gitlab: Extract cross-container jobs to container-cross.yml
[qemu/ar7.git] / target / riscv / vector_helper.c
blob12c31aa4b4d4bdd3a1de81eb69f2a67009c0efd6
1 /*
2 * RISC-V Vector Extension Helpers for QEMU.
4 * Copyright (c) 2020 T-Head Semiconductor Co., Ltd. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/memop.h"
22 #include "exec/exec-all.h"
23 #include "exec/helper-proto.h"
24 #include "fpu/softfloat.h"
25 #include "tcg/tcg-gvec-desc.h"
26 #include "internals.h"
27 #include <math.h>
29 target_ulong HELPER(vsetvl)(CPURISCVState *env, target_ulong s1,
30 target_ulong s2)
32 int vlmax, vl;
33 RISCVCPU *cpu = env_archcpu(env);
34 uint16_t sew = 8 << FIELD_EX64(s2, VTYPE, VSEW);
35 uint8_t ediv = FIELD_EX64(s2, VTYPE, VEDIV);
36 bool vill = FIELD_EX64(s2, VTYPE, VILL);
37 target_ulong reserved = FIELD_EX64(s2, VTYPE, RESERVED);
39 if ((sew > cpu->cfg.elen) || vill || (ediv != 0) || (reserved != 0)) {
40 /* only set vill bit. */
41 env->vtype = FIELD_DP64(0, VTYPE, VILL, 1);
42 env->vl = 0;
43 env->vstart = 0;
44 return 0;
47 vlmax = vext_get_vlmax(cpu, s2);
48 if (s1 <= vlmax) {
49 vl = s1;
50 } else {
51 vl = vlmax;
53 env->vl = vl;
54 env->vtype = s2;
55 env->vstart = 0;
56 return vl;
60 * Note that vector data is stored in host-endian 64-bit chunks,
61 * so addressing units smaller than that needs a host-endian fixup.
63 #ifdef HOST_WORDS_BIGENDIAN
64 #define H1(x) ((x) ^ 7)
65 #define H1_2(x) ((x) ^ 6)
66 #define H1_4(x) ((x) ^ 4)
67 #define H2(x) ((x) ^ 3)
68 #define H4(x) ((x) ^ 1)
69 #define H8(x) ((x))
70 #else
71 #define H1(x) (x)
72 #define H1_2(x) (x)
73 #define H1_4(x) (x)
74 #define H2(x) (x)
75 #define H4(x) (x)
76 #define H8(x) (x)
77 #endif
79 static inline uint32_t vext_nf(uint32_t desc)
81 return FIELD_EX32(simd_data(desc), VDATA, NF);
84 static inline uint32_t vext_mlen(uint32_t desc)
86 return FIELD_EX32(simd_data(desc), VDATA, MLEN);
89 static inline uint32_t vext_vm(uint32_t desc)
91 return FIELD_EX32(simd_data(desc), VDATA, VM);
94 static inline uint32_t vext_lmul(uint32_t desc)
96 return FIELD_EX32(simd_data(desc), VDATA, LMUL);
99 static uint32_t vext_wd(uint32_t desc)
101 return (simd_data(desc) >> 11) & 0x1;
105 * Get vector group length in bytes. Its range is [64, 2048].
107 * As simd_desc support at most 256, the max vlen is 512 bits.
108 * So vlen in bytes is encoded as maxsz.
110 static inline uint32_t vext_maxsz(uint32_t desc)
112 return simd_maxsz(desc) << vext_lmul(desc);
116 * This function checks watchpoint before real load operation.
118 * In softmmu mode, the TLB API probe_access is enough for watchpoint check.
119 * In user mode, there is no watchpoint support now.
121 * It will trigger an exception if there is no mapping in TLB
122 * and page table walk can't fill the TLB entry. Then the guest
123 * software can return here after process the exception or never return.
125 static void probe_pages(CPURISCVState *env, target_ulong addr,
126 target_ulong len, uintptr_t ra,
127 MMUAccessType access_type)
129 target_ulong pagelen = -(addr | TARGET_PAGE_MASK);
130 target_ulong curlen = MIN(pagelen, len);
132 probe_access(env, addr, curlen, access_type,
133 cpu_mmu_index(env, false), ra);
134 if (len > curlen) {
135 addr += curlen;
136 curlen = len - curlen;
137 probe_access(env, addr, curlen, access_type,
138 cpu_mmu_index(env, false), ra);
142 #ifdef HOST_WORDS_BIGENDIAN
143 static void vext_clear(void *tail, uint32_t cnt, uint32_t tot)
146 * Split the remaining range to two parts.
147 * The first part is in the last uint64_t unit.
148 * The second part start from the next uint64_t unit.
150 int part1 = 0, part2 = tot - cnt;
151 if (cnt % 8) {
152 part1 = 8 - (cnt % 8);
153 part2 = tot - cnt - part1;
154 memset(QEMU_ALIGN_PTR_DOWN(tail, 8), 0, part1);
155 memset(QEMU_ALIGN_PTR_UP(tail, 8), 0, part2);
156 } else {
157 memset(tail, 0, part2);
160 #else
161 static void vext_clear(void *tail, uint32_t cnt, uint32_t tot)
163 memset(tail, 0, tot - cnt);
165 #endif
167 static void clearb(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot)
169 int8_t *cur = ((int8_t *)vd + H1(idx));
170 vext_clear(cur, cnt, tot);
173 static void clearh(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot)
175 int16_t *cur = ((int16_t *)vd + H2(idx));
176 vext_clear(cur, cnt, tot);
179 static void clearl(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot)
181 int32_t *cur = ((int32_t *)vd + H4(idx));
182 vext_clear(cur, cnt, tot);
185 static void clearq(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot)
187 int64_t *cur = (int64_t *)vd + idx;
188 vext_clear(cur, cnt, tot);
191 static inline void vext_set_elem_mask(void *v0, int mlen, int index,
192 uint8_t value)
194 int idx = (index * mlen) / 64;
195 int pos = (index * mlen) % 64;
196 uint64_t old = ((uint64_t *)v0)[idx];
197 ((uint64_t *)v0)[idx] = deposit64(old, pos, mlen, value);
200 static inline int vext_elem_mask(void *v0, int mlen, int index)
202 int idx = (index * mlen) / 64;
203 int pos = (index * mlen) % 64;
204 return (((uint64_t *)v0)[idx] >> pos) & 1;
207 /* elements operations for load and store */
208 typedef void vext_ldst_elem_fn(CPURISCVState *env, target_ulong addr,
209 uint32_t idx, void *vd, uintptr_t retaddr);
210 typedef void clear_fn(void *vd, uint32_t idx, uint32_t cnt, uint32_t tot);
212 #define GEN_VEXT_LD_ELEM(NAME, MTYPE, ETYPE, H, LDSUF) \
213 static void NAME(CPURISCVState *env, abi_ptr addr, \
214 uint32_t idx, void *vd, uintptr_t retaddr)\
216 MTYPE data; \
217 ETYPE *cur = ((ETYPE *)vd + H(idx)); \
218 data = cpu_##LDSUF##_data_ra(env, addr, retaddr); \
219 *cur = data; \
222 GEN_VEXT_LD_ELEM(ldb_b, int8_t, int8_t, H1, ldsb)
223 GEN_VEXT_LD_ELEM(ldb_h, int8_t, int16_t, H2, ldsb)
224 GEN_VEXT_LD_ELEM(ldb_w, int8_t, int32_t, H4, ldsb)
225 GEN_VEXT_LD_ELEM(ldb_d, int8_t, int64_t, H8, ldsb)
226 GEN_VEXT_LD_ELEM(ldh_h, int16_t, int16_t, H2, ldsw)
227 GEN_VEXT_LD_ELEM(ldh_w, int16_t, int32_t, H4, ldsw)
228 GEN_VEXT_LD_ELEM(ldh_d, int16_t, int64_t, H8, ldsw)
229 GEN_VEXT_LD_ELEM(ldw_w, int32_t, int32_t, H4, ldl)
230 GEN_VEXT_LD_ELEM(ldw_d, int32_t, int64_t, H8, ldl)
231 GEN_VEXT_LD_ELEM(lde_b, int8_t, int8_t, H1, ldsb)
232 GEN_VEXT_LD_ELEM(lde_h, int16_t, int16_t, H2, ldsw)
233 GEN_VEXT_LD_ELEM(lde_w, int32_t, int32_t, H4, ldl)
234 GEN_VEXT_LD_ELEM(lde_d, int64_t, int64_t, H8, ldq)
235 GEN_VEXT_LD_ELEM(ldbu_b, uint8_t, uint8_t, H1, ldub)
236 GEN_VEXT_LD_ELEM(ldbu_h, uint8_t, uint16_t, H2, ldub)
237 GEN_VEXT_LD_ELEM(ldbu_w, uint8_t, uint32_t, H4, ldub)
238 GEN_VEXT_LD_ELEM(ldbu_d, uint8_t, uint64_t, H8, ldub)
239 GEN_VEXT_LD_ELEM(ldhu_h, uint16_t, uint16_t, H2, lduw)
240 GEN_VEXT_LD_ELEM(ldhu_w, uint16_t, uint32_t, H4, lduw)
241 GEN_VEXT_LD_ELEM(ldhu_d, uint16_t, uint64_t, H8, lduw)
242 GEN_VEXT_LD_ELEM(ldwu_w, uint32_t, uint32_t, H4, ldl)
243 GEN_VEXT_LD_ELEM(ldwu_d, uint32_t, uint64_t, H8, ldl)
245 #define GEN_VEXT_ST_ELEM(NAME, ETYPE, H, STSUF) \
246 static void NAME(CPURISCVState *env, abi_ptr addr, \
247 uint32_t idx, void *vd, uintptr_t retaddr)\
249 ETYPE data = *((ETYPE *)vd + H(idx)); \
250 cpu_##STSUF##_data_ra(env, addr, data, retaddr); \
253 GEN_VEXT_ST_ELEM(stb_b, int8_t, H1, stb)
254 GEN_VEXT_ST_ELEM(stb_h, int16_t, H2, stb)
255 GEN_VEXT_ST_ELEM(stb_w, int32_t, H4, stb)
256 GEN_VEXT_ST_ELEM(stb_d, int64_t, H8, stb)
257 GEN_VEXT_ST_ELEM(sth_h, int16_t, H2, stw)
258 GEN_VEXT_ST_ELEM(sth_w, int32_t, H4, stw)
259 GEN_VEXT_ST_ELEM(sth_d, int64_t, H8, stw)
260 GEN_VEXT_ST_ELEM(stw_w, int32_t, H4, stl)
261 GEN_VEXT_ST_ELEM(stw_d, int64_t, H8, stl)
262 GEN_VEXT_ST_ELEM(ste_b, int8_t, H1, stb)
263 GEN_VEXT_ST_ELEM(ste_h, int16_t, H2, stw)
264 GEN_VEXT_ST_ELEM(ste_w, int32_t, H4, stl)
265 GEN_VEXT_ST_ELEM(ste_d, int64_t, H8, stq)
268 *** stride: access vector element from strided memory
270 static void
271 vext_ldst_stride(void *vd, void *v0, target_ulong base,
272 target_ulong stride, CPURISCVState *env,
273 uint32_t desc, uint32_t vm,
274 vext_ldst_elem_fn *ldst_elem, clear_fn *clear_elem,
275 uint32_t esz, uint32_t msz, uintptr_t ra,
276 MMUAccessType access_type)
278 uint32_t i, k;
279 uint32_t nf = vext_nf(desc);
280 uint32_t mlen = vext_mlen(desc);
281 uint32_t vlmax = vext_maxsz(desc) / esz;
283 /* probe every access*/
284 for (i = 0; i < env->vl; i++) {
285 if (!vm && !vext_elem_mask(v0, mlen, i)) {
286 continue;
288 probe_pages(env, base + stride * i, nf * msz, ra, access_type);
290 /* do real access */
291 for (i = 0; i < env->vl; i++) {
292 k = 0;
293 if (!vm && !vext_elem_mask(v0, mlen, i)) {
294 continue;
296 while (k < nf) {
297 target_ulong addr = base + stride * i + k * msz;
298 ldst_elem(env, addr, i + k * vlmax, vd, ra);
299 k++;
302 /* clear tail elements */
303 if (clear_elem) {
304 for (k = 0; k < nf; k++) {
305 clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz);
310 #define GEN_VEXT_LD_STRIDE(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \
311 void HELPER(NAME)(void *vd, void * v0, target_ulong base, \
312 target_ulong stride, CPURISCVState *env, \
313 uint32_t desc) \
315 uint32_t vm = vext_vm(desc); \
