target/mips: Use decode_ase_msa() generated from decodetree
[qemu/ar7.git] / hw / riscv / boot.c
blob83586aef4135d498e5bab731153062634ece3691
1 /*
2 * QEMU RISC-V Boot Helper
4 * Copyright (c) 2017 SiFive, Inc.
5 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qemu/units.h"
24 #include "qemu/error-report.h"
25 #include "exec/cpu-defs.h"
26 #include "hw/boards.h"
27 #include "hw/loader.h"
28 #include "hw/riscv/boot.h"
29 #include "hw/riscv/boot_opensbi.h"
30 #include "elf.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/qtest.h"
34 #include <libfdt.h>
36 bool riscv_is_32bit(RISCVHartArrayState harts)
38 RISCVCPU hart = harts.harts[0];
40 return riscv_cpu_is_32bit(&hart.env);
43 target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState harts,
44 target_ulong firmware_end_addr) {
45 if (riscv_is_32bit(harts)) {
46 return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
47 } else {
48 return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
52 target_ulong riscv_find_and_load_firmware(MachineState *machine,
53 const char *default_machine_firmware,
54 hwaddr firmware_load_addr,
55 symbol_fn_t sym_cb)
57 char *firmware_filename = NULL;
58 target_ulong firmware_end_addr = firmware_load_addr;
60 if ((!machine->firmware) || (!strcmp(machine->firmware, "default"))) {
62 * The user didn't specify -bios, or has specified "-bios default".
63 * That means we are going to load the OpenSBI binary included in
64 * the QEMU source.
66 firmware_filename = riscv_find_firmware(default_machine_firmware);
67 } else if (strcmp(machine->firmware, "none")) {
68 firmware_filename = riscv_find_firmware(machine->firmware);
71 if (firmware_filename) {
72 /* If not "none" load the firmware */
73 firmware_end_addr = riscv_load_firmware(firmware_filename,
74 firmware_load_addr, sym_cb);
75 g_free(firmware_filename);
78 return firmware_end_addr;
81 char *riscv_find_firmware(const char *firmware_filename)
83 char *filename;
85 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware_filename);
86 if (filename == NULL) {
87 if (!qtest_enabled()) {
89 * We only ship plain binary bios images in the QEMU source.
90 * With Spike machine that uses ELF images as the default bios,
91 * running QEMU test will complain hence let's suppress the error
92 * report for QEMU testing.
94 error_report("Unable to load the RISC-V firmware \"%s\"",
95 firmware_filename);
96 exit(1);
100 return filename;
103 target_ulong riscv_load_firmware(const char *firmware_filename,
104 hwaddr firmware_load_addr,
105 symbol_fn_t sym_cb)
107 uint64_t firmware_entry, firmware_size, firmware_end;
109 if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
110 &firmware_entry, NULL, &firmware_end, NULL,
111 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
112 return firmware_end;
115 firmware_size = load_image_targphys_as(firmware_filename,
116 firmware_load_addr,
117 current_machine->ram_size, NULL);
119 if (firmware_size > 0) {
120 return firmware_load_addr + firmware_size;
123 error_report("could not load firmware '%s'", firmware_filename);
124 exit(1);
127 target_ulong riscv_load_kernel(const char *kernel_filename,
128 target_ulong kernel_start_addr,
129 symbol_fn_t sym_cb)
131 uint64_t kernel_entry;
133 if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
134 &kernel_entry, NULL, NULL, NULL, 0,
135 EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
136 return kernel_entry;
139 if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
140 NULL, NULL, NULL) > 0) {
141 return kernel_entry;
144 if (load_image_targphys_as(kernel_filename, kernel_start_addr,
145 current_machine->ram_size, NULL) > 0) {
146 return kernel_start_addr;
149 error_report("could not load kernel '%s'", kernel_filename);
150 exit(1);
153 hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size,
154 uint64_t kernel_entry, hwaddr *start)
156 int size;
159 * We want to put the initrd far enough into RAM that when the
160 * kernel is uncompressed it will not clobber the initrd. However
161 * on boards without much RAM we must ensure that we still leave
162 * enough room for a decent sized initrd, and on boards with large
163 * amounts of RAM we must avoid the initrd being so far up in RAM
164 * that it is outside lowmem and inaccessible to the kernel.
