)) {
2828 return "ram";
2829 } else {
2830 return "i/o";
2834 typedef struct MemoryRegionList MemoryRegionList;
2836 struct MemoryRegionList {
2837 const MemoryRegion *mr;
2838 QTAILQ_ENTRY(MemoryRegionList) mrqueue;
2841 typedef QTAILQ_HEAD(, MemoryRegionList) MemoryRegionListHead;
2843 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2844 int128_sub((size), int128_one())) : 0)
2845 #define MTREE_INDENT " "
2847 static void mtree_expand_owner(const char *label, Object *obj)
2849 DeviceState *dev = (DeviceState *) object_dynamic_cast(obj, TYPE_DEVICE);
2851 qemu_printf(" %s:{%s", label, dev ? "dev" : "obj");
2852 if (dev && dev->id) {
2853 qemu_printf(" id=%s", dev->id);
2854 } else {
2855 gchar *canonical_path = object_get_canonical_path(obj);
2856 if (canonical_path) {
2857 qemu_printf(" path=%s", canonical_path);
2858 g_free(canonical_path);
2859 } else {
2860 qemu_printf(" type=%s", object_get_typename(obj));
2863 qemu_printf("}");
2866 static void mtree_print_mr_owner(const MemoryRegion *mr)
2868 Object *owner = mr->owner;
2869 Object *parent = memory_region_owner((MemoryRegion *)mr);
2871 if (!owner && !parent) {
2872 qemu_printf(" orphan");
2873 return;
2875 if (owner) {
2876 mtree_expand_owner("owner", owner);
2878 if (parent && parent != owner) {
2879 mtree_expand_owner("parent", parent);
2883 static void mtree_print_mr(const MemoryRegion *mr, unsigned int level,
2884 hwaddr base,
2885 MemoryRegionListHead *alias_print_queue,
2886 bool owner)
2888 MemoryRegionList *new_ml, *ml, *next_ml;
2889 MemoryRegionListHead submr_print_queue;
2890 const MemoryRegion *submr;
2891 unsigned int i;
2892 hwaddr cur_start, cur_end;
2894 if (!mr) {
2895 return;
2898 for (i = 0; i < level; i++) {
2899 qemu_printf(MTREE_INDENT);
2902 cur_start = base + mr->addr;
2903 cur_end = cur_start + MR_SIZE(mr->size);
2906 * Try to detect overflow of memory region. This should never
2907 * happen normally. When it happens, we dump something to warn the
2908 * user who is observing this.
2910 if (cur_start < base || cur_end < cur_start) {
2911 qemu_printf("[DETECTED OVERFLOW!] ");
2914 if (mr->alias) {
2915 MemoryRegionList *ml;
2916 bool found = false;
2918 /* check if the alias is already in the queue */
2919 QTAILQ_FOREACH(ml, alias_print_queue, mrqueue) {
2920 if (ml->mr == mr->alias) {
2921 found = true;
2925 if (!found) {
2926 ml = g_new(MemoryRegionList, 1);
2927 ml->mr = mr->alias;
2928 QTAILQ_INSERT_TAIL(alias_print_queue, ml, mrqueue);
2930 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2931 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2932 "-" TARGET_FMT_plx "%s",
2933 cur_start, cur_end,
2934 mr->priority,
2935 mr->nonvolatile ? "nv-" : "",
2936 memory_region_type((MemoryRegion *)mr),
2937 memory_region_name(mr),
2938 memory_region_name(mr->alias),
2939 mr->alias_offset,
2940 mr->alias_offset + MR_SIZE(mr->size),
2941 mr->enabled ? "" : " [disabled]");
2942 if (owner) {
2943 mtree_print_mr_owner(mr);
2945 } else {
2946 qemu_printf(TARGET_FMT_plx "-" TARGET_FMT_plx
2947 " (prio %d, %s%s): %s%s",
2948 cur_start, cur_end,
2949 mr->priority,
2950 mr->nonvolatile ? "nv-" : "",
2951 memory_region_type((MemoryRegion *)mr),
2952 memory_region_name(mr),
2953 mr->enabled ? "" : " [disabled]");
2954 if (owner) {
2955 mtree_print_mr_owner(mr);
2958 qemu_printf("\n");
2960 QTAILQ_INIT(&submr_print_queue);
2962 QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2963 new_ml = g_new(MemoryRegionList, 1);
2964 new_ml->mr = submr;
2965 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2966 if (new_ml->mr->addr < ml->mr->addr ||
2967 (new_ml->mr->addr == ml->mr->addr &&
2968 new_ml->mr->priority > ml->mr->priority)) {
2969 QTAILQ_INSERT_BEFORE(ml, new_ml, mrqueue);
2970 new_ml = NULL;
2971 break;
2974 if (new_ml) {
