s390x/diag: pass the retaddr into handle_diag_308()
[qemu/ar7.git] / target / s390x / kvm.c
blob97c45d5537bcee52511cb64b769a72ca73bff104
1 /*
2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include <sys/ioctl.h>
27 #include <linux/kvm.h>
28 #include <asm/ptrace.h>
30 #include "qemu-common.h"
31 #include "cpu.h"
32 #include "internal.h"
33 #include "kvm_s390x.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/hw_accel.h"
38 #include "hw/hw.h"
39 #include "sysemu/device_tree.h"
40 #include "qapi/qmp/qjson.h"
41 #include "exec/gdbstub.h"
42 #include "exec/address-spaces.h"
43 #include "trace.h"
44 #include "qapi-event.h"
45 #include "hw/s390x/s390-pci-inst.h"
46 #include "hw/s390x/s390-pci-bus.h"
47 #include "hw/s390x/ipl.h"
48 #include "hw/s390x/ebcdic.h"
49 #include "exec/memattrs.h"
50 #include "hw/s390x/s390-virtio-ccw.h"
51 #include "hw/s390x/s390-virtio-hcall.h"
53 #ifndef DEBUG_KVM
54 #define DEBUG_KVM 0
55 #endif
57 #define DPRINTF(fmt, ...) do { \
58 if (DEBUG_KVM) { \
59 fprintf(stderr, fmt, ## __VA_ARGS__); \
60 } \
61 } while (0);
63 #define kvm_vm_check_mem_attr(s, attr) \
64 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
66 #define IPA0_DIAG 0x8300
67 #define IPA0_SIGP 0xae00
68 #define IPA0_B2 0xb200
69 #define IPA0_B9 0xb900
70 #define IPA0_EB 0xeb00
71 #define IPA0_E3 0xe300
73 #define PRIV_B2_SCLP_CALL 0x20
74 #define PRIV_B2_CSCH 0x30
75 #define PRIV_B2_HSCH 0x31
76 #define PRIV_B2_MSCH 0x32
77 #define PRIV_B2_SSCH 0x33
78 #define PRIV_B2_STSCH 0x34
79 #define PRIV_B2_TSCH 0x35
80 #define PRIV_B2_TPI 0x36
81 #define PRIV_B2_SAL 0x37
82 #define PRIV_B2_RSCH 0x38
83 #define PRIV_B2_STCRW 0x39
84 #define PRIV_B2_STCPS 0x3a
85 #define PRIV_B2_RCHP 0x3b
86 #define PRIV_B2_SCHM 0x3c
87 #define PRIV_B2_CHSC 0x5f
88 #define PRIV_B2_SIGA 0x74
89 #define PRIV_B2_XSCH 0x76
91 #define PRIV_EB_SQBS 0x8a
92 #define PRIV_EB_PCISTB 0xd0
93 #define PRIV_EB_SIC 0xd1
95 #define PRIV_B9_EQBS 0x9c
96 #define PRIV_B9_CLP 0xa0
97 #define PRIV_B9_PCISTG 0xd0
98 #define PRIV_B9_PCILG 0xd2
99 #define PRIV_B9_RPCIT 0xd3
101 #define PRIV_E3_MPCIFC 0xd0
102 #define PRIV_E3_STPCIFC 0xd4
104 #define DIAG_TIMEREVENT 0x288
105 #define DIAG_IPL 0x308
106 #define DIAG_KVM_HYPERCALL 0x500
107 #define DIAG_KVM_BREAKPOINT 0x501
109 #define ICPT_INSTRUCTION 0x04
110 #define ICPT_PROGRAM 0x08
111 #define ICPT_EXT_INT 0x14
112 #define ICPT_WAITPSW 0x1c
113 #define ICPT_SOFT_INTERCEPT 0x24
114 #define ICPT_CPU_STOP 0x28
115 #define ICPT_OPEREXC 0x2c
116 #define ICPT_IO 0x40
118 #define NR_LOCAL_IRQS 32
120 * Needs to be big enough to contain max_cpus emergency signals
121 * and in addition NR_LOCAL_IRQS interrupts
123 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
124 (max_cpus + NR_LOCAL_IRQS))
126 static CPUWatchpoint hw_watchpoint;
128 * We don't use a list because this structure is also used to transmit the
129 * hardware breakpoints to the kernel.
131 static struct kvm_hw_breakpoint *hw_breakpoints;
132 static int nb_hw_breakpoints;
134 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
135 KVM_CAP_LAST_INFO
138 static int cap_sync_regs;
139 static int cap_async_pf;
140 static int cap_mem_op;
141 static int cap_s390_irq;
142 static int cap_ri;
143 static int cap_gs;
145 static int active_cmma;
147 static void *legacy_s390_alloc(size_t size, uint64_t *align);
149 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
151 struct kvm_device_attr attr = {
152 .group = KVM_S390_VM_MEM_CTRL,
153 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
154 .addr = (uint64_t) memory_limit,
157 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
160 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
162 int rc;
164 struct kvm_device_attr attr = {
165 .group = KVM_S390_VM_MEM_CTRL,
166 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
167 .addr = (uint64_t) &new_limit,
170 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
171 return 0;
174 rc = kvm_s390_query_mem_limit(hw_limit);
175 if (rc) {
176 return rc;
177 } else if (*hw_limit < new_limit) {
178 return -E2BIG;
181 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
184 int kvm_s390_cmma_active(void)
186 return active_cmma;
189 static bool kvm_s390_cmma_available(void)
191 static bool initialized, value;
193 if (!initialized) {
194 initialized = true;
195 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
196 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
198 return value;
201 void kvm_s390_cmma_reset(void)
203 int rc;
204 struct kvm_device_attr attr = {
205 .group = KVM_S390_VM_MEM_CTRL,
206 .attr = KVM_S390_VM_MEM_CLR_CMMA,
209 if (!kvm_s390_cmma_active()) {
210 return;
213 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
214 trace_kvm_clear_cmma(rc);
217 static void kvm_s390_enable_cmma(void)
219 int rc;
220 struct kvm_device_attr attr = {
221 .group = KVM_S390_VM_MEM_CTRL,
222 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
225 if (mem_path) {
226 warn_report("CMM will not be enabled because it is not "
227 "compatible with hugetlbfs.");
228 return;
230 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
231 active_cmma = !rc;
232 trace_kvm_enable_cmma(rc);
235 static void kvm_s390_set_attr(uint64_t attr)
237 struct kvm_device_attr attribute = {
238 .group = KVM_S390_VM_CRYPTO,
239 .attr = attr,
242 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
244 if (ret) {
245 error_report("Failed to set crypto device attribute %lu: %s",
246 attr, strerror(-ret));
250 static void kvm_s390_init_aes_kw(void)
252 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
254 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
255 NULL)) {
256 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
259 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
260 kvm_s390_set_attr(attr);
264 static void kvm_s390_init_dea_kw(void)
266 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
268 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
269 NULL)) {
270 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
273 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
274 kvm_s390_set_attr(attr);
278 void kvm_s390_crypto_reset(void)
280 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
281 kvm_s390_init_aes_kw();
282 kvm_s390_init_dea_kw();
286 int kvm_arch_init(MachineState *ms, KVMState *s)
288 MachineClass *mc = MACHINE_GET_CLASS(ms);
290 mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
291 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
292 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
293 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
294 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
296 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
297 || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
298 phys_mem_set_alloc(legacy_s390_alloc);
301 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
302 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
303 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
304 if (ri_allowed()) {
305 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
306 cap_ri = 1;
309 if (cpu_model_allowed()) {
310 if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) {
311 cap_gs = 1;
316 * The migration interface for ais was introduced with kernel 4.13
317 * but the capability itself had been active since 4.12. As migration
318 * support is considered necessary let's disable ais in the 2.10
319 * machine.