165 * So for boards with less than 256MB of RAM we put the initrd
166 * halfway into RAM, and for boards with 256MB of RAM or more we put
167 * the initrd at 128MB.
169 *start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
171 size = load_ramdisk(filename, *start, mem_size - *start);
172 if (size == -1) {
173 size = load_image_targphys(filename, *start, mem_size - *start);
174 if (size == -1) {
175 error_report("could not load ramdisk '%s'", filename);
176 exit(1);
180 return *start + size;
183 uint32_t riscv_load_fdt(hwaddr dram_base, uint64_t mem_size, void *fdt)
185 uint32_t temp, fdt_addr;
186 hwaddr dram_end = dram_base + mem_size;
187 int fdtsize = fdt_totalsize(fdt);
189 if (fdtsize <= 0) {
190 error_report("invalid device-tree");
191 exit(1);
195 * We should put fdt as far as possible to avoid kernel/initrd overwriting
196 * its content. But it should be addressable by 32 bit system as well.
197 * Thus, put it at an aligned address that less than fdt size from end of
198 * dram or 4GB whichever is lesser.
200 temp = MIN(dram_end, 4096 * MiB);
201 fdt_addr = QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
203 fdt_pack(fdt);
204 /* copy in the device tree */
205 qemu_fdt_dumpdtb(fdt, fdtsize);
207 rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
208 &address_space_memory);
210 return fdt_addr;
213 void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
214 hwaddr rom_size, uint32_t reset_vec_size,
215 uint64_t kernel_entry)
217 struct fw_dynamic_info dinfo;
218 size_t dinfo_len;
220 if (sizeof(dinfo.magic) == 4) {
221 dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
222 dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
223 dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
224 dinfo.next_addr = cpu_to_le32(kernel_entry);
225 } else {
226 dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
227 dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
228 dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
229 dinfo.next_addr = cpu_to_le64(kernel_entry);
231 dinfo.options = 0;
232 dinfo.boot_hart = 0;
233 dinfo_len = sizeof(dinfo);
236 * copy the dynamic firmware info. This information is specific to
237 * OpenSBI but doesn't break any other firmware as long as they don't
238 * expect any certain value in "a2" register.
240 if (dinfo_len > (rom_size - reset_vec_size)) {
241 error_report("not enough space to store dynamic firmware info");
242 exit(1);
245 rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
246 rom_base + reset_vec_size,
247 &address_space_memory);
250 void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState harts,
251 hwaddr start_addr,
252 hwaddr rom_base, hwaddr rom_size,
253 uint64_t kernel_entry,
254 uint32_t fdt_load_addr, void *fdt)
256 int i;
257 uint32_t start_addr_hi32 = 0x00000000;
259 if (!riscv_is_32bit(harts)) {
260 start_addr_hi32 = start_addr >> 32;
262 /* reset vector */
263 uint32_t reset_vec[10] = {
264 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
265 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
266 0xf1402573, /* csrr a0, mhartid */
269 0x00028067, /* jr t0 */
270 start_addr, /* start: .dword */
271 start_addr_hi32,
272 fdt_load_addr, /* fdt_laddr: .dword */
273 0x00000000,
274 /* fw_dyn: */
276 if (riscv_is_32bit(harts)) {
277 reset_vec[3] = 0x0202a583; /* lw a1, 32(t0) */
278 reset_vec[4] = 0x0182a283; /* lw t0, 24(t0) */
279 } else {
280 reset_vec[3] = 0x0202b583; /* ld a1, 32(t0) */
281 reset_vec[4] = 0x0182b283; /* ld t0, 24(t0) */
284 /* copy in the reset vector in little_endian byte order */
285 for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
286 reset_vec[i] = cpu_to_le32(reset_vec[i]);
288 rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
289 rom_base, &address_space_memory);
290 riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
291 kernel_entry);
293 return;