316 vext_ldst_stride(vd, v0, base, stride, env, desc, vm, LOAD_FN, \
317 CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
318 GETPC(), MMU_DATA_LOAD); \
321 GEN_VEXT_LD_STRIDE(vlsb_v_b, int8_t, int8_t, ldb_b, clearb)
322 GEN_VEXT_LD_STRIDE(vlsb_v_h, int8_t, int16_t, ldb_h, clearh)
323 GEN_VEXT_LD_STRIDE(vlsb_v_w, int8_t, int32_t, ldb_w, clearl)
324 GEN_VEXT_LD_STRIDE(vlsb_v_d, int8_t, int64_t, ldb_d, clearq)
325 GEN_VEXT_LD_STRIDE(vlsh_v_h, int16_t, int16_t, ldh_h, clearh)
326 GEN_VEXT_LD_STRIDE(vlsh_v_w, int16_t, int32_t, ldh_w, clearl)
327 GEN_VEXT_LD_STRIDE(vlsh_v_d, int16_t, int64_t, ldh_d, clearq)
328 GEN_VEXT_LD_STRIDE(vlsw_v_w, int32_t, int32_t, ldw_w, clearl)
329 GEN_VEXT_LD_STRIDE(vlsw_v_d, int32_t, int64_t, ldw_d, clearq)
330 GEN_VEXT_LD_STRIDE(vlse_v_b, int8_t, int8_t, lde_b, clearb)
331 GEN_VEXT_LD_STRIDE(vlse_v_h, int16_t, int16_t, lde_h, clearh)
332 GEN_VEXT_LD_STRIDE(vlse_v_w, int32_t, int32_t, lde_w, clearl)
333 GEN_VEXT_LD_STRIDE(vlse_v_d, int64_t, int64_t, lde_d, clearq)
334 GEN_VEXT_LD_STRIDE(vlsbu_v_b, uint8_t, uint8_t, ldbu_b, clearb)
335 GEN_VEXT_LD_STRIDE(vlsbu_v_h, uint8_t, uint16_t, ldbu_h, clearh)
336 GEN_VEXT_LD_STRIDE(vlsbu_v_w, uint8_t, uint32_t, ldbu_w, clearl)
337 GEN_VEXT_LD_STRIDE(vlsbu_v_d, uint8_t, uint64_t, ldbu_d, clearq)
338 GEN_VEXT_LD_STRIDE(vlshu_v_h, uint16_t, uint16_t, ldhu_h, clearh)
339 GEN_VEXT_LD_STRIDE(vlshu_v_w, uint16_t, uint32_t, ldhu_w, clearl)
340 GEN_VEXT_LD_STRIDE(vlshu_v_d, uint16_t, uint64_t, ldhu_d, clearq)
341 GEN_VEXT_LD_STRIDE(vlswu_v_w, uint32_t, uint32_t, ldwu_w, clearl)
342 GEN_VEXT_LD_STRIDE(vlswu_v_d, uint32_t, uint64_t, ldwu_d, clearq)
344 #define GEN_VEXT_ST_STRIDE(NAME, MTYPE, ETYPE, STORE_FN) \
345 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
346 target_ulong stride, CPURISCVState *env, \
347 uint32_t desc) \
349 uint32_t vm = vext_vm(desc); \
350 vext_ldst_stride(vd, v0, base, stride, env, desc, vm, STORE_FN, \
351 NULL, sizeof(ETYPE), sizeof(MTYPE), \
352 GETPC(), MMU_DATA_STORE); \
355 GEN_VEXT_ST_STRIDE(vssb_v_b, int8_t, int8_t, stb_b)
356 GEN_VEXT_ST_STRIDE(vssb_v_h, int8_t, int16_t, stb_h)
357 GEN_VEXT_ST_STRIDE(vssb_v_w, int8_t, int32_t, stb_w)
358 GEN_VEXT_ST_STRIDE(vssb_v_d, int8_t, int64_t, stb_d)
359 GEN_VEXT_ST_STRIDE(vssh_v_h, int16_t, int16_t, sth_h)
360 GEN_VEXT_ST_STRIDE(vssh_v_w, int16_t, int32_t, sth_w)
361 GEN_VEXT_ST_STRIDE(vssh_v_d, int16_t, int64_t, sth_d)
362 GEN_VEXT_ST_STRIDE(vssw_v_w, int32_t, int32_t, stw_w)
363 GEN_VEXT_ST_STRIDE(vssw_v_d, int32_t, int64_t, stw_d)
364 GEN_VEXT_ST_STRIDE(vsse_v_b, int8_t, int8_t, ste_b)
365 GEN_VEXT_ST_STRIDE(vsse_v_h, int16_t, int16_t, ste_h)
366 GEN_VEXT_ST_STRIDE(vsse_v_w, int32_t, int32_t, ste_w)
367 GEN_VEXT_ST_STRIDE(vsse_v_d, int64_t, int64_t, ste_d)
370 *** unit-stride: access elements stored contiguously in memory
373 /* unmasked unit-stride load and store operation*/
374 static void
375 vext_ldst_us(void *vd, target_ulong base, CPURISCVState *env, uint32_t desc,
376 vext_ldst_elem_fn *ldst_elem, clear_fn *clear_elem,
377 uint32_t esz, uint32_t msz, uintptr_t ra,
378 MMUAccessType access_type)
380 uint32_t i, k;
381 uint32_t nf = vext_nf(desc);
382 uint32_t vlmax = vext_maxsz(desc) / esz;
384 /* probe every access */
385 probe_pages(env, base, env->vl * nf * msz, ra, access_type);
386 /* load bytes from guest memory */
387 for (i = 0; i < env->vl; i++) {
388 k = 0;
389 while (k < nf) {
390 target_ulong addr = base + (i * nf + k) * msz;
391 ldst_elem(env, addr, i + k * vlmax, vd, ra);
392 k++;
395 /* clear tail elements */
396 if (clear_elem) {
397 for (k = 0; k < nf; k++) {
398 clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz);
404 * masked unit-stride load and store operation will be a special case of stride,
405 * stride = NF * sizeof (MTYPE)
408 #define GEN_VEXT_LD_US(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \
409 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \
410 CPURISCVState *env, uint32_t desc) \
412 uint32_t stride = vext_nf(desc) * sizeof(MTYPE); \
413 vext_ldst_stride(vd, v0, base, stride, env, desc, false, LOAD_FN, \
414 CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
415 GETPC(), MMU_DATA_LOAD); \
418 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
419 CPURISCVState *env, uint32_t desc) \
421 vext_ldst_us(vd, base, env, desc, LOAD_FN, CLEAR_FN, \
422 sizeof(ETYPE), sizeof(MTYPE), GETPC(), MMU_DATA_LOAD); \
425 GEN_VEXT_LD_US(vlb_v_b, int8_t, int8_t, ldb_b, clearb)
426 GEN_VEXT_LD_US(vlb_v_h, int8_t, int16_t, ldb_h, clearh)
427 GEN_VEXT_LD_US(vlb_v_w, int8_t, int32_t, ldb_w, clearl)
428 GEN_VEXT_LD_US(vlb_v_d, int8_t, int64_t, ldb_d, clearq)
429 GEN_VEXT_LD_US(vlh_v_h, int16_t, int16_t, ldh_h, clearh)
430 GEN_VEXT_LD_US(vlh_v_w, int16_t, int32_t, ldh_w, clearl)
431 GEN_VEXT_LD_US(vlh_v_d, int16_t, int64_t, ldh_d, clearq)
432 GEN_VEXT_LD_US(vlw_v_w, int32_t, int32_t, ldw_w, clearl)
433 GEN_VEXT_LD_US(vlw_v_d, int32_t, int64_t, ldw_d, clearq)
434 GEN_VEXT_LD_US(vle_v_b, int8_t, int8_t, lde_b, clearb)
435 GEN_VEXT_LD_US(vle_v_h, int16_t, int16_t, lde_h, clearh)
436 GEN_VEXT_LD_US(vle_v_w, int32_t, int32_t, lde_w, clearl)
437 GEN_VEXT_LD_US(vle_v_d, int64_t, int64_t, lde_d, clearq)
438 GEN_VEXT_LD_US(vlbu_v_b, uint8_t, uint8_t, ldbu_b, clearb)
439 GEN_VEXT_LD_US(vlbu_v_h, uint8_t, uint16_t, ldbu_h, clearh)
440 GEN_VEXT_LD_US(vlbu_v_w, uint8_t, uint32_t, ldbu_w, clearl)
441 GEN_VEXT_LD_US(vlbu_v_d, uint8_t, uint64_t, ldbu_d, clearq)
442 GEN_VEXT_LD_US(vlhu_v_h, uint16_t, uint16_t, ldhu_h, clearh)
443 GEN_VEXT_LD_US(vlhu_v_w, uint16_t, uint32_t, ldhu_w, clearl)
444 GEN_VEXT_LD_US(vlhu_v_d, uint16_t, uint64_t, ldhu_d, clearq)
445 GEN_VEXT_LD_US(vlwu_v_w, uint32_t, uint32_t, ldwu_w, clearl)
446 GEN_VEXT_LD_US(vlwu_v_d, uint32_t, uint64_t, ldwu_d, clearq)
448 #define GEN_VEXT_ST_US(NAME, MTYPE, ETYPE, STORE_FN) \
449 void HELPER(NAME##_mask)(void *vd, void *v0, target_ulong base, \
450 CPURISCVState *env, uint32_t desc) \
452 uint32_t stride = vext_nf(desc) * sizeof(MTYPE); \
453 vext_ldst_stride(vd, v0, base, stride, env, desc, false, STORE_FN, \
454 NULL, sizeof(ETYPE), sizeof(MTYPE), \
455 GETPC(), MMU_DATA_STORE); \
458 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
459 CPURISCVState *env, uint32_t desc) \
461 vext_ldst_us(vd, base, env, desc, STORE_FN, NULL, \
462 sizeof(ETYPE), sizeof(MTYPE), GETPC(), MMU_DATA_STORE);\
465 GEN_VEXT_ST_US(vsb_v_b, int8_t, int8_t , stb_b)
466 GEN_VEXT_ST_US(vsb_v_h, int8_t, int16_t, stb_h)
467 GEN_VEXT_ST_US(vsb_v_w, int8_t, int32_t, stb_w)
468 GEN_VEXT_ST_US(vsb_v_d, int8_t, int64_t, stb_d)
469 GEN_VEXT_ST_US(vsh_v_h, int16_t, int16_t, sth_h)
470 GEN_VEXT_ST_US(vsh_v_w, int16_t, int32_t, sth_w)
471 GEN_VEXT_ST_US(vsh_v_d, int16_t, int64_t, sth_d)
472 GEN_VEXT_ST_US(vsw_v_w, int32_t, int32_t, stw_w)
473 GEN_VEXT_ST_US(vsw_v_d, int32_t, int64_t, stw_d)
474 GEN_VEXT_ST_US(vse_v_b, int8_t, int8_t , ste_b)
475 GEN_VEXT_ST_US(vse_v_h, int16_t, int16_t, ste_h)
476 GEN_VEXT_ST_US(vse_v_w, int32_t, int32_t, ste_w)
477 GEN_VEXT_ST_US(vse_v_d, int64_t, int64_t, ste_d)
480 *** index: access vector element from indexed memory
482 typedef target_ulong vext_get_index_addr(target_ulong base,
483 uint32_t idx, void *vs2);
485 #define GEN_VEXT_GET_INDEX_ADDR(NAME, ETYPE, H) \
486 static target_ulong NAME(target_ulong base, \
487 uint32_t idx, void *vs2) \
489 return (base + *((ETYPE *)vs2 + H(idx))); \
492 GEN_VEXT_GET_INDEX_ADDR(idx_b, int8_t, H1)
493 GEN_VEXT_GET_INDEX_ADDR(idx_h, int16_t, H2)
494 GEN_VEXT_GET_INDEX_ADDR(idx_w, int32_t, H4)
495 GEN_VEXT_GET_INDEX_ADDR(idx_d, int64_t, H8)
497 static inline void
498 vext_ldst_index(void *vd, void *v0, target_ulong base,
499 void *vs2, CPURISCVState *env, uint32_t desc,
500 vext_get_index_addr get_index_addr,
501 vext_ldst_elem_fn *ldst_elem,
502 clear_fn *clear_elem,
503 uint32_t esz, uint32_t msz, uintptr_t ra,
504 MMUAccessType access_type)
506 uint32_t i, k;
507 uint32_t nf = vext_nf(desc);
508 uint32_t vm = vext_vm(desc);
509 uint32_t mlen = vext_mlen(desc);
510 uint32_t vlmax = vext_maxsz(desc) / esz;
512 /* probe every access*/
513 for (i = 0; i < env->vl; i++) {
514 if (!vm && !vext_elem_mask(v0, mlen, i)) {
515 continue;
517 probe_pages(env, get_index_addr(base, i, vs2), nf * msz, ra,
518 access_type);
520 /* load bytes from guest memory */
521 for (i = 0; i < env->vl; i++) {
522 k = 0;
523 if (!vm && !vext_elem_mask(v0, mlen, i)) {
524 continue;
526 while (k < nf) {
527 abi_ptr addr = get_index_addr(base, i, vs2) + k * msz;
528 ldst_elem(env, addr, i + k * vlmax, vd, ra);
529 k++;
532 /* clear tail elements */
533 if (clear_elem) {
534 for (k = 0; k < nf; k++) {
535 clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz);
540 #define GEN_VEXT_LD_INDEX(NAME, MTYPE, ETYPE, INDEX_FN, LOAD_FN, CLEAR_FN) \
541 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
542 void *vs2, CPURISCVState *env, uint32_t desc) \
544 vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \
545 LOAD_FN, CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
546 GETPC(), MMU_DATA_LOAD); \