321 /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */
323 return 0;
326 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
328 return 0;
331 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
333 return cpu->cpu_index;
336 int kvm_arch_init_vcpu(CPUState *cs)
338 S390CPU *cpu = S390_CPU(cs);
339 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
340 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE);
341 return 0;
344 void kvm_s390_reset_vcpu(S390CPU *cpu)
346 CPUState *cs = CPU(cpu);
348 /* The initial reset call is needed here to reset in-kernel
349 * vcpu data that we can't access directly from QEMU
350 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
351 * Before this ioctl cpu_synchronize_state() is called in common kvm
352 * code (kvm-all) */
353 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
354 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
358 static int can_sync_regs(CPUState *cs, int regs)
360 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
363 int kvm_arch_put_registers(CPUState *cs, int level)
365 S390CPU *cpu = S390_CPU(cs);
366 CPUS390XState *env = &cpu->env;
367 struct kvm_sregs sregs;
368 struct kvm_regs regs;
369 struct kvm_fpu fpu = {};
370 int r;
371 int i;
373 /* always save the PSW and the GPRS*/
374 cs->kvm_run->psw_addr = env->psw.addr;
375 cs->kvm_run->psw_mask = env->psw.mask;
377 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
378 for (i = 0; i < 16; i++) {
379 cs->kvm_run->s.regs.gprs[i] = env->regs[i];
380 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
382 } else {
383 for (i = 0; i < 16; i++) {
384 regs.gprs[i] = env->regs[i];
386 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
387 if (r < 0) {
388 return r;
392 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
393 for (i = 0; i < 32; i++) {
394 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll;
395 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll;
397 cs->kvm_run->s.regs.fpc = env->fpc;
398 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
399 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
400 for (i = 0; i < 16; i++) {
401 cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll;
403 cs->kvm_run->s.regs.fpc = env->fpc;
404 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
405 } else {
406 /* Floating point */
407 for (i = 0; i < 16; i++) {
408 fpu.fprs[i] = get_freg(env, i)->ll;
410 fpu.fpc = env->fpc;
412 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
413 if (r < 0) {
414 return r;
418 /* Do we need to save more than that? */
419 if (level == KVM_PUT_RUNTIME_STATE) {
420 return 0;
423 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
424 cs->kvm_run->s.regs.cputm = env->cputm;
425 cs->kvm_run->s.regs.ckc = env->ckc;
426 cs->kvm_run->s.regs.todpr = env->todpr;
427 cs->kvm_run->s.regs.gbea = env->gbea;
428 cs->kvm_run->s.regs.pp = env->pp;
429 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
430 } else {
432 * These ONE_REGS are not protected by a capability. As they are only
433 * necessary for migration we just trace a possible error, but don't
434 * return with an error return code.
436 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
437 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
438 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
439 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
440 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
443 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
444 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
445 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
448 /* pfault parameters */
449 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
450 cs->kvm_run->s.regs.pft = env->pfault_token;
451 cs->kvm_run->s.regs.pfs = env->pfault_select;
452 cs->kvm_run->s.regs.pfc = env->pfault_compare;
453 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
454 } else if (cap_async_pf) {
455 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
456 if (r < 0) {
457 return r;
459 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
460 if (r < 0) {
461 return r;
463 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
464 if (r < 0) {
465 return r;
469 /* access registers and control registers*/
470 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
471 for (i = 0; i < 16; i++) {
472 cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
473 cs->kvm_run->s.regs.crs[i] = env->cregs[i];
475 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
476 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
477 } else {
478 for (i = 0; i < 16; i++) {
479 sregs.acrs[i] = env->aregs[i];
480 sregs.crs[i] = env->cregs[i];
482 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
483 if (r < 0) {
484 return r;
488 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
489 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
490 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
493 /* Finally the prefix */
494 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
495 cs->kvm_run->s.regs.prefix = env->psa;
496 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
497 } else {
498 /* prefix is only supported via sync regs */
500 return 0;
503 int kvm_arch_get_registers(CPUState *cs)
505 S390CPU *cpu = S390_CPU(cs);
506 CPUS390XState *env = &cpu->env;
507 struct kvm_sregs sregs;
508 struct kvm_regs regs;
509 struct kvm_fpu fpu;
510 int i, r;
512 /* get the PSW */
513 env->psw.addr = cs->kvm_run->psw_addr;
514 env->psw.mask = cs->kvm_run->psw_mask;
516 /* the GPRS */
517 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
518 for (i = 0; i < 16; i++) {
519 env->regs[i] = cs->kvm_run->s.regs.gprs[i];
521 } else {
522 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
523 if (r < 0) {
524 return r;
526 for (i = 0; i < 16; i++) {
527 env->regs[i] = regs.gprs[i];
531 /* The ACRS and CRS */
532 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
533 for (i = 0; i < 16; i++) {
534 env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
535 env->cregs[i] = cs->kvm_run->s.regs.crs[i];
537 } else {
538 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
539 if (r < 0) {
540 return r;
542 for (i = 0; i < 16; i++) {
543 env->aregs[i] = sregs.acrs[i];
544 env->cregs[i] = sregs.crs[i];
548 /* Floating point and vector registers */
549 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
550 for (i = 0; i < 32; i++) {
551 env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0];
552 env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1];
554 env->fpc = cs->kvm_run->s.regs.fpc;
555 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
556 for (i = 0; i < 16; i++) {
557 get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i];
559 env->fpc = cs->kvm_run->s.regs.fpc;
560 } else {
561 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
562 if (r < 0) {
563 return r;
565 for (i = 0; i < 16; i++) {
566 get_freg(env, i)->ll = fpu.fprs[i];
568 env->fpc = fpu.fpc;
571 /* The prefix */
572 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
573 env->psa = cs->kvm_run->s.regs.prefix;
576 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
577 env->cputm = cs->kvm_run->s.regs.cputm;
578 env->ckc = cs->kvm_run->s.regs.ckc;
579 env->todpr = cs->kvm_run->s.regs.todpr;
580 env->gbea = cs->kvm_run->s.regs.gbea;
581 env->pp = cs->kvm_run->s.regs.pp;
582 } else {
584 * These ONE_REGS are not protected by a capability. As they are only
585 * necessary for migration we just trace a possible error, but don't
586 * return with an error return code.
