2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
23 #include "qemu-timer.h"
24 #include "qemu-char.h"
26 /* We use pc-style serial ports. */
31 /* Should signal the TCMI/GPMC */
32 uint32_t omap_badwidth_read8(void *opaque
, target_phys_addr_t addr
)
37 cpu_physical_memory_read(addr
, (void *) &ret
, 1);
41 void omap_badwidth_write8(void *opaque
, target_phys_addr_t addr
,
47 cpu_physical_memory_write(addr
, (void *) &val8
, 1);
50 uint32_t omap_badwidth_read16(void *opaque
, target_phys_addr_t addr
)
55 cpu_physical_memory_read(addr
, (void *) &ret
, 2);
59 void omap_badwidth_write16(void *opaque
, target_phys_addr_t addr
,
62 uint16_t val16
= value
;
65 cpu_physical_memory_write(addr
, (void *) &val16
, 2);
68 uint32_t omap_badwidth_read32(void *opaque
, target_phys_addr_t addr
)
73 cpu_physical_memory_read(addr
, (void *) &ret
, 4);
77 void omap_badwidth_write32(void *opaque
, target_phys_addr_t addr
,
81 cpu_physical_memory_write(addr
, (void *) &value
, 4);
85 struct omap_mpu_timer_s
{
102 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s
*timer
)
104 uint64_t distance
= qemu_get_clock(vm_clock
) - timer
->time
;
106 if (timer
->st
&& timer
->enable
&& timer
->rate
)
107 return timer
->val
- muldiv64(distance
>> (timer
->ptv
+ 1),
108 timer
->rate
, get_ticks_per_sec());
113 static inline void omap_timer_sync(struct omap_mpu_timer_s
*timer
)
115 timer
->val
= omap_timer_read(timer
);
116 timer
->time
= qemu_get_clock(vm_clock
);
119 static inline void omap_timer_update(struct omap_mpu_timer_s
*timer
)
123 if (timer
->enable
&& timer
->st
&& timer
->rate
) {
124 timer
->val
= timer
->reset_val
; /* Should skip this on clk enable */
125 expires
= muldiv64((uint64_t) timer
->val
<< (timer
->ptv
+ 1),
126 get_ticks_per_sec(), timer
->rate
);
128 /* If timer expiry would be sooner than in about 1 ms and
129 * auto-reload isn't set, then fire immediately. This is a hack
130 * to make systems like PalmOS run in acceptable time. PalmOS
131 * sets the interval to a very low value and polls the status bit
132 * in a busy loop when it wants to sleep just a couple of CPU
134 if (expires
> (get_ticks_per_sec() >> 10) || timer
->ar
)
135 qemu_mod_timer(timer
->timer
, timer
->time
+ expires
);
137 qemu_bh_schedule(timer
->tick
);
139 qemu_del_timer(timer
->timer
);
142 static void omap_timer_fire(void *opaque
)
144 struct omap_mpu_timer_s
*timer
= opaque
;
152 /* Edge-triggered irq */
153 qemu_irq_pulse(timer
->irq
);
156 static void omap_timer_tick(void *opaque
)
158 struct omap_mpu_timer_s
*timer
= (struct omap_mpu_timer_s
*) opaque
;
160 omap_timer_sync(timer
);
161 omap_timer_fire(timer
);
162 omap_timer_update(timer
);
165 static void omap_timer_clk_update(void *opaque
, int line
, int on
)
167 struct omap_mpu_timer_s
*timer
= (struct omap_mpu_timer_s
*) opaque
;
169 omap_timer_sync(timer
);
170 timer
->rate
= on
? omap_clk_getrate(timer
->clk
) : 0;
171 omap_timer_update(timer
);
174 static void omap_timer_clk_setup(struct omap_mpu_timer_s
*timer
)
176 omap_clk_adduser(timer
->clk
,
177 qemu_allocate_irqs(omap_timer_clk_update
, timer
, 1)[0]);
178 timer
->rate
= omap_clk_getrate(timer
->clk
);
181 static uint32_t omap_mpu_timer_read(void *opaque
, target_phys_addr_t addr
)
183 struct omap_mpu_timer_s
*s
= (struct omap_mpu_timer_s
*) opaque
;
186 case 0x00: /* CNTL_TIMER */
187 return (s
->enable
<< 5) | (s
->ptv
<< 2) | (s
->ar
<< 1) | s
->st
;
189 case 0x04: /* LOAD_TIM */
192 case 0x08: /* READ_TIM */
193 return omap_timer_read(s
);
200 static void omap_mpu_timer_write(void *opaque
, target_phys_addr_t addr
,
203 struct omap_mpu_timer_s
*s
= (struct omap_mpu_timer_s
*) opaque
;
206 case 0x00: /* CNTL_TIMER */
208 s
->enable
= (value
>> 5) & 1;
209 s
->ptv
= (value
>> 2) & 7;
210 s
->ar
= (value
>> 1) & 1;
212 omap_timer_update(s
);
215 case 0x04: /* LOAD_TIM */
216 s
->reset_val
= value
;
219 case 0x08: /* READ_TIM */
228 static CPUReadMemoryFunc
* const omap_mpu_timer_readfn
[] = {
229 omap_badwidth_read32
,
230 omap_badwidth_read32
,
234 static CPUWriteMemoryFunc
* const omap_mpu_timer_writefn
[] = {
235 omap_badwidth_write32
,
236 omap_badwidth_write32
,
237 omap_mpu_timer_write
,
240 static void omap_mpu_timer_reset(struct omap_mpu_timer_s
*s
)
242 qemu_del_timer(s
->timer
);
244 s
->reset_val
= 31337;
252 static struct omap_mpu_timer_s
*omap_mpu_timer_init(target_phys_addr_t base
,
253 qemu_irq irq
, omap_clk clk
)
256 struct omap_mpu_timer_s
*s
= (struct omap_mpu_timer_s
*)
257 qemu_mallocz(sizeof(struct omap_mpu_timer_s
));
261 s
->timer
= qemu_new_timer(vm_clock
, omap_timer_tick
, s
);
262 s
->tick
= qemu_bh_new(omap_timer_fire
, s
);
263 omap_mpu_timer_reset(s
);
264 omap_timer_clk_setup(s
);
266 iomemtype
= cpu_register_io_memory(omap_mpu_timer_readfn
,
267 omap_mpu_timer_writefn
, s
, DEVICE_NATIVE_ENDIAN
);
268 cpu_register_physical_memory(base
, 0x100, iomemtype
);
274 struct omap_watchdog_timer_s
{
275 struct omap_mpu_timer_s timer
;
282 static uint32_t omap_wd_timer_read(void *opaque
, target_phys_addr_t addr
)
284 struct omap_watchdog_timer_s
*s
= (struct omap_watchdog_timer_s
*) opaque
;
287 case 0x00: /* CNTL_TIMER */
288 return (s
->timer
.ptv
<< 9) | (s
->timer
.ar
<< 8) |
289 (s
->timer
.st
<< 7) | (s
->free
<< 1);
291 case 0x04: /* READ_TIMER */
292 return omap_timer_read(&s
->timer
);
294 case 0x08: /* TIMER_MODE */
295 return s
->mode
<< 15;
302 static void omap_wd_timer_write(void *opaque
, target_phys_addr_t addr
,
305 struct omap_watchdog_timer_s
*s
= (struct omap_watchdog_timer_s
*) opaque
;
308 case 0x00: /* CNTL_TIMER */
309 omap_timer_sync(&s
->timer
);
310 s
->timer
.ptv
= (value
>> 9) & 7;
311 s
->timer
.ar
= (value
>> 8) & 1;
312 s
->timer
.st
= (value
>> 7) & 1;
313 s
->free
= (value
>> 1) & 1;
314 omap_timer_update(&s
->timer
);
317 case 0x04: /* LOAD_TIMER */
318 s
->timer
.reset_val
= value
& 0xffff;
321 case 0x08: /* TIMER_MODE */
322 if (!s
->mode
&& ((value
>> 15) & 1))
323 omap_clk_get(s
->timer
.clk
);
324 s
->mode
|= (value
>> 15) & 1;
325 if (s
->last_wr
== 0xf5) {
326 if ((value
& 0xff) == 0xa0) {
329 omap_clk_put(s
->timer
.clk
);
332 /* XXX: on T|E hardware somehow this has no effect,
333 * on Zire 71 it works as specified. */
335 qemu_system_reset_request();
338 s
->last_wr
= value
& 0xff;
346 static CPUReadMemoryFunc
* const omap_wd_timer_readfn
[] = {
347 omap_badwidth_read16
,
349 omap_badwidth_read16
,
352 static CPUWriteMemoryFunc
* const omap_wd_timer_writefn
[] = {
353 omap_badwidth_write16
,
355 omap_badwidth_write16
,
358 static void omap_wd_timer_reset(struct omap_watchdog_timer_s
*s
)
360 qemu_del_timer(s
->timer
.timer
);
362 omap_clk_get(s
->timer
.clk
);
368 s
->timer
.reset_val
= 0xffff;
373 omap_timer_update(&s
->timer
);
376 static struct omap_watchdog_timer_s
*omap_wd_timer_init(target_phys_addr_t base
,
377 qemu_irq irq
, omap_clk clk
)
380 struct omap_watchdog_timer_s
*s
= (struct omap_watchdog_timer_s
*)
381 qemu_mallocz(sizeof(struct omap_watchdog_timer_s
));
385 s
->timer
.timer
= qemu_new_timer(vm_clock
, omap_timer_tick
, &s
->timer
);
386 omap_wd_timer_reset(s
);
387 omap_timer_clk_setup(&s
->timer
);
389 iomemtype
= cpu_register_io_memory(omap_wd_timer_readfn
,
390 omap_wd_timer_writefn
, s
, DEVICE_NATIVE_ENDIAN
);
391 cpu_register_physical_memory(base
, 0x100, iomemtype
);
397 struct omap_32khz_timer_s
{
398 struct omap_mpu_timer_s timer
;
401 static uint32_t omap_os_timer_read(void *opaque
, target_phys_addr_t addr
)
403 struct omap_32khz_timer_s
*s
= (struct omap_32khz_timer_s
*) opaque
;
404 int offset
= addr
& OMAP_MPUI_REG_MASK
;
408 return s
->timer
.reset_val
;
411 return omap_timer_read(&s
->timer
);
414 return (s
->timer
.ar
<< 3) | (s
->timer
.it_ena
<< 2) | s
->timer
.st
;
423 static void omap_os_timer_write(void *opaque
, target_phys_addr_t addr
,
426 struct omap_32khz_timer_s
*s
= (struct omap_32khz_timer_s
*) opaque
;
427 int offset
= addr
& OMAP_MPUI_REG_MASK
;
431 s
->timer
.reset_val
= value
& 0x00ffffff;
439 s
->timer
.ar
= (value
>> 3) & 1;
440 s
->timer
.it_ena
= (value
>> 2) & 1;
441 if (s
->timer
.st
!= (value
& 1) || (value
& 2)) {
442 omap_timer_sync(&s
->timer
);
443 s
->timer
.enable
= value
& 1;
444 s
->timer
.st
= value
& 1;
445 omap_timer_update(&s
->timer
);
454 static CPUReadMemoryFunc
* const omap_os_timer_readfn
[] = {
455 omap_badwidth_read32
,
456 omap_badwidth_read32
,
460 static CPUWriteMemoryFunc
* const omap_os_timer_writefn
[] = {
461 omap_badwidth_write32
,
462 omap_badwidth_write32
,
466 static void omap_os_timer_reset(struct omap_32khz_timer_s
*s
)
468 qemu_del_timer(s
->timer
.timer
);
471 s
->timer
.reset_val
= 0x00ffffff;
478 static struct omap_32khz_timer_s
*omap_os_timer_init(target_phys_addr_t base
,
479 qemu_irq irq
, omap_clk clk
)
482 struct omap_32khz_timer_s
*s
= (struct omap_32khz_timer_s
*)
483 qemu_mallocz(sizeof(struct omap_32khz_timer_s
));
487 s
->timer
.timer
= qemu_new_timer(vm_clock
, omap_timer_tick
, &s
->timer
);
488 omap_os_timer_reset(s
);
489 omap_timer_clk_setup(&s
->timer
);
491 iomemtype
= cpu_register_io_memory(omap_os_timer_readfn
,
492 omap_os_timer_writefn
, s
, DEVICE_NATIVE_ENDIAN
);
493 cpu_register_physical_memory(base
, 0x800, iomemtype
);
498 /* Ultra Low-Power Device Module */
499 static uint32_t omap_ulpd_pm_read(void *opaque
, target_phys_addr_t addr
)
501 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
505 case 0x14: /* IT_STATUS */
506 ret
= s
->ulpd_pm_regs
[addr
>> 2];
507 s
->ulpd_pm_regs
[addr
>> 2] = 0;
508 qemu_irq_lower(s
->irq
[1][OMAP_INT_GAUGE_32K
]);
511 case 0x18: /* Reserved */
512 case 0x1c: /* Reserved */
513 case 0x20: /* Reserved */