549 GEN_VEXT_LD_INDEX(vlxb_v_b, int8_t, int8_t, idx_b, ldb_b, clearb)
550 GEN_VEXT_LD_INDEX(vlxb_v_h, int8_t, int16_t, idx_h, ldb_h, clearh)
551 GEN_VEXT_LD_INDEX(vlxb_v_w, int8_t, int32_t, idx_w, ldb_w, clearl)
552 GEN_VEXT_LD_INDEX(vlxb_v_d, int8_t, int64_t, idx_d, ldb_d, clearq)
553 GEN_VEXT_LD_INDEX(vlxh_v_h, int16_t, int16_t, idx_h, ldh_h, clearh)
554 GEN_VEXT_LD_INDEX(vlxh_v_w, int16_t, int32_t, idx_w, ldh_w, clearl)
555 GEN_VEXT_LD_INDEX(vlxh_v_d, int16_t, int64_t, idx_d, ldh_d, clearq)
556 GEN_VEXT_LD_INDEX(vlxw_v_w, int32_t, int32_t, idx_w, ldw_w, clearl)
557 GEN_VEXT_LD_INDEX(vlxw_v_d, int32_t, int64_t, idx_d, ldw_d, clearq)
558 GEN_VEXT_LD_INDEX(vlxe_v_b, int8_t, int8_t, idx_b, lde_b, clearb)
559 GEN_VEXT_LD_INDEX(vlxe_v_h, int16_t, int16_t, idx_h, lde_h, clearh)
560 GEN_VEXT_LD_INDEX(vlxe_v_w, int32_t, int32_t, idx_w, lde_w, clearl)
561 GEN_VEXT_LD_INDEX(vlxe_v_d, int64_t, int64_t, idx_d, lde_d, clearq)
562 GEN_VEXT_LD_INDEX(vlxbu_v_b, uint8_t, uint8_t, idx_b, ldbu_b, clearb)
563 GEN_VEXT_LD_INDEX(vlxbu_v_h, uint8_t, uint16_t, idx_h, ldbu_h, clearh)
564 GEN_VEXT_LD_INDEX(vlxbu_v_w, uint8_t, uint32_t, idx_w, ldbu_w, clearl)
565 GEN_VEXT_LD_INDEX(vlxbu_v_d, uint8_t, uint64_t, idx_d, ldbu_d, clearq)
566 GEN_VEXT_LD_INDEX(vlxhu_v_h, uint16_t, uint16_t, idx_h, ldhu_h, clearh)
567 GEN_VEXT_LD_INDEX(vlxhu_v_w, uint16_t, uint32_t, idx_w, ldhu_w, clearl)
568 GEN_VEXT_LD_INDEX(vlxhu_v_d, uint16_t, uint64_t, idx_d, ldhu_d, clearq)
569 GEN_VEXT_LD_INDEX(vlxwu_v_w, uint32_t, uint32_t, idx_w, ldwu_w, clearl)
570 GEN_VEXT_LD_INDEX(vlxwu_v_d, uint32_t, uint64_t, idx_d, ldwu_d, clearq)
572 #define GEN_VEXT_ST_INDEX(NAME, MTYPE, ETYPE, INDEX_FN, STORE_FN)\
573 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
574 void *vs2, CPURISCVState *env, uint32_t desc) \
576 vext_ldst_index(vd, v0, base, vs2, env, desc, INDEX_FN, \
577 STORE_FN, NULL, sizeof(ETYPE), sizeof(MTYPE),\
578 GETPC(), MMU_DATA_STORE); \
581 GEN_VEXT_ST_INDEX(vsxb_v_b, int8_t, int8_t, idx_b, stb_b)
582 GEN_VEXT_ST_INDEX(vsxb_v_h, int8_t, int16_t, idx_h, stb_h)
583 GEN_VEXT_ST_INDEX(vsxb_v_w, int8_t, int32_t, idx_w, stb_w)
584 GEN_VEXT_ST_INDEX(vsxb_v_d, int8_t, int64_t, idx_d, stb_d)
585 GEN_VEXT_ST_INDEX(vsxh_v_h, int16_t, int16_t, idx_h, sth_h)
586 GEN_VEXT_ST_INDEX(vsxh_v_w, int16_t, int32_t, idx_w, sth_w)
587 GEN_VEXT_ST_INDEX(vsxh_v_d, int16_t, int64_t, idx_d, sth_d)
588 GEN_VEXT_ST_INDEX(vsxw_v_w, int32_t, int32_t, idx_w, stw_w)
589 GEN_VEXT_ST_INDEX(vsxw_v_d, int32_t, int64_t, idx_d, stw_d)
590 GEN_VEXT_ST_INDEX(vsxe_v_b, int8_t, int8_t, idx_b, ste_b)
591 GEN_VEXT_ST_INDEX(vsxe_v_h, int16_t, int16_t, idx_h, ste_h)
592 GEN_VEXT_ST_INDEX(vsxe_v_w, int32_t, int32_t, idx_w, ste_w)
593 GEN_VEXT_ST_INDEX(vsxe_v_d, int64_t, int64_t, idx_d, ste_d)
596 *** unit-stride fault-only-fisrt load instructions
598 static inline void
599 vext_ldff(void *vd, void *v0, target_ulong base,
600 CPURISCVState *env, uint32_t desc,
601 vext_ldst_elem_fn *ldst_elem,
602 clear_fn *clear_elem,
603 uint32_t esz, uint32_t msz, uintptr_t ra)
605 void *host;
606 uint32_t i, k, vl = 0;
607 uint32_t mlen = vext_mlen(desc);
608 uint32_t nf = vext_nf(desc);
609 uint32_t vm = vext_vm(desc);
610 uint32_t vlmax = vext_maxsz(desc) / esz;
611 target_ulong addr, offset, remain;
613 /* probe every access*/
614 for (i = 0; i < env->vl; i++) {
615 if (!vm && !vext_elem_mask(v0, mlen, i)) {
616 continue;
618 addr = base + nf * i * msz;
619 if (i == 0) {
620 probe_pages(env, addr, nf * msz, ra, MMU_DATA_LOAD);
621 } else {
622 /* if it triggers an exception, no need to check watchpoint */
623 remain = nf * msz;
624 while (remain > 0) {
625 offset = -(addr | TARGET_PAGE_MASK);
626 host = tlb_vaddr_to_host(env, addr, MMU_DATA_LOAD,
627 cpu_mmu_index(env, false));
628 if (host) {
629 #ifdef CONFIG_USER_ONLY
630 if (page_check_range(addr, nf * msz, PAGE_READ) < 0) {
631 vl = i;
632 goto ProbeSuccess;
634 #else
635 probe_pages(env, addr, nf * msz, ra, MMU_DATA_LOAD);
636 #endif
637 } else {
638 vl = i;
639 goto ProbeSuccess;
641 if (remain <= offset) {
642 break;
644 remain -= offset;
645 addr += offset;
649 ProbeSuccess:
650 /* load bytes from guest memory */
651 if (vl != 0) {
652 env->vl = vl;
654 for (i = 0; i < env->vl; i++) {
655 k = 0;
656 if (!vm && !vext_elem_mask(v0, mlen, i)) {
657 continue;
659 while (k < nf) {
660 target_ulong addr = base + (i * nf + k) * msz;
661 ldst_elem(env, addr, i + k * vlmax, vd, ra);
662 k++;
665 /* clear tail elements */
666 if (vl != 0) {
667 return;
669 for (k = 0; k < nf; k++) {
670 clear_elem(vd, env->vl + k * vlmax, env->vl * esz, vlmax * esz);
674 #define GEN_VEXT_LDFF(NAME, MTYPE, ETYPE, LOAD_FN, CLEAR_FN) \
675 void HELPER(NAME)(void *vd, void *v0, target_ulong base, \
676 CPURISCVState *env, uint32_t desc) \
678 vext_ldff(vd, v0, base, env, desc, LOAD_FN, CLEAR_FN, \
679 sizeof(ETYPE), sizeof(MTYPE), GETPC()); \
682 GEN_VEXT_LDFF(vlbff_v_b, int8_t, int8_t, ldb_b, clearb)
683 GEN_VEXT_LDFF(vlbff_v_h, int8_t, int16_t, ldb_h, clearh)
684 GEN_VEXT_LDFF(vlbff_v_w, int8_t, int32_t, ldb_w, clearl)
685 GEN_VEXT_LDFF(vlbff_v_d, int8_t, int64_t, ldb_d, clearq)
686 GEN_VEXT_LDFF(vlhff_v_h, int16_t, int16_t, ldh_h, clearh)
687 GEN_VEXT_LDFF(vlhff_v_w, int16_t, int32_t, ldh_w, clearl)
688 GEN_VEXT_LDFF(vlhff_v_d, int16_t, int64_t, ldh_d, clearq)
689 GEN_VEXT_LDFF(vlwff_v_w, int32_t, int32_t, ldw_w, clearl)
690 GEN_VEXT_LDFF(vlwff_v_d, int32_t, int64_t, ldw_d, clearq)
691 GEN_VEXT_LDFF(vleff_v_b, int8_t, int8_t, lde_b, clearb)
692 GEN_VEXT_LDFF(vleff_v_h, int16_t, int16_t, lde_h, clearh)
693 GEN_VEXT_LDFF(vleff_v_w, int32_t, int32_t, lde_w, clearl)
694 GEN_VEXT_LDFF(vleff_v_d, int64_t, int64_t, lde_d, clearq)
695 GEN_VEXT_LDFF(vlbuff_v_b, uint8_t, uint8_t, ldbu_b, clearb)
696 GEN_VEXT_LDFF(vlbuff_v_h, uint8_t, uint16_t, ldbu_h, clearh)
697 GEN_VEXT_LDFF(vlbuff_v_w, uint8_t, uint32_t, ldbu_w, clearl)
698 GEN_VEXT_LDFF(vlbuff_v_d, uint8_t, uint64_t, ldbu_d, clearq)
699 GEN_VEXT_LDFF(vlhuff_v_h, uint16_t, uint16_t, ldhu_h, clearh)
700 GEN_VEXT_LDFF(vlhuff_v_w, uint16_t, uint32_t, ldhu_w, clearl)
701 GEN_VEXT_LDFF(vlhuff_v_d, uint16_t, uint64_t, ldhu_d, clearq)
702 GEN_VEXT_LDFF(vlwuff_v_w, uint32_t, uint32_t, ldwu_w, clearl)
703 GEN_VEXT_LDFF(vlwuff_v_d, uint32_t, uint64_t, ldwu_d, clearq)
706 *** Vector AMO Operations (Zvamo)
708 typedef void vext_amo_noatomic_fn(void *vs3, target_ulong addr,
709 uint32_t wd, uint32_t idx, CPURISCVState *env,
710 uintptr_t retaddr);
712 /* no atomic opreation for vector atomic insructions */
713 #define DO_SWAP(N, M) (M)
714 #define DO_AND(N, M) (N & M)
715 #define DO_XOR(N, M) (N ^ M)
716 #define DO_OR(N, M) (N | M)
717 #define DO_ADD(N, M) (N + M)
719 #define GEN_VEXT_AMO_NOATOMIC_OP(NAME, ESZ, MSZ, H, DO_OP, SUF) \
720 static void \
721 vext_##NAME##_noatomic_op(void *vs3, target_ulong addr, \
722 uint32_t wd, uint32_t idx, \
723 CPURISCVState *env, uintptr_t retaddr)\
725 typedef int##ESZ##_t ETYPE; \
726 typedef int##MSZ##_t MTYPE; \
727 typedef uint##MSZ##_t UMTYPE __attribute__((unused)); \
728 ETYPE *pe3 = (ETYPE *)vs3 + H(idx); \
729 MTYPE a = cpu_ld##SUF##_data(env, addr), b = *pe3; \
731 cpu_st##SUF##_data(env, addr, DO_OP(a, b)); \
732 if (wd) { \
733 *pe3 = a; \
737 /* Signed min/max */
738 #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
739 #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
741 /* Unsigned min/max */
742 #define DO_MAXU(N, M) DO_MAX((UMTYPE)N, (UMTYPE)M)
743 #define DO_MINU(N, M) DO_MIN((UMTYPE)N, (UMTYPE)M)
745 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapw_v_w, 32, 32, H4, DO_SWAP, l)
746 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddw_v_w, 32, 32, H4, DO_ADD, l)
747 GEN_VEXT_AMO_NOATOMIC_OP(vamoxorw_v_w, 32, 32, H4, DO_XOR, l)
748 GEN_VEXT_AMO_NOATOMIC_OP(vamoandw_v_w, 32, 32, H4, DO_AND, l)
749 GEN_VEXT_AMO_NOATOMIC_OP(vamoorw_v_w, 32, 32, H4, DO_OR, l)
750 GEN_VEXT_AMO_NOATOMIC_OP(vamominw_v_w, 32, 32, H4, DO_MIN, l)
751 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxw_v_w, 32, 32, H4, DO_MAX, l)
752 GEN_VEXT_AMO_NOATOMIC_OP(vamominuw_v_w, 32, 32, H4, DO_MINU, l)
753 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxuw_v_w, 32, 32, H4, DO_MAXU, l)
754 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapw_v_d, 64, 32, H8, DO_SWAP, l)
755 GEN_VEXT_AMO_NOATOMIC_OP(vamoswapd_v_d, 64, 64, H8, DO_SWAP, q)
756 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddw_v_d, 64, 32, H8, DO_ADD, l)
757 GEN_VEXT_AMO_NOATOMIC_OP(vamoaddd_v_d, 64, 64, H8, DO_ADD, q)
758 GEN_VEXT_AMO_NOATOMIC_OP(vamoxorw_v_d, 64, 32, H8, DO_XOR, l)
759 GEN_VEXT_AMO_NOATOMIC_OP(vamoxord_v_d, 64, 64, H8, DO_XOR, q)
760 GEN_VEXT_AMO_NOATOMIC_OP(vamoandw_v_d, 64, 32, H8, DO_AND, l)
761 GEN_VEXT_AMO_NOATOMIC_OP(vamoandd_v_d, 64, 64, H8, DO_AND, q)
762 GEN_VEXT_AMO_NOATOMIC_OP(vamoorw_v_d, 64, 32, H8, DO_OR, l)
763 GEN_VEXT_AMO_NOATOMIC_OP(vamoord_v_d, 64, 64, H8, DO_OR, q)
764 GEN_VEXT_AMO_NOATOMIC_OP(vamominw_v_d, 64, 32, H8, DO_MIN, l)
765 GEN_VEXT_AMO_NOATOMIC_OP(vamomind_v_d, 64, 64, H8, DO_MIN, q)
766 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxw_v_d, 64, 32, H8, DO_MAX, l)