588 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
589 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
590 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
591 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
592 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
595 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
596 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
599 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
600 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
603 /* pfault parameters */
604 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
605 env->pfault_token = cs->kvm_run->s.regs.pft;
606 env->pfault_select = cs->kvm_run->s.regs.pfs;
607 env->pfault_compare = cs->kvm_run->s.regs.pfc;
608 } else if (cap_async_pf) {
609 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
610 if (r < 0) {
611 return r;
613 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
614 if (r < 0) {
615 return r;
617 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
618 if (r < 0) {
619 return r;
623 return 0;
626 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
628 int r;
629 struct kvm_device_attr attr = {
630 .group = KVM_S390_VM_TOD,
631 .attr = KVM_S390_VM_TOD_LOW,
632 .addr = (uint64_t)tod_low,
635 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
636 if (r) {
637 return r;
640 attr.attr = KVM_S390_VM_TOD_HIGH;
641 attr.addr = (uint64_t)tod_high;
642 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
645 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
647 int r;
648 struct kvm_s390_vm_tod_clock gtod;
649 struct kvm_device_attr attr = {
650 .group = KVM_S390_VM_TOD,
651 .attr = KVM_S390_VM_TOD_EXT,
652 .addr = (uint64_t)&gtod,
655 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
656 *tod_high = gtod.epoch_idx;
657 *tod_low = gtod.tod;
659 return r;
662 int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low)
664 int r;
665 struct kvm_device_attr attr = {
666 .group = KVM_S390_VM_TOD,
667 .attr = KVM_S390_VM_TOD_LOW,
668 .addr = (uint64_t)tod_low,
671 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
672 if (r) {
673 return r;
676 attr.attr = KVM_S390_VM_TOD_HIGH;
677 attr.addr = (uint64_t)tod_high;
678 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
681 int kvm_s390_set_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
683 struct kvm_s390_vm_tod_clock gtod = {
684 .epoch_idx = *tod_high,
685 .tod = *tod_low,
687 struct kvm_device_attr attr = {
688 .group = KVM_S390_VM_TOD,
689 .attr = KVM_S390_VM_TOD_EXT,
690 .addr = (uint64_t)&gtod,
693 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
697 * kvm_s390_mem_op:
698 * @addr: the logical start address in guest memory
699 * @ar: the access register number
700 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
701 * @len: length that should be transferred
702 * @is_write: true = write, false = read
703 * Returns: 0 on success, non-zero if an exception or error occurred
705 * Use KVM ioctl to read/write from/to guest memory. An access exception
706 * is injected into the vCPU in case of translation errors.
708 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
709 int len, bool is_write)
711 struct kvm_s390_mem_op mem_op = {
712 .gaddr = addr,
713 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
714 .size = len,
715 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
716 : KVM_S390_MEMOP_LOGICAL_READ,
717 .buf = (uint64_t)hostbuf,
718 .ar = ar,
720 int ret;
722 if (!cap_mem_op) {
723 return -ENOSYS;
725 if (!hostbuf) {
726 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
729 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
730 if (ret < 0) {
731 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret));
733 return ret;
737 * Legacy layout for s390:
738 * Older S390 KVM requires the topmost vma of the RAM to be
739 * smaller than an system defined value, which is at least 256GB.
740 * Larger systems have larger values. We put the guest between
741 * the end of data segment (system break) and this value. We
742 * use 32GB as a base to have enough room for the system break
743 * to grow. We also have to use MAP parameters that avoid
744 * read-only mapping of guest pages.
746 static void *legacy_s390_alloc(size_t size, uint64_t *align)
748 void *mem;
750 mem = mmap((void *) 0x800000000ULL, size,
751 PROT_EXEC|PROT_READ|PROT_WRITE,
752 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
753 return mem == MAP_FAILED ? NULL : mem;
756 static uint8_t const *sw_bp_inst;
757 static uint8_t sw_bp_ilen;
759 static void determine_sw_breakpoint_instr(void)
761 /* DIAG 501 is used for sw breakpoints with old kernels */
762 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
763 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
764 static const uint8_t instr_0x0000[] = {0x00, 0x00};
766 if (sw_bp_inst) {
767 return;
769 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
770 sw_bp_inst = diag_501;
771 sw_bp_ilen = sizeof(diag_501);
772 DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
773 } else {
774 sw_bp_inst = instr_0x0000;
775 sw_bp_ilen = sizeof(instr_0x0000);
776 DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
780 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
782 determine_sw_breakpoint_instr();
784 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
785 sw_bp_ilen, 0) ||
786 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
787 return -EINVAL;
789 return 0;
792 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
794 uint8_t t[MAX_ILEN];
796 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
797 return -EINVAL;
798 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
799 return -EINVAL;
800 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
801 sw_bp_ilen, 1)) {
802 return -EINVAL;
805 return 0;
808 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
809 int len, int type)
811 int n;
813 for (n = 0; n < nb_hw_breakpoints; n++) {
814 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
815 (hw_breakpoints[n].len == len || len == -1)) {
816 return &hw_breakpoints[n];
820 return NULL;
823 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
825 int size;
827 if (find_hw_breakpoint(addr, len, type)) {
828 return -EEXIST;
831 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
833 if (!hw_breakpoints) {
834 nb_hw_breakpoints = 0;
835 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
836 } else {
837 hw_breakpoints =
838 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
841 if (!hw_breakpoints) {
842 nb_hw_breakpoints = 0;
843 return -ENOMEM;
846 hw_breakpoints[nb_hw_breakpoints].addr = addr;
847 hw_breakpoints[nb_hw_breakpoints].len = len;
848 hw_breakpoints[nb_hw_breakpoints].type = type;
850 nb_hw_breakpoints++;
852 return 0;
855 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
856 target_ulong len, int type)
858 switch (type) {
859 case GDB_BREAKPOINT_HW:
860 type = KVM_HW_BP;
861 break;
862 case GDB_WATCHPOINT_WRITE:
863 if (len < 1) {
864 return -EINVAL;
866 type = KVM_HW_WP_WRITE;
867 break;
868 default:
869 return -ENOSYS;
871 return insert_hw_breakpoint(addr, len, type);
874 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
875 target_ulong len, int type)
877 int size;
878 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
880 if (bp == NULL) {
881 return -ENOENT;
884 nb_hw_breakpoints--;
885 if (nb_hw_breakpoints > 0) {
887 * In order to trim the array, move the last element to the position to
888 * be removed - if necessary.