514 case 0x28: /* Reserved */
515 case 0x2c: /* Reserved */
517 case 0x00: /* COUNTER_32_LSB */
518 case 0x04: /* COUNTER_32_MSB */
519 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
520 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
521 case 0x10: /* GAUGING_CTRL */
522 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
523 case 0x30: /* CLOCK_CTRL */
524 case 0x34: /* SOFT_REQ */
525 case 0x38: /* COUNTER_32_FIQ */
526 case 0x3c: /* DPLL_CTRL */
527 case 0x40: /* STATUS_REQ */
528 /* XXX: check clk::usecount state for every clock */
529 case 0x48: /* LOCL_TIME */
530 case 0x4c: /* APLL_CTRL */
531 case 0x50: /* POWER_CTRL */
532 return s
->ulpd_pm_regs
[addr
>> 2];
539 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s
*s
,
540 uint16_t diff
, uint16_t value
)
542 if (diff
& (1 << 4)) /* USB_MCLK_EN */
543 omap_clk_onoff(omap_findclk(s
, "usb_clk0"), (value
>> 4) & 1);
544 if (diff
& (1 << 5)) /* DIS_USB_PVCI_CLK */
545 omap_clk_onoff(omap_findclk(s
, "usb_w2fc_ck"), (~value
>> 5) & 1);
548 static inline void omap_ulpd_req_update(struct omap_mpu_state_s
*s
,
549 uint16_t diff
, uint16_t value
)
551 if (diff
& (1 << 0)) /* SOFT_DPLL_REQ */
552 omap_clk_canidle(omap_findclk(s
, "dpll4"), (~value
>> 0) & 1);
553 if (diff
& (1 << 1)) /* SOFT_COM_REQ */
554 omap_clk_canidle(omap_findclk(s
, "com_mclk_out"), (~value
>> 1) & 1);
555 if (diff
& (1 << 2)) /* SOFT_SDW_REQ */
556 omap_clk_canidle(omap_findclk(s
, "bt_mclk_out"), (~value
>> 2) & 1);
557 if (diff
& (1 << 3)) /* SOFT_USB_REQ */
558 omap_clk_canidle(omap_findclk(s
, "usb_clk0"), (~value
>> 3) & 1);
561 static void omap_ulpd_pm_write(void *opaque
, target_phys_addr_t addr
,
564 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
567 static const int bypass_div
[4] = { 1, 2, 4, 4 };
571 case 0x00: /* COUNTER_32_LSB */
572 case 0x04: /* COUNTER_32_MSB */
573 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
574 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
575 case 0x14: /* IT_STATUS */
576 case 0x40: /* STATUS_REQ */
580 case 0x10: /* GAUGING_CTRL */
581 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
582 if ((s
->ulpd_pm_regs
[addr
>> 2] ^ value
) & 1) {
583 now
= qemu_get_clock(vm_clock
);
586 s
->ulpd_gauge_start
= now
;
588 now
-= s
->ulpd_gauge_start
;
591 ticks
= muldiv64(now
, 32768, get_ticks_per_sec());
592 s
->ulpd_pm_regs
[0x00 >> 2] = (ticks
>> 0) & 0xffff;
593 s
->ulpd_pm_regs
[0x04 >> 2] = (ticks
>> 16) & 0xffff;
594 if (ticks
>> 32) /* OVERFLOW_32K */
595 s
->ulpd_pm_regs
[0x14 >> 2] |= 1 << 2;
597 /* High frequency ticks */
598 ticks
= muldiv64(now
, 12000000, get_ticks_per_sec());
599 s
->ulpd_pm_regs
[0x08 >> 2] = (ticks
>> 0) & 0xffff;
600 s
->ulpd_pm_regs
[0x0c >> 2] = (ticks
>> 16) & 0xffff;
601 if (ticks
>> 32) /* OVERFLOW_HI_FREQ */
602 s
->ulpd_pm_regs
[0x14 >> 2] |= 1 << 1;
604 s
->ulpd_pm_regs
[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
605 qemu_irq_raise(s
->irq
[1][OMAP_INT_GAUGE_32K
]);
608 s
->ulpd_pm_regs
[addr
>> 2] = value
;
611 case 0x18: /* Reserved */
612 case 0x1c: /* Reserved */
613 case 0x20: /* Reserved */
614 case 0x28: /* Reserved */
615 case 0x2c: /* Reserved */
617 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
618 case 0x38: /* COUNTER_32_FIQ */
619 case 0x48: /* LOCL_TIME */
620 case 0x50: /* POWER_CTRL */
621 s
->ulpd_pm_regs
[addr
>> 2] = value
;
624 case 0x30: /* CLOCK_CTRL */
625 diff
= s
->ulpd_pm_regs
[addr
>> 2] ^ value
;
626 s
->ulpd_pm_regs
[addr
>> 2] = value
& 0x3f;
627 omap_ulpd_clk_update(s
, diff
, value
);
630 case 0x34: /* SOFT_REQ */
631 diff
= s
->ulpd_pm_regs
[addr
>> 2] ^ value
;
632 s
->ulpd_pm_regs
[addr
>> 2] = value
& 0x1f;
633 omap_ulpd_req_update(s
, diff
, value
);
636 case 0x3c: /* DPLL_CTRL */
637 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
638 * omitted altogether, probably a typo. */
639 /* This register has identical semantics with DPLL(1:3) control
640 * registers, see omap_dpll_write() */
641 diff
= s
->ulpd_pm_regs
[addr
>> 2] & value
;
642 s
->ulpd_pm_regs
[addr
>> 2] = value
& 0x2fff;
643 if (diff
& (0x3ff << 2)) {
644 if (value
& (1 << 4)) { /* PLL_ENABLE */
645 div
= ((value
>> 5) & 3) + 1; /* PLL_DIV */
646 mult
= MIN((value
>> 7) & 0x1f, 1); /* PLL_MULT */
648 div
= bypass_div
[((value
>> 2) & 3)]; /* BYPASS_DIV */
651 omap_clk_setrate(omap_findclk(s
, "dpll4"), div
, mult
);
654 /* Enter the desired mode. */
655 s
->ulpd_pm_regs
[addr
>> 2] =
656 (s
->ulpd_pm_regs
[addr
>> 2] & 0xfffe) |
657 ((s
->ulpd_pm_regs
[addr
>> 2] >> 4) & 1);
659 /* Act as if the lock is restored. */
660 s
->ulpd_pm_regs
[addr
>> 2] |= 2;
663 case 0x4c: /* APLL_CTRL */
664 diff
= s
->ulpd_pm_regs
[addr
>> 2] & value
;
665 s
->ulpd_pm_regs
[addr
>> 2] = value
& 0xf;
666 if (diff
& (1 << 0)) /* APLL_NDPLL_SWITCH */
667 omap_clk_reparent(omap_findclk(s
, "ck_48m"), omap_findclk(s
,
668 (value
& (1 << 0)) ? "apll" : "dpll4"));
676 static CPUReadMemoryFunc
* const omap_ulpd_pm_readfn
[] = {
677 omap_badwidth_read16
,
679 omap_badwidth_read16
,
682 static CPUWriteMemoryFunc
* const omap_ulpd_pm_writefn
[] = {
683 omap_badwidth_write16
,
685 omap_badwidth_write16
,
688 static void omap_ulpd_pm_reset(struct omap_mpu_state_s
*mpu
)
690 mpu
->ulpd_pm_regs
[0x00 >> 2] = 0x0001;
691 mpu
->ulpd_pm_regs
[0x04 >> 2] = 0x0000;
692 mpu
->ulpd_pm_regs
[0x08 >> 2] = 0x0001;
693 mpu
->ulpd_pm_regs
[0x0c >> 2] = 0x0000;
694 mpu
->ulpd_pm_regs
[0x10 >> 2] = 0x0000;
695 mpu
->ulpd_pm_regs
[0x18 >> 2] = 0x01;
696 mpu
->ulpd_pm_regs
[0x1c >> 2] = 0x01;
697 mpu
->ulpd_pm_regs
[0x20 >> 2] = 0x01;
698 mpu
->ulpd_pm_regs
[0x24 >> 2] = 0x03ff;
699 mpu
->ulpd_pm_regs
[0x28 >> 2] = 0x01;
700 mpu
->ulpd_pm_regs
[0x2c >> 2] = 0x01;
701 omap_ulpd_clk_update(mpu
, mpu
->ulpd_pm_regs
[0x30 >> 2], 0x0000);
702 mpu
->ulpd_pm_regs
[0x30 >> 2] = 0x0000;
703 omap_ulpd_req_update(mpu
, mpu
->ulpd_pm_regs
[0x34 >> 2], 0x0000);
704 mpu
->ulpd_pm_regs
[0x34 >> 2] = 0x0000;
705 mpu
->ulpd_pm_regs
[0x38 >> 2] = 0x0001;
706 mpu
->ulpd_pm_regs
[0x3c >> 2] = 0x2211;
707 mpu
->ulpd_pm_regs
[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
708 mpu
->ulpd_pm_regs
[0x48 >> 2] = 0x960;
709 mpu
->ulpd_pm_regs
[0x4c >> 2] = 0x08;
710 mpu
->ulpd_pm_regs
[0x50 >> 2] = 0x08;
711 omap_clk_setrate(omap_findclk(mpu
, "dpll4"), 1, 4);
712 omap_clk_reparent(omap_findclk(mpu
, "ck_48m"), omap_findclk(mpu
, "dpll4"));
715 static void omap_ulpd_pm_init(target_phys_addr_t base
,
716 struct omap_mpu_state_s
*mpu
)
718 int iomemtype
= cpu_register_io_memory(omap_ulpd_pm_readfn
,
719 omap_ulpd_pm_writefn
, mpu
, DEVICE_NATIVE_ENDIAN
);
721 cpu_register_physical_memory(base
, 0x800, iomemtype
);
722 omap_ulpd_pm_reset(mpu
);
725 /* OMAP Pin Configuration */
726 static uint32_t omap_pin_cfg_read(void *opaque
, target_phys_addr_t addr
)
728 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
731 case 0x00: /* FUNC_MUX_CTRL_0 */
732 case 0x04: /* FUNC_MUX_CTRL_1 */
733 case 0x08: /* FUNC_MUX_CTRL_2 */
734 return s
->func_mux_ctrl
[addr
>> 2];
736 case 0x0c: /* COMP_MODE_CTRL_0 */
737 return s
->comp_mode_ctrl
[0];
739 case 0x10: /* FUNC_MUX_CTRL_3 */
740 case 0x14: /* FUNC_MUX_CTRL_4 */
741 case 0x18: /* FUNC_MUX_CTRL_5 */
742 case 0x1c: /* FUNC_MUX_CTRL_6 */
743 case 0x20: /* FUNC_MUX_CTRL_7 */
744 case 0x24: /* FUNC_MUX_CTRL_8 */
745 case 0x28: /* FUNC_MUX_CTRL_9 */
746 case 0x2c: /* FUNC_MUX_CTRL_A */
747 case 0x30: /* FUNC_MUX_CTRL_B */
748 case 0x34: /* FUNC_MUX_CTRL_C */
749 case 0x38: /* FUNC_MUX_CTRL_D */
750 return s
->func_mux_ctrl
[(addr
>> 2) - 1];
752 case 0x40: /* PULL_DWN_CTRL_0 */
753 case 0x44: /* PULL_DWN_CTRL_1 */
754 case 0x48: /* PULL_DWN_CTRL_2 */
755 case 0x4c: /* PULL_DWN_CTRL_3 */
756 return s
->pull_dwn_ctrl
[(addr
& 0xf) >> 2];
758 case 0x50: /* GATE_INH_CTRL_0 */
759 return s
->gate_inh_ctrl
[0];
761 case 0x60: /* VOLTAGE_CTRL_0 */
762 return s
->voltage_ctrl
[0];
764 case 0x70: /* TEST_DBG_CTRL_0 */
765 return s
->test_dbg_ctrl
[0];
767 case 0x80: /* MOD_CONF_CTRL_0 */
768 return s
->mod_conf_ctrl
[0];
775 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s
*s
,
776 uint32_t diff
, uint32_t value
)
779 if (diff
& (1 << 9)) /* BLUETOOTH */
780 omap_clk_onoff(omap_findclk(s
, "bt_mclk_out"),
782 if (diff
& (1 << 7)) /* USB.CLKO */
783 omap_clk_onoff(omap_findclk(s
, "usb.clko"),
788 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s
*s
,
789 uint32_t diff
, uint32_t value
)
792 if (diff
& (1 << 31)) /* MCBSP3_CLK_HIZ_DI */
793 omap_clk_onoff(omap_findclk(s
, "mcbsp3.clkx"),
795 if (diff
& (1 << 1)) /* CLK32K */
796 omap_clk_onoff(omap_findclk(s
, "clk32k_out"),
801 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s
*s
,
802 uint32_t diff
, uint32_t value
)
804 if (diff
& (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */
805 omap_clk_reparent(omap_findclk(s
, "uart3_ck"),
806 omap_findclk(s
, ((value
>> 31) & 1) ?
807 "ck_48m" : "armper_ck"));
808 if (diff
& (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
809 omap_clk_reparent(omap_findclk(s
, "uart2_ck"),
810 omap_findclk(s
, ((value
>> 30) & 1) ?
811 "ck_48m" : "armper_ck"));
812 if (diff
& (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
813 omap_clk_reparent(omap_findclk(s
, "uart1_ck"),
814 omap_findclk(s
, ((value
>> 29) & 1) ?
815 "ck_48m" : "armper_ck"));
816 if (diff
& (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
817 omap_clk_reparent(omap_findclk(s
, "mmc_ck"),
818 omap_findclk(s
, ((value
>> 23) & 1) ?
819 "ck_48m" : "armper_ck"));
820 if (diff
& (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
821 omap_clk_reparent(omap_findclk(s
, "com_mclk_out"),
822 omap_findclk(s
, ((value
>> 12) & 1) ?