767 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxd_v_d, 64, 64, H8, DO_MAX, q)
768 GEN_VEXT_AMO_NOATOMIC_OP(vamominuw_v_d, 64, 32, H8, DO_MINU, l)
769 GEN_VEXT_AMO_NOATOMIC_OP(vamominud_v_d, 64, 64, H8, DO_MINU, q)
770 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxuw_v_d, 64, 32, H8, DO_MAXU, l)
771 GEN_VEXT_AMO_NOATOMIC_OP(vamomaxud_v_d, 64, 64, H8, DO_MAXU, q)
773 static inline void
774 vext_amo_noatomic(void *vs3, void *v0, target_ulong base,
775 void *vs2, CPURISCVState *env, uint32_t desc,
776 vext_get_index_addr get_index_addr,
777 vext_amo_noatomic_fn *noatomic_op,
778 clear_fn *clear_elem,
779 uint32_t esz, uint32_t msz, uintptr_t ra)
781 uint32_t i;
782 target_long addr;
783 uint32_t wd = vext_wd(desc);
784 uint32_t vm = vext_vm(desc);
785 uint32_t mlen = vext_mlen(desc);
786 uint32_t vlmax = vext_maxsz(desc) / esz;
788 for (i = 0; i < env->vl; i++) {
789 if (!vm && !vext_elem_mask(v0, mlen, i)) {
790 continue;
792 probe_pages(env, get_index_addr(base, i, vs2), msz, ra, MMU_DATA_LOAD);
793 probe_pages(env, get_index_addr(base, i, vs2), msz, ra, MMU_DATA_STORE);
795 for (i = 0; i < env->vl; i++) {
796 if (!vm && !vext_elem_mask(v0, mlen, i)) {
797 continue;
799 addr = get_index_addr(base, i, vs2);
800 noatomic_op(vs3, addr, wd, i, env, ra);
802 clear_elem(vs3, env->vl, env->vl * esz, vlmax * esz);
805 #define GEN_VEXT_AMO(NAME, MTYPE, ETYPE, INDEX_FN, CLEAR_FN) \
806 void HELPER(NAME)(void *vs3, void *v0, target_ulong base, \
807 void *vs2, CPURISCVState *env, uint32_t desc) \
809 vext_amo_noatomic(vs3, v0, base, vs2, env, desc, \
810 INDEX_FN, vext_##NAME##_noatomic_op, \
811 CLEAR_FN, sizeof(ETYPE), sizeof(MTYPE), \
812 GETPC()); \
815 GEN_VEXT_AMO(vamoswapw_v_d, int32_t, int64_t, idx_d, clearq)
816 GEN_VEXT_AMO(vamoswapd_v_d, int64_t, int64_t, idx_d, clearq)
817 GEN_VEXT_AMO(vamoaddw_v_d, int32_t, int64_t, idx_d, clearq)
818 GEN_VEXT_AMO(vamoaddd_v_d, int64_t, int64_t, idx_d, clearq)
819 GEN_VEXT_AMO(vamoxorw_v_d, int32_t, int64_t, idx_d, clearq)
820 GEN_VEXT_AMO(vamoxord_v_d, int64_t, int64_t, idx_d, clearq)
821 GEN_VEXT_AMO(vamoandw_v_d, int32_t, int64_t, idx_d, clearq)
822 GEN_VEXT_AMO(vamoandd_v_d, int64_t, int64_t, idx_d, clearq)
823 GEN_VEXT_AMO(vamoorw_v_d, int32_t, int64_t, idx_d, clearq)
824 GEN_VEXT_AMO(vamoord_v_d, int64_t, int64_t, idx_d, clearq)
825 GEN_VEXT_AMO(vamominw_v_d, int32_t, int64_t, idx_d, clearq)
826 GEN_VEXT_AMO(vamomind_v_d, int64_t, int64_t, idx_d, clearq)
827 GEN_VEXT_AMO(vamomaxw_v_d, int32_t, int64_t, idx_d, clearq)
828 GEN_VEXT_AMO(vamomaxd_v_d, int64_t, int64_t, idx_d, clearq)
829 GEN_VEXT_AMO(vamominuw_v_d, uint32_t, uint64_t, idx_d, clearq)
830 GEN_VEXT_AMO(vamominud_v_d, uint64_t, uint64_t, idx_d, clearq)
831 GEN_VEXT_AMO(vamomaxuw_v_d, uint32_t, uint64_t, idx_d, clearq)
832 GEN_VEXT_AMO(vamomaxud_v_d, uint64_t, uint64_t, idx_d, clearq)
833 GEN_VEXT_AMO(vamoswapw_v_w, int32_t, int32_t, idx_w, clearl)
834 GEN_VEXT_AMO(vamoaddw_v_w, int32_t, int32_t, idx_w, clearl)
835 GEN_VEXT_AMO(vamoxorw_v_w, int32_t, int32_t, idx_w, clearl)
836 GEN_VEXT_AMO(vamoandw_v_w, int32_t, int32_t, idx_w, clearl)
837 GEN_VEXT_AMO(vamoorw_v_w, int32_t, int32_t, idx_w, clearl)
838 GEN_VEXT_AMO(vamominw_v_w, int32_t, int32_t, idx_w, clearl)
839 GEN_VEXT_AMO(vamomaxw_v_w, int32_t, int32_t, idx_w, clearl)
840 GEN_VEXT_AMO(vamominuw_v_w, uint32_t, uint32_t, idx_w, clearl)
841 GEN_VEXT_AMO(vamomaxuw_v_w, uint32_t, uint32_t, idx_w, clearl)
844 *** Vector Integer Arithmetic Instructions
847 /* expand macro args before macro */
848 #define RVVCALL(macro, ...) macro(__VA_ARGS__)
850 /* (TD, T1, T2, TX1, TX2) */
851 #define OP_SSS_B int8_t, int8_t, int8_t, int8_t, int8_t
852 #define OP_SSS_H int16_t, int16_t, int16_t, int16_t, int16_t
853 #define OP_SSS_W int32_t, int32_t, int32_t, int32_t, int32_t
854 #define OP_SSS_D int64_t, int64_t, int64_t, int64_t, int64_t
855 #define OP_UUU_B uint8_t, uint8_t, uint8_t, uint8_t, uint8_t
856 #define OP_UUU_H uint16_t, uint16_t, uint16_t, uint16_t, uint16_t
857 #define OP_UUU_W uint32_t, uint32_t, uint32_t, uint32_t, uint32_t
858 #define OP_UUU_D uint64_t, uint64_t, uint64_t, uint64_t, uint64_t
859 #define OP_SUS_B int8_t, uint8_t, int8_t, uint8_t, int8_t
860 #define OP_SUS_H int16_t, uint16_t, int16_t, uint16_t, int16_t
861 #define OP_SUS_W int32_t, uint32_t, int32_t, uint32_t, int32_t
862 #define OP_SUS_D int64_t, uint64_t, int64_t, uint64_t, int64_t
863 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
864 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
865 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
866 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
867 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
868 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
869 #define WOP_SUS_B int16_t, uint8_t, int8_t, uint16_t, int16_t
870 #define WOP_SUS_H int32_t, uint16_t, int16_t, uint32_t, int32_t
871 #define WOP_SUS_W int64_t, uint32_t, int32_t, uint64_t, int64_t
872 #define WOP_SSU_B int16_t, int8_t, uint8_t, int16_t, uint16_t
873 #define WOP_SSU_H int32_t, int16_t, uint16_t, int32_t, uint32_t
874 #define WOP_SSU_W int64_t, int32_t, uint32_t, int64_t, uint64_t
875 #define NOP_SSS_B int8_t, int8_t, int16_t, int8_t, int16_t
876 #define NOP_SSS_H int16_t, int16_t, int32_t, int16_t, int32_t
877 #define NOP_SSS_W int32_t, int32_t, int64_t, int32_t, int64_t
878 #define NOP_UUU_B uint8_t, uint8_t, uint16_t, uint8_t, uint16_t
879 #define NOP_UUU_H uint16_t, uint16_t, uint32_t, uint16_t, uint32_t
880 #define NOP_UUU_W uint32_t, uint32_t, uint64_t, uint32_t, uint64_t
882 /* operation of two vector elements */
883 typedef void opivv2_fn(void *vd, void *vs1, void *vs2, int i);
885 #define OPIVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
886 static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
888 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
889 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
890 *((TD *)vd + HD(i)) = OP(s2, s1); \
892 #define DO_SUB(N, M) (N - M)
893 #define DO_RSUB(N, M) (M - N)
895 RVVCALL(OPIVV2, vadd_vv_b, OP_SSS_B, H1, H1, H1, DO_ADD)
896 RVVCALL(OPIVV2, vadd_vv_h, OP_SSS_H, H2, H2, H2, DO_ADD)
897 RVVCALL(OPIVV2, vadd_vv_w, OP_SSS_W, H4, H4, H4, DO_ADD)
898 RVVCALL(OPIVV2, vadd_vv_d, OP_SSS_D, H8, H8, H8, DO_ADD)
899 RVVCALL(OPIVV2, vsub_vv_b, OP_SSS_B, H1, H1, H1, DO_SUB)
900 RVVCALL(OPIVV2, vsub_vv_h, OP_SSS_H, H2, H2, H2, DO_SUB)
901 RVVCALL(OPIVV2, vsub_vv_w, OP_SSS_W, H4, H4, H4, DO_SUB)
902 RVVCALL(OPIVV2, vsub_vv_d, OP_SSS_D, H8, H8, H8, DO_SUB)
904 static void do_vext_vv(void *vd, void *v0, void *vs1, void *vs2,
905 CPURISCVState *env, uint32_t desc,
906 uint32_t esz, uint32_t dsz,
907 opivv2_fn *fn, clear_fn *clearfn)
909 uint32_t vlmax = vext_maxsz(desc) / esz;
910 uint32_t mlen = vext_mlen(desc);
911 uint32_t vm = vext_vm(desc);
912 uint32_t vl = env->vl;
913 uint32_t i;
915 for (i = 0; i < vl; i++) {
916 if (!vm && !vext_elem_mask(v0, mlen, i)) {
917 continue;
919 fn(vd, vs1, vs2, i);
921 clearfn(vd, vl, vl * dsz, vlmax * dsz);
924 /* generate the helpers for OPIVV */
925 #define GEN_VEXT_VV(NAME, ESZ, DSZ, CLEAR_FN) \
926 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
927 void *vs2, CPURISCVState *env, \
928 uint32_t desc) \
930 do_vext_vv(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \
931 do_##NAME, CLEAR_FN); \
934 GEN_VEXT_VV(vadd_vv_b, 1, 1, clearb)
935 GEN_VEXT_VV(vadd_vv_h, 2, 2, clearh)
936 GEN_VEXT_VV(vadd_vv_w, 4, 4, clearl)
937 GEN_VEXT_VV(vadd_vv_d, 8, 8, clearq)
938 GEN_VEXT_VV(vsub_vv_b, 1, 1, clearb)
939 GEN_VEXT_VV(vsub_vv_h, 2, 2, clearh)
940 GEN_VEXT_VV(vsub_vv_w, 4, 4, clearl)
941 GEN_VEXT_VV(vsub_vv_d, 8, 8, clearq)
943 typedef void opivx2_fn(void *vd, target_long s1, void *vs2, int i);
946 * (T1)s1 gives the real operator type.
947 * (TX1)(T1)s1 expands the operator type of widen or narrow operations.
949 #define OPIVX2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
950 static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
952 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
953 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1); \
956 RVVCALL(OPIVX2, vadd_vx_b, OP_SSS_B, H1, H1, DO_ADD)
957 RVVCALL(OPIVX2, vadd_vx_h, OP_SSS_H, H2, H2, DO_ADD)
958 RVVCALL(OPIVX2, vadd_vx_w, OP_SSS_W, H4, H4, DO_ADD)
959 RVVCALL(OPIVX2, vadd_vx_d, OP_SSS_D, H8, H8, DO_ADD)
960 RVVCALL(OPIVX2, vsub_vx_b, OP_SSS_B, H1, H1, DO_SUB)
961 RVVCALL(OPIVX2, vsub_vx_h, OP_SSS_H, H2, H2, DO_SUB)
962 RVVCALL(OPIVX2, vsub_vx_w, OP_SSS_W, H4, H4, DO_SUB)
963 RVVCALL(OPIVX2, vsub_vx_d, OP_SSS_D, H8, H8, DO_SUB)
964 RVVCALL(OPIVX2, vrsub_vx_b, OP_SSS_B, H1, H1, DO_RSUB)
965 RVVCALL(OPIVX2, vrsub_vx_h, OP_SSS_H, H2, H2, DO_RSUB)
966 RVVCALL(OPIVX2, vrsub_vx_w, OP_SSS_W, H4, H4, DO_RSUB)
967 RVVCALL(OPIVX2, vrsub_vx_d, OP_SSS_D, H8, H8, DO_RSUB)
969 static void do_vext_vx(void *vd, void *v0, target_long s1, void *vs2,
970 CPURISCVState *env, uint32_t desc,
971 uint32_t esz, uint32_t dsz,
972 opivx2_fn fn, clear_fn *clearfn)
974 uint32_t vlmax = vext_maxsz(desc) / esz;