890 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
891 *bp = hw_breakpoints[nb_hw_breakpoints];
893 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
894 hw_breakpoints =
895 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
896 } else {
897 g_free(hw_breakpoints);
898 hw_breakpoints = NULL;
901 return 0;
904 void kvm_arch_remove_all_hw_breakpoints(void)
906 nb_hw_breakpoints = 0;
907 g_free(hw_breakpoints);
908 hw_breakpoints = NULL;
911 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
913 int i;
915 if (nb_hw_breakpoints > 0) {
916 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
917 dbg->arch.hw_bp = hw_breakpoints;
919 for (i = 0; i < nb_hw_breakpoints; ++i) {
920 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
921 hw_breakpoints[i].addr);
923 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
924 } else {
925 dbg->arch.nr_hw_bp = 0;
926 dbg->arch.hw_bp = NULL;
930 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
934 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
936 return MEMTXATTRS_UNSPECIFIED;
939 int kvm_arch_process_async_events(CPUState *cs)
941 return cs->halted;
944 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
945 struct kvm_s390_interrupt *interrupt)
947 int r = 0;
949 interrupt->type = irq->type;
950 switch (irq->type) {
951 case KVM_S390_INT_VIRTIO:
952 interrupt->parm = irq->u.ext.ext_params;
953 /* fall through */
954 case KVM_S390_INT_PFAULT_INIT:
955 case KVM_S390_INT_PFAULT_DONE:
956 interrupt->parm64 = irq->u.ext.ext_params2;
957 break;
958 case KVM_S390_PROGRAM_INT:
959 interrupt->parm = irq->u.pgm.code;
960 break;
961 case KVM_S390_SIGP_SET_PREFIX:
962 interrupt->parm = irq->u.prefix.address;
963 break;
964 case KVM_S390_INT_SERVICE:
965 interrupt->parm = irq->u.ext.ext_params;
966 break;
967 case KVM_S390_MCHK:
968 interrupt->parm = irq->u.mchk.cr14;
969 interrupt->parm64 = irq->u.mchk.mcic;
970 break;
971 case KVM_S390_INT_EXTERNAL_CALL:
972 interrupt->parm = irq->u.extcall.code;
973 break;
974 case KVM_S390_INT_EMERGENCY:
975 interrupt->parm = irq->u.emerg.code;
976 break;
977 case KVM_S390_SIGP_STOP:
978 case KVM_S390_RESTART:
979 break; /* These types have no parameters */
980 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
981 interrupt->parm = irq->u.io.subchannel_id << 16;
982 interrupt->parm |= irq->u.io.subchannel_nr;
983 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
984 interrupt->parm64 |= irq->u.io.io_int_word;
985 break;
986 default:
987 r = -EINVAL;
988 break;
990 return r;
993 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
995 struct kvm_s390_interrupt kvmint = {};
996 int r;
998 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
999 if (r < 0) {
1000 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1001 exit(1);
1004 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1005 if (r < 0) {
1006 fprintf(stderr, "KVM failed to inject interrupt\n");
1007 exit(1);
1011 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1013 CPUState *cs = CPU(cpu);
1014 int r;
1016 if (cap_s390_irq) {
1017 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1018 if (!r) {
1019 return;
1021 error_report("KVM failed to inject interrupt %llx", irq->type);
1022 exit(1);
1025 inject_vcpu_irq_legacy(cs, irq);
1028 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
1030 struct kvm_s390_interrupt kvmint = {};
1031 int r;
1033 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1034 if (r < 0) {
1035 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1036 exit(1);
1039 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1040 if (r < 0) {
1041 fprintf(stderr, "KVM failed to inject interrupt\n");
1042 exit(1);
1046 void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq)
1048 static bool use_flic = true;
1049 int r;
1051 if (use_flic) {
1052 r = kvm_s390_inject_flic(irq);
1053 if (r == -ENOSYS) {
1054 use_flic = false;
1056 if (!r) {
1057 return;
1060 __kvm_s390_floating_interrupt(irq);
1063 void kvm_s390_service_interrupt(uint32_t parm)
1065 struct kvm_s390_irq irq = {
1066 .type = KVM_S390_INT_SERVICE,
1067 .u.ext.ext_params = parm,
1070 kvm_s390_floating_interrupt(&irq);
1073 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1075 struct kvm_s390_irq irq = {
1076 .type = KVM_S390_PROGRAM_INT,
1077 .u.pgm.code = code,
1080 kvm_s390_vcpu_interrupt(cpu, &irq);
1083 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1085 struct kvm_s390_irq irq = {
1086 .type = KVM_S390_PROGRAM_INT,
1087 .u.pgm.code = code,
1088 .u.pgm.trans_exc_code = te_code,
1089 .u.pgm.exc_access_id = te_code & 3,
1092 kvm_s390_vcpu_interrupt(cpu, &irq);
1095 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1096 uint16_t ipbh0)
1098 CPUS390XState *env = &cpu->env;
1099 uint64_t sccb;
1100 uint32_t code;
1101 int r = 0;
1103 cpu_synchronize_state(CPU(cpu));
1104 sccb = env->regs[ipbh0 & 0xf];
1105 code = env->regs[(ipbh0 & 0xf0) >> 4];
1107 r = sclp_service_call(env, sccb, code);
1108 if (r < 0) {
1109 kvm_s390_program_interrupt(cpu, -r);
1110 } else {
1111 setcc(cpu, r);
1114 return 0;
1117 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1119 CPUS390XState *env = &cpu->env;
1120 int rc = 0;
1121 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1123 cpu_synchronize_state(CPU(cpu));
1125 switch (ipa1) {
1126 case PRIV_B2_XSCH:
1127 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1128 break;
1129 case PRIV_B2_CSCH:
1130 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1131 break;
1132 case PRIV_B2_HSCH:
1133 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1134 break;
1135 case PRIV_B2_MSCH:
1136 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1137 break;
1138 case PRIV_B2_SSCH:
1139 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1140 break;
1141 case PRIV_B2_STCRW:
1142 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1143 break;
1144 case PRIV_B2_STSCH:
1145 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1146 break;
1147 case PRIV_B2_TSCH:
1148 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1149 fprintf(stderr, "Spurious tsch intercept\n");
1150 break;
1151 case PRIV_B2_CHSC:
1152 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1153 break;
1154 case PRIV_B2_TPI:
1155 /* This should have been handled by kvm already. */
1156 fprintf(stderr, "Spurious tpi intercept\n");
1157 break;
1158 case PRIV_B2_SCHM:
1159 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1160 run->s390_sieic.ipb, RA_IGNORED);
1161 break;
1162 case PRIV_B2_RSCH:
1163 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1164 break;
1165 case PRIV_B2_RCHP:
1166 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1167 break;
1168 case PRIV_B2_STCPS:
1169 /* We do not provide this instruction, it is suppressed. */
1170 break;
1171 case PRIV_B2_SAL:
1172 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1173 break;
1174 case PRIV_B2_SIGA:
1175 /* Not provided, set CC = 3 for subchannel not operational */
1176 setcc(cpu, 3);
1177 break;
1178 case PRIV_B2_SCLP_CALL:
1179 rc = kvm_sclp_service_call(cpu, run, ipbh0);
1180 break;
1181 default:
1182 rc = -1;
1183 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1184 break;
1187 return rc;
1190 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1191 uint8_t *ar)
1193 CPUS390XState *env = &cpu->env;
1194 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1195 uint32_t base2 = run->s390_sieic.ipb >> 28;
1196 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1197 ((run->s390_sieic.ipb & 0xff00) << 4);
1199 if (disp2 & 0x80000) {
1200 disp2 += 0xfff00000;
1202 if (ar) {
1203 *ar = base2;
1206 return (base2 ? env->regs[base2] : 0) +
1207 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1210 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1211 uint8_t *ar)
1213 CPUS390XState *env = &cpu->env;
1214 uint32_t base2 = run->s390_sieic.ipb >> 28;
1215 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1216 ((run->s390_sieic.ipb & 0xff00) << 4);
1218 if (disp2 & 0x80000) {
1219 disp2 += 0xfff00000;
1221 if (ar) {
1222 *ar = base2;
1225 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1228 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1230 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1232 if (s390_has_feat(S390_FEAT_ZPCI)) {
1233 return clp_service_call(cpu, r2, RA_IGNORED);
1234 } else {
1235 return -1;