823 "ck_48m" : "armper_ck"));
824 if (diff
& (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
825 omap_clk_onoff(omap_findclk(s
, "usb_hhc_ck"), (value
>> 9) & 1);
828 static void omap_pin_cfg_write(void *opaque
, target_phys_addr_t addr
,
831 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
835 case 0x00: /* FUNC_MUX_CTRL_0 */
836 diff
= s
->func_mux_ctrl
[addr
>> 2] ^ value
;
837 s
->func_mux_ctrl
[addr
>> 2] = value
;
838 omap_pin_funcmux0_update(s
, diff
, value
);
841 case 0x04: /* FUNC_MUX_CTRL_1 */
842 diff
= s
->func_mux_ctrl
[addr
>> 2] ^ value
;
843 s
->func_mux_ctrl
[addr
>> 2] = value
;
844 omap_pin_funcmux1_update(s
, diff
, value
);
847 case 0x08: /* FUNC_MUX_CTRL_2 */
848 s
->func_mux_ctrl
[addr
>> 2] = value
;
851 case 0x0c: /* COMP_MODE_CTRL_0 */
852 s
->comp_mode_ctrl
[0] = value
;
853 s
->compat1509
= (value
!= 0x0000eaef);
854 omap_pin_funcmux0_update(s
, ~0, s
->func_mux_ctrl
[0]);
855 omap_pin_funcmux1_update(s
, ~0, s
->func_mux_ctrl
[1]);
858 case 0x10: /* FUNC_MUX_CTRL_3 */
859 case 0x14: /* FUNC_MUX_CTRL_4 */
860 case 0x18: /* FUNC_MUX_CTRL_5 */
861 case 0x1c: /* FUNC_MUX_CTRL_6 */
862 case 0x20: /* FUNC_MUX_CTRL_7 */
863 case 0x24: /* FUNC_MUX_CTRL_8 */
864 case 0x28: /* FUNC_MUX_CTRL_9 */
865 case 0x2c: /* FUNC_MUX_CTRL_A */
866 case 0x30: /* FUNC_MUX_CTRL_B */
867 case 0x34: /* FUNC_MUX_CTRL_C */
868 case 0x38: /* FUNC_MUX_CTRL_D */
869 s
->func_mux_ctrl
[(addr
>> 2) - 1] = value
;
872 case 0x40: /* PULL_DWN_CTRL_0 */
873 case 0x44: /* PULL_DWN_CTRL_1 */
874 case 0x48: /* PULL_DWN_CTRL_2 */
875 case 0x4c: /* PULL_DWN_CTRL_3 */
876 s
->pull_dwn_ctrl
[(addr
& 0xf) >> 2] = value
;
879 case 0x50: /* GATE_INH_CTRL_0 */
880 s
->gate_inh_ctrl
[0] = value
;
883 case 0x60: /* VOLTAGE_CTRL_0 */
884 s
->voltage_ctrl
[0] = value
;
887 case 0x70: /* TEST_DBG_CTRL_0 */
888 s
->test_dbg_ctrl
[0] = value
;
891 case 0x80: /* MOD_CONF_CTRL_0 */
892 diff
= s
->mod_conf_ctrl
[0] ^ value
;
893 s
->mod_conf_ctrl
[0] = value
;
894 omap_pin_modconf1_update(s
, diff
, value
);
902 static CPUReadMemoryFunc
* const omap_pin_cfg_readfn
[] = {
903 omap_badwidth_read32
,
904 omap_badwidth_read32
,
908 static CPUWriteMemoryFunc
* const omap_pin_cfg_writefn
[] = {
909 omap_badwidth_write32
,
910 omap_badwidth_write32
,
914 static void omap_pin_cfg_reset(struct omap_mpu_state_s
*mpu
)
916 /* Start in Compatibility Mode. */
918 omap_pin_funcmux0_update(mpu
, mpu
->func_mux_ctrl
[0], 0);
919 omap_pin_funcmux1_update(mpu
, mpu
->func_mux_ctrl
[1], 0);
920 omap_pin_modconf1_update(mpu
, mpu
->mod_conf_ctrl
[0], 0);
921 memset(mpu
->func_mux_ctrl
, 0, sizeof(mpu
->func_mux_ctrl
));
922 memset(mpu
->comp_mode_ctrl
, 0, sizeof(mpu
->comp_mode_ctrl
));
923 memset(mpu
->pull_dwn_ctrl
, 0, sizeof(mpu
->pull_dwn_ctrl
));
924 memset(mpu
->gate_inh_ctrl
, 0, sizeof(mpu
->gate_inh_ctrl
));
925 memset(mpu
->voltage_ctrl
, 0, sizeof(mpu
->voltage_ctrl
));
926 memset(mpu
->test_dbg_ctrl
, 0, sizeof(mpu
->test_dbg_ctrl
));
927 memset(mpu
->mod_conf_ctrl
, 0, sizeof(mpu
->mod_conf_ctrl
));
930 static void omap_pin_cfg_init(target_phys_addr_t base
,
931 struct omap_mpu_state_s
*mpu
)
933 int iomemtype
= cpu_register_io_memory(omap_pin_cfg_readfn
,
934 omap_pin_cfg_writefn
, mpu
, DEVICE_NATIVE_ENDIAN
);
936 cpu_register_physical_memory(base
, 0x800, iomemtype
);
937 omap_pin_cfg_reset(mpu
);
940 /* Device Identification, Die Identification */
941 static uint32_t omap_id_read(void *opaque
, target_phys_addr_t addr
)
943 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
946 case 0xfffe1800: /* DIE_ID_LSB */
948 case 0xfffe1804: /* DIE_ID_MSB */
951 case 0xfffe2000: /* PRODUCT_ID_LSB */
953 case 0xfffe2004: /* PRODUCT_ID_MSB */
956 case 0xfffed400: /* JTAG_ID_LSB */
957 switch (s
->mpu_model
) {
963 hw_error("%s: bad mpu model\n", __FUNCTION__
);
967 case 0xfffed404: /* JTAG_ID_MSB */
968 switch (s
->mpu_model
) {
974 hw_error("%s: bad mpu model\n", __FUNCTION__
);
983 static void omap_id_write(void *opaque
, target_phys_addr_t addr
,
989 static CPUReadMemoryFunc
* const omap_id_readfn
[] = {
990 omap_badwidth_read32
,
991 omap_badwidth_read32
,
995 static CPUWriteMemoryFunc
* const omap_id_writefn
[] = {
996 omap_badwidth_write32
,
997 omap_badwidth_write32
,
1001 static void omap_id_init(struct omap_mpu_state_s
*mpu
)
1003 int iomemtype
= cpu_register_io_memory(omap_id_readfn
,
1004 omap_id_writefn
, mpu
, DEVICE_NATIVE_ENDIAN
);
1005 cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype
, 0xfffe1800);
1006 cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype
, 0xfffed400);
1007 if (!cpu_is_omap15xx(mpu
))
1008 cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype
, 0xfffe2000);
1011 /* MPUI Control (Dummy) */
1012 static uint32_t omap_mpui_read(void *opaque
, target_phys_addr_t addr
)
1014 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1017 case 0x00: /* CTRL */
1018 return s
->mpui_ctrl
;
1019 case 0x04: /* DEBUG_ADDR */
1021 case 0x08: /* DEBUG_DATA */
1023 case 0x0c: /* DEBUG_FLAG */
1025 case 0x10: /* STATUS */
1028 /* Not in OMAP310 */
1029 case 0x14: /* DSP_STATUS */
1030 case 0x18: /* DSP_BOOT_CONFIG */
1032 case 0x1c: /* DSP_MPUI_CONFIG */
1040 static void omap_mpui_write(void *opaque
, target_phys_addr_t addr
,
1043 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1046 case 0x00: /* CTRL */
1047 s
->mpui_ctrl
= value
& 0x007fffff;
1050 case 0x04: /* DEBUG_ADDR */
1051 case 0x08: /* DEBUG_DATA */
1052 case 0x0c: /* DEBUG_FLAG */
1053 case 0x10: /* STATUS */
1054 /* Not in OMAP310 */
1055 case 0x14: /* DSP_STATUS */
1057 case 0x18: /* DSP_BOOT_CONFIG */
1058 case 0x1c: /* DSP_MPUI_CONFIG */
1066 static CPUReadMemoryFunc
* const omap_mpui_readfn
[] = {
1067 omap_badwidth_read32
,
1068 omap_badwidth_read32
,
1072 static CPUWriteMemoryFunc
* const omap_mpui_writefn
[] = {
1073 omap_badwidth_write32
,
1074 omap_badwidth_write32
,
1078 static void omap_mpui_reset(struct omap_mpu_state_s
*s
)
1080 s
->mpui_ctrl
= 0x0003ff1b;
1083 static void omap_mpui_init(target_phys_addr_t base
,
1084 struct omap_mpu_state_s
*mpu
)
1086 int iomemtype
= cpu_register_io_memory(omap_mpui_readfn
,
1087 omap_mpui_writefn
, mpu
, DEVICE_NATIVE_ENDIAN
);
1089 cpu_register_physical_memory(base
, 0x100, iomemtype
);
1091 omap_mpui_reset(mpu
);
1095 struct omap_tipb_bridge_s
{
1102 uint16_t enh_control
;
1105 static uint32_t omap_tipb_bridge_read(void *opaque
, target_phys_addr_t addr
)
1107 struct omap_tipb_bridge_s
*s
= (struct omap_tipb_bridge_s
*) opaque
;
1110 case 0x00: /* TIPB_CNTL */
1112 case 0x04: /* TIPB_BUS_ALLOC */
1114 case 0x08: /* MPU_TIPB_CNTL */
1116 case 0x0c: /* ENHANCED_TIPB_CNTL */
1117 return s
->enh_control
;
1118 case 0x10: /* ADDRESS_DBG */
1119 case 0x14: /* DATA_DEBUG_LOW */
1120 case 0x18: /* DATA_DEBUG_HIGH */
1122 case 0x1c: /* DEBUG_CNTR_SIG */
1130 static void omap_tipb_bridge_write(void *opaque
, target_phys_addr_t addr
,
1133 struct omap_tipb_bridge_s
*s
= (struct omap_tipb_bridge_s
*) opaque
;
1136 case 0x00: /* TIPB_CNTL */
1137 s
->control
= value
& 0xffff;
1140 case 0x04: /* TIPB_BUS_ALLOC */
1141 s
->alloc
= value
& 0x003f;
1144 case 0x08: /* MPU_TIPB_CNTL */
1145 s
->buffer
= value
& 0x0003;
1148 case 0x0c: /* ENHANCED_TIPB_CNTL */
1149 s
->width_intr
= !(value
& 2);
1150 s
->enh_control
= value
& 0x000f;
1153 case 0x10: /* ADDRESS_DBG */
1154 case 0x14: /* DATA_DEBUG_LOW */
1155 case 0x18: /* DATA_DEBUG_HIGH */
1156 case 0x1c: /* DEBUG_CNTR_SIG */
1165 static CPUReadMemoryFunc
* const omap_tipb_bridge_readfn
[] = {
1166 omap_badwidth_read16
,
1167 omap_tipb_bridge_read
,
1168 omap_tipb_bridge_read
,
1171 static CPUWriteMemoryFunc
* const omap_tipb_bridge_writefn
[] = {
1172 omap_badwidth_write16
,
1173 omap_tipb_bridge_write
,
1174 omap_tipb_bridge_write
,
1177 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s
*s
)
1179 s
->control
= 0xffff;
1182 s
->enh_control
= 0x000f;
1185 static struct omap_tipb_bridge_s
*omap_tipb_bridge_init(target_phys_addr_t base
,
1186 qemu_irq abort_irq
, omap_clk clk
)
1189 struct omap_tipb_bridge_s
*s
= (struct omap_tipb_bridge_s
*)
1190 qemu_mallocz(sizeof(struct omap_tipb_bridge_s
));
1192 s
->abort
= abort_irq
;
1193 omap_tipb_bridge_reset(s
);
1195 iomemtype
= cpu_register_io_memory(omap_tipb_bridge_readfn
,
1196 omap_tipb_bridge_writefn
, s
, DEVICE_NATIVE_ENDIAN
);
1197 cpu_register_physical_memory(base
, 0x100, iomemtype
);
1202 /* Dummy Traffic Controller's Memory Interface */
1203 static uint32_t omap_tcmi_read(void *opaque
, target_phys_addr_t addr
)
1205 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1209 case 0x00: /* IMIF_PRIO */
1210 case 0x04: /* EMIFS_PRIO */
1211 case 0x08: /* EMIFF_PRIO */
1212 case 0x0c: /* EMIFS_CONFIG */
1213 case 0x10: /* EMIFS_CS0_CONFIG */
1214 case 0x14: /* EMIFS_CS1_CONFIG */
1215 case 0x18: /* EMIFS_CS2_CONFIG */
1216 case 0x1c: /* EMIFS_CS3_CONFIG */
1217 case 0x24: /* EMIFF_MRS */
1218 case 0x28: /* TIMEOUT1 */
1219 case 0x2c: /* TIMEOUT2 */
1220 case 0x30: /* TIMEOUT3 */
1221 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1222 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1223 return s
->tcmi_regs
[addr
>> 2];
1225 case 0x20: /* EMIFF_SDRAM_CONFIG */
1226 ret
= s
->tcmi_regs
[addr
>> 2];
1227 s
->tcmi_regs
[addr
>> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1228 /* XXX: We can try using the VGA_DIRTY flag for this */
1236 static void omap_tcmi_write(void *opaque
, target_phys_addr_t addr
,
1239 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1242 case 0x00: /* IMIF_PRIO */
1243 case 0x04: /* EMIFS_PRIO */
1244 case 0x08: /* EMIFF_PRIO */
1245 case 0x10: /* EMIFS_CS0_CONFIG */
1246 case 0x14: /* EMIFS_CS1_CONFIG */
1247 case 0x18: /* EMIFS_CS2_CONFIG */
1248 case 0x1c: /* EMIFS_CS3_CONFIG */
1249 case 0x20: /* EMIFF_SDRAM_CONFIG */
1250 case 0x24: /* EMIFF_MRS */
1251 case 0x28: /* TIMEOUT1 */
1252 case 0x2c: /* TIMEOUT2 */
1253 case 0x30: /* TIMEOUT3 */
1254 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1255 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1256 s
->tcmi_regs
[addr
>> 2] = value
;
1258 case 0x0c: /* EMIFS_CONFIG */
1259 s
->tcmi_regs
[addr
>> 2] = (value
& 0xf) | (1 << 4);
1267 static CPUReadMemoryFunc
* const omap_tcmi_readfn
[] = {
1268 omap_badwidth_read32
,
1269 omap_badwidth_read32
,
1273 static CPUWriteMemoryFunc
* const omap_tcmi_writefn
[] = {
1274 omap_badwidth_write32
,
1275 omap_badwidth_write32
,
1279 static void omap_tcmi_reset(struct omap_mpu_state_s
*mpu
)
1281 mpu
->tcmi_regs
[0x00 >> 2] = 0x00000000;
1282 mpu
->tcmi_regs
[0x04 >> 2] = 0x00000000;
1283 mpu
->tcmi_regs
[0x08 >> 2] = 0x00000000;
1284 mpu
->tcmi_regs
[0x0c >> 2] = 0x00000010;
1285 mpu
->tcmi_regs
[0x10 >> 2] = 0x0010fffb;
1286 mpu
->tcmi_regs
[0x14 >> 2] = 0x0010fffb;
1287 mpu
->tcmi_regs
[0x18 >> 2] = 0x0010fffb;
1288 mpu
->tcmi_regs
[0x1c >> 2] = 0x0010fffb;
1289 mpu
->tcmi_regs
[0x20 >> 2] = 0x00618800;
1290 mpu
->tcmi_regs
[0x24 >> 2] = 0x00000037;
1291 mpu
->tcmi_regs
[0x28 >> 2] = 0x00000000;
1292 mpu
->tcmi_regs
[0x2c >> 2] = 0x00000000;
1293 mpu
->tcmi_regs
[0x30 >> 2] = 0x00000000;
1294 mpu
->tcmi_regs
[0x3c >> 2] = 0x00000003;
1295 mpu
->tcmi_regs
[0x40 >> 2] = 0x00000000;
1298 static void omap_tcmi_init(target_phys_addr_t base
,
1299 struct omap_mpu_state_s
*mpu
)
1301 int iomemtype
= cpu_register_io_memory(omap_tcmi_readfn
,
1302 omap_tcmi_writefn
, mpu
, DEVICE_NATIVE_ENDIAN
);
1304 cpu_register_physical_memory(base
, 0x100, iomemtype
);
1305 omap_tcmi_reset(mpu
);
1308 /* Digital phase-locked loops control */
1309 static uint32_t omap_dpll_read(void *opaque
, target_phys_addr_t addr
)
1311 struct dpll_ctl_s
*s
= (struct dpll_ctl_s
*) opaque
;