975 uint32_t mlen = vext_mlen(desc);
976 uint32_t vm = vext_vm(desc);
977 uint32_t vl = env->vl;
978 uint32_t i;
980 for (i = 0; i < vl; i++) {
981 if (!vm && !vext_elem_mask(v0, mlen, i)) {
982 continue;
984 fn(vd, s1, vs2, i);
986 clearfn(vd, vl, vl * dsz, vlmax * dsz);
989 /* generate the helpers for OPIVX */
990 #define GEN_VEXT_VX(NAME, ESZ, DSZ, CLEAR_FN) \
991 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
992 void *vs2, CPURISCVState *env, \
993 uint32_t desc) \
995 do_vext_vx(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \
996 do_##NAME, CLEAR_FN); \
999 GEN_VEXT_VX(vadd_vx_b, 1, 1, clearb)
1000 GEN_VEXT_VX(vadd_vx_h, 2, 2, clearh)
1001 GEN_VEXT_VX(vadd_vx_w, 4, 4, clearl)
1002 GEN_VEXT_VX(vadd_vx_d, 8, 8, clearq)
1003 GEN_VEXT_VX(vsub_vx_b, 1, 1, clearb)
1004 GEN_VEXT_VX(vsub_vx_h, 2, 2, clearh)
1005 GEN_VEXT_VX(vsub_vx_w, 4, 4, clearl)
1006 GEN_VEXT_VX(vsub_vx_d, 8, 8, clearq)
1007 GEN_VEXT_VX(vrsub_vx_b, 1, 1, clearb)
1008 GEN_VEXT_VX(vrsub_vx_h, 2, 2, clearh)
1009 GEN_VEXT_VX(vrsub_vx_w, 4, 4, clearl)
1010 GEN_VEXT_VX(vrsub_vx_d, 8, 8, clearq)
1012 void HELPER(vec_rsubs8)(void *d, void *a, uint64_t b, uint32_t desc)
1014 intptr_t oprsz = simd_oprsz(desc);
1015 intptr_t i;
1017 for (i = 0; i < oprsz; i += sizeof(uint8_t)) {
1018 *(uint8_t *)(d + i) = (uint8_t)b - *(uint8_t *)(a + i);
1022 void HELPER(vec_rsubs16)(void *d, void *a, uint64_t b, uint32_t desc)
1024 intptr_t oprsz = simd_oprsz(desc);
1025 intptr_t i;
1027 for (i = 0; i < oprsz; i += sizeof(uint16_t)) {
1028 *(uint16_t *)(d + i) = (uint16_t)b - *(uint16_t *)(a + i);
1032 void HELPER(vec_rsubs32)(void *d, void *a, uint64_t b, uint32_t desc)
1034 intptr_t oprsz = simd_oprsz(desc);
1035 intptr_t i;
1037 for (i = 0; i < oprsz; i += sizeof(uint32_t)) {
1038 *(uint32_t *)(d + i) = (uint32_t)b - *(uint32_t *)(a + i);
1042 void HELPER(vec_rsubs64)(void *d, void *a, uint64_t b, uint32_t desc)
1044 intptr_t oprsz = simd_oprsz(desc);
1045 intptr_t i;
1047 for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
1048 *(uint64_t *)(d + i) = b - *(uint64_t *)(a + i);
1052 /* Vector Widening Integer Add/Subtract */
1053 #define WOP_UUU_B uint16_t, uint8_t, uint8_t, uint16_t, uint16_t
1054 #define WOP_UUU_H uint32_t, uint16_t, uint16_t, uint32_t, uint32_t
1055 #define WOP_UUU_W uint64_t, uint32_t, uint32_t, uint64_t, uint64_t
1056 #define WOP_SSS_B int16_t, int8_t, int8_t, int16_t, int16_t
1057 #define WOP_SSS_H int32_t, int16_t, int16_t, int32_t, int32_t
1058 #define WOP_SSS_W int64_t, int32_t, int32_t, int64_t, int64_t
1059 #define WOP_WUUU_B uint16_t, uint8_t, uint16_t, uint16_t, uint16_t
1060 #define WOP_WUUU_H uint32_t, uint16_t, uint32_t, uint32_t, uint32_t
1061 #define WOP_WUUU_W uint64_t, uint32_t, uint64_t, uint64_t, uint64_t
1062 #define WOP_WSSS_B int16_t, int8_t, int16_t, int16_t, int16_t
1063 #define WOP_WSSS_H int32_t, int16_t, int32_t, int32_t, int32_t
1064 #define WOP_WSSS_W int64_t, int32_t, int64_t, int64_t, int64_t
1065 RVVCALL(OPIVV2, vwaddu_vv_b, WOP_UUU_B, H2, H1, H1, DO_ADD)
1066 RVVCALL(OPIVV2, vwaddu_vv_h, WOP_UUU_H, H4, H2, H2, DO_ADD)
1067 RVVCALL(OPIVV2, vwaddu_vv_w, WOP_UUU_W, H8, H4, H4, DO_ADD)
1068 RVVCALL(OPIVV2, vwsubu_vv_b, WOP_UUU_B, H2, H1, H1, DO_SUB)
1069 RVVCALL(OPIVV2, vwsubu_vv_h, WOP_UUU_H, H4, H2, H2, DO_SUB)
1070 RVVCALL(OPIVV2, vwsubu_vv_w, WOP_UUU_W, H8, H4, H4, DO_SUB)
1071 RVVCALL(OPIVV2, vwadd_vv_b, WOP_SSS_B, H2, H1, H1, DO_ADD)
1072 RVVCALL(OPIVV2, vwadd_vv_h, WOP_SSS_H, H4, H2, H2, DO_ADD)
1073 RVVCALL(OPIVV2, vwadd_vv_w, WOP_SSS_W, H8, H4, H4, DO_ADD)
1074 RVVCALL(OPIVV2, vwsub_vv_b, WOP_SSS_B, H2, H1, H1, DO_SUB)
1075 RVVCALL(OPIVV2, vwsub_vv_h, WOP_SSS_H, H4, H2, H2, DO_SUB)
1076 RVVCALL(OPIVV2, vwsub_vv_w, WOP_SSS_W, H8, H4, H4, DO_SUB)
1077 RVVCALL(OPIVV2, vwaddu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_ADD)
1078 RVVCALL(OPIVV2, vwaddu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_ADD)
1079 RVVCALL(OPIVV2, vwaddu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_ADD)
1080 RVVCALL(OPIVV2, vwsubu_wv_b, WOP_WUUU_B, H2, H1, H1, DO_SUB)
1081 RVVCALL(OPIVV2, vwsubu_wv_h, WOP_WUUU_H, H4, H2, H2, DO_SUB)
1082 RVVCALL(OPIVV2, vwsubu_wv_w, WOP_WUUU_W, H8, H4, H4, DO_SUB)
1083 RVVCALL(OPIVV2, vwadd_wv_b, WOP_WSSS_B, H2, H1, H1, DO_ADD)
1084 RVVCALL(OPIVV2, vwadd_wv_h, WOP_WSSS_H, H4, H2, H2, DO_ADD)
1085 RVVCALL(OPIVV2, vwadd_wv_w, WOP_WSSS_W, H8, H4, H4, DO_ADD)
1086 RVVCALL(OPIVV2, vwsub_wv_b, WOP_WSSS_B, H2, H1, H1, DO_SUB)
1087 RVVCALL(OPIVV2, vwsub_wv_h, WOP_WSSS_H, H4, H2, H2, DO_SUB)
1088 RVVCALL(OPIVV2, vwsub_wv_w, WOP_WSSS_W, H8, H4, H4, DO_SUB)
1089 GEN_VEXT_VV(vwaddu_vv_b, 1, 2, clearh)
1090 GEN_VEXT_VV(vwaddu_vv_h, 2, 4, clearl)
1091 GEN_VEXT_VV(vwaddu_vv_w, 4, 8, clearq)
1092 GEN_VEXT_VV(vwsubu_vv_b, 1, 2, clearh)
1093 GEN_VEXT_VV(vwsubu_vv_h, 2, 4, clearl)
1094 GEN_VEXT_VV(vwsubu_vv_w, 4, 8, clearq)
1095 GEN_VEXT_VV(vwadd_vv_b, 1, 2, clearh)
1096 GEN_VEXT_VV(vwadd_vv_h, 2, 4, clearl)
1097 GEN_VEXT_VV(vwadd_vv_w, 4, 8, clearq)
1098 GEN_VEXT_VV(vwsub_vv_b, 1, 2, clearh)
1099 GEN_VEXT_VV(vwsub_vv_h, 2, 4, clearl)
1100 GEN_VEXT_VV(vwsub_vv_w, 4, 8, clearq)
1101 GEN_VEXT_VV(vwaddu_wv_b, 1, 2, clearh)
1102 GEN_VEXT_VV(vwaddu_wv_h, 2, 4, clearl)
1103 GEN_VEXT_VV(vwaddu_wv_w, 4, 8, clearq)
1104 GEN_VEXT_VV(vwsubu_wv_b, 1, 2, clearh)
1105 GEN_VEXT_VV(vwsubu_wv_h, 2, 4, clearl)
1106 GEN_VEXT_VV(vwsubu_wv_w, 4, 8, clearq)
1107 GEN_VEXT_VV(vwadd_wv_b, 1, 2, clearh)
1108 GEN_VEXT_VV(vwadd_wv_h, 2, 4, clearl)
1109 GEN_VEXT_VV(vwadd_wv_w, 4, 8, clearq)
1110 GEN_VEXT_VV(vwsub_wv_b, 1, 2, clearh)
1111 GEN_VEXT_VV(vwsub_wv_h, 2, 4, clearl)
1112 GEN_VEXT_VV(vwsub_wv_w, 4, 8, clearq)
1114 RVVCALL(OPIVX2, vwaddu_vx_b, WOP_UUU_B, H2, H1, DO_ADD)
1115 RVVCALL(OPIVX2, vwaddu_vx_h, WOP_UUU_H, H4, H2, DO_ADD)
1116 RVVCALL(OPIVX2, vwaddu_vx_w, WOP_UUU_W, H8, H4, DO_ADD)
1117 RVVCALL(OPIVX2, vwsubu_vx_b, WOP_UUU_B, H2, H1, DO_SUB)
1118 RVVCALL(OPIVX2, vwsubu_vx_h, WOP_UUU_H, H4, H2, DO_SUB)
1119 RVVCALL(OPIVX2, vwsubu_vx_w, WOP_UUU_W, H8, H4, DO_SUB)
1120 RVVCALL(OPIVX2, vwadd_vx_b, WOP_SSS_B, H2, H1, DO_ADD)
1121 RVVCALL(OPIVX2, vwadd_vx_h, WOP_SSS_H, H4, H2, DO_ADD)
1122 RVVCALL(OPIVX2, vwadd_vx_w, WOP_SSS_W, H8, H4, DO_ADD)
1123 RVVCALL(OPIVX2, vwsub_vx_b, WOP_SSS_B, H2, H1, DO_SUB)
1124 RVVCALL(OPIVX2, vwsub_vx_h, WOP_SSS_H, H4, H2, DO_SUB)
1125 RVVCALL(OPIVX2, vwsub_vx_w, WOP_SSS_W, H8, H4, DO_SUB)
1126 RVVCALL(OPIVX2, vwaddu_wx_b, WOP_WUUU_B, H2, H1, DO_ADD)
1127 RVVCALL(OPIVX2, vwaddu_wx_h, WOP_WUUU_H, H4, H2, DO_ADD)
1128 RVVCALL(OPIVX2, vwaddu_wx_w, WOP_WUUU_W, H8, H4, DO_ADD)
1129 RVVCALL(OPIVX2, vwsubu_wx_b, WOP_WUUU_B, H2, H1, DO_SUB)
1130 RVVCALL(OPIVX2, vwsubu_wx_h, WOP_WUUU_H, H4, H2, DO_SUB)
1131 RVVCALL(OPIVX2, vwsubu_wx_w, WOP_WUUU_W, H8, H4, DO_SUB)
1132 RVVCALL(OPIVX2, vwadd_wx_b, WOP_WSSS_B, H2, H1, DO_ADD)
1133 RVVCALL(OPIVX2, vwadd_wx_h, WOP_WSSS_H, H4, H2, DO_ADD)
1134 RVVCALL(OPIVX2, vwadd_wx_w, WOP_WSSS_W, H8, H4, DO_ADD)
1135 RVVCALL(OPIVX2, vwsub_wx_b, WOP_WSSS_B, H2, H1, DO_SUB)
1136 RVVCALL(OPIVX2, vwsub_wx_h, WOP_WSSS_H, H4, H2, DO_SUB)
1137 RVVCALL(OPIVX2, vwsub_wx_w, WOP_WSSS_W, H8, H4, DO_SUB)
1138 GEN_VEXT_VX(vwaddu_vx_b, 1, 2, clearh)
1139 GEN_VEXT_VX(vwaddu_vx_h, 2, 4, clearl)
1140 GEN_VEXT_VX(vwaddu_vx_w, 4, 8, clearq)
1141 GEN_VEXT_VX(vwsubu_vx_b, 1, 2, clearh)
1142 GEN_VEXT_VX(vwsubu_vx_h, 2, 4, clearl)
1143 GEN_VEXT_VX(vwsubu_vx_w, 4, 8, clearq)
1144 GEN_VEXT_VX(vwadd_vx_b, 1, 2, clearh)
1145 GEN_VEXT_VX(vwadd_vx_h, 2, 4, clearl)
1146 GEN_VEXT_VX(vwadd_vx_w, 4, 8, clearq)
1147 GEN_VEXT_VX(vwsub_vx_b, 1, 2, clearh)
1148 GEN_VEXT_VX(vwsub_vx_h, 2, 4, clearl)
1149 GEN_VEXT_VX(vwsub_vx_w, 4, 8, clearq)
1150 GEN_VEXT_VX(vwaddu_wx_b, 1, 2, clearh)
1151 GEN_VEXT_VX(vwaddu_wx_h, 2, 4, clearl)
1152 GEN_VEXT_VX(vwaddu_wx_w, 4, 8, clearq)
1153 GEN_VEXT_VX(vwsubu_wx_b, 1, 2, clearh)
1154 GEN_VEXT_VX(vwsubu_wx_h, 2, 4, clearl)
1155 GEN_VEXT_VX(vwsubu_wx_w, 4, 8, clearq)
1156 GEN_VEXT_VX(vwadd_wx_b, 1, 2, clearh)
1157 GEN_VEXT_VX(vwadd_wx_h, 2, 4, clearl)
1158 GEN_VEXT_VX(vwadd_wx_w, 4, 8, clearq)
1159 GEN_VEXT_VX(vwsub_wx_b, 1, 2, clearh)
1160 GEN_VEXT_VX(vwsub_wx_h, 2, 4, clearl)
1161 GEN_VEXT_VX(vwsub_wx_w, 4, 8, clearq)
1163 /* Vector Integer Add-with-Carry / Subtract-with-Borrow Instructions */
1164 #define DO_VADC(N, M, C) (N + M + C)
1165 #define DO_VSBC(N, M, C) (N - M - C)
1167 #define GEN_VEXT_VADC_VVM(NAME, ETYPE, H, DO_OP, CLEAR_FN) \
1168 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
1169 CPURISCVState *env, uint32_t desc) \
1171 uint32_t mlen = vext_mlen(desc); \
1172 uint32_t vl = env->vl; \
1173 uint32_t esz = sizeof(ETYPE); \
1174 uint32_t vlmax = vext_maxsz(desc) / esz; \
1175 uint32_t i; \
1177 for (i = 0; i < vl; i++) { \
1178 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
1179 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1180 uint8_t carry = vext_elem_mask(v0, mlen, i); \
1182 *((ETYPE *)vd + H(i)) = DO_OP(s2, s1, carry); \
1184 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
1187 GEN_VEXT_VADC_VVM(vadc_vvm_b, uint8_t, H1, DO_VADC, clearb)