1239 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1241 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1242 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1244 if (s390_has_feat(S390_FEAT_ZPCI)) {
1245 return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1246 } else {
1247 return -1;
1251 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1253 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1254 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1256 if (s390_has_feat(S390_FEAT_ZPCI)) {
1257 return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1258 } else {
1259 return -1;
1263 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1265 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1266 uint64_t fiba;
1267 uint8_t ar;
1269 if (s390_has_feat(S390_FEAT_ZPCI)) {
1270 cpu_synchronize_state(CPU(cpu));
1271 fiba = get_base_disp_rxy(cpu, run, &ar);
1273 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1274 } else {
1275 return -1;
1279 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1281 CPUS390XState *env = &cpu->env;
1282 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1283 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1284 uint8_t isc;
1285 uint16_t mode;
1286 int r;
1288 cpu_synchronize_state(CPU(cpu));
1289 mode = env->regs[r1] & 0xffff;
1290 isc = (env->regs[r3] >> 27) & 0x7;
1291 r = css_do_sic(env, isc, mode);
1292 if (r) {
1293 kvm_s390_program_interrupt(cpu, -r);
1296 return 0;
1299 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1301 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1302 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1304 if (s390_has_feat(S390_FEAT_ZPCI)) {
1305 return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1306 } else {
1307 return -1;
1311 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1313 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1314 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1315 uint64_t gaddr;
1316 uint8_t ar;
1318 if (s390_has_feat(S390_FEAT_ZPCI)) {
1319 cpu_synchronize_state(CPU(cpu));
1320 gaddr = get_base_disp_rsy(cpu, run, &ar);
1322 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1323 } else {
1324 return -1;
1328 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1330 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1331 uint64_t fiba;
1332 uint8_t ar;
1334 if (s390_has_feat(S390_FEAT_ZPCI)) {
1335 cpu_synchronize_state(CPU(cpu));
1336 fiba = get_base_disp_rxy(cpu, run, &ar);
1338 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1339 } else {
1340 return -1;
1344 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1346 int r = 0;
1348 switch (ipa1) {
1349 case PRIV_B9_CLP:
1350 r = kvm_clp_service_call(cpu, run);
1351 break;
1352 case PRIV_B9_PCISTG:
1353 r = kvm_pcistg_service_call(cpu, run);
1354 break;
1355 case PRIV_B9_PCILG:
1356 r = kvm_pcilg_service_call(cpu, run);
1357 break;
1358 case PRIV_B9_RPCIT:
1359 r = kvm_rpcit_service_call(cpu, run);
1360 break;
1361 case PRIV_B9_EQBS:
1362 /* just inject exception */
1363 r = -1;
1364 break;
1365 default:
1366 r = -1;
1367 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1368 break;
1371 return r;
1374 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1376 int r = 0;
1378 switch (ipbl) {
1379 case PRIV_EB_PCISTB:
1380 r = kvm_pcistb_service_call(cpu, run);
1381 break;
1382 case PRIV_EB_SIC:
1383 r = kvm_sic_service_call(cpu, run);
1384 break;
1385 case PRIV_EB_SQBS:
1386 /* just inject exception */
1387 r = -1;
1388 break;
1389 default:
1390 r = -1;
1391 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1392 break;
1395 return r;
1398 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1400 int r = 0;
1402 switch (ipbl) {
1403 case PRIV_E3_MPCIFC:
1404 r = kvm_mpcifc_service_call(cpu, run);
1405 break;
1406 case PRIV_E3_STPCIFC:
1407 r = kvm_stpcifc_service_call(cpu, run);
1408 break;
1409 default:
1410 r = -1;
1411 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1412 break;
1415 return r;
1418 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1420 CPUS390XState *env = &cpu->env;
1421 int ret;
1423 cpu_synchronize_state(CPU(cpu));
1424 ret = s390_virtio_hypercall(env);
1425 if (ret == -EINVAL) {
1426 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1427 return 0;
1430 return ret;
1433 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1435 uint64_t r1, r3;
1436 int rc;
1438 cpu_synchronize_state(CPU(cpu));
1439 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1440 r3 = run->s390_sieic.ipa & 0x000f;
1441 rc = handle_diag_288(&cpu->env, r1, r3);
1442 if (rc) {
1443 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1447 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1449 uint64_t r1, r3;
1451 cpu_synchronize_state(CPU(cpu));
1452 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1453 r3 = run->s390_sieic.ipa & 0x000f;
1454 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1457 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1459 CPUS390XState *env = &cpu->env;
1460 unsigned long pc;
1462 cpu_synchronize_state(CPU(cpu));
1464 pc = env->psw.addr - sw_bp_ilen;
1465 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1466 env->psw.addr = pc;
1467 return EXCP_DEBUG;
1470 return -ENOENT;
1473 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1475 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1477 int r = 0;
1478 uint16_t func_code;
1481 * For any diagnose call we support, bits 48-63 of the resulting
1482 * address specify the function code; the remainder is ignored.
1484 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1485 switch (func_code) {
1486 case DIAG_TIMEREVENT:
1487 kvm_handle_diag_288(cpu, run);
1488 break;
1489 case DIAG_IPL:
1490 kvm_handle_diag_308(cpu, run);
1491 break;
1492 case DIAG_KVM_HYPERCALL:
1493 r = handle_hypercall(cpu, run);
1494 break;
1495 case DIAG_KVM_BREAKPOINT:
1496 r = handle_sw_breakpoint(cpu, run);
1497 break;
1498 default:
1499 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1500 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1501 break;
1504 return r;
1507 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1509 CPUS390XState *env = &cpu->env;
1510 const uint8_t r1 = ipa1 >> 4;
1511 const uint8_t r3 = ipa1 & 0x0f;
1512 int ret;
1513 uint8_t order;
1515 cpu_synchronize_state(CPU(cpu));
1517 /* get order code */
1518 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1520 ret = handle_sigp(env, order, r1, r3);
1521 setcc(cpu, ret);
1522 return 0;
1525 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1527 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1528 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1529 int r = -1;
1531 DPRINTF("handle_instruction 0x%x 0x%x\n",
1532 run->s390_sieic.ipa, run->s390_sieic.ipb);
1533 switch (ipa0) {
1534 case IPA0_B2:
1535 r = handle_b2(cpu, run, ipa1);
1536 break;
1537 case IPA0_B9:
1538 r = handle_b9(cpu, run, ipa1);
1539 break;
1540 case IPA0_EB:
1541 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1542 break;
1543 case IPA0_E3:
1544 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1545 break;
1546 case IPA0_DIAG:
1547 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1548 break;
1549 case IPA0_SIGP:
1550 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1551 break;
1554 if (r < 0) {
1555 r = 0;
1556 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1559 return r;
1562 static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset)
1564 CPUState *cs = CPU(cpu);
1566 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1567 str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset),
1568 ldq_phys(cs->as, cpu->env.psa + pswoffset + 8));
1569 s390_cpu_halt(cpu);
1570 qemu_system_guest_panicked(NULL);
1573 /* try to detect pgm check loops */
1574 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1576 CPUState *cs = CPU(cpu);
1577 PSW oldpsw, newpsw;
1579 cpu_synchronize_state(cs);
1580 newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1581 offsetof(LowCore, program_new_psw));
1582 newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1583 offsetof(LowCore, program_new_psw) + 8);
1584 oldpsw.mask = run->psw_mask;
1585 oldpsw.addr = run->psw_addr;
1587 * Avoid endless loops of operation exceptions, if the pgm new
1588 * PSW will cause a new operation exception.