1313 if (addr
== 0x00) /* CTL_REG */
1320 static void omap_dpll_write(void *opaque
, target_phys_addr_t addr
,
1323 struct dpll_ctl_s
*s
= (struct dpll_ctl_s
*) opaque
;
1325 static const int bypass_div
[4] = { 1, 2, 4, 4 };
1328 if (addr
== 0x00) { /* CTL_REG */
1329 /* See omap_ulpd_pm_write() too */
1330 diff
= s
->mode
& value
;
1331 s
->mode
= value
& 0x2fff;
1332 if (diff
& (0x3ff << 2)) {
1333 if (value
& (1 << 4)) { /* PLL_ENABLE */
1334 div
= ((value
>> 5) & 3) + 1; /* PLL_DIV */
1335 mult
= MIN((value
>> 7) & 0x1f, 1); /* PLL_MULT */
1337 div
= bypass_div
[((value
>> 2) & 3)]; /* BYPASS_DIV */
1340 omap_clk_setrate(s
->dpll
, div
, mult
);
1343 /* Enter the desired mode. */
1344 s
->mode
= (s
->mode
& 0xfffe) | ((s
->mode
>> 4) & 1);
1346 /* Act as if the lock is restored. */
1353 static CPUReadMemoryFunc
* const omap_dpll_readfn
[] = {
1354 omap_badwidth_read16
,
1356 omap_badwidth_read16
,
1359 static CPUWriteMemoryFunc
* const omap_dpll_writefn
[] = {
1360 omap_badwidth_write16
,
1362 omap_badwidth_write16
,
1365 static void omap_dpll_reset(struct dpll_ctl_s
*s
)
1368 omap_clk_setrate(s
->dpll
, 1, 1);
1371 static void omap_dpll_init(struct dpll_ctl_s
*s
, target_phys_addr_t base
,
1374 int iomemtype
= cpu_register_io_memory(omap_dpll_readfn
,
1375 omap_dpll_writefn
, s
, DEVICE_NATIVE_ENDIAN
);
1380 cpu_register_physical_memory(base
, 0x100, iomemtype
);
1383 /* MPU Clock/Reset/Power Mode Control */
1384 static uint32_t omap_clkm_read(void *opaque
, target_phys_addr_t addr
)
1386 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1389 case 0x00: /* ARM_CKCTL */
1390 return s
->clkm
.arm_ckctl
;
1392 case 0x04: /* ARM_IDLECT1 */
1393 return s
->clkm
.arm_idlect1
;
1395 case 0x08: /* ARM_IDLECT2 */
1396 return s
->clkm
.arm_idlect2
;
1398 case 0x0c: /* ARM_EWUPCT */
1399 return s
->clkm
.arm_ewupct
;
1401 case 0x10: /* ARM_RSTCT1 */
1402 return s
->clkm
.arm_rstct1
;
1404 case 0x14: /* ARM_RSTCT2 */
1405 return s
->clkm
.arm_rstct2
;
1407 case 0x18: /* ARM_SYSST */
1408 return (s
->clkm
.clocking_scheme
<< 11) | s
->clkm
.cold_start
;
1410 case 0x1c: /* ARM_CKOUT1 */
1411 return s
->clkm
.arm_ckout1
;
1413 case 0x20: /* ARM_CKOUT2 */
1421 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s
*s
,
1422 uint16_t diff
, uint16_t value
)
1426 if (diff
& (1 << 14)) { /* ARM_INTHCK_SEL */
1427 if (value
& (1 << 14))
1430 clk
= omap_findclk(s
, "arminth_ck");
1431 omap_clk_reparent(clk
, omap_findclk(s
, "tc_ck"));
1434 if (diff
& (1 << 12)) { /* ARM_TIMXO */
1435 clk
= omap_findclk(s
, "armtim_ck");
1436 if (value
& (1 << 12))
1437 omap_clk_reparent(clk
, omap_findclk(s
, "clkin"));
1439 omap_clk_reparent(clk
, omap_findclk(s
, "ck_gen1"));
1442 if (diff
& (3 << 10)) { /* DSPMMUDIV */
1443 clk
= omap_findclk(s
, "dspmmu_ck");
1444 omap_clk_setrate(clk
, 1 << ((value
>> 10) & 3), 1);
1446 if (diff
& (3 << 8)) { /* TCDIV */
1447 clk
= omap_findclk(s
, "tc_ck");
1448 omap_clk_setrate(clk
, 1 << ((value
>> 8) & 3), 1);
1450 if (diff
& (3 << 6)) { /* DSPDIV */
1451 clk
= omap_findclk(s
, "dsp_ck");
1452 omap_clk_setrate(clk
, 1 << ((value
>> 6) & 3), 1);
1454 if (diff
& (3 << 4)) { /* ARMDIV */
1455 clk
= omap_findclk(s
, "arm_ck");
1456 omap_clk_setrate(clk
, 1 << ((value
>> 4) & 3), 1);
1458 if (diff
& (3 << 2)) { /* LCDDIV */
1459 clk
= omap_findclk(s
, "lcd_ck");
1460 omap_clk_setrate(clk
, 1 << ((value
>> 2) & 3), 1);
1462 if (diff
& (3 << 0)) { /* PERDIV */
1463 clk
= omap_findclk(s
, "armper_ck");
1464 omap_clk_setrate(clk
, 1 << ((value
>> 0) & 3), 1);
1468 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s
*s
,
1469 uint16_t diff
, uint16_t value
)
1473 if (value
& (1 << 11)) /* SETARM_IDLE */
1474 cpu_interrupt(s
->env
, CPU_INTERRUPT_HALT
);
1475 if (!(value
& (1 << 10))) /* WKUP_MODE */
1476 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1478 #define SET_CANIDLE(clock, bit) \
1479 if (diff & (1 << bit)) { \
1480 clk = omap_findclk(s, clock); \
1481 omap_clk_canidle(clk, (value >> bit) & 1); \
1483 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1484 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1485 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1486 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1487 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1488 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1489 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1490 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1491 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1492 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1493 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1494 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1495 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1496 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1499 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s
*s
,
1500 uint16_t diff
, uint16_t value
)
1504 #define SET_ONOFF(clock, bit) \
1505 if (diff & (1 << bit)) { \
1506 clk = omap_findclk(s, clock); \
1507 omap_clk_onoff(clk, (value >> bit) & 1); \
1509 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1510 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1511 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1512 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1513 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1514 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1515 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1516 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1517 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1518 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1519 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1522 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s
*s
,
1523 uint16_t diff
, uint16_t value
)
1527 if (diff
& (3 << 4)) { /* TCLKOUT */
1528 clk
= omap_findclk(s
, "tclk_out");
1529 switch ((value
>> 4) & 3) {
1531 omap_clk_reparent(clk
, omap_findclk(s
, "ck_gen3"));
1532 omap_clk_onoff(clk
, 1);
1535 omap_clk_reparent(clk
, omap_findclk(s
, "tc_ck"));
1536 omap_clk_onoff(clk
, 1);
1539 omap_clk_onoff(clk
, 0);
1542 if (diff
& (3 << 2)) { /* DCLKOUT */
1543 clk
= omap_findclk(s
, "dclk_out");
1544 switch ((value
>> 2) & 3) {
1546 omap_clk_reparent(clk
, omap_findclk(s
, "dspmmu_ck"));
1549 omap_clk_reparent(clk
, omap_findclk(s
, "ck_gen2"));
1552 omap_clk_reparent(clk
, omap_findclk(s
, "dsp_ck"));
1555 omap_clk_reparent(clk
, omap_findclk(s
, "ck_ref14"));
1559 if (diff
& (3 << 0)) { /* ACLKOUT */
1560 clk
= omap_findclk(s
, "aclk_out");
1561 switch ((value
>> 0) & 3) {
1563 omap_clk_reparent(clk
, omap_findclk(s
, "ck_gen1"));
1564 omap_clk_onoff(clk
, 1);
1567 omap_clk_reparent(clk
, omap_findclk(s
, "arm_ck"));
1568 omap_clk_onoff(clk
, 1);
1571 omap_clk_reparent(clk
, omap_findclk(s
, "ck_ref14"));
1572 omap_clk_onoff(clk
, 1);
1575 omap_clk_onoff(clk
, 0);
1580 static void omap_clkm_write(void *opaque
, target_phys_addr_t addr
,
1583 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1586 static const char *clkschemename
[8] = {
1587 "fully synchronous", "fully asynchronous", "synchronous scalable",
1588 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1592 case 0x00: /* ARM_CKCTL */
1593 diff
= s
->clkm
.arm_ckctl
^ value
;
1594 s
->clkm
.arm_ckctl
= value
& 0x7fff;
1595 omap_clkm_ckctl_update(s
, diff
, value
);
1598 case 0x04: /* ARM_IDLECT1 */
1599 diff
= s
->clkm
.arm_idlect1
^ value
;
1600 s
->clkm
.arm_idlect1
= value
& 0x0fff;
1601 omap_clkm_idlect1_update(s
, diff
, value
);
1604 case 0x08: /* ARM_IDLECT2 */
1605 diff
= s
->clkm
.arm_idlect2
^ value
;
1606 s
->clkm
.arm_idlect2
= value
& 0x07ff;
1607 omap_clkm_idlect2_update(s
, diff
, value
);
1610 case 0x0c: /* ARM_EWUPCT */
1611 s
->clkm
.arm_ewupct
= value
& 0x003f;
1614 case 0x10: /* ARM_RSTCT1 */
1615 diff
= s
->clkm
.arm_rstct1
^ value
;
1616 s
->clkm
.arm_rstct1
= value
& 0x0007;
1618 qemu_system_reset_request();
1619 s
->clkm
.cold_start
= 0xa;
1621 if (diff
& ~value
& 4) { /* DSP_RST */
1623 omap_tipb_bridge_reset(s
->private_tipb
);
1624 omap_tipb_bridge_reset(s
->public_tipb
);
1626 if (diff
& 2) { /* DSP_EN */
1627 clk
= omap_findclk(s
, "dsp_ck");
1628 omap_clk_canidle(clk
, (~value
>> 1) & 1);
1632 case 0x14: /* ARM_RSTCT2 */
1633 s
->clkm
.arm_rstct2
= value
& 0x0001;
1636 case 0x18: /* ARM_SYSST */
1637 if ((s
->clkm
.clocking_scheme
^ (value
>> 11)) & 7) {
1638 s
->clkm
.clocking_scheme
= (value
>> 11) & 7;
1639 printf("%s: clocking scheme set to %s\n", __FUNCTION__
,
1640 clkschemename
[s
->clkm
.clocking_scheme
]);
1642 s
->clkm
.cold_start
&= value
& 0x3f;
1645 case 0x1c: /* ARM_CKOUT1 */
1646 diff
= s
->clkm
.arm_ckout1
^ value
;
1647 s
->clkm
.arm_ckout1
= value
& 0x003f;
1648 omap_clkm_ckout1_update(s
, diff
, value
);
1651 case 0x20: /* ARM_CKOUT2 */
1657 static CPUReadMemoryFunc
* const omap_clkm_readfn
[] = {
1658 omap_badwidth_read16
,
1660 omap_badwidth_read16
,
1663 static CPUWriteMemoryFunc
* const omap_clkm_writefn
[] = {
1664 omap_badwidth_write16
,
1666 omap_badwidth_write16
,
1669 static uint32_t omap_clkdsp_read(void *opaque
, target_phys_addr_t addr
)
1671 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1674 case 0x04: /* DSP_IDLECT1 */
1675 return s
->clkm
.dsp_idlect1
;
1677 case 0x08: /* DSP_IDLECT2 */
1678 return s
->clkm
.dsp_idlect2
;
1680 case 0x14: /* DSP_RSTCT2 */
1681 return s
->clkm
.dsp_rstct2
;
1683 case 0x18: /* DSP_SYSST */
1684 return (s
->clkm
.clocking_scheme
<< 11) | s
->clkm
.cold_start
|
1685 (s
->env
->halted
<< 6); /* Quite useless... */
1692 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s
*s
,
1693 uint16_t diff
, uint16_t value
)
1697 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1700 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s
*s
,
1701 uint16_t diff
, uint16_t value
)
1705 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1708 static void omap_clkdsp_write(void *opaque
, target_phys_addr_t addr
,
1711 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
1715 case 0x04: /* DSP_IDLECT1 */
1716 diff
= s
->clkm
.dsp_idlect1
^ value
;
1717 s
->clkm
.dsp_idlect1
= value
& 0x01f7;
1718 omap_clkdsp_idlect1_update(s
, diff
, value
);
1721 case 0x08: /* DSP_IDLECT2 */
1722 s
->clkm
.dsp_idlect2
= value
& 0x0037;
1723 diff
= s
->clkm
.dsp_idlect1
^ value
;
1724 omap_clkdsp_idlect2_update(s
, diff
, value
);
1727 case 0x14: /* DSP_RSTCT2 */
1728 s
->clkm
.dsp_rstct2
= value
& 0x0001;
1731 case 0x18: /* DSP_SYSST */
1732 s
->clkm
.cold_start
&= value
& 0x3f;
1740 static CPUReadMemoryFunc
* const omap_clkdsp_readfn
[] = {
1741 omap_badwidth_read16
,
1743 omap_badwidth_read16
,
1746 static CPUWriteMemoryFunc
* const omap_clkdsp_writefn
[] = {
1747 omap_badwidth_write16
,
1749 omap_badwidth_write16
,
1752 static void omap_clkm_reset(struct omap_mpu_state_s
*s
)
1754 if (s
->wdt
&& s
->wdt
->reset
)
1755 s
->clkm
.cold_start
= 0x6;
1756 s
->clkm
.clocking_scheme
= 0;
1757 omap_clkm_ckctl_update(s
, ~0, 0x3000);
1758 s
->clkm
.arm_ckctl
= 0x3000;
1759 omap_clkm_idlect1_update(s
, s
->clkm
.arm_idlect1
^ 0x0400, 0x0400);
1760 s
->clkm
.arm_idlect1
= 0x0400;
1761 omap_clkm_idlect2_update(s
, s
->clkm
.arm_idlect2
^ 0x0100, 0x0100);
1762 s
->clkm
.arm_idlect2
= 0x0100;
1763 s
->clkm
.arm_ewupct
= 0x003f;
1764 s
->clkm
.arm_rstct1
= 0x0000;
1765 s
->clkm
.arm_rstct2
= 0x0000;
1766 s
->clkm
.arm_ckout1
= 0x0015;
1767 s
->clkm
.dpll1_mode
= 0x2002;
1768 omap_clkdsp_idlect1_update(s
, s
->clkm
.dsp_idlect1
^ 0x0040, 0x0040);
1769 s
->clkm
.dsp_idlect1
= 0x0040;
1770 omap_clkdsp_idlect2_update(s
, ~0, 0x0000);
1771 s
->clkm
.dsp_idlect2
= 0x0000;
1772 s
->clkm
.dsp_rstct2