2975 QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, mrqueue);
2979 QTAILQ_FOREACH(ml, &submr_print_queue, mrqueue) {
2980 mtree_print_mr(ml->mr, level + 1, cur_start,
2981 alias_print_queue, owner);
2984 QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, mrqueue, next_ml) {
2985 g_free(ml);
2989 struct FlatViewInfo {
2990 int counter;
2991 bool dispatch_tree;
2992 bool owner;
2993 AccelClass *ac;
2996 static void mtree_print_flatview(gpointer key, gpointer value,
2997 gpointer user_data)
2999 FlatView *view = key;
3000 GArray *fv_address_spaces = value;
3001 struct FlatViewInfo *fvi = user_data;
3002 FlatRange *range = &view->ranges[0];
3003 MemoryRegion *mr;
3004 int n = view->nr;
3005 int i;
3006 AddressSpace *as;
3008 qemu_printf("FlatView #%d\n", fvi->counter);
3009 ++fvi->counter;
3011 for (i = 0; i < fv_address_spaces->len; ++i) {
3012 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3013 qemu_printf(" AS \"%s\", root: %s",
3014 as->name, memory_region_name(as->root));
3015 if (as->root->alias) {
3016 qemu_printf(", alias %s", memory_region_name(as->root->alias));
3018 qemu_printf("\n");
3021 qemu_printf(" Root memory region: %s\n",
3022 view->root ? memory_region_name(view->root) : "(none)");
3024 if (n <= 0) {
3025 qemu_printf(MTREE_INDENT "No rendered FlatView\n\n");
3026 return;
3029 while (n--) {
3030 mr = range->mr;
3031 if (range->offset_in_region) {
3032 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3033 " (prio %d, %s%s): %s @" TARGET_FMT_plx,
3034 int128_get64(range->addr.start),
3035 int128_get64(range->addr.start)
3036 + MR_SIZE(range->addr.size),
3037 mr->priority,
3038 range->nonvolatile ? "nv-" : "",
3039 range->readonly ? "rom" : memory_region_type(mr),
3040 memory_region_name(mr),
3041 range->offset_in_region);
3042 } else {
3043 qemu_printf(MTREE_INDENT TARGET_FMT_plx "-" TARGET_FMT_plx
3044 " (prio %d, %s%s): %s",
3045 int128_get64(range->addr.start),
3046 int128_get64(range->addr.start)
3047 + MR_SIZE(range->addr.size),
3048 mr->priority,
3049 range->nonvolatile ? "nv-" : "",
3050 range->readonly ? "rom" : memory_region_type(mr),
3051 memory_region_name(mr));
3053 if (fvi->owner) {
3054 mtree_print_mr_owner(mr);
3057 if (fvi->ac) {
3058 for (i = 0; i < fv_address_spaces->len; ++i) {
3059 as = g_array_index(fv_address_spaces, AddressSpace*, i);
3060 if (fvi->ac->has_memory(current_machine, as,
3061 int128_get64(range->addr.start),
3062 MR_SIZE(range->addr.size) + 1)) {
3063 qemu_printf(" %s", fvi->ac->name);
3067 qemu_printf("\n");
3068 range++;
3071 #if !defined(CONFIG_USER_ONLY)
3072 if (fvi->dispatch_tree && view->root) {
3073 mtree_print_dispatch(view->dispatch, view->root);
3075 #endif
3077 qemu_printf("\n");
3080 static gboolean mtree_info_flatview_free(gpointer key, gpointer value,
3081 gpointer user_data)
3083 FlatView *view = key;
3084 GArray *fv_address_spaces = value;
3086 g_array_unref(fv_address_spaces);
3087 flatview_unref(view);
3089 return true;
3092 void mtree_info(bool flatview, bool dispatch_tree, bool owner)
3094 MemoryRegionListHead ml_head;
3095 MemoryRegionList *ml, *ml2;
3096 AddressSpace *as;
3098 if (flatview) {
3099 FlatView *view;
3100 struct FlatViewInfo fvi = {
3101 .counter = 0,
3102 .dispatch_tree = dispatch_tree,
3103 .owner = owner,
3105 GArray *fv_address_spaces;
3106 GHashTable *views = g_hash_table_new(g_direct_hash, g_direct_equal);
3107 AccelClass *ac = ACCEL_GET_CLASS(current_machine->accelerator);
3109 if (ac->has_memory) {
3110 fvi.ac = ac;
3113 /* Gather all FVs in one table */
3114 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3115 view = address_space_get_flatview(as);
3117 fv_address_spaces = g_hash_table_lookup(views, view);
3118 if (!fv_address_spaces) {
3119 fv_address_spaces = g_array_new(false, false, sizeof(as));
3120 g_hash_table_insert(views, view, fv_address_spaces);