1188 GEN_VEXT_VADC_VVM(vadc_vvm_h, uint16_t, H2, DO_VADC, clearh)
1189 GEN_VEXT_VADC_VVM(vadc_vvm_w, uint32_t, H4, DO_VADC, clearl)
1190 GEN_VEXT_VADC_VVM(vadc_vvm_d, uint64_t, H8, DO_VADC, clearq)
1192 GEN_VEXT_VADC_VVM(vsbc_vvm_b, uint8_t, H1, DO_VSBC, clearb)
1193 GEN_VEXT_VADC_VVM(vsbc_vvm_h, uint16_t, H2, DO_VSBC, clearh)
1194 GEN_VEXT_VADC_VVM(vsbc_vvm_w, uint32_t, H4, DO_VSBC, clearl)
1195 GEN_VEXT_VADC_VVM(vsbc_vvm_d, uint64_t, H8, DO_VSBC, clearq)
1197 #define GEN_VEXT_VADC_VXM(NAME, ETYPE, H, DO_OP, CLEAR_FN) \
1198 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
1199 CPURISCVState *env, uint32_t desc) \
1201 uint32_t mlen = vext_mlen(desc); \
1202 uint32_t vl = env->vl; \
1203 uint32_t esz = sizeof(ETYPE); \
1204 uint32_t vlmax = vext_maxsz(desc) / esz; \
1205 uint32_t i; \
1207 for (i = 0; i < vl; i++) { \
1208 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1209 uint8_t carry = vext_elem_mask(v0, mlen, i); \
1211 *((ETYPE *)vd + H(i)) = DO_OP(s2, (ETYPE)(target_long)s1, carry);\
1213 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
1216 GEN_VEXT_VADC_VXM(vadc_vxm_b, uint8_t, H1, DO_VADC, clearb)
1217 GEN_VEXT_VADC_VXM(vadc_vxm_h, uint16_t, H2, DO_VADC, clearh)
1218 GEN_VEXT_VADC_VXM(vadc_vxm_w, uint32_t, H4, DO_VADC, clearl)
1219 GEN_VEXT_VADC_VXM(vadc_vxm_d, uint64_t, H8, DO_VADC, clearq)
1221 GEN_VEXT_VADC_VXM(vsbc_vxm_b, uint8_t, H1, DO_VSBC, clearb)
1222 GEN_VEXT_VADC_VXM(vsbc_vxm_h, uint16_t, H2, DO_VSBC, clearh)
1223 GEN_VEXT_VADC_VXM(vsbc_vxm_w, uint32_t, H4, DO_VSBC, clearl)
1224 GEN_VEXT_VADC_VXM(vsbc_vxm_d, uint64_t, H8, DO_VSBC, clearq)
1226 #define DO_MADC(N, M, C) (C ? (__typeof(N))(N + M + 1) <= N : \
1227 (__typeof(N))(N + M) < N)
1228 #define DO_MSBC(N, M, C) (C ? N <= M : N < M)
1230 #define GEN_VEXT_VMADC_VVM(NAME, ETYPE, H, DO_OP) \
1231 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
1232 CPURISCVState *env, uint32_t desc) \
1234 uint32_t mlen = vext_mlen(desc); \
1235 uint32_t vl = env->vl; \
1236 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
1237 uint32_t i; \
1239 for (i = 0; i < vl; i++) { \
1240 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
1241 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1242 uint8_t carry = vext_elem_mask(v0, mlen, i); \
1244 vext_set_elem_mask(vd, mlen, i, DO_OP(s2, s1, carry));\
1246 for (; i < vlmax; i++) { \
1247 vext_set_elem_mask(vd, mlen, i, 0); \
1251 GEN_VEXT_VMADC_VVM(vmadc_vvm_b, uint8_t, H1, DO_MADC)
1252 GEN_VEXT_VMADC_VVM(vmadc_vvm_h, uint16_t, H2, DO_MADC)
1253 GEN_VEXT_VMADC_VVM(vmadc_vvm_w, uint32_t, H4, DO_MADC)
1254 GEN_VEXT_VMADC_VVM(vmadc_vvm_d, uint64_t, H8, DO_MADC)
1256 GEN_VEXT_VMADC_VVM(vmsbc_vvm_b, uint8_t, H1, DO_MSBC)
1257 GEN_VEXT_VMADC_VVM(vmsbc_vvm_h, uint16_t, H2, DO_MSBC)
1258 GEN_VEXT_VMADC_VVM(vmsbc_vvm_w, uint32_t, H4, DO_MSBC)
1259 GEN_VEXT_VMADC_VVM(vmsbc_vvm_d, uint64_t, H8, DO_MSBC)
1261 #define GEN_VEXT_VMADC_VXM(NAME, ETYPE, H, DO_OP) \
1262 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
1263 void *vs2, CPURISCVState *env, uint32_t desc) \
1265 uint32_t mlen = vext_mlen(desc); \
1266 uint32_t vl = env->vl; \
1267 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
1268 uint32_t i; \
1270 for (i = 0; i < vl; i++) { \
1271 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1272 uint8_t carry = vext_elem_mask(v0, mlen, i); \
1274 vext_set_elem_mask(vd, mlen, i, \
1275 DO_OP(s2, (ETYPE)(target_long)s1, carry)); \
1277 for (; i < vlmax; i++) { \
1278 vext_set_elem_mask(vd, mlen, i, 0); \
1282 GEN_VEXT_VMADC_VXM(vmadc_vxm_b, uint8_t, H1, DO_MADC)
1283 GEN_VEXT_VMADC_VXM(vmadc_vxm_h, uint16_t, H2, DO_MADC)
1284 GEN_VEXT_VMADC_VXM(vmadc_vxm_w, uint32_t, H4, DO_MADC)
1285 GEN_VEXT_VMADC_VXM(vmadc_vxm_d, uint64_t, H8, DO_MADC)
1287 GEN_VEXT_VMADC_VXM(vmsbc_vxm_b, uint8_t, H1, DO_MSBC)
1288 GEN_VEXT_VMADC_VXM(vmsbc_vxm_h, uint16_t, H2, DO_MSBC)
1289 GEN_VEXT_VMADC_VXM(vmsbc_vxm_w, uint32_t, H4, DO_MSBC)
1290 GEN_VEXT_VMADC_VXM(vmsbc_vxm_d, uint64_t, H8, DO_MSBC)
1292 /* Vector Bitwise Logical Instructions */
1293 RVVCALL(OPIVV2, vand_vv_b, OP_SSS_B, H1, H1, H1, DO_AND)
1294 RVVCALL(OPIVV2, vand_vv_h, OP_SSS_H, H2, H2, H2, DO_AND)
1295 RVVCALL(OPIVV2, vand_vv_w, OP_SSS_W, H4, H4, H4, DO_AND)
1296 RVVCALL(OPIVV2, vand_vv_d, OP_SSS_D, H8, H8, H8, DO_AND)
1297 RVVCALL(OPIVV2, vor_vv_b, OP_SSS_B, H1, H1, H1, DO_OR)
1298 RVVCALL(OPIVV2, vor_vv_h, OP_SSS_H, H2, H2, H2, DO_OR)
1299 RVVCALL(OPIVV2, vor_vv_w, OP_SSS_W, H4, H4, H4, DO_OR)
1300 RVVCALL(OPIVV2, vor_vv_d, OP_SSS_D, H8, H8, H8, DO_OR)
1301 RVVCALL(OPIVV2, vxor_vv_b, OP_SSS_B, H1, H1, H1, DO_XOR)
1302 RVVCALL(OPIVV2, vxor_vv_h, OP_SSS_H, H2, H2, H2, DO_XOR)
1303 RVVCALL(OPIVV2, vxor_vv_w, OP_SSS_W, H4, H4, H4, DO_XOR)
1304 RVVCALL(OPIVV2, vxor_vv_d, OP_SSS_D, H8, H8, H8, DO_XOR)
1305 GEN_VEXT_VV(vand_vv_b, 1, 1, clearb)
1306 GEN_VEXT_VV(vand_vv_h, 2, 2, clearh)
1307 GEN_VEXT_VV(vand_vv_w, 4, 4, clearl)
1308 GEN_VEXT_VV(vand_vv_d, 8, 8, clearq)
1309 GEN_VEXT_VV(vor_vv_b, 1, 1, clearb)
1310 GEN_VEXT_VV(vor_vv_h, 2, 2, clearh)
1311 GEN_VEXT_VV(vor_vv_w, 4, 4, clearl)
1312 GEN_VEXT_VV(vor_vv_d, 8, 8, clearq)
1313 GEN_VEXT_VV(vxor_vv_b, 1, 1, clearb)
1314 GEN_VEXT_VV(vxor_vv_h, 2, 2, clearh)
1315 GEN_VEXT_VV(vxor_vv_w, 4, 4, clearl)
1316 GEN_VEXT_VV(vxor_vv_d, 8, 8, clearq)
1318 RVVCALL(OPIVX2, vand_vx_b, OP_SSS_B, H1, H1, DO_AND)
1319 RVVCALL(OPIVX2, vand_vx_h, OP_SSS_H, H2, H2, DO_AND)
1320 RVVCALL(OPIVX2, vand_vx_w, OP_SSS_W, H4, H4, DO_AND)
1321 RVVCALL(OPIVX2, vand_vx_d, OP_SSS_D, H8, H8, DO_AND)
1322 RVVCALL(OPIVX2, vor_vx_b, OP_SSS_B, H1, H1, DO_OR)
1323 RVVCALL(OPIVX2, vor_vx_h, OP_SSS_H, H2, H2, DO_OR)
1324 RVVCALL(OPIVX2, vor_vx_w, OP_SSS_W, H4, H4, DO_OR)
1325 RVVCALL(OPIVX2, vor_vx_d, OP_SSS_D, H8, H8, DO_OR)
1326 RVVCALL(OPIVX2, vxor_vx_b, OP_SSS_B, H1, H1, DO_XOR)
1327 RVVCALL(OPIVX2, vxor_vx_h, OP_SSS_H, H2, H2, DO_XOR)
1328 RVVCALL(OPIVX2, vxor_vx_w, OP_SSS_W, H4, H4, DO_XOR)
1329 RVVCALL(OPIVX2, vxor_vx_d, OP_SSS_D, H8, H8, DO_XOR)
1330 GEN_VEXT_VX(vand_vx_b, 1, 1, clearb)
1331 GEN_VEXT_VX(vand_vx_h, 2, 2, clearh)
1332 GEN_VEXT_VX(vand_vx_w, 4, 4, clearl)
1333 GEN_VEXT_VX(vand_vx_d, 8, 8, clearq)
1334 GEN_VEXT_VX(vor_vx_b, 1, 1, clearb)
1335 GEN_VEXT_VX(vor_vx_h, 2, 2, clearh)
1336 GEN_VEXT_VX(vor_vx_w, 4, 4, clearl)
1337 GEN_VEXT_VX(vor_vx_d, 8, 8, clearq)
1338 GEN_VEXT_VX(vxor_vx_b, 1, 1, clearb)
1339 GEN_VEXT_VX(vxor_vx_h, 2, 2, clearh)
1340 GEN_VEXT_VX(vxor_vx_w, 4, 4, clearl)
1341 GEN_VEXT_VX(vxor_vx_d, 8, 8, clearq)
1343 /* Vector Single-Width Bit Shift Instructions */
1344 #define DO_SLL(N, M) (N << (M))
1345 #define DO_SRL(N, M) (N >> (M))
1347 /* generate the helpers for shift instructions with two vector operators */
1348 #define GEN_VEXT_SHIFT_VV(NAME, TS1, TS2, HS1, HS2, OP, MASK, CLEAR_FN) \
1349 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
1350 void *vs2, CPURISCVState *env, uint32_t desc) \
1352 uint32_t mlen = vext_mlen(desc); \
1353 uint32_t vm = vext_vm(desc); \
1354 uint32_t vl = env->vl; \
1355 uint32_t esz = sizeof(TS1); \
1356 uint32_t vlmax = vext_maxsz(desc) / esz; \
1357 uint32_t i; \
1359 for (i = 0; i < vl; i++) { \
1360 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
1361 continue; \
1363 TS1 s1 = *((TS1 *)vs1 + HS1(i)); \
1364 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
1365 *((TS1 *)vd + HS1(i)) = OP(s2, s1 & MASK); \
1367 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
1370 GEN_VEXT_SHIFT_VV(vsll_vv_b, uint8_t, uint8_t, H1, H1, DO_SLL, 0x7, clearb)
1371 GEN_VEXT_SHIFT_VV(vsll_vv_h, uint16_t, uint16_t, H2, H2, DO_SLL, 0xf, clearh)
1372 GEN_VEXT_SHIFT_VV(vsll_vv_w, uint32_t, uint32_t, H4, H4, DO_SLL, 0x1f, clearl)
1373 GEN_VEXT_SHIFT_VV(vsll_vv_d, uint64_t, uint64_t, H8, H8, DO_SLL, 0x3f, clearq)
1375 GEN_VEXT_SHIFT_VV(vsrl_vv_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7, clearb)
1376 GEN_VEXT_SHIFT_VV(vsrl_vv_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf, clearh)
1377 GEN_VEXT_SHIFT_VV(vsrl_vv_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f, clearl)
1378 GEN_VEXT_SHIFT_VV(vsrl_vv_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f, clearq)
1380 GEN_VEXT_SHIFT_VV(vsra_vv_b, uint8_t, int8_t, H1, H1, DO_SRL, 0x7, clearb)
1381 GEN_VEXT_SHIFT_VV(vsra_vv_h, uint16_t, int16_t, H2, H2, DO_SRL, 0xf, clearh)
1382 GEN_VEXT_SHIFT_VV(vsra_vv_w, uint32_t, int32_t, H4, H4, DO_SRL, 0x1f, clearl)
1383 GEN_VEXT_SHIFT_VV(vsra_vv_d, uint64_t, int64_t, H8, H8, DO_SRL, 0x3f, clearq)
1385 /* generate the helpers for shift instructions with one vector and one scalar */
1386 #define GEN_VEXT_SHIFT_VX(NAME, TD, TS2, HD, HS2, OP, MASK, CLEAR_FN) \
1387 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
1388 void *vs2, CPURISCVState *env, uint32_t desc) \
1390 uint32_t mlen = vext_mlen(desc); \
1391 uint32_t vm = vext_vm(desc); \
1392 uint32_t vl = env->vl; \
1393 uint32_t esz = sizeof(TD); \
1394 uint32_t vlmax = vext_maxsz(desc) / esz; \
1395 uint32_t i; \
1397 for (i = 0; i < vl; i++) { \
1398 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
1399 continue; \