1589 * The heuristic checks if the pgm new psw is within 6 bytes before
1590 * the faulting psw address (with same DAT, AS settings) and the
1591 * new psw is not a wait psw and the fault was not triggered by
1592 * problem state. In that case go into crashed state.
1595 if (oldpsw.addr - newpsw.addr <= 6 &&
1596 !(newpsw.mask & PSW_MASK_WAIT) &&
1597 !(oldpsw.mask & PSW_MASK_PSTATE) &&
1598 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1599 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1600 unmanageable_intercept(cpu, "operation exception loop",
1601 offsetof(LowCore, program_new_psw));
1602 return EXCP_HALTED;
1604 return 0;
1607 static int handle_intercept(S390CPU *cpu)
1609 CPUState *cs = CPU(cpu);
1610 struct kvm_run *run = cs->kvm_run;
1611 int icpt_code = run->s390_sieic.icptcode;
1612 int r = 0;
1614 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1615 (long)cs->kvm_run->psw_addr);
1616 switch (icpt_code) {
1617 case ICPT_INSTRUCTION:
1618 r = handle_instruction(cpu, run);
1619 break;
1620 case ICPT_PROGRAM:
1621 unmanageable_intercept(cpu, "program interrupt",
1622 offsetof(LowCore, program_new_psw));
1623 r = EXCP_HALTED;
1624 break;
1625 case ICPT_EXT_INT:
1626 unmanageable_intercept(cpu, "external interrupt",
1627 offsetof(LowCore, external_new_psw));
1628 r = EXCP_HALTED;
1629 break;
1630 case ICPT_WAITPSW:
1631 /* disabled wait, since enabled wait is handled in kernel */
1632 cpu_synchronize_state(cs);
1633 s390_handle_wait(cpu);
1634 r = EXCP_HALTED;
1635 break;
1636 case ICPT_CPU_STOP:
1637 do_stop_interrupt(&cpu->env);
1638 r = EXCP_HALTED;
1639 break;
1640 case ICPT_OPEREXC:
1641 /* check for break points */
1642 r = handle_sw_breakpoint(cpu, run);
1643 if (r == -ENOENT) {
1644 /* Then check for potential pgm check loops */
1645 r = handle_oper_loop(cpu, run);
1646 if (r == 0) {
1647 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1650 break;
1651 case ICPT_SOFT_INTERCEPT:
1652 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1653 exit(1);
1654 break;
1655 case ICPT_IO:
1656 fprintf(stderr, "KVM unimplemented icpt IO\n");
1657 exit(1);
1658 break;
1659 default:
1660 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1661 exit(1);
1662 break;
1665 return r;
1668 static int handle_tsch(S390CPU *cpu)
1670 CPUState *cs = CPU(cpu);
1671 struct kvm_run *run = cs->kvm_run;
1672 int ret;
1674 cpu_synchronize_state(cs);
1676 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1677 RA_IGNORED);
1678 if (ret < 0) {
1680 * Failure.
1681 * If an I/O interrupt had been dequeued, we have to reinject it.
1683 if (run->s390_tsch.dequeued) {
1684 kvm_s390_io_interrupt(run->s390_tsch.subchannel_id,
1685 run->s390_tsch.subchannel_nr,
1686 run->s390_tsch.io_int_parm,
1687 run->s390_tsch.io_int_word);
1689 ret = 0;
1691 return ret;
1694 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1696 struct sysib_322 sysib;
1697 int del;
1699 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1700 return;
1702 /* Shift the stack of Extended Names to prepare for our own data */
1703 memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1704 sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1705 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1706 * assumed it's not capable of managing Extended Names for lower levels.
1708 for (del = 1; del < sysib.count; del++) {
1709 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1710 break;
1713 if (del < sysib.count) {
1714 memset(sysib.ext_names[del], 0,
1715 sizeof(sysib.ext_names[0]) * (sysib.count - del));
1717 /* Insert short machine name in EBCDIC, padded with blanks */
1718 if (qemu_name) {
1719 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1720 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1721 strlen(qemu_name)));
1723 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1724 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
1725 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1726 * considered by s390 as not capable of providing any Extended Name.
1727 * Therefore if no name was specified on qemu invocation, we go with the
1728 * same "KVMguest" default, which KVM has filled into short name field.
1730 if (qemu_name) {
1731 strncpy((char *)sysib.ext_names[0], qemu_name,
1732 sizeof(sysib.ext_names[0]));
1733 } else {
1734 strcpy((char *)sysib.ext_names[0], "KVMguest");
1736 /* Insert UUID */
1737 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1739 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1742 static int handle_stsi(S390CPU *cpu)
1744 CPUState *cs = CPU(cpu);
1745 struct kvm_run *run = cs->kvm_run;
1747 switch (run->s390_stsi.fc) {
1748 case 3:
1749 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1750 return 0;
1752 /* Only sysib 3.2.2 needs post-handling for now. */
1753 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1754 return 0;
1755 default:
1756 return 0;
1760 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1762 CPUState *cs = CPU(cpu);
1763 struct kvm_run *run = cs->kvm_run;
1765 int ret = 0;
1766 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1768 switch (arch_info->type) {
1769 case KVM_HW_WP_WRITE:
1770 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1771 cs->watchpoint_hit = &hw_watchpoint;
1772 hw_watchpoint.vaddr = arch_info->addr;
1773 hw_watchpoint.flags = BP_MEM_WRITE;
1774 ret = EXCP_DEBUG;
1776 break;
1777 case KVM_HW_BP:
1778 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1779 ret = EXCP_DEBUG;
1781 break;
1782 case KVM_SINGLESTEP:
1783 if (cs->singlestep_enabled) {
1784 ret = EXCP_DEBUG;
1786 break;
1787 default:
1788 ret = -ENOSYS;
1791 return ret;
1794 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1796 S390CPU *cpu = S390_CPU(cs);
1797 int ret = 0;
1799 qemu_mutex_lock_iothread();
1801 switch (run->exit_reason) {
1802 case KVM_EXIT_S390_SIEIC:
1803 ret = handle_intercept(cpu);
1804 break;
1805 case KVM_EXIT_S390_RESET:
1806 s390_reipl_request();
1807 break;
1808 case KVM_EXIT_S390_TSCH:
1809 ret = handle_tsch(cpu);
1810 break;
1811 case KVM_EXIT_S390_STSI:
1812 ret = handle_stsi(cpu);
1813 break;
1814 case KVM_EXIT_DEBUG:
1815 ret = kvm_arch_handle_debug_exit(cpu);
1816 break;
1817 default:
1818 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1819 break;
1821 qemu_mutex_unlock_iothread();
1823 if (ret == 0) {
1824 ret = EXCP_INTERRUPT;