= 0x0000;
1775 static void omap_clkm_init(target_phys_addr_t mpu_base
,
1776 target_phys_addr_t dsp_base
, struct omap_mpu_state_s
*s
)
1778 int iomemtype
[2] = {
1779 cpu_register_io_memory(omap_clkm_readfn
, omap_clkm_writefn
, s
,
1780 DEVICE_NATIVE_ENDIAN
),
1781 cpu_register_io_memory(omap_clkdsp_readfn
, omap_clkdsp_writefn
, s
,
1782 DEVICE_NATIVE_ENDIAN
),
1785 s
->clkm
.arm_idlect1
= 0x03ff;
1786 s
->clkm
.arm_idlect2
= 0x0100;
1787 s
->clkm
.dsp_idlect1
= 0x0002;
1789 s
->clkm
.cold_start
= 0x3a;
1791 cpu_register_physical_memory(mpu_base
, 0x100, iomemtype
[0]);
1792 cpu_register_physical_memory(dsp_base
, 0x1000, iomemtype
[1]);
1796 struct omap_mpuio_s
{
1800 qemu_irq handler
[16];
1821 static void omap_mpuio_set(void *opaque
, int line
, int level
)
1823 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*) opaque
;
1824 uint16_t prev
= s
->inputs
;
1827 s
->inputs
|= 1 << line
;
1829 s
->inputs
&= ~(1 << line
);
1831 if (((1 << line
) & s
->dir
& ~s
->mask
) && s
->clk
) {
1832 if ((s
->edge
& s
->inputs
& ~prev
) | (~s
->edge
& ~s
->inputs
& prev
)) {
1833 s
->ints
|= 1 << line
;
1834 qemu_irq_raise(s
->irq
);
1837 if ((s
->event
& (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1838 (s
->event
>> 1) == line
) /* PIN_SELECT */
1839 s
->latch
= s
->inputs
;
1843 static void omap_mpuio_kbd_update(struct omap_mpuio_s
*s
)
1846 uint8_t *row
, rows
= 0, cols
= ~s
->cols
;
1848 for (row
= s
->buttons
+ 4, i
= 1 << 4; i
; row
--, i
>>= 1)
1852 qemu_set_irq(s
->kbd_irq
, rows
&& !s
->kbd_mask
&& s
->clk
);
1853 s
->row_latch
= ~rows
;
1856 static uint32_t omap_mpuio_read(void *opaque
, target_phys_addr_t addr
)
1858 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*) opaque
;
1859 int offset
= addr
& OMAP_MPUI_REG_MASK
;
1863 case 0x00: /* INPUT_LATCH */
1866 case 0x04: /* OUTPUT_REG */
1869 case 0x08: /* IO_CNTL */
1872 case 0x10: /* KBR_LATCH */
1873 return s
->row_latch
;
1875 case 0x14: /* KBC_REG */
1878 case 0x18: /* GPIO_EVENT_MODE_REG */
1881 case 0x1c: /* GPIO_INT_EDGE_REG */
1884 case 0x20: /* KBD_INT */
1885 return (~s
->row_latch
& 0x1f) && !s
->kbd_mask
;
1887 case 0x24: /* GPIO_INT */
1891 qemu_irq_lower(s
->irq
);
1894 case 0x28: /* KBD_MASKIT */
1897 case 0x2c: /* GPIO_MASKIT */
1900 case 0x30: /* GPIO_DEBOUNCING_REG */
1903 case 0x34: /* GPIO_LATCH_REG */
1911 static void omap_mpuio_write(void *opaque
, target_phys_addr_t addr
,
1914 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*) opaque
;
1915 int offset
= addr
& OMAP_MPUI_REG_MASK
;
1920 case 0x04: /* OUTPUT_REG */
1921 diff
= (s
->outputs
^ value
) & ~s
->dir
;
1923 while ((ln
= ffs(diff
))) {
1926 qemu_set_irq(s
->handler
[ln
], (value
>> ln
) & 1);
1931 case 0x08: /* IO_CNTL */
1932 diff
= s
->outputs
& (s
->dir
^ value
);
1935 value
= s
->outputs
& ~s
->dir
;
1936 while ((ln
= ffs(diff
))) {
1939 qemu_set_irq(s
->handler
[ln
], (value
>> ln
) & 1);
1944 case 0x14: /* KBC_REG */
1946 omap_mpuio_kbd_update(s
);
1949 case 0x18: /* GPIO_EVENT_MODE_REG */
1950 s
->event
= value
& 0x1f;
1953 case 0x1c: /* GPIO_INT_EDGE_REG */
1957 case 0x28: /* KBD_MASKIT */
1958 s
->kbd_mask
= value
& 1;
1959 omap_mpuio_kbd_update(s
);
1962 case 0x2c: /* GPIO_MASKIT */
1966 case 0x30: /* GPIO_DEBOUNCING_REG */
1967 s
->debounce
= value
& 0x1ff;
1970 case 0x00: /* INPUT_LATCH */
1971 case 0x10: /* KBR_LATCH */
1972 case 0x20: /* KBD_INT */
1973 case 0x24: /* GPIO_INT */
1974 case 0x34: /* GPIO_LATCH_REG */
1984 static CPUReadMemoryFunc
* const omap_mpuio_readfn
[] = {
1985 omap_badwidth_read16
,
1987 omap_badwidth_read16
,
1990 static CPUWriteMemoryFunc
* const omap_mpuio_writefn
[] = {
1991 omap_badwidth_write16
,
1993 omap_badwidth_write16
,
1996 static void omap_mpuio_reset(struct omap_mpuio_s
*s
)
2008 s
->row_latch
= 0x1f;
2012 static void omap_mpuio_onoff(void *opaque
, int line
, int on
)
2014 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*) opaque
;
2018 omap_mpuio_kbd_update(s
);
2021 struct omap_mpuio_s
*omap_mpuio_init(target_phys_addr_t base
,
2022 qemu_irq kbd_int
, qemu_irq gpio_int
, qemu_irq wakeup
,
2026 struct omap_mpuio_s
*s
= (struct omap_mpuio_s
*)
2027 qemu_mallocz(sizeof(struct omap_mpuio_s
));
2030 s
->kbd_irq
= kbd_int
;
2032 s
->in
= qemu_allocate_irqs(omap_mpuio_set
, s
, 16);
2033 omap_mpuio_reset(s
);
2035 iomemtype
= cpu_register_io_memory(omap_mpuio_readfn
,
2036 omap_mpuio_writefn
, s
, DEVICE_NATIVE_ENDIAN
);
2037 cpu_register_physical_memory(base
, 0x800, iomemtype
);
2039 omap_clk_adduser(clk
, qemu_allocate_irqs(omap_mpuio_onoff
, s
, 1)[0]);
2044 qemu_irq
*omap_mpuio_in_get(struct omap_mpuio_s
*s
)
2049 void omap_mpuio_out_set(struct omap_mpuio_s
*s
, int line
, qemu_irq handler
)
2051 if (line
>= 16 || line
< 0)
2052 hw_error("%s: No GPIO line %i\n", __FUNCTION__
, line
);
2053 s
->handler
[line
] = handler
;
2056 void omap_mpuio_key(struct omap_mpuio_s
*s
, int row
, int col
, int down
)
2058 if (row
>= 5 || row
< 0)
2059 hw_error("%s: No key %i-%i\n", __FUNCTION__
, col
, row
);
2062 s
->buttons
[row
] |= 1 << col
;
2064 s
->buttons
[row
] &= ~(1 << col
);
2066 omap_mpuio_kbd_update(s
);
2069 /* MicroWire Interface */
2070 struct omap_uwire_s
{
2080 uWireSlave
*chip
[4];
2083 static void omap_uwire_transfer_start(struct omap_uwire_s
*s
)
2085 int chipselect
= (s
->control
>> 10) & 3; /* INDEX */
2086 uWireSlave
*slave
= s
->chip
[chipselect
];
2088 if ((s
->control
>> 5) & 0x1f) { /* NB_BITS_WR */
2089 if (s
->control
& (1 << 12)) /* CS_CMD */
2090 if (slave
&& slave
->send
)
2091 slave
->send(slave
->opaque
,
2092 s
->txbuf
>> (16 - ((s
->control
>> 5) & 0x1f)));
2093 s
->control
&= ~(1 << 14); /* CSRB */
2094 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2095 * a DRQ. When is the level IRQ supposed to be reset? */
2098 if ((s
->control
>> 0) & 0x1f) { /* NB_BITS_RD */
2099 if (s
->control
& (1 << 12)) /* CS_CMD */
2100 if (slave
&& slave
->receive
)
2101 s
->rxbuf
= slave
->receive(slave
->opaque
);
2102 s
->control
|= 1 << 15; /* RDRB */
2103 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2104 * a DRQ. When is the level IRQ supposed to be reset? */
2108 static uint32_t omap_uwire_read(void *opaque
, target_phys_addr_t addr
)
2110 struct omap_uwire_s
*s
= (struct omap_uwire_s
*) opaque
;
2111 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2114 case 0x00: /* RDR */
2115 s
->control
&= ~(1 << 15); /* RDRB */
2118 case 0x04: /* CSR */
2121 case 0x08: /* SR1 */
2123 case 0x0c: /* SR2 */
2125 case 0x10: /* SR3 */
2127 case 0x14: /* SR4 */
2129 case 0x18: /* SR5 */
2137 static void omap_uwire_write(void *opaque
, target_phys_addr_t addr
,
2140 struct omap_uwire_s
*s
= (struct omap_uwire_s
*) opaque
;
2141 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2144 case 0x00: /* TDR */
2145 s
->txbuf
= value
; /* TD */
2146 if ((s
->setup
[4] & (1 << 2)) && /* AUTO_TX_EN */
2147 ((s
->setup
[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2148 (s
->control
& (1 << 12)))) { /* CS_CMD */
2149 s
->control
|= 1 << 14; /* CSRB */
2150 omap_uwire_transfer_start(s
);
2154 case 0x04: /* CSR */
2155 s
->control
= value
& 0x1fff;
2156 if (value
& (1 << 13)) /* START */
2157 omap_uwire_transfer_start(s
);
2160 case 0x08: /* SR1 */
2161 s
->setup
[0] = value
& 0x003f;
2164 case 0x0c: /* SR2 */
2165 s
->setup
[1] = value
& 0x0fc0;
2168 case 0x10: /* SR3 */
2169 s
->setup
[2] = value
& 0x0003;
2172 case 0x14: /* SR4 */
2173 s
->setup
[3] = value
& 0x0001;
2176 case 0x18: /* SR5 */
2177 s
->setup
[4] = value
& 0x000f;
2186 static CPUReadMemoryFunc
* const omap_uwire_readfn
[] = {
2187 omap_badwidth_read16
,
2189 omap_badwidth_read16
,
2192 static CPUWriteMemoryFunc
* const omap_uwire_writefn
[] = {
2193 omap_badwidth_write16
,
2195 omap_badwidth_write16
,
2198 static void omap_uwire_reset(struct omap_uwire_s
*s
)
2208 struct omap_uwire_s
*omap_uwire_init(target_phys_addr_t base
,
2209 qemu_irq
*irq
, qemu_irq dma
, omap_clk clk
)
2212 struct omap_uwire_s
*s
= (struct omap_uwire_s
*)
2213 qemu_mallocz(sizeof(struct omap_uwire_s
));
2218 omap_uwire_reset(s
);
2220 iomemtype
= cpu_register_io_memory(omap_uwire_readfn
,
2221 omap_uwire_writefn
, s
, DEVICE_NATIVE_ENDIAN
);
2222 cpu_register_physical_memory(base
, 0x800, iomemtype
);
2227 void omap_uwire_attach(struct omap_uwire_s
*s
,
2228 uWireSlave
*slave
, int chipselect
)
2230 if (chipselect
< 0 || chipselect
> 3) {
2231 fprintf(stderr
, "%s: Bad chipselect %i\n", __FUNCTION__
, chipselect
);
2235 s
->chip
[chipselect
] = slave
;
2238 /* Pseudonoise Pulse-Width Light Modulator */
2239 static void omap_pwl_update(struct omap_mpu_state_s
*s
)
2241 int output
= (s
->pwl
.clk
&& s
->pwl
.enable
) ? s
->pwl
.level
: 0;
2243 if (output
!= s
->pwl
.output
) {
2244 s
->pwl
.output
= output
;
2245 printf("%s: Backlight now at %i/256\n", __FUNCTION__
, output
);
2249 static uint32_t omap_pwl_read(void *opaque
, target_phys_addr_t addr
)
2251 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
2252 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2255 case 0x00: /* PWL_LEVEL */
2256 return s
->pwl
.level
;
2257 case 0x04: /* PWL_CTRL */
2258 return s
->pwl
.enable
;
2264 static void omap_pwl_write(void *opaque
, target_phys_addr_t addr
,
2267 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
2268 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2271 case 0x00: /* PWL_LEVEL */
2272 s
->pwl
.level
= value
;
2275 case 0x04: /* PWL_CTRL */
2276 s
->pwl
.enable
= value
& 1;
2285 static CPUReadMemoryFunc
* const omap_pwl_readfn
[] = {
2287 omap_badwidth_read8
,
2288 omap_badwidth_read8
,
2291 static CPUWriteMemoryFunc
* const omap_pwl_writefn
[] = {
2293 omap_badwidth_write8
,
2294 omap_badwidth_write8
,
2297 static void omap_pwl_reset(struct omap_mpu_state_s
*s
)
2306 static void omap_pwl_clk_update(void *opaque
, int line
, int on
)
2308 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
2314 static void omap_pwl_init(target_phys_addr_t base
, struct omap_mpu_state_s
*s
,
2321 iomemtype
= cpu_register_io_memory(omap_pwl_readfn
,
2322 omap_pwl_writefn
, s
, DEVICE_NATIVE_ENDIAN
);
2323 cpu_register_physical_memory(base
, 0x800, iomemtype
);
2325 omap_clk_adduser(clk
, qemu_allocate_irqs(omap_pwl_clk_update
, s
, 1)[0]);
2328 /* Pulse-Width Tone module */
2329 static uint32_t omap_pwt_read(void *opaque
, target_phys_addr_t addr
)
2331 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
2332 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2335 case 0x00: /* FRC */
2337 case 0x04: /* VCR */
2339 case 0x08: /* GCR */
2346 static void omap_pwt_write(void *opaque
, target_phys_addr_t addr
,
2349 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*) opaque
;
2350 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2353 case 0x00: /* FRC */
2354 s
->pwt
.frc
= value
& 0x3f;
2356 case 0x04: /* VRC */
2357 if ((value
^ s
->pwt
.vrc
) & 1) {
2359 printf("%s: %iHz buzz on\n", __FUNCTION__
, (int)
2360 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2361 ((omap_clk_getrate(s
->pwt
.clk
) >> 3) /
2362 /* Pre-multiplexer divider */
2363 ((s
->pwt
.gcr
& 2) ? 1 : 154) /
2364 /* Octave multiplexer */
2365 (2 << (value
& 3)) *
2366 /* 101/107 divider */
2367 ((value
& (1 << 2)) ? 101 : 107) *
2369 ((value
& (1 << 3)) ? 49 : 55) *
2371 ((value
& (1 << 4)) ? 50 : 63) *
2372 /* 80/127 divider */
2373 ((value
& (1 << 5)) ? 80 : 127) /
2374 (107 * 55 * 63 * 127)));
2376 printf("%s: silence!\n", __FUNCTION__
);
2378 s
->pwt
.vrc
= value
& 0x7f;
2380 case 0x08: /* GCR */
2381 s
->pwt
.gcr
= value
& 3;
2389 static CPUReadMemoryFunc
* const omap_pwt_readfn
[] = {
2391 omap_badwidth_read8
,
2392 omap_badwidth_read8
,
2395 static CPUWriteMemoryFunc