1401 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
1402 *((TD *)vd + HD(i)) = OP(s2, s1 & MASK); \
1404 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
1407 GEN_VEXT_SHIFT_VX(vsll_vx_b, uint8_t, int8_t, H1, H1, DO_SLL, 0x7, clearb)
1408 GEN_VEXT_SHIFT_VX(vsll_vx_h, uint16_t, int16_t, H2, H2, DO_SLL, 0xf, clearh)
1409 GEN_VEXT_SHIFT_VX(vsll_vx_w, uint32_t, int32_t, H4, H4, DO_SLL, 0x1f, clearl)
1410 GEN_VEXT_SHIFT_VX(vsll_vx_d, uint64_t, int64_t, H8, H8, DO_SLL, 0x3f, clearq)
1412 GEN_VEXT_SHIFT_VX(vsrl_vx_b, uint8_t, uint8_t, H1, H1, DO_SRL, 0x7, clearb)
1413 GEN_VEXT_SHIFT_VX(vsrl_vx_h, uint16_t, uint16_t, H2, H2, DO_SRL, 0xf, clearh)
1414 GEN_VEXT_SHIFT_VX(vsrl_vx_w, uint32_t, uint32_t, H4, H4, DO_SRL, 0x1f, clearl)
1415 GEN_VEXT_SHIFT_VX(vsrl_vx_d, uint64_t, uint64_t, H8, H8, DO_SRL, 0x3f, clearq)
1417 GEN_VEXT_SHIFT_VX(vsra_vx_b, int8_t, int8_t, H1, H1, DO_SRL, 0x7, clearb)
1418 GEN_VEXT_SHIFT_VX(vsra_vx_h, int16_t, int16_t, H2, H2, DO_SRL, 0xf, clearh)
1419 GEN_VEXT_SHIFT_VX(vsra_vx_w, int32_t, int32_t, H4, H4, DO_SRL, 0x1f, clearl)
1420 GEN_VEXT_SHIFT_VX(vsra_vx_d, int64_t, int64_t, H8, H8, DO_SRL, 0x3f, clearq)
1422 /* Vector Narrowing Integer Right Shift Instructions */
1423 GEN_VEXT_SHIFT_VV(vnsrl_vv_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf, clearb)
1424 GEN_VEXT_SHIFT_VV(vnsrl_vv_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f, clearh)
1425 GEN_VEXT_SHIFT_VV(vnsrl_vv_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f, clearl)
1426 GEN_VEXT_SHIFT_VV(vnsra_vv_b, uint8_t, int16_t, H1, H2, DO_SRL, 0xf, clearb)
1427 GEN_VEXT_SHIFT_VV(vnsra_vv_h, uint16_t, int32_t, H2, H4, DO_SRL, 0x1f, clearh)
1428 GEN_VEXT_SHIFT_VV(vnsra_vv_w, uint32_t, int64_t, H4, H8, DO_SRL, 0x3f, clearl)
1429 GEN_VEXT_SHIFT_VX(vnsrl_vx_b, uint8_t, uint16_t, H1, H2, DO_SRL, 0xf, clearb)
1430 GEN_VEXT_SHIFT_VX(vnsrl_vx_h, uint16_t, uint32_t, H2, H4, DO_SRL, 0x1f, clearh)
1431 GEN_VEXT_SHIFT_VX(vnsrl_vx_w, uint32_t, uint64_t, H4, H8, DO_SRL, 0x3f, clearl)
1432 GEN_VEXT_SHIFT_VX(vnsra_vx_b, int8_t, int16_t, H1, H2, DO_SRL, 0xf, clearb)
1433 GEN_VEXT_SHIFT_VX(vnsra_vx_h, int16_t, int32_t, H2, H4, DO_SRL, 0x1f, clearh)
1434 GEN_VEXT_SHIFT_VX(vnsra_vx_w, int32_t, int64_t, H4, H8, DO_SRL, 0x3f, clearl)
1436 /* Vector Integer Comparison Instructions */
1437 #define DO_MSEQ(N, M) (N == M)
1438 #define DO_MSNE(N, M) (N != M)
1439 #define DO_MSLT(N, M) (N < M)
1440 #define DO_MSLE(N, M) (N <= M)
1441 #define DO_MSGT(N, M) (N > M)
1443 #define GEN_VEXT_CMP_VV(NAME, ETYPE, H, DO_OP) \
1444 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
1445 CPURISCVState *env, uint32_t desc) \
1447 uint32_t mlen = vext_mlen(desc); \
1448 uint32_t vm = vext_vm(desc); \
1449 uint32_t vl = env->vl; \
1450 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
1451 uint32_t i; \
1453 for (i = 0; i < vl; i++) { \
1454 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
1455 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1456 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
1457 continue; \
1459 vext_set_elem_mask(vd, mlen, i, DO_OP(s2, s1)); \
1461 for (; i < vlmax; i++) { \
1462 vext_set_elem_mask(vd, mlen, i, 0); \
1466 GEN_VEXT_CMP_VV(vmseq_vv_b, uint8_t, H1, DO_MSEQ)
1467 GEN_VEXT_CMP_VV(vmseq_vv_h, uint16_t, H2, DO_MSEQ)
1468 GEN_VEXT_CMP_VV(vmseq_vv_w, uint32_t, H4, DO_MSEQ)
1469 GEN_VEXT_CMP_VV(vmseq_vv_d, uint64_t, H8, DO_MSEQ)
1471 GEN_VEXT_CMP_VV(vmsne_vv_b, uint8_t, H1, DO_MSNE)
1472 GEN_VEXT_CMP_VV(vmsne_vv_h, uint16_t, H2, DO_MSNE)
1473 GEN_VEXT_CMP_VV(vmsne_vv_w, uint32_t, H4, DO_MSNE)
1474 GEN_VEXT_CMP_VV(vmsne_vv_d, uint64_t, H8, DO_MSNE)
1476 GEN_VEXT_CMP_VV(vmsltu_vv_b, uint8_t, H1, DO_MSLT)
1477 GEN_VEXT_CMP_VV(vmsltu_vv_h, uint16_t, H2, DO_MSLT)
1478 GEN_VEXT_CMP_VV(vmsltu_vv_w, uint32_t, H4, DO_MSLT)
1479 GEN_VEXT_CMP_VV(vmsltu_vv_d, uint64_t, H8, DO_MSLT)
1481 GEN_VEXT_CMP_VV(vmslt_vv_b, int8_t, H1, DO_MSLT)
1482 GEN_VEXT_CMP_VV(vmslt_vv_h, int16_t, H2, DO_MSLT)
1483 GEN_VEXT_CMP_VV(vmslt_vv_w, int32_t, H4, DO_MSLT)
1484 GEN_VEXT_CMP_VV(vmslt_vv_d, int64_t, H8, DO_MSLT)
1486 GEN_VEXT_CMP_VV(vmsleu_vv_b, uint8_t, H1, DO_MSLE)
1487 GEN_VEXT_CMP_VV(vmsleu_vv_h, uint16_t, H2, DO_MSLE)
1488 GEN_VEXT_CMP_VV(vmsleu_vv_w, uint32_t, H4, DO_MSLE)
1489 GEN_VEXT_CMP_VV(vmsleu_vv_d, uint64_t, H8, DO_MSLE)
1491 GEN_VEXT_CMP_VV(vmsle_vv_b, int8_t, H1, DO_MSLE)
1492 GEN_VEXT_CMP_VV(vmsle_vv_h, int16_t, H2, DO_MSLE)
1493 GEN_VEXT_CMP_VV(vmsle_vv_w, int32_t, H4, DO_MSLE)
1494 GEN_VEXT_CMP_VV(vmsle_vv_d, int64_t, H8, DO_MSLE)
1496 #define GEN_VEXT_CMP_VX(NAME, ETYPE, H, DO_OP) \
1497 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
1498 CPURISCVState *env, uint32_t desc) \
1500 uint32_t mlen = vext_mlen(desc); \
1501 uint32_t vm = vext_vm(desc); \
1502 uint32_t vl = env->vl; \
1503 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
1504 uint32_t i; \
1506 for (i = 0; i < vl; i++) { \
1507 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
1508 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
1509 continue; \
1511 vext_set_elem_mask(vd, mlen, i, \
1512 DO_OP(s2, (ETYPE)(target_long)s1)); \
1514 for (; i < vlmax; i++) { \
1515 vext_set_elem_mask(vd, mlen, i, 0); \
1519 GEN_VEXT_CMP_VX(vmseq_vx_b, uint8_t, H1, DO_MSEQ)
1520 GEN_VEXT_CMP_VX(vmseq_vx_h, uint16_t, H2, DO_MSEQ)
1521 GEN_VEXT_CMP_VX(vmseq_vx_w, uint32_t, H4, DO_MSEQ)
1522 GEN_VEXT_CMP_VX(vmseq_vx_d, uint64_t, H8, DO_MSEQ)
1524 GEN_VEXT_CMP_VX(vmsne_vx_b, uint8_t, H1, DO_MSNE)
1525 GEN_VEXT_CMP_VX(vmsne_vx_h, uint16_t, H2, DO_MSNE)
1526 GEN_VEXT_CMP_VX(vmsne_vx_w, uint32_t, H4, DO_MSNE)
1527 GEN_VEXT_CMP_VX(vmsne_vx_d, uint64_t, H8, DO_MSNE)
1529 GEN_VEXT_CMP_VX(vmsltu_vx_b, uint8_t, H1, DO_MSLT)
1530 GEN_VEXT_CMP_VX(vmsltu_vx_h, uint16_t, H2, DO_MSLT)
1531 GEN_VEXT_CMP_VX(vmsltu_vx_w, uint32_t, H4, DO_MSLT)
1532 GEN_VEXT_CMP_VX(vmsltu_vx_d, uint64_t, H8, DO_MSLT)
1534 GEN_VEXT_CMP_VX(vmslt_vx_b, int8_t, H1, DO_MSLT)
1535 GEN_VEXT_CMP_VX(vmslt_vx_h, int16_t, H2, DO_MSLT)
1536 GEN_VEXT_CMP_VX(vmslt_vx_w, int32_t, H4, DO_MSLT)
1537 GEN_VEXT_CMP_VX(vmslt_vx_d, int64_t, H8, DO_MSLT)
1539 GEN_VEXT_CMP_VX(vmsleu_vx_b, uint8_t, H1, DO_MSLE)
1540 GEN_VEXT_CMP_VX(vmsleu_vx_h, uint16_t, H2, DO_MSLE)
1541 GEN_VEXT_CMP_VX(vmsleu_vx_w, uint32_t, H4, DO_MSLE)
1542 GEN_VEXT_CMP_VX(vmsleu_vx_d, uint64_t, H8, DO_MSLE)
1544 GEN_VEXT_CMP_VX(vmsle_vx_b, int8_t, H1, DO_MSLE)
1545 GEN_VEXT_CMP_VX(vmsle_vx_h, int16_t, H2, DO_MSLE)
1546 GEN_VEXT_CMP_VX(vmsle_vx_w, int32_t, H4, DO_MSLE)
1547 GEN_VEXT_CMP_VX(vmsle_vx_d, int64_t, H8, DO_MSLE)
1549 GEN_VEXT_CMP_VX(vmsgtu_vx_b, uint8_t, H1, DO_MSGT)
1550 GEN_VEXT_CMP_VX(vmsgtu_vx_h, uint16_t, H2, DO_MSGT)
1551 GEN_VEXT_CMP_VX(vmsgtu_vx_w, uint32_t, H4, DO_MSGT)
1552 GEN_VEXT_CMP_VX(vmsgtu_vx_d, uint64_t, H8, DO_MSGT)
1554 GEN_VEXT_CMP_VX(vmsgt_vx_b, int8_t, H1, DO_MSGT)
1555 GEN_VEXT_CMP_VX(vmsgt_vx_h, int16_t, H2, DO_MSGT)
1556 GEN_VEXT_CMP_VX(vmsgt_vx_w, int32_t, H4, DO_MSGT)
1557 GEN_VEXT_CMP_VX(vmsgt_vx_d, int64_t, H8, DO_MSGT)
1559 /* Vector Integer Min/Max Instructions */
1560 RVVCALL(OPIVV2, vminu_vv_b, OP_UUU_B, H1, H1, H1, DO_MIN)
1561 RVVCALL(OPIVV2, vminu_vv_h, OP_UUU_H, H2, H2, H2, DO_MIN)
1562 RVVCALL(OPIVV2, vminu_vv_w, OP_UUU_W, H4, H4, H4, DO_MIN)
1563 RVVCALL(OPIVV2, vminu_vv_d, OP_UUU_D, H8, H8, H8, DO_MIN)
1564 RVVCALL(OPIVV2, vmin_vv_b, OP_SSS_B, H1, H1, H1, DO_MIN)
1565 RVVCALL(OPIVV2, vmin_vv_h, OP_SSS_H, H2, H2, H2, DO_MIN)
1566 RVVCALL(OPIVV2, vmin_vv_w, OP_SSS_W, H4, H4, H4, DO_MIN)
1567 RVVCALL(OPIVV2, vmin_vv_d, OP_SSS_D, H8, H8, H8, DO_MIN)
1568 RVVCALL(OPIVV2, vmaxu_vv_b, OP_UUU_B, H1, H1, H1, DO_MAX)
1569 RVVCALL(OPIVV2, vmaxu_vv_h, OP_UUU_H, H2, H2, H2, DO_MAX)
1570 RVVCALL(OPIVV2, vmaxu_vv_w, OP_UUU_W, H4, H4, H4, DO_MAX)
1571 RVVCALL(OPIVV2, vmaxu_vv_d, OP_UUU_D, H8, H8, H8, DO_MAX)
1572 RVVCALL(OPIVV2, vmax_vv_b, OP_SSS_B, H1, H1, H1, DO_MAX)
1573 RVVCALL(OPIVV2, vmax_vv_h, OP_SSS_H, H2, H2, H2, DO_MAX)
1574 RVVCALL(OPIVV2, vmax_vv_w, OP_SSS_W, H4, H4, H4, DO_MAX)
1575 RVVCALL(OPIVV2, vmax_vv_d, OP_SSS_D, H8, H8, H8, DO_MAX)
1576 GEN_VEXT_VV(vminu_vv_b, 1, 1, clearb)
1577 GEN_VEXT_VV(vminu_vv_h, 2, 2, clearh)
1578 GEN_VEXT_VV(vminu_vv_w, 4, 4, clearl)
1579 GEN_VEXT_VV(vminu_vv_d, 8, 8, clearq)
1580 GEN_VEXT_VV(vmin_vv_b, 1, 1, clearb)
1581 GEN_VEXT_VV(vmin_vv_h, 2, 2, clearh)
1582 GEN_VEXT_VV(vmin_vv_w, 4, 4, clearl)
1583 GEN_VEXT_VV(vmin_vv_d, 8, 8, clearq)
1584 GEN_VEXT_VV(vmaxu_vv_b, 1, 1, clearb)
1585 GEN_VEXT_VV(vmaxu_vv_h, 2, 2, clearh)
1586 GEN_VEXT_VV(vmaxu_vv_w, 4, 4, clearl)
1587 GEN_VEXT_VV(vmaxu_vv_d, 8, 8, clearq)
1588 GEN_VEXT_VV(vmax_vv_b, 1, 1, clearb)
1589 GEN_VEXT_VV(vmax_vv_h, 2, 2, clearh)
1590 GEN_VEXT_VV(vmax_vv_w, 4, 4, clearl)
1591 GEN_VEXT_VV(vmax_vv_d, 8, 8, clearq)
1593 RVVCALL(OPIVX2, vminu_vx_b, OP_UUU_B, H1, H1, DO_MIN)
1594 RVVCALL(OPIVX2, vminu_vx_h, OP_UUU_H, H2, H2, DO_MIN)
1595 RVVCALL(OPIVX2, vminu_vx_w, OP_UUU_W, H4, H4, DO_MIN)
1596 RVVCALL(OPIVX2, vminu_vx_d, OP_UUU_D, H8, H8, DO_MIN)
1597 RVVCALL(OPIVX2, vmin_vx_b, OP_SSS_B, H1, H1, DO_MIN)
1598 RVVCALL(OPIVX2, vmin_vx_h, OP_SSS_H, H2, H2, DO_MIN)