1826 return ret;
1829 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1831 return true;
1834 void kvm_s390_io_interrupt(uint16_t subchannel_id,
1835 uint16_t subchannel_nr, uint32_t io_int_parm,
1836 uint32_t io_int_word)
1838 struct kvm_s390_irq irq = {
1839 .u.io.subchannel_id = subchannel_id,
1840 .u.io.subchannel_nr = subchannel_nr,
1841 .u.io.io_int_parm = io_int_parm,
1842 .u.io.io_int_word = io_int_word,
1845 if (io_int_word & IO_INT_WORD_AI) {
1846 irq.type = KVM_S390_INT_IO(1, 0, 0, 0);
1847 } else {
1848 irq.type = KVM_S390_INT_IO(0, (subchannel_id & 0xff00) >> 8,
1849 (subchannel_id & 0x0006),
1850 subchannel_nr);
1852 kvm_s390_floating_interrupt(&irq);
1855 static uint64_t build_channel_report_mcic(void)
1857 uint64_t mcic;
1859 /* subclass: indicate channel report pending */
1860 mcic = MCIC_SC_CP |
1861 /* subclass modifiers: none */
1862 /* storage errors: none */
1863 /* validity bits: no damage */
1864 MCIC_VB_WP | MCIC_VB_MS | MCIC_VB_PM | MCIC_VB_IA | MCIC_VB_FP |
1865 MCIC_VB_GR | MCIC_VB_CR | MCIC_VB_ST | MCIC_VB_AR | MCIC_VB_PR |
1866 MCIC_VB_FC | MCIC_VB_CT | MCIC_VB_CC;
1867 if (s390_has_feat(S390_FEAT_VECTOR)) {
1868 mcic |= MCIC_VB_VR;
1870 if (s390_has_feat(S390_FEAT_GUARDED_STORAGE)) {
1871 mcic |= MCIC_VB_GS;
1873 return mcic;
1876 void kvm_s390_crw_mchk(void)
1878 struct kvm_s390_irq irq = {
1879 .type = KVM_S390_MCHK,
1880 .u.mchk.cr14 = 1 << 28,
1881 .u.mchk.mcic = build_channel_report_mcic(),
1883 kvm_s390_floating_interrupt(&irq);
1886 void kvm_s390_enable_css_support(S390CPU *cpu)
1888 int r;
1890 /* Activate host kernel channel subsystem support. */
1891 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1892 assert(r == 0);
1895 void kvm_arch_init_irq_routing(KVMState *s)
1898 * Note that while irqchip capabilities generally imply that cpustates
1899 * are handled in-kernel, it is not true for s390 (yet); therefore, we
1900 * have to override the common code kvm_halt_in_kernel_allowed setting.
1902 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1903 kvm_gsi_routing_allowed = true;
1904 kvm_halt_in_kernel_allowed = false;
1908 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
1909 int vq, bool assign)
1911 struct kvm_ioeventfd kick = {
1912 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
1913 KVM_IOEVENTFD_FLAG_DATAMATCH,
1914 .fd = event_notifier_get_fd(notifier),
1915 .datamatch = vq,
1916 .addr = sch,
1917 .len = 8,
1919 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
1920 return -ENOSYS;
1922 if (!assign) {
1923 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1925 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1928 int kvm_s390_get_memslot_count(void)
1930 return kvm_check_extension(kvm_state, KVM_CAP_NR_MEMSLOTS);
1933 int kvm_s390_get_ri(void)
1935 return cap_ri;
1938 int kvm_s390_get_gs(void)
1940 return cap_gs;
1943 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
1945 struct kvm_mp_state mp_state = {};
1946 int ret;
1948 /* the kvm part might not have been initialized yet */
1949 if (CPU(cpu)->kvm_state == NULL) {
1950 return 0;
1953 switch (cpu_state) {
1954 case CPU_STATE_STOPPED:
1955 mp_state.mp_state = KVM_MP_STATE_STOPPED;
1956 break;
1957 case CPU_STATE_CHECK_STOP:
1958 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
1959 break;
1960 case CPU_STATE_OPERATING:
1961 mp_state.mp_state = KVM_MP_STATE_OPERATING;
1962 break;
1963 case CPU_STATE_LOAD:
1964 mp_state.mp_state = KVM_MP_STATE_LOAD;
1965 break;
1966 default:
1967 error_report("Requested CPU state is not a valid S390 CPU state: %u",
1968 cpu_state);
1969 exit(1);
1972 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1973 if (ret) {
1974 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
1975 strerror(-ret));
1978 return ret;
1981 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
1983 struct kvm_s390_irq_state irq_state = {
1984 .buf = (uint64_t) cpu->irqstate,
1985 .len = VCPU_IRQ_BUF_SIZE,
1987 CPUState *cs = CPU(cpu);
1988 int32_t bytes;
1990 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
1991 return;
1994 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
1995 if (bytes < 0) {
1996 cpu->irqstate_saved_size = 0;
1997 error_report("Migration of interrupt state failed");
1998 return;
2001 cpu->irqstate_saved_size = bytes;
2004 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2006 CPUState *cs = CPU(cpu);
2007 struct kvm_s390_irq_state irq_state = {
2008 .buf = (uint64_t) cpu->irqstate,
2009 .len = cpu->irqstate_saved_size,
2011 int r;
2013 if (cpu->irqstate_saved_size == 0) {
2014 return 0;
2017 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2018 return -ENOSYS;
2021 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2022 if (r) {
2023 error_report("Setting interrupt state failed %d", r);
2025 return r;
2028 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2029 uint64_t address, uint32_t data, PCIDevice *dev)
2031 S390PCIBusDevice *pbdev;
2032 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2034 if (!dev) {
2035 DPRINTF("add_msi_route no pci device\n");
2036 return -ENODEV;
2039 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2040 if (!pbdev) {
2041 DPRINTF("add_msi_route no zpci device\n");
2042 return -ENODEV;
2045 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2046 route->flags = 0;
2047 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2048 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2049 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2050 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2051 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2052 return 0;
2055 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2056 int vector, PCIDevice *dev)
2058 return 0;
2061 int kvm_arch_release_virq_post(int virq)
2063 return 0;
2066 int kvm_arch_msi_data_to_gsi(uint32_t data)
2068 abort();
2071 static int query_cpu_subfunc(S390FeatBitmap features)
2073 struct kvm_s390_vm_cpu_subfunc prop;
2074 struct kvm_device_attr attr = {
2075 .group = KVM_S390_VM_CPU_MODEL,
2076 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2077 .addr = (uint64_t) &prop,
2079 int rc;
2081 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2082 if (rc) {
2083 return rc;
2087 * We're going to add all subfunctions now, if the corresponding feature
2088 * is available that unlocks the query functions.