3123 g_array_append_val(fv_address_spaces, as);
3126 /* Print */
3127 g_hash_table_foreach(views, mtree_print_flatview, &fvi);
3129 /* Free */
3130 g_hash_table_foreach_remove(views, mtree_info_flatview_free, 0);
3131 g_hash_table_unref(views);
3133 return;
3136 QTAILQ_INIT(&ml_head);
3138 QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
3139 qemu_printf("address-space: %s\n", as->name);
3140 mtree_print_mr(as->root, 1, 0, &ml_head, owner);
3141 qemu_printf("\n");
3144 /* print aliased regions */
3145 QTAILQ_FOREACH(ml, &ml_head, mrqueue) {
3146 qemu_printf("memory-region: %s\n", memory_region_name(ml->mr));
3147 mtree_print_mr(ml->mr, 1, 0, &ml_head, owner);
3148 qemu_printf("\n");
3151 QTAILQ_FOREACH_SAFE(ml, &ml_head, mrqueue, ml2) {
3152 g_free(ml);
3156 void memory_region_init_ram(MemoryRegion *mr,
3157 struct Object *owner,
3158 const char *name,
3159 uint64_t size,
3160 Error **errp)
3162 DeviceState *owner_dev;
3163 Error *err = NULL;
3165 memory_region_init_ram_nomigrate(mr, owner, name, size, &err);
3166 if (err) {
3167 error_propagate(errp, err);
3168 return;
3170 /* This will assert if owner is neither NULL nor a DeviceState.
3171 * We only want the owner here for the purposes of defining a
3172 * unique name for migration. TODO: Ideally we should implement
3173 * a naming scheme for Objects which are not DeviceStates, in
3174 * which case we can relax this restriction.
3176 owner_dev = DEVICE(owner);
3177 vmstate_register_ram(mr, owner_dev);
3180 void memory_region_init_rom(MemoryRegion *mr,
3181 struct Object *owner,
3182 const char *name,
3183 uint64_t size,
3184 Error **errp)
3186 DeviceState *owner_dev;
3187 Error *err = NULL;
3189 memory_region_init_rom_nomigrate(mr, owner, name, size, &err);
3190 if (err) {
3191 error_propagate(errp, err);
3192 return;
3194 /* This will assert if owner is neither NULL nor a DeviceState.
3195 * We only want the owner here for the purposes of defining a
3196 * unique name for migration. TODO: Ideally we should implement
3197 * a naming scheme for Objects which are not DeviceStates, in
3198 * which case we can relax this restriction.
3200 owner_dev = DEVICE(owner);
3201 vmstate_register_ram(mr, owner_dev);
3204 void memory_region_init_rom_device(MemoryRegion *mr,
3205 struct Object *owner,
3206 const MemoryRegionOps *ops,
3207 void *opaque,
3208 const char *name,
3209 uint64_t size,
3210 Error **errp)
3212 DeviceState *owner_dev;
3213 Error *err = NULL;
3215 memory_region_init_rom_device_nomigrate(mr, owner, ops, opaque,
3216 name, size, &err);
3217 if (err) {
3218 error_propagate(errp, err);
3219 return;
3221 /* This will assert if owner is neither NULL nor a DeviceState.
3222 * We only want the owner here for the purposes of defining a
3223 * unique name for migration. TODO: Ideally we should implement
3224 * a naming scheme for Objects which are not DeviceStates, in
3225 * which case we can relax this restriction.
3227 owner_dev = DEVICE(owner);
3228 vmstate_register_ram(mr, owner_dev);
3231 static const TypeInfo memory_region_info = {
3232 .parent = TYPE_OBJECT,
3233 .name = TYPE_MEMORY_REGION,
3234 .class_size = sizeof(MemoryRegionClass),
3235 .instance_size = sizeof(MemoryRegion),
3236 .instance_init = memory_region_initfn,
3237 .instance_finalize = memory_region_finalize,
3240 static const TypeInfo iommu_memory_region_info = {
3241 .parent = TYPE_MEMORY_REGION,
3242 .name = TYPE_IOMMU_MEMORY_REGION,
3243 .class_size = sizeof(IOMMUMemoryRegionClass),
3244 .instance_size = sizeof(IOMMUMemoryRegion),
3245 .instance_init = iommu_memory_region_initfn,
3246 .abstract = true,
3249 static void memory_register_types(void)
3251 type_register_static(&memory_region_info);
3252 type_register_static(&iommu_memory_region_info);
3255 type_init(memory_register_types)