* const omap_pwt_writefn
[] = {
2397 omap_badwidth_write8
,
2398 omap_badwidth_write8
,
2401 static void omap_pwt_reset(struct omap_mpu_state_s
*s
)
2408 static void omap_pwt_init(target_phys_addr_t base
, struct omap_mpu_state_s
*s
,
2416 iomemtype
= cpu_register_io_memory(omap_pwt_readfn
,
2417 omap_pwt_writefn
, s
, DEVICE_NATIVE_ENDIAN
);
2418 cpu_register_physical_memory(base
, 0x800, iomemtype
);
2421 /* Real-time Clock module */
2437 struct tm current_tm
;
2442 static void omap_rtc_interrupts_update(struct omap_rtc_s
*s
)
2444 /* s->alarm is level-triggered */
2445 qemu_set_irq(s
->alarm
, (s
->status
>> 6) & 1);
2448 static void omap_rtc_alarm_update(struct omap_rtc_s
*s
)
2450 s
->alarm_ti
= mktimegm(&s
->alarm_tm
);
2451 if (s
->alarm_ti
== -1)
2452 printf("%s: conversion failed\n", __FUNCTION__
);
2455 static uint32_t omap_rtc_read(void *opaque
, target_phys_addr_t addr
)
2457 struct omap_rtc_s
*s
= (struct omap_rtc_s
*) opaque
;
2458 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2462 case 0x00: /* SECONDS_REG */
2463 return to_bcd(s
->current_tm
.tm_sec
);
2465 case 0x04: /* MINUTES_REG */
2466 return to_bcd(s
->current_tm
.tm_min
);
2468 case 0x08: /* HOURS_REG */
2470 return ((s
->current_tm
.tm_hour
> 11) << 7) |
2471 to_bcd(((s
->current_tm
.tm_hour
- 1) % 12) + 1);
2473 return to_bcd(s
->current_tm
.tm_hour
);
2475 case 0x0c: /* DAYS_REG */
2476 return to_bcd(s
->current_tm
.tm_mday
);
2478 case 0x10: /* MONTHS_REG */
2479 return to_bcd(s
->current_tm
.tm_mon
+ 1);
2481 case 0x14: /* YEARS_REG */
2482 return to_bcd(s
->current_tm
.tm_year
% 100);
2484 case 0x18: /* WEEK_REG */
2485 return s
->current_tm
.tm_wday
;
2487 case 0x20: /* ALARM_SECONDS_REG */
2488 return to_bcd(s
->alarm_tm
.tm_sec
);
2490 case 0x24: /* ALARM_MINUTES_REG */
2491 return to_bcd(s
->alarm_tm
.tm_min
);
2493 case 0x28: /* ALARM_HOURS_REG */
2495 return ((s
->alarm_tm
.tm_hour
> 11) << 7) |
2496 to_bcd(((s
->alarm_tm
.tm_hour
- 1) % 12) + 1);
2498 return to_bcd(s
->alarm_tm
.tm_hour
);
2500 case 0x2c: /* ALARM_DAYS_REG */
2501 return to_bcd(s
->alarm_tm
.tm_mday
);
2503 case 0x30: /* ALARM_MONTHS_REG */
2504 return to_bcd(s
->alarm_tm
.tm_mon
+ 1);
2506 case 0x34: /* ALARM_YEARS_REG */
2507 return to_bcd(s
->alarm_tm
.tm_year
% 100);
2509 case 0x40: /* RTC_CTRL_REG */
2510 return (s
->pm_am
<< 3) | (s
->auto_comp
<< 2) |
2511 (s
->round
<< 1) | s
->running
;
2513 case 0x44: /* RTC_STATUS_REG */
2518 case 0x48: /* RTC_INTERRUPTS_REG */
2519 return s
->interrupts
;
2521 case 0x4c: /* RTC_COMP_LSB_REG */
2522 return ((uint16_t) s
->comp_reg
) & 0xff;
2524 case 0x50: /* RTC_COMP_MSB_REG */
2525 return ((uint16_t) s
->comp_reg
) >> 8;
2532 static void omap_rtc_write(void *opaque
, target_phys_addr_t addr
,
2535 struct omap_rtc_s
*s
= (struct omap_rtc_s
*) opaque
;
2536 int offset
= addr
& OMAP_MPUI_REG_MASK
;
2541 case 0x00: /* SECONDS_REG */
2543 printf("RTC SEC_REG <-- %02x\n", value
);
2545 s
->ti
-= s
->current_tm
.tm_sec
;
2546 s
->ti
+= from_bcd(value
);
2549 case 0x04: /* MINUTES_REG */
2551 printf("RTC MIN_REG <-- %02x\n", value
);
2553 s
->ti
-= s
->current_tm
.tm_min
* 60;
2554 s
->ti
+= from_bcd(value
) * 60;
2557 case 0x08: /* HOURS_REG */
2559 printf("RTC HRS_REG <-- %02x\n", value
);
2561 s
->ti
-= s
->current_tm
.tm_hour
* 3600;
2563 s
->ti
+= (from_bcd(value
& 0x3f) & 12) * 3600;
2564 s
->ti
+= ((value
>> 7) & 1) * 43200;
2566 s
->ti
+= from_bcd(value
& 0x3f) * 3600;
2569 case 0x0c: /* DAYS_REG */
2571 printf("RTC DAY_REG <-- %02x\n", value
);
2573 s
->ti
-= s
->current_tm
.tm_mday
* 86400;
2574 s
->ti
+= from_bcd(value
) * 86400;
2577 case 0x10: /* MONTHS_REG */
2579 printf("RTC MTH_REG <-- %02x\n", value
);
2581 memcpy(&new_tm
, &s
->current_tm
, sizeof(new_tm
));
2582 new_tm
.tm_mon
= from_bcd(value
);
2583 ti
[0] = mktimegm(&s
->current_tm
);
2584 ti
[1] = mktimegm(&new_tm
);
2586 if (ti
[0] != -1 && ti
[1] != -1) {
2590 /* A less accurate version */
2591 s
->ti
-= s
->current_tm
.tm_mon
* 2592000;
2592 s
->ti
+= from_bcd(value
) * 2592000;
2596 case 0x14: /* YEARS_REG */
2598 printf("RTC YRS_REG <-- %02x\n", value
);
2600 memcpy(&new_tm
, &s
->current_tm
, sizeof(new_tm
));
2601 new_tm
.tm_year
+= from_bcd(value
) - (new_tm
.tm_year
% 100);
2602 ti
[0] = mktimegm(&s
->current_tm
);
2603 ti
[1] = mktimegm(&new_tm
);
2605 if (ti
[0] != -1 && ti
[1] != -1) {
2609 /* A less accurate version */
2610 s
->ti
-= (s
->current_tm
.tm_year
% 100) * 31536000;
2611 s
->ti
+= from_bcd(value
) * 31536000;
2615 case 0x18: /* WEEK_REG */
2616 return; /* Ignored */
2618 case 0x20: /* ALARM_SECONDS_REG */
2620 printf("ALM SEC_REG <-- %02x\n", value
);
2622 s
->alarm_tm
.tm_sec
= from_bcd(value
);
2623 omap_rtc_alarm_update(s
);
2626 case 0x24: /* ALARM_MINUTES_REG */
2628 printf("ALM MIN_REG <-- %02x\n", value
);
2630 s
->alarm_tm
.tm_min
= from_bcd(value
);
2631 omap_rtc_alarm_update(s
);
2634 case 0x28: /* ALARM_HOURS_REG */
2636 printf("ALM HRS_REG <-- %02x\n", value
);
2639 s
->alarm_tm
.tm_hour
=
2640 ((from_bcd(value
& 0x3f)) % 12) +
2641 ((value
>> 7) & 1) * 12;
2643 s
->alarm_tm
.tm_hour
= from_bcd(value
);
2644 omap_rtc_alarm_update(s
);
2647 case 0x2c: /* ALARM_DAYS_REG */
2649 printf("ALM DAY_REG <-- %02x\n", value
);
2651 s
->alarm_tm
.tm_mday
= from_bcd(value
);
2652 omap_rtc_alarm_update(s
);
2655 case 0x30: /* ALARM_MONTHS_REG */
2657 printf("ALM MON_REG <-- %02x\n", value
);
2659 s
->alarm_tm
.tm_mon
= from_bcd(value
);
2660 omap_rtc_alarm_update(s
);
2663 case 0x34: /* ALARM_YEARS_REG */
2665 printf("ALM YRS_REG <-- %02x\n", value
);
2667 s
->alarm_tm
.tm_year
= from_bcd(value
);
2668 omap_rtc_alarm_update(s
);
2671 case 0x40: /* RTC_CTRL_REG */
2673 printf("RTC CONTROL <-- %02x\n", value
);
2675 s
->pm_am
= (value
>> 3) & 1;
2676 s
->auto_comp
= (value
>> 2) & 1;
2677 s
->round
= (value
>> 1) & 1;
2678 s
->running
= value
& 1;
2680 s
->status
|= s
->running
<< 1;
2683 case 0x44: /* RTC_STATUS_REG */
2685 printf("RTC STATUSL <-- %02x\n", value
);
2687 s
->status
&= ~((value
& 0xc0) ^ 0x80);
2688 omap_rtc_interrupts_update(s
);
2691 case 0x48: /* RTC_INTERRUPTS_REG */
2693 printf("RTC INTRS <-- %02x\n", value
);
2695 s
->interrupts
= value
;
2698 case 0x4c: /* RTC_COMP_LSB_REG */
2700 printf("RTC COMPLSB <-- %02x\n", value
);
2702 s
->comp_reg
&= 0xff00;
2703 s
->comp_reg
|= 0x00ff & value
;
2706 case 0x50: /* RTC_COMP_MSB_REG */
2708 printf("RTC COMPMSB <-- %02x\n", value
);
2710 s
->comp_reg
&= 0x00ff;
2711 s
->comp_reg
|= 0xff00 & (value
<< 8);
2720 static CPUReadMemoryFunc
* const omap_rtc_readfn
[] = {
2722 omap_badwidth_read8
,
2723 omap_badwidth_read8
,
2726 static CPUWriteMemoryFunc
* const omap_rtc_writefn
[] = {
2728 omap_badwidth_write8
,
2729 omap_badwidth_write8
,
2732 static void omap_rtc_tick(void *opaque
)
2734 struct omap_rtc_s
*s
= opaque
;
2737 /* Round to nearest full minute. */
2738 if (s
->current_tm
.tm_sec
< 30)
2739 s
->ti
-= s
->current_tm
.tm_sec
;
2741 s
->ti
+= 60 - s
->current_tm
.tm_sec
;
2746 memcpy(&s
->current_tm
, localtime(&s
->ti
), sizeof(s
->current_tm
));
2748 if ((s
->interrupts
& 0x08) && s
->ti
== s
->alarm_ti
) {
2750 omap_rtc_interrupts_update(s
);
2753 if (s
->interrupts
& 0x04)
2754 switch (s
->interrupts
& 3) {
2757 qemu_irq_pulse(s
->irq
);
2760 if (s
->current_tm
.tm_sec
)
2763 qemu_irq_pulse(s
->irq
);
2766 if (s
->current_tm
.tm_sec
|| s
->current_tm
.tm_min
)
2769 qemu_irq_pulse(s
->irq
);
2772 if (s
->current_tm
.tm_sec
||
2773 s
->current_tm
.tm_min
|| s
->current_tm
.tm_hour
)
2776 qemu_irq_pulse(s
->irq
);
2786 * Every full hour add a rough approximation of the compensation
2787 * register to the 32kHz Timer (which drives the RTC) value.
2789 if (s
->auto_comp
&& !s
->current_tm
.tm_sec
&& !s
->current_tm
.tm_min
)
2790 s
->tick
+= s
->comp_reg
* 1000 / 32768;
2792 qemu_mod_timer(s
->clk
, s
->tick
);
2795 static void omap_rtc_reset(struct omap_rtc_s
*s
)
2805 s
->tick
= qemu_get_clock(rt_clock
);
2806 memset(&s
->alarm_tm
, 0, sizeof(s
->alarm_tm
));
2807 s
->alarm_tm
.tm_mday
= 0x01;
2809 qemu_get_timedate(&tm
, 0);
2810 s
->ti
= mktimegm(&tm
);
2812 omap_rtc_alarm_update(s
);
2816 static struct omap_rtc_s
*omap_rtc_init(target_phys_addr_t base
,
2817 qemu_irq
*irq
, omap_clk clk
)
2820 struct omap_rtc_s
*s
= (struct omap_rtc_s
*)
2821 qemu_mallocz(sizeof(struct omap_rtc_s
));
2825 s
->clk
= qemu_new_timer(rt_clock
, omap_rtc_tick
, s
);
2829 iomemtype
= cpu_register_io_memory(omap_rtc_readfn
,
2830 omap_rtc_writefn
, s
, DEVICE_NATIVE_ENDIAN
);
2831 cpu_register_physical_memory(base
, 0x800, iomemtype
);
2836 /* Multi-channel Buffered Serial Port interfaces */
2837 struct omap_mcbsp_s
{
2857 QEMUTimer
*source_timer
;
2858 QEMUTimer
*sink_timer
;
2861 static void omap_mcbsp_intr_update(struct omap_mcbsp_s
*s
)
2865 switch ((s
->spcr
[0] >> 4) & 3) { /* RINTM */
2867 irq
= (s
->spcr
[0] >> 1) & 1; /* RRDY */
2870 irq
= (s
->spcr
[0] >> 3) & 1; /* RSYNCERR */
2878 qemu_irq_pulse(s
->rxirq
);
2880 switch ((s
->spcr
[1] >> 4) & 3) { /* XINTM */
2882 irq
= (s
->spcr
[1] >> 1) & 1; /* XRDY */
2885 irq
= (s
->spcr
[1] >> 3) & 1; /* XSYNCERR */
2893 qemu_irq_pulse(s
->txirq
);
2896 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s
*s
)
2898 if ((s
->spcr
[0] >> 1) & 1) /* RRDY */
2899 s
->spcr
[0] |= 1 << 2; /* RFULL */
2900 s
->spcr
[0] |= 1 << 1; /* RRDY */
2901 qemu_irq_raise(s
->rxdrq
);
2902 omap_mcbsp_intr_update(s
);
2905 static void omap_mcbsp_source_tick(void *opaque
)
2907 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
2908 static const int bps
[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
2913 printf("%s: Rx FIFO overrun\n", __FUNCTION__
);
2915 s
->rx_req
= s
->rx_rate
<< bps
[(s
->rcr
[0] >> 5) & 7];
2917 omap_mcbsp_rx_newdata(s
);
2918 qemu_mod_timer(s
->source_timer
, qemu_get_clock(vm_clock
) +
2919 get_ticks_per_sec());
2922 static void omap_mcbsp_rx_start(struct omap_mcbsp_s
*s
)
2924 if (!s
->codec
|| !s
->codec
->rts
)
2925 omap_mcbsp_source_tick(s
);
2926 else if (s
->codec
->in
.len
) {
2927 s
->rx_req
= s
->codec
->in
.len
;
2928 omap_mcbsp_rx_newdata(s
);
2932 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s
*s
)
2934 qemu_del_timer(s
->source_timer
);
2937 static void omap_mcbsp_rx_done(struct omap_mcbsp_s
*s
)
2939 s
->spcr
[0] &= ~(1 << 1); /* RRDY */
2940 qemu_irq_lower(s
->rxdrq
);
2941 omap_mcbsp_intr_update(s
);
2944 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s
*s
)
2946 s
->spcr
[1] |= 1 << 1; /* XRDY */
2947 qemu_irq_raise(s
->txdrq
);
2948 omap_mcbsp_intr_update(s
);
2951 static void omap_mcbsp_sink_tick(void *opaque
)
2953 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
2954 static const int bps
[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
2959 printf("%s: Tx FIFO underrun\n", __FUNCTION__
);
2961 s
->tx_req
= s
->tx_rate
<< bps
[(s
->xcr
[0] >> 5) & 7];
2963 omap_mcbsp_tx_newdata(s
);
2964 qemu_mod_timer(s
->sink_timer
, qemu_get_clock(vm_clock
) +
2965 get_ticks_per_sec());
2968 static void omap_mcbsp_tx_start(struct omap_mcbsp_s
*s
)
2970 if (!s
->codec
|| !s
->codec
->cts
)
2971 omap_mcbsp_sink_tick(s
);
2972 else if (s
->codec
->out
.size
) {
2973 s
->tx_req
= s
->codec
->out
.size
;
2974 omap_mcbsp_tx_newdata(s
);
2978 static void omap_mcbsp_tx_done(struct omap_mcbsp_s
*s
)
2980 s
->spcr
[1] &= ~(1 << 1); /* XRDY */
2981 qemu_irq_lower(s
->txdrq
);
2982 omap_mcbsp_intr_update(s
);
2983 if (s
->codec
&& s
->codec
->cts
)
2984 s
->codec
->tx_swallow(s
->codec
->opaque
);
2987 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s
*s
)
2990 omap_mcbsp_tx_done(s
);
2991 qemu_del_timer(s
->sink_timer
);
2994 static void omap_mcbsp_req_update(struct omap_mcbsp_s
*s
)