2090 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2091 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2092 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2094 if (test_bit(S390_FEAT_MSA, features)) {
2095 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2096 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2097 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2098 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2099 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2101 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2102 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2104 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2105 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2106 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2107 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2108 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2110 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2111 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2113 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2114 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2116 return 0;
2119 static int configure_cpu_subfunc(const S390FeatBitmap features)
2121 struct kvm_s390_vm_cpu_subfunc prop = {};
2122 struct kvm_device_attr attr = {
2123 .group = KVM_S390_VM_CPU_MODEL,
2124 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2125 .addr = (uint64_t) &prop,
2128 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2129 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2130 /* hardware support might be missing, IBC will handle most of this */
2131 return 0;
2134 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2135 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2136 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2138 if (test_bit(S390_FEAT_MSA, features)) {
2139 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2140 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2141 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2142 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2143 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2145 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2146 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2148 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2149 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2150 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2151 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2152 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2154 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2155 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2157 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2158 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2160 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2163 static int kvm_to_feat[][2] = {
2164 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2165 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2166 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2167 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2168 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2169 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2170 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2171 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2172 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2173 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2174 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2175 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2176 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2177 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2180 static int query_cpu_feat(S390FeatBitmap features)
2182 struct kvm_s390_vm_cpu_feat prop;
2183 struct kvm_device_attr attr = {
2184 .group = KVM_S390_VM_CPU_MODEL,
2185 .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2186 .addr = (uint64_t) &prop,
2188 int rc;
2189 int i;
2191 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2192 if (rc) {
2193 return rc;
2196 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2197 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2198 set_bit(kvm_to_feat[i][1], features);
2201 return 0;
2204 static int configure_cpu_feat(const S390FeatBitmap features)
2206 struct kvm_s390_vm_cpu_feat prop = {};
2207 struct kvm_device_attr attr = {
2208 .group = KVM_S390_VM_CPU_MODEL,
2209 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2210 .addr = (uint64_t) &prop,
2212 int i;
2214 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2215 if (test_bit(kvm_to_feat[i][1], features)) {
2216 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2219 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2222 bool kvm_s390_cpu_models_supported(void)
2224 if (!cpu_model_allowed()) {
2225 /* compatibility machines interfere with the cpu model */
2226 return false;
2228 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2229 KVM_S390_VM_CPU_MACHINE) &&
2230 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2231 KVM_S390_VM_CPU_PROCESSOR) &&
2232 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2233 KVM_S390_VM_CPU_MACHINE_FEAT) &&
2234 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2235 KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2236 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2237 KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2240 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2242 struct kvm_s390_vm_cpu_machine prop = {};
2243 struct kvm_device_attr attr = {
2244 .group = KVM_S390_VM_CPU_MODEL,
2245 .attr = KVM_S390_VM_CPU_MACHINE,
2246 .addr = (uint64_t) &prop,
2248 uint16_t unblocked_ibc = 0, cpu_type = 0;
2249 int rc;
2251 memset(model, 0, sizeof(*model));
2253 if (!kvm_s390_cpu_models_supported()) {
2254 error_setg(errp, "KVM doesn't support CPU models");
2255 return;
2258 /* query the basic cpu model properties */
2259 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2260 if (rc) {
2261 error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2262 return;
2265 cpu_type = cpuid_type(prop.cpuid);
2266 if (has_ibc(prop.ibc)) {
2267 model->lowest_ibc = lowest_ibc(prop.ibc);
2268 unblocked_ibc = unblocked_ibc(prop.ibc);
2270 model->cpu_id = cpuid_id(prop.cpuid);
2271 model->cpu_id_format = cpuid_format(prop.cpuid);
2272 model->cpu_ver = 0xff;
2274 /* get supported cpu features indicated via STFL(E) */
2275 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2276 (uint8_t *) prop.fac_mask);
2277 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2278 if (test_bit(S390_FEAT_STFLE, model->features)) {
2279 set_bit(S390_FEAT_DAT_ENH_2, model->features);
2281 /* get supported cpu features indicated e.g. via SCLP */
2282 rc = query_cpu_feat(model->features);
2283 if (rc) {
2284 error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2285 return;
2287 /* get supported cpu subfunctions indicated via query / test bit */
2288 rc = query_cpu_subfunc(model->features);
2289 if (rc) {
2290 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2291 return;
2294 /* with cpu model support, CMM is only indicated if really available */
2295 if (kvm_s390_cmma_available()) {
2296 set_bit(S390_FEAT_CMM, model->features);
2297 } else {
2298 /* no cmm -> no cmm nt */
2299 clear_bit(S390_FEAT_CMM_NT, model->features);
2302 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2303 if (pci_available) {
2304 set_bit(S390_FEAT_ZPCI, model->features);
2306 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2308 if (s390_known_cpu_type(cpu_type)) {
2309 /* we want the exact model, even if some features are missing */
2310 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2311 ibc_ec_ga(unblocked_ibc), NULL);
2312 } else {
2313 /* model unknown, e.g. too new - search using features */
2314 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2315 ibc_ec_ga(unblocked_ibc),
2316 model->features);
2318 if (!model->def) {
2319 error_setg(errp, "KVM: host CPU model could not be identified");
2320 return;
2322 /* strip of features that are not part of the maximum model */
2323 bitmap_and(model->features, model->features, model->def->full_feat,
2324 S390_FEAT_MAX);
2327 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2329 struct kvm_s390_vm_cpu_processor prop = {
2330 .fac_list = { 0 },
2332 struct kvm_device_attr attr = {
2333 .group = KVM_S390_VM_CPU_MODEL,
2334 .attr = KVM_S390_VM_CPU_PROCESSOR,
2335 .addr = (uint64_t) &prop,
2337 int rc;
2339 if (!model) {
2340 /* compatibility handling if cpu models are disabled */
2341 if (kvm_s390_cmma_available()) {
2342 kvm_s390_enable_cmma();
2344 return;
2346 if (!kvm_s390_cpu_models_supported()) {
2347 error_setg(errp, "KVM doesn't support CPU models");
2348 return;
2350 prop.cpuid = s390_cpuid_from_cpu_model(model);
2351 prop.ibc = s390_ibc_from_cpu_model(model);
2352 /* configure cpu features indicated via STFL(e) */
2353 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2354 (uint8_t *) prop.fac_list);
2355 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2356 if (rc) {
2357 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2358 return;
2360 /* configure cpu features indicated e.g. via SCLP */
2361 rc = configure_cpu_feat(model->features);
2362 if (rc) {
2363 error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2364 return;
2366 /* configure cpu subfunctions indicated via query / test bit */
2367 rc = configure_cpu_subfunc(model->features);
2368 if (rc) {
2369 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2370 return;
2372 /* enable CMM via CMMA */
2373 if (test_bit(S390_FEAT_CMM, model->features)) {
2374 kvm_s390_enable_cmma();
2378 void kvm_s390_restart_interrupt(S390CPU *cpu)
2380 struct kvm_s390_irq irq = {
2381 .type = KVM_S390_RESTART,
2384 kvm_s390_vcpu_interrupt(cpu, &irq);
2387 void kvm_s390_stop_interrupt(S390CPU *cpu)
2389 struct kvm_s390_irq irq = {
2390 .type = KVM_S390_SIGP_STOP,
2393 kvm_s390_vcpu_interrupt(cpu, &irq);