2996 int prev_rx_rate
, prev_tx_rate
;
2997 int rx_rate
= 0, tx_rate
= 0;
2998 int cpu_rate
= 1500000; /* XXX */
3000 /* TODO: check CLKSTP bit */
3001 if (s
->spcr
[1] & (1 << 6)) { /* GRST */
3002 if (s
->spcr
[0] & (1 << 0)) { /* RRST */
3003 if ((s
->srgr
[1] & (1 << 13)) && /* CLKSM */
3004 (s
->pcr
& (1 << 8))) { /* CLKRM */
3005 if (~s
->pcr
& (1 << 7)) /* SCLKME */
3006 rx_rate
= cpu_rate
/
3007 ((s
->srgr
[0] & 0xff) + 1); /* CLKGDV */
3010 rx_rate
= s
->codec
->rx_rate
;
3013 if (s
->spcr
[1] & (1 << 0)) { /* XRST */
3014 if ((s
->srgr
[1] & (1 << 13)) && /* CLKSM */
3015 (s
->pcr
& (1 << 9))) { /* CLKXM */
3016 if (~s
->pcr
& (1 << 7)) /* SCLKME */
3017 tx_rate
= cpu_rate
/
3018 ((s
->srgr
[0] & 0xff) + 1); /* CLKGDV */
3021 tx_rate
= s
->codec
->tx_rate
;
3024 prev_tx_rate
= s
->tx_rate
;
3025 prev_rx_rate
= s
->rx_rate
;
3026 s
->tx_rate
= tx_rate
;
3027 s
->rx_rate
= rx_rate
;
3030 s
->codec
->set_rate(s
->codec
->opaque
, rx_rate
, tx_rate
);
3032 if (!prev_tx_rate
&& tx_rate
)
3033 omap_mcbsp_tx_start(s
);
3034 else if (s
->tx_rate
&& !tx_rate
)
3035 omap_mcbsp_tx_stop(s
);
3037 if (!prev_rx_rate
&& rx_rate
)
3038 omap_mcbsp_rx_start(s
);
3039 else if (prev_tx_rate
&& !tx_rate
)
3040 omap_mcbsp_rx_stop(s
);
3043 static uint32_t omap_mcbsp_read(void *opaque
, target_phys_addr_t addr
)
3045 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3046 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3050 case 0x00: /* DRR2 */
3051 if (((s
->rcr
[0] >> 5) & 7) < 3) /* RWDLEN1 */
3054 case 0x02: /* DRR1 */
3055 if (s
->rx_req
< 2) {
3056 printf("%s: Rx FIFO underrun\n", __FUNCTION__
);
3057 omap_mcbsp_rx_done(s
);
3060 if (s
->codec
&& s
->codec
->in
.len
>= 2) {
3061 ret
= s
->codec
->in
.fifo
[s
->codec
->in
.start
++] << 8;
3062 ret
|= s
->codec
->in
.fifo
[s
->codec
->in
.start
++];
3063 s
->codec
->in
.len
-= 2;
3067 omap_mcbsp_rx_done(s
);
3072 case 0x04: /* DXR2 */
3073 case 0x06: /* DXR1 */
3076 case 0x08: /* SPCR2 */
3078 case 0x0a: /* SPCR1 */
3080 case 0x0c: /* RCR2 */
3082 case 0x0e: /* RCR1 */
3084 case 0x10: /* XCR2 */
3086 case 0x12: /* XCR1 */
3088 case 0x14: /* SRGR2 */
3090 case 0x16: /* SRGR1 */
3092 case 0x18: /* MCR2 */
3094 case 0x1a: /* MCR1 */
3096 case 0x1c: /* RCERA */
3098 case 0x1e: /* RCERB */
3100 case 0x20: /* XCERA */
3102 case 0x22: /* XCERB */
3104 case 0x24: /* PCR0 */
3106 case 0x26: /* RCERC */
3108 case 0x28: /* RCERD */
3110 case 0x2a: /* XCERC */
3112 case 0x2c: /* XCERD */
3114 case 0x2e: /* RCERE */
3116 case 0x30: /* RCERF */
3118 case 0x32: /* XCERE */
3120 case 0x34: /* XCERF */
3122 case 0x36: /* RCERG */
3124 case 0x38: /* RCERH */
3126 case 0x3a: /* XCERG */
3128 case 0x3c: /* XCERH */
3136 static void omap_mcbsp_writeh(void *opaque
, target_phys_addr_t addr
,
3139 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3140 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3143 case 0x00: /* DRR2 */
3144 case 0x02: /* DRR1 */
3148 case 0x04: /* DXR2 */
3149 if (((s
->xcr
[0] >> 5) & 7) < 3) /* XWDLEN1 */
3152 case 0x06: /* DXR1 */
3153 if (s
->tx_req
> 1) {
3155 if (s
->codec
&& s
->codec
->cts
) {
3156 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] = (value
>> 8) & 0xff;
3157 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] = (value
>> 0) & 0xff;
3160 omap_mcbsp_tx_done(s
);
3162 printf("%s: Tx FIFO overrun\n", __FUNCTION__
);
3165 case 0x08: /* SPCR2 */
3166 s
->spcr
[1] &= 0x0002;
3167 s
->spcr
[1] |= 0x03f9 & value
;
3168 s
->spcr
[1] |= 0x0004 & (value
<< 2); /* XEMPTY := XRST */
3169 if (~value
& 1) /* XRST */
3171 omap_mcbsp_req_update(s
);
3173 case 0x0a: /* SPCR1 */
3174 s
->spcr
[0] &= 0x0006;
3175 s
->spcr
[0] |= 0xf8f9 & value
;
3176 if (value
& (1 << 15)) /* DLB */
3177 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__
);
3178 if (~value
& 1) { /* RRST */
3181 omap_mcbsp_rx_done(s
);
3183 omap_mcbsp_req_update(s
);
3186 case 0x0c: /* RCR2 */
3187 s
->rcr
[1] = value
& 0xffff;
3189 case 0x0e: /* RCR1 */
3190 s
->rcr
[0] = value
& 0x7fe0;
3192 case 0x10: /* XCR2 */
3193 s
->xcr
[1] = value
& 0xffff;
3195 case 0x12: /* XCR1 */
3196 s
->xcr
[0] = value
& 0x7fe0;
3198 case 0x14: /* SRGR2 */
3199 s
->srgr
[1] = value
& 0xffff;
3200 omap_mcbsp_req_update(s
);
3202 case 0x16: /* SRGR1 */
3203 s
->srgr
[0] = value
& 0xffff;
3204 omap_mcbsp_req_update(s
);
3206 case 0x18: /* MCR2 */
3207 s
->mcr
[1] = value
& 0x03e3;
3208 if (value
& 3) /* XMCM */
3209 printf("%s: Tx channel selection mode enable attempt\n",
3212 case 0x1a: /* MCR1 */
3213 s
->mcr
[0] = value
& 0x03e1;
3214 if (value
& 1) /* RMCM */
3215 printf("%s: Rx channel selection mode enable attempt\n",
3218 case 0x1c: /* RCERA */
3219 s
->rcer
[0] = value
& 0xffff;
3221 case 0x1e: /* RCERB */
3222 s
->rcer
[1] = value
& 0xffff;
3224 case 0x20: /* XCERA */
3225 s
->xcer
[0] = value
& 0xffff;
3227 case 0x22: /* XCERB */
3228 s
->xcer
[1] = value
& 0xffff;
3230 case 0x24: /* PCR0 */
3231 s
->pcr
= value
& 0x7faf;
3233 case 0x26: /* RCERC */
3234 s
->rcer
[2] = value
& 0xffff;
3236 case 0x28: /* RCERD */
3237 s
->rcer
[3] = value
& 0xffff;
3239 case 0x2a: /* XCERC */
3240 s
->xcer
[2] = value
& 0xffff;
3242 case 0x2c: /* XCERD */
3243 s
->xcer
[3] = value
& 0xffff;
3245 case 0x2e: /* RCERE */
3246 s
->rcer
[4] = value
& 0xffff;
3248 case 0x30: /* RCERF */
3249 s
->rcer
[5] = value
& 0xffff;
3251 case 0x32: /* XCERE */
3252 s
->xcer
[4] = value
& 0xffff;
3254 case 0x34: /* XCERF */
3255 s
->xcer
[5] = value
& 0xffff;
3257 case 0x36: /* RCERG */
3258 s
->rcer
[6] = value
& 0xffff;
3260 case 0x38: /* RCERH */
3261 s
->rcer
[7] = value
& 0xffff;
3263 case 0x3a: /* XCERG */
3264 s
->xcer
[6] = value
& 0xffff;
3266 case 0x3c: /* XCERH */
3267 s
->xcer
[7] = value
& 0xffff;
3274 static void omap_mcbsp_writew(void *opaque
, target_phys_addr_t addr
,
3277 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3278 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3280 if (offset
== 0x04) { /* DXR */
3281 if (((s
->xcr
[0] >> 5) & 7) < 3) /* XWDLEN1 */
3283 if (s
->tx_req
> 3) {
3285 if (s
->codec
&& s
->codec
->cts
) {
3286 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] =
3287 (value
>> 24) & 0xff;
3288 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] =
3289 (value
>> 16) & 0xff;
3290 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] =
3291 (value
>> 8) & 0xff;
3292 s
->codec
->out
.fifo
[s
->codec
->out
.len
++] =
3293 (value
>> 0) & 0xff;
3296 omap_mcbsp_tx_done(s
);
3298 printf("%s: Tx FIFO overrun\n", __FUNCTION__
);
3302 omap_badwidth_write16(opaque
, addr
, value
);
3305 static CPUReadMemoryFunc
* const omap_mcbsp_readfn
[] = {
3306 omap_badwidth_read16
,
3308 omap_badwidth_read16
,
3311 static CPUWriteMemoryFunc
* const omap_mcbsp_writefn
[] = {
3312 omap_badwidth_write16
,
3317 static void omap_mcbsp_reset(struct omap_mcbsp_s
*s
)
3319 memset(&s
->spcr
, 0, sizeof(s
->spcr
));
3320 memset(&s
->rcr
, 0, sizeof(s
->rcr
));
3321 memset(&s
->xcr
, 0, sizeof(s
->xcr
));
3322 s
->srgr
[0] = 0x0001;
3323 s
->srgr
[1] = 0x2000;
3324 memset(&s
->mcr
, 0, sizeof(s
->mcr
));
3325 memset(&s
->pcr
, 0, sizeof(s
->pcr
));
3326 memset(&s
->rcer
, 0, sizeof(s
->rcer
));
3327 memset(&s
->xcer
, 0, sizeof(s
->xcer
));
3332 qemu_del_timer(s
->source_timer
);
3333 qemu_del_timer(s
->sink_timer
);
3336 struct omap_mcbsp_s
*omap_mcbsp_init(target_phys_addr_t base
,
3337 qemu_irq
*irq
, qemu_irq
*dma
, omap_clk clk
)
3340 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*)
3341 qemu_mallocz(sizeof(struct omap_mcbsp_s
));
3347 s
->sink_timer
= qemu_new_timer(vm_clock
, omap_mcbsp_sink_tick
, s
);
3348 s
->source_timer
= qemu_new_timer(vm_clock
, omap_mcbsp_source_tick
, s
);
3349 omap_mcbsp_reset(s
);
3351 iomemtype
= cpu_register_io_memory(omap_mcbsp_readfn
,
3352 omap_mcbsp_writefn
, s
, DEVICE_NATIVE_ENDIAN
);
3353 cpu_register_physical_memory(base
, 0x800, iomemtype
);
3358 static void omap_mcbsp_i2s_swallow(void *opaque
, int line
, int level
)
3360 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3363 s
->rx_req
= s
->codec
->in
.len
;
3364 omap_mcbsp_rx_newdata(s
);
3368 static void omap_mcbsp_i2s_start(void *opaque
, int line
, int level
)
3370 struct omap_mcbsp_s
*s
= (struct omap_mcbsp_s
*) opaque
;
3373 s
->tx_req
= s
->codec
->out
.size
;
3374 omap_mcbsp_tx_newdata(s
);
3378 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s
*s
, I2SCodec
*slave
)
3381 slave
->rx_swallow
= qemu_allocate_irqs(omap_mcbsp_i2s_swallow
, s
, 1)[0];
3382 slave
->tx_start
= qemu_allocate_irqs(omap_mcbsp_i2s_start
, s
, 1)[0];
3385 /* LED Pulse Generators */
3397 static void omap_lpg_tick(void *opaque
)
3399 struct omap_lpg_s
*s
= opaque
;
3402 qemu_mod_timer(s
->tm
, qemu_get_clock(rt_clock
) + s
->period
- s
->on
);
3404 qemu_mod_timer(s
->tm
, qemu_get_clock(rt_clock
) + s
->on
);
3406 s
->cycle
= !s
->cycle
;
3407 printf("%s: LED is %s\n", __FUNCTION__
, s
->cycle
? "on" : "off");
3410 static void omap_lpg_update(struct omap_lpg_s
*s
)
3412 int64_t on
, period
= 1, ticks
= 1000;
3413 static const int per
[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3415 if (~s
->control
& (1 << 6)) /* LPGRES */
3417 else if (s
->control
& (1 << 7)) /* PERM_ON */
3420 period
= muldiv64(ticks
, per
[s
->control
& 7], /* PERCTRL */
3422 on
= (s
->clk
&& s
->power
) ? muldiv64(ticks
,
3423 per
[(s
->control
>> 3) & 7], 256) : 0; /* ONCTRL */
3426 qemu_del_timer(s
->tm
);
3427 if (on
== period
&& s
->on
< s
->period
)
3428 printf("%s: LED is on\n", __FUNCTION__
);
3429 else if (on
== 0 && s
->on
)
3430 printf("%s: LED is off\n", __FUNCTION__
);
3431 else if (on
&& (on
!= s
->on
|| period
!= s
->period
)) {
3443 static void omap_lpg_reset(struct omap_lpg_s
*s
)
3451 static uint32_t omap_lpg_read(void *opaque
, target_phys_addr_t addr
)
3453 struct omap_lpg_s
*s
= (struct omap_lpg_s
*) opaque
;
3454 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3457 case 0x00: /* LCR */
3460 case 0x04: /* PMR */
3468 static void omap_lpg_write(void *opaque
, target_phys_addr_t addr
,
3471 struct omap_lpg_s
*s
= (struct omap_lpg_s
*) opaque
;
3472 int offset
= addr
& OMAP_MPUI_REG_MASK
;
3475 case 0x00: /* LCR */
3476 if (~value
& (1 << 6)) /* LPGRES */
3478 s
->control
= value
& 0xff;
3482 case 0x04: /* PMR */
3483 s
->power
= value
& 0x01;
3493 static CPUReadMemoryFunc
* const omap_lpg_readfn
[] = {
3495 omap_badwidth_read8
,
3496 omap_badwidth_read8
,
3499 static CPUWriteMemoryFunc
* const omap_lpg_writefn
[] = {
3501 omap_badwidth_write8
,
3502 omap_badwidth_write8
,
3505 static void omap_lpg_clk_update(void *opaque
, int line
, int on
)
3507 struct omap_lpg_s
*s
= (struct omap_lpg_s
*) opaque
;
3513 static struct omap_lpg_s
*omap_lpg_init(target_phys_addr_t base
, omap_clk clk
)
3516 struct omap_lpg_s
*s
= (struct omap_lpg_s
*)
3517 qemu_mallocz(sizeof(struct omap_lpg_s
));
3519 s
->tm
= qemu_new_timer(rt_clock
, omap_lpg_tick
, s
);
3523 iomemtype
= cpu_register_io_memory(omap_lpg_readfn
,
3524 omap_lpg_writefn
, s
, DEVICE_NATIVE_ENDIAN
);
3525 cpu_register_physical_memory(base
, 0x800, iomemtype
);
3527 omap_clk_adduser(clk
, qemu_allocate_irqs(omap_lpg_clk_update
, s
, 1)[0]);
3532 /* MPUI Peripheral Bridge configuration */
3533 static uint32_t omap_mpui_io_read(void *opaque
, target_phys_addr_t addr
)
3535 if (addr
== OMAP_MPUI_BASE
) /* CMR */
3542 static CPUReadMemoryFunc
* const omap_mpui_io_readfn
[] = {
3543 omap_badwidth_read16
,
3545 omap_badwidth_read16
,
3548 static CPUWriteMemoryFunc
* const omap_mpui_io_writefn
[] = {
3549 omap_badwidth_write16
,
3550 omap_badwidth_write16
,
3551 omap_badwidth_write16
,
3554 static void omap_setup_mpui_io(struct omap_mpu_state_s
*mpu
)
3556 int iomemtype
= cpu_register_io_memory(omap_mpui_io_readfn
,
3557 omap_mpui_io_writefn
, mpu
, DEVICE_NATIVE_ENDIAN
);
3558 cpu_register_physical_memory(OMAP_MPUI_BASE
, 0x7fff, iomemtype
);
3561 /* General chip reset */
3562 static void omap1_mpu_reset(void *opaque
)
3564 struct omap_mpu_state_s
*mpu
= (struct omap_mpu_state_s
*) opaque
;
3566 omap_inth_reset(mpu
->ih
[0]);
3567 omap_inth_reset(mpu
->ih
[1]);
3568 omap_dma_reset(mpu
->dma
);
3569 omap_mpu_timer_reset(mpu
->timer
[0]);
3570 omap_mpu_timer_reset(mpu
->timer
[1]);
3571 omap_mpu_timer_reset(mpu
->timer
[2]);
3572 omap_wd_timer_reset(mpu
->wdt
);
3573 omap_os_timer_reset(mpu
->os_timer
);
3574 omap_lcdc_reset(mpu
->lcd
);
3575 omap_ulpd_pm_reset(mpu
);
3576 omap_pin_cfg_reset(mpu
);
3577 omap_mpui_reset(mpu
);
3578 omap_tipb_bridge_reset(mpu
->private_tipb
);
3579 omap_tipb_bridge_reset(mpu
->public_tipb
);
3580 omap_dpll_reset(&mpu
->dpll
[0]);
3581 omap_dpll_reset(&mpu
->dpll
[1]);
3582 omap_dpll_reset(&mpu
->dpll
[2]);
3583 omap_uart_reset(mpu
->uart
[0]);
3584 omap_uart_reset(mpu
->uart
[1]);
3585 omap_uart_reset(mpu
->uart
[2]);
3586 omap_mmc_reset(mpu
->mmc
);
3587 omap_mpuio_reset(mpu
->mpuio
);
3588 omap_gpio_reset(mpu
->gpio
);
3589 omap_uwire_reset(mpu
->microwire
);
3590 omap_pwl_reset(mpu
);
3591 omap_pwt_reset(mpu
);
3592 omap_i2c_reset(mpu
->i2c
[0]);
3593 omap_rtc_reset(mpu
->rtc
);
3594 omap_mcbsp_reset(mpu
->mcbsp1
);
3595 omap_mcbsp_reset(mpu
->mcbsp2
);
3596 omap_mcbsp_reset(mpu
->mcbsp3
);
3597 omap_lpg_reset(mpu
->led
[0]);
3598 omap_lpg_reset(mpu
->led
[1]);
3599 omap_clkm_reset(mpu
);
3600 cpu_reset(mpu
->env
);
3603 static const struct omap_map_s
{
3604 target_phys_addr_t phys_dsp
;
3605 target_phys_addr_t phys_mpu
;
3608 } omap15xx_dsp_mm
[] = {
3610 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3611 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3612 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3613 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3614 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3615 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3616 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3617 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3618 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3619 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3620 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3621 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3622 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3623 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3624 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3625 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3626 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3628 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3633 static void omap_setup_dsp_mapping(const struct omap_map_s
*map
)
3637 for (; map
->phys_dsp
; map
++) {
3638 io
= cpu_get_physical_page_desc(map
->phys_mpu
);
3640 cpu_register_physical_memory(map
->phys_dsp
, map
->size
, io
);
3644 void omap_mpu_wakeup(void *opaque
, int irq
, int req
)
3646 struct omap_mpu_state_s
*mpu
= (struct omap_mpu_state_s
*) opaque
;
3648 if (mpu
->env
->halted
)
3649 cpu_interrupt(mpu
->env
, CPU_INTERRUPT_EXITTB
);
3652 static const struct dma_irq_map omap1_dma_irq_map
[] = {
3653 { 0, OMAP_INT_DMA_CH0_6
},
3654 { 0, OMAP_INT_DMA_CH1_7
},
3655 { 0, OMAP_INT_DMA_CH2_8
},
3656 { 0, OMAP_INT_DMA_CH3
},
3657 { 0, OMAP_INT_DMA_CH4
},
3658 { 0, OMAP_INT_DMA_CH5
},
3659 { 1, OMAP_INT_1610_DMA_CH6
},
3660 { 1, OMAP_INT_1610_DMA_CH7
},
3661 { 1, OMAP_INT_1610_DMA_CH8
},
3662 { 1, OMAP_INT_1610_DMA_CH9
},
3663 { 1, OMAP_INT_1610_DMA_CH10
},
3664 { 1, OMAP_INT_1610_DMA_CH11
},
3665 { 1, OMAP_INT_1610_DMA_CH12
},
3666 { 1, OMAP_INT_1610_DMA_CH13
},
3667 { 1, OMAP_INT_1610_DMA_CH14
},
3668 { 1, OMAP_INT_1610_DMA_CH15
}
3671 /* DMA ports for OMAP1 */
3672 static int omap_validate_emiff_addr(struct omap_mpu_state_s
*s
,
3673 target_phys_addr_t addr
)
3675 return range_covers_byte(OMAP_EMIFF_BASE
, s
->sdram_size
, addr
);
3678 static int omap_validate_emifs_addr(struct omap_mpu_state_s
*s
,
3679 target_phys_addr_t addr
)
3681 return range_covers_byte(OMAP_EMIFS_BASE
, OMAP_EMIFF_BASE
- OMAP_EMIFS_BASE
,
3685 static int omap_validate_imif_addr(struct omap_mpu_state_s
*s
,
3686 target_phys_addr_t addr
)
3688 return range_covers_byte(OMAP_IMIF_BASE
, s
->sram_size
, addr
);
3691 static int omap_validate_tipb_addr(struct omap_mpu_state_s
*s
,
3692 target_phys_addr_t addr
)
3694 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr
);
3697 static int omap_validate_local_addr(struct omap_mpu_state_s
*s
,
3698 target_phys_addr_t addr
)
3700 return range_covers_byte(OMAP_LOCALBUS_BASE
, 0x1000000, addr
);
3703 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s
*s
,
3704 target_phys_addr_t addr
)
3706 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr
);
3709 struct omap_mpu_state_s
*omap310_mpu_init(unsigned long sdram_size
,
3713 struct omap_mpu_state_s
*s
= (struct omap_mpu_state_s
*)
3714 qemu_mallocz(sizeof(struct omap_mpu_state_s
));
3715 ram_addr_t imif_base
, emiff_base
;
3717 qemu_irq dma_irqs
[6];
3724 s
->mpu_model
= omap310
;
3725 s
->env
= cpu_init(core
);
3727 fprintf(stderr
, "Unable to find CPU definition\n");
3730 s
->sdram_size
= sdram_size
;
3731 s
->sram_size
= OMAP15XX_SRAM_SIZE
;
3733 s
->wakeup
= qemu_allocate_irqs(omap_mpu_wakeup
, s
, 1)[0];
3738 /* Memory-mapped stuff */
3739 cpu_register_physical_memory(OMAP_EMIFF_BASE
, s
->sdram_size
,
3740 (emiff_base
= qemu_ram_alloc(NULL
, "omap1.dram",
3741 s
->sdram_size
)) | IO_MEM_RAM
);
3742 cpu_register_physical_memory(OMAP_IMIF_BASE
, s
->sram_size
,
3743 (imif_base
= qemu_ram_alloc(NULL
, "omap1.sram",
3744 s
->sram_size
)) | IO_MEM_RAM
);
3746 omap_clkm_init(0xfffece00, 0xe1008000, s
);
3748 cpu_irq
= arm_pic_init_cpu(s
->env
);
3749 s
->ih
[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s
->irq
[0],
3750 cpu_irq
[ARM_PIC_CPU_IRQ
], cpu_irq
[ARM_PIC_CPU_FIQ
],
3751 omap_findclk(s
, "arminth_ck"));
3752 s
->ih
[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s
->irq
[1],
3753 omap_inth_get_pin(s
->ih
[0], OMAP_INT_15XX_IH2_IRQ
),
3754 NULL
, omap_findclk(s
, "arminth_ck"));
3756 for (i
= 0; i
< 6; i
++)
3758 s
->irq
[omap1_dma_irq_map
[i
].ih
][omap1_dma_irq_map
[i
].intr
];
3759 s
->dma
= omap_dma_init(0xfffed800, dma_irqs
, s
->irq
[0][OMAP_INT_DMA_LCD
],
3760 s
, omap_findclk(s
, "dma_ck"), omap_dma_3_1
);
3762 s
->port
[emiff
].addr_valid
= omap_validate_emiff_addr
;
3763 s
->port
[emifs
].addr_valid
= omap_validate_emifs_addr
;
3764 s
->port
[imif
].addr_valid
= omap_validate_imif_addr
;
3765 s
->port
[tipb
].addr_valid
= omap_validate_tipb_addr
;
3766 s
->port
[local
].addr_valid
= omap_validate_local_addr
;
3767 s
->port
[tipb_mpui
].addr_valid
= omap_validate_tipb_mpui_addr
;
3769 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3770 soc_dma_port_add_mem_ram(s
->dma
,
3771 emiff_base
, OMAP_EMIFF_BASE
, s
->sdram_size
);
3772 soc_dma_port_add_mem_ram(s
->dma
,
3773 imif_base
, OMAP_IMIF_BASE
, s
->sram_size
);
3775 s
->timer
[0] = omap_mpu_timer_init(0xfffec500,
3776 s
->irq
[0][OMAP_INT_TIMER1
],
3777 omap_findclk(s
, "mputim_ck"));
3778 s
->timer
[1] = omap_mpu_timer_init(0xfffec600,
3779 s
->irq
[0][OMAP_INT_TIMER2
],
3780 omap_findclk(s
, "mputim_ck"));
3781 s
->timer
[2] = omap_mpu_timer_init(0xfffec700,
3782 s
->irq
[0][OMAP_INT_TIMER3
],
3783 omap_findclk(s
, "mputim_ck"));
3785 s
->wdt
= omap_wd_timer_init(0xfffec800,
3786 s
->irq
[0][OMAP_INT_WD_TIMER
],
3787 omap_findclk(s
, "armwdt_ck"));
3789 s
->os_timer
= omap_os_timer_init(0xfffb9000,
3790 s
->irq
[1][OMAP_INT_OS_TIMER
],
3791 omap_findclk(s
, "clk32-kHz"));
3793 s
->lcd
= omap_lcdc_init(0xfffec000, s
->irq
[0][OMAP_INT_LCD_CTRL
],
3794 omap_dma_get_lcdch(s
->dma
), imif_base
, emiff_base
,
3795 omap_findclk(s
, "lcd_ck"));
3797 omap_ulpd_pm_init(0xfffe0800, s
);
3798 omap_pin_cfg_init(0xfffe1000, s
);
3801 omap_mpui_init(0xfffec900, s
);
3803 s
->private_tipb
= omap_tipb_bridge_init(0xfffeca00,
3804 s
->irq
[0][OMAP_INT_BRIDGE_PRIV
],
3805 omap_findclk(s
, "tipb_ck"));
3806 s
->public_tipb
= omap_tipb_bridge_init(0xfffed300,
3807 s
->irq
[0][OMAP_INT_BRIDGE_PUB
],
3808 omap_findclk(s
, "tipb_ck"));
3810 omap_tcmi_init(0xfffecc00, s
);
3812 s
->uart
[0] = omap_uart_init(0xfffb0000, s
->irq
[1][OMAP_INT_UART1
],
3813 omap_findclk(s
, "uart1_ck"),
3814 omap_findclk(s
, "uart1_ck"),
3815 s
->drq
[OMAP_DMA_UART1_TX
], s
->drq
[OMAP_DMA_UART1_RX
],
3818 s
->uart
[1] = omap_uart_init(0xfffb0800, s
->irq
[1][OMAP_INT_UART2
],
3819 omap_findclk(s
, "uart2_ck"),
3820 omap_findclk(s
, "uart2_ck"),
3821 s
->drq
[OMAP_DMA_UART2_TX
], s
->drq
[OMAP_DMA_UART2_RX
],
3823 serial_hds
[0] ? serial_hds
[1] : NULL
);
3824 s
->uart
[2] = omap_uart_init(0xfffb9800, s
->irq
[0][OMAP_INT_UART3
],
3825 omap_findclk(s
, "uart3_ck"),
3826 omap_findclk(s
, "uart3_ck"),
3827 s
->drq
[OMAP_DMA_UART3_TX
], s
->drq
[OMAP_DMA_UART3_RX
],
3829 serial_hds
[0] && serial_hds
[1] ? serial_hds
[2] : NULL
);
3831 omap_dpll_init(&s
->dpll
[0], 0xfffecf00, omap_findclk(s
, "dpll1"));
3832 omap_dpll_init(&s
->dpll
[1], 0xfffed000, omap_findclk(s
, "dpll2"));
3833 omap_dpll_init(&s
->dpll
[2], 0xfffed100, omap_findclk(s
, "dpll3"));
3835 dinfo
= drive_get(IF_SD
, 0, 0);
3837 fprintf(stderr
, "qemu: missing SecureDigital device\n");
3840 s
->mmc
= omap_mmc_init(0xfffb7800, dinfo
->bdrv
,
3841 s
->irq
[1][OMAP_INT_OQN
], &s
->drq
[OMAP_DMA_MMC_TX
],
3842 omap_findclk(s
, "mmc_ck"));
3844 s
->mpuio
= omap_mpuio_init(0xfffb5000,
3845 s
->irq
[1][OMAP_INT_KEYBOARD
], s
->irq
[1][OMAP_INT_MPUIO
],
3846 s
->wakeup
, omap_findclk(s
, "clk32-kHz"));
3848 s
->gpio
= omap_gpio_init(0xfffce000, s
->irq
[0][OMAP_INT_GPIO_BANK1
],
3849 omap_findclk(s
, "arm_gpio_ck"));
3851 s
->microwire
= omap_uwire_init(0xfffb3000, &s
->irq
[1][OMAP_INT_uWireTX
],
3852 s
->drq
[OMAP_DMA_UWIRE_TX
], omap_findclk(s
, "mpuper_ck"));
3854 omap_pwl_init(0xfffb5800, s
, omap_findclk(s
, "armxor_ck"));
3855 omap_pwt_init(0xfffb6000, s
, omap_findclk(s
, "armxor_ck"));
3857 s
->i2c
[0] = omap_i2c_init(0xfffb3800, s
->irq
[1][OMAP_INT_I2C
],
3858 &s
->drq
[OMAP_DMA_I2C_RX
], omap_findclk(s
, "mpuper_ck"));
3860 s
->rtc
= omap_rtc_init(0xfffb4800, &s
->irq
[1][OMAP_INT_RTC_TIMER
],
3861 omap_findclk(s
, "clk32-kHz"));
3863 s
->mcbsp1
= omap_mcbsp_init(0xfffb1800, &s
->irq
[1][OMAP_INT_McBSP1TX
],
3864 &s
->drq
[OMAP_DMA_MCBSP1_TX
], omap_findclk(s
, "dspxor_ck"));
3865 s
->mcbsp2
= omap_mcbsp_init(0xfffb1000, &s
->irq
[0][OMAP_INT_310_McBSP2_TX
],
3866 &s
->drq
[OMAP_DMA_MCBSP2_TX
], omap_findclk(s
, "mpuper_ck"));
3867 s
->mcbsp3
= omap_mcbsp_init(0xfffb7000, &s
->irq
[1][OMAP_INT_McBSP3TX
],
3868 &s
->drq
[OMAP_DMA_MCBSP3_TX
], omap_findclk(s
, "dspxor_ck"));
3870 s
->led
[0] = omap_lpg_init(0xfffbd000, omap_findclk(s
, "clk32-kHz"));
3871 s
->led
[1] = omap_lpg_init(0xfffbd800, omap_findclk(s
, "clk32-kHz"));
3873 /* Register mappings not currenlty implemented:
3874 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
3875 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
3876 * USB W2FC fffb4000 - fffb47ff
3877 * Camera Interface fffb6800 - fffb6fff
3878 * USB Host fffba000 - fffba7ff
3879 * FAC fffba800 - fffbafff
3880 * HDQ/1-Wire fffbc000 - fffbc7ff
3881 * TIPB switches fffbc800 - fffbcfff
3882 * Mailbox fffcf000 - fffcf7ff
3883 * Local bus IF fffec100 - fffec1ff
3884 * Local bus MMU fffec200 - fffec2ff
3885 * DSP MMU fffed200 - fffed2ff
3888 omap_setup_dsp_mapping(omap15xx_dsp_mm
);
3889 omap_setup_mpui_io(s
);
3891 qemu_register_reset(omap1_mpu_reset
, s
);