1599 RVVCALL(OPIVX2, vmin_vx_w, OP_SSS_W, H4, H4, DO_MIN)
1600 RVVCALL(OPIVX2, vmin_vx_d, OP_SSS_D, H8, H8, DO_MIN)
1601 RVVCALL(OPIVX2, vmaxu_vx_b, OP_UUU_B, H1, H1, DO_MAX)
1602 RVVCALL(OPIVX2, vmaxu_vx_h, OP_UUU_H, H2, H2, DO_MAX)
1603 RVVCALL(OPIVX2, vmaxu_vx_w, OP_UUU_W, H4, H4, DO_MAX)
1604 RVVCALL(OPIVX2, vmaxu_vx_d, OP_UUU_D, H8, H8, DO_MAX)
1605 RVVCALL(OPIVX2, vmax_vx_b, OP_SSS_B, H1, H1, DO_MAX)
1606 RVVCALL(OPIVX2, vmax_vx_h, OP_SSS_H, H2, H2, DO_MAX)
1607 RVVCALL(OPIVX2, vmax_vx_w, OP_SSS_W, H4, H4, DO_MAX)
1608 RVVCALL(OPIVX2, vmax_vx_d, OP_SSS_D, H8, H8, DO_MAX)
1609 GEN_VEXT_VX(vminu_vx_b, 1, 1, clearb)
1610 GEN_VEXT_VX(vminu_vx_h, 2, 2, clearh)
1611 GEN_VEXT_VX(vminu_vx_w, 4, 4, clearl)
1612 GEN_VEXT_VX(vminu_vx_d, 8, 8, clearq)
1613 GEN_VEXT_VX(vmin_vx_b, 1, 1, clearb)
1614 GEN_VEXT_VX(vmin_vx_h, 2, 2, clearh)
1615 GEN_VEXT_VX(vmin_vx_w, 4, 4, clearl)
1616 GEN_VEXT_VX(vmin_vx_d, 8, 8, clearq)
1617 GEN_VEXT_VX(vmaxu_vx_b, 1, 1, clearb)
1618 GEN_VEXT_VX(vmaxu_vx_h, 2, 2, clearh)
1619 GEN_VEXT_VX(vmaxu_vx_w, 4, 4, clearl)
1620 GEN_VEXT_VX(vmaxu_vx_d, 8, 8, clearq)
1621 GEN_VEXT_VX(vmax_vx_b, 1, 1, clearb)
1622 GEN_VEXT_VX(vmax_vx_h, 2, 2, clearh)
1623 GEN_VEXT_VX(vmax_vx_w, 4, 4, clearl)
1624 GEN_VEXT_VX(vmax_vx_d, 8, 8, clearq)
1626 /* Vector Single-Width Integer Multiply Instructions */
1627 #define DO_MUL(N, M) (N * M)
1628 RVVCALL(OPIVV2, vmul_vv_b, OP_SSS_B, H1, H1, H1, DO_MUL)
1629 RVVCALL(OPIVV2, vmul_vv_h, OP_SSS_H, H2, H2, H2, DO_MUL)
1630 RVVCALL(OPIVV2, vmul_vv_w, OP_SSS_W, H4, H4, H4, DO_MUL)
1631 RVVCALL(OPIVV2, vmul_vv_d, OP_SSS_D, H8, H8, H8, DO_MUL)
1632 GEN_VEXT_VV(vmul_vv_b, 1, 1, clearb)
1633 GEN_VEXT_VV(vmul_vv_h, 2, 2, clearh)
1634 GEN_VEXT_VV(vmul_vv_w, 4, 4, clearl)
1635 GEN_VEXT_VV(vmul_vv_d, 8, 8, clearq)
1637 static int8_t do_mulh_b(int8_t s2, int8_t s1)
1639 return (int16_t)s2 * (int16_t)s1 >> 8;
1642 static int16_t do_mulh_h(int16_t s2, int16_t s1)
1644 return (int32_t)s2 * (int32_t)s1 >> 16;
1647 static int32_t do_mulh_w(int32_t s2, int32_t s1)
1649 return (int64_t)s2 * (int64_t)s1 >> 32;
1652 static int64_t do_mulh_d(int64_t s2, int64_t s1)
1654 uint64_t hi_64, lo_64;
1656 muls64(&lo_64, &hi_64, s1, s2);
1657 return hi_64;
1660 static uint8_t do_mulhu_b(uint8_t s2, uint8_t s1)
1662 return (uint16_t)s2 * (uint16_t)s1 >> 8;
1665 static uint16_t do_mulhu_h(uint16_t s2, uint16_t s1)
1667 return (uint32_t)s2 * (uint32_t)s1 >> 16;
1670 static uint32_t do_mulhu_w(uint32_t s2, uint32_t s1)
1672 return (uint64_t)s2 * (uint64_t)s1 >> 32;
1675 static uint64_t do_mulhu_d(uint64_t s2, uint64_t s1)
1677 uint64_t hi_64, lo_64;
1679 mulu64(&lo_64, &hi_64, s2, s1);
1680 return hi_64;
1683 static int8_t do_mulhsu_b(int8_t s2, uint8_t s1)
1685 return (int16_t)s2 * (uint16_t)s1 >> 8;
1688 static int16_t do_mulhsu_h(int16_t s2, uint16_t s1)
1690 return (int32_t)s2 * (uint32_t)s1 >> 16;
1693 static int32_t do_mulhsu_w(int32_t s2, uint32_t s1)
1695 return (int64_t)s2 * (uint64_t)s1 >> 32;
1699 * Let A = signed operand,
1700 * B = unsigned operand
1701 * P = mulu64(A, B), unsigned product
1703 * LET X = 2 ** 64 - A, 2's complement of A
1704 * SP = signed product
1705 * THEN
1706 * IF A < 0
1707 * SP = -X * B
1708 * = -(2 ** 64 - A) * B
1709 * = A * B - 2 ** 64 * B
1710 * = P - 2 ** 64 * B
1711 * ELSE
1712 * SP = P
1713 * THEN
1714 * HI_P -= (A < 0 ? B : 0)
1717 static int64_t do_mulhsu_d(int64_t s2, uint64_t s1)
1719 uint64_t hi_64, lo_64;
1721 mulu64(&lo_64, &hi_64, s2, s1);
1723 hi_64 -= s2 < 0 ? s1 : 0;
1724 return hi_64;
1727 RVVCALL(OPIVV2, vmulh_vv_b, OP_SSS_B, H1, H1, H1, do_mulh_b)
1728 RVVCALL(OPIVV2, vmulh_vv_h, OP_SSS_H, H2, H2, H2, do_mulh_h)
1729 RVVCALL(OPIVV2, vmulh_vv_w, OP_SSS_W, H4, H4, H4, do_mulh_w)
1730 RVVCALL(OPIVV2, vmulh_vv_d, OP_SSS_D, H8, H8, H8, do_mulh_d)
1731 RVVCALL(OPIVV2, vmulhu_vv_b, OP_UUU_B, H1, H1, H1, do_mulhu_b)
1732 RVVCALL(OPIVV2, vmulhu_vv_h, OP_UUU_H, H2, H2, H2, do_mulhu_h)
1733 RVVCALL(OPIVV2, vmulhu_vv_w, OP_UUU_W, H4, H4, H4, do_mulhu_w)
1734 RVVCALL(OPIVV2, vmulhu_vv_d, OP_UUU_D, H8, H8, H8, do_mulhu_d)
1735 RVVCALL(OPIVV2, vmulhsu_vv_b, OP_SUS_B, H1, H1, H1, do_mulhsu_b)
1736 RVVCALL(OPIVV2, vmulhsu_vv_h, OP_SUS_H, H2, H2, H2, do_mulhsu_h)
1737 RVVCALL(OPIVV2, vmulhsu_vv_w, OP_SUS_W, H4, H4, H4, do_mulhsu_w)
1738 RVVCALL(OPIVV2, vmulhsu_vv_d, OP_SUS_D, H8, H8, H8, do_mulhsu_d)
1739 GEN_VEXT_VV(vmulh_vv_b, 1, 1, clearb)
1740 GEN_VEXT_VV(vmulh_vv_h, 2, 2, clearh)
1741 GEN_VEXT_VV(vmulh_vv_w, 4, 4, clearl)
1742 GEN_VEXT_VV(vmulh_vv_d, 8, 8, clearq)
1743 GEN_VEXT_VV(vmulhu_vv_b, 1, 1, clearb)
1744 GEN_VEXT_VV(vmulhu_vv_h, 2, 2, clearh)
1745 GEN_VEXT_VV(vmulhu_vv_w, 4, 4, clearl)
1746 GEN_VEXT_VV(vmulhu_vv_d, 8, 8, clearq)
1747 GEN_VEXT_VV(vmulhsu_vv_b, 1, 1, clearb)
1748 GEN_VEXT_VV(vmulhsu_vv_h, 2, 2, clearh)
1749 GEN_VEXT_VV(vmulhsu_vv_w, 4, 4, clearl)
1750 GEN_VEXT_VV(vmulhsu_vv_d, 8, 8, clearq)
1752 RVVCALL(OPIVX2, vmul_vx_b, OP_SSS_B, H1, H1, DO_MUL)
1753 RVVCALL(OPIVX2, vmul_vx_h, OP_SSS_H, H2, H2, DO_MUL)
1754 RVVCALL(OPIVX2, vmul_vx_w, OP_SSS_W, H4, H4, DO_MUL)
1755 RVVCALL(OPIVX2, vmul_vx_d, OP_SSS_D, H8, H8, DO_MUL)
1756 RVVCALL(OPIVX2, vmulh_vx_b, OP_SSS_B, H1, H1, do_mulh_b)
1757 RVVCALL(OPIVX2, vmulh_vx_h, OP_SSS_H, H2, H2, do_mulh_h)
1758 RVVCALL(OPIVX2, vmulh_vx_w, OP_SSS_W, H4, H4, do_mulh_w)
1759 RVVCALL(OPIVX2, vmulh_vx_d, OP_SSS_D, H8, H8, do_mulh_d)
1760 RVVCALL(OPIVX2, vmulhu_vx_b, OP_UUU_B, H1, H1, do_mulhu_b)
1761 RVVCALL(OPIVX2, vmulhu_vx_h, OP_UUU_H, H2, H2, do_mulhu_h)
1762 RVVCALL(OPIVX2, vmulhu_vx_w, OP_UUU_W, H4, H4, do_mulhu_w)
1763 RVVCALL(OPIVX2, vmulhu_vx_d, OP_UUU_D, H8, H8, do_mulhu_d)
1764 RVVCALL(OPIVX2, vmulhsu_vx_b, OP_SUS_B, H1, H1, do_mulhsu_b)
1765 RVVCALL(OPIVX2, vmulhsu_vx_h, OP_SUS_H, H2, H2, do_mulhsu_h)
1766 RVVCALL(OPIVX2, vmulhsu_vx_w, OP_SUS_W, H4, H4, do_mulhsu_w)
1767 RVVCALL(OPIVX2, vmulhsu_vx_d, OP_SUS_D, H8, H8, do_mulhsu_d)
1768 GEN_VEXT_VX(vmul_vx_b, 1, 1, clearb)
1769 GEN_VEXT_VX(vmul_vx_h, 2, 2, clearh)
1770 GEN_VEXT_VX(vmul_vx_w, 4, 4, clearl)
1771 GEN_VEXT_VX(vmul_vx_d, 8, 8, clearq)
1772 GEN_VEXT_VX(vmulh_vx_b, 1, 1, clearb)
1773 GEN_VEXT_VX(vmulh_vx_h, 2, 2, clearh)
1774 GEN_VEXT_VX(vmulh_vx_w, 4, 4, clearl)
1775 GEN_VEXT_VX(vmulh_vx_d, 8, 8, clearq)
1776 GEN_VEXT_VX(vmulhu_vx_b, 1, 1, clearb)
1777 GEN_VEXT_VX(vmulhu_vx_h, 2, 2, clearh)
1778 GEN_VEXT_VX(vmulhu_vx_w, 4, 4, clearl)
1779 GEN_VEXT_VX(vmulhu_vx_d, 8, 8, clearq)
1780 GEN_VEXT_VX(vmulhsu_vx_b, 1, 1, clearb)
1781 GEN_VEXT_VX(vmulhsu_vx_h, 2, 2, clearh)
1782 GEN_VEXT_VX(vmulhsu_vx_w, 4, 4, clearl)
1783 GEN_VEXT_VX(vmulhsu_vx_d, 8, 8, clearq)
1785 /* Vector Integer Divide Instructions */
1786 #define DO_DIVU(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) : N / M)
1787 #define DO_REMU(N, M) (unlikely(M == 0) ? N : N % M)
1788 #define DO_DIV(N, M) (unlikely(M == 0) ? (__typeof(N))(-1) :\
1789 unlikely((N == -N) && (M == (__typeof(N))(-1))) ? N : N / M)
1790 #define DO_REM(N, M) (unlikely(M == 0) ? N :\
1791 unlikely((N == -N) && (M == (__typeof(N))(-1))) ? 0 : N % M)
1793 RVVCALL(OPIVV2, vdivu_vv_b, OP_UUU_B, H1, H1, H1, DO_DIVU)
1794 RVVCALL(OPIVV2, vdivu_vv_h, OP_UUU_H, H2, H2, H2, DO_DIVU)
1795 RVVCALL(OPIVV2, vdivu_vv_w, OP_UUU_W, H4, H4, H4, DO_DIVU)
1796 RVVCALL(OPIVV2, vdivu_vv_d, OP_UUU_D, H8, H8, H8, DO_DIVU)
1797 RVVCALL(OPIVV2, vdiv_vv_b, OP_SSS_B, H1, H1, H1, DO_DIV)
1798 RVVCALL(OPIVV2, vdiv_vv_h, OP_SSS_H, H2, H2, H2, DO_DIV)
1799 RVVCALL(OPIVV2, vdiv_vv_w, OP_SSS_W, H4, H4, H4, DO_DIV)
1800 RVVCALL(OPIVV2, vdiv_vv_d, OP_SSS_D, H8, H8, H8, DO_DIV)
1801 RVVCALL(OPIVV2, vremu_vv_b, OP_UUU_B, H1, H1, H1, DO_REMU)
1802 RVVCALL(OPIVV2, vremu_vv_h, OP_UUU_H, H2, H2, H2, DO_REMU)
1803 RVVCALL(OPIVV2, vremu_vv_w, OP_UUU_W, H4, H4, H4, DO_REMU)
1804 RVVCALL(OPIVV2, vremu_vv_d, OP_UUU_D, H8, H8, H8, DO_REMU)
1805 RVVCALL(OPIVV2, vrem_vv_b, OP_SSS_B, H1, H1, H1, DO_REM)
1806 RVVCALL(OPIVV2, vrem_vv_h, OP_SSS_H, H2, H2, H2, DO_REM)
1807 RVVCALL(OPIVV2, vrem_vv_w, OP_SSS_W, H4, H4, H4, DO_REM)
1808 RVVCALL(OPIVV2, vrem_vv_d, OP_SSS_D, H8, H8, H8, DO_REM)
1809 GEN_VEXT_VV(vdivu_vv_b, 1, 1, clearb)
1810 GEN_VEXT_VV(vdivu_vv_h, 2, 2, clearh)
1811 GEN_VEXT_VV(vdivu_vv_w, 4, 4, clearl)
1812 GEN_VEXT_VV(vdivu_vv_d, 8, 8, clearq)
1813 GEN_VEXT_VV(vdiv_vv_b, 1, 1, clearb)
1814 GEN_VEXT_VV(vdiv_vv_h, 2, 2, clearh)
1815 GEN_VEXT_VV(vdiv_vv_w, 4, 4, clearl)
1816 GEN_VEXT_VV(vdiv_vv_d, 8, 8, clearq)
1817 GEN_VEXT_VV(vremu_vv_b, 1, 1, clearb)
1818 GEN_VEXT_VV(vremu_vv_h, 2, 2, clearh)
1819 GEN_VEXT_VV(vremu_vv_w, 4, 4, clearl)
1820 GEN_VEXT_VV(vremu_vv_d, 8, 8, clearq)
1821 GEN_VEXT_VV(vrem_vv_b, 1, 1, clearb)
1822 GEN_VEXT_VV(vrem_vv_h, 2, 2, clearh)
1823 GEN_VEXT_VV(vrem_vv_w, 4, 4, clearl)
1824 GEN_VEXT_VV(vrem_vv_d, 8, 8, clearq)
1826 RVVCALL(OPIVX2, vdivu_vx_b, OP_UUU_B, H1, H1, DO_DIVU)
1827 RVVCALL(OPIVX2, vdivu_vx_h, OP_UUU_H, H2, H2, DO_DIVU)
1828 RVVCALL(OPIVX2, vdivu_vx_w, OP_UUU_W, H4, H4, DO_DIVU)
1829 RVVCALL(OPIVX2, vdivu_vx_d, OP_UUU_D, H8, H8, DO_DIVU)
1830 RVVCALL(OPIVX2, vdiv_vx_b, OP_SSS_B, H1, H1, DO_DIV)
1831 RVVCALL(OPIVX2, vdiv_vx_h, OP_SSS_H, H2, H2, DO_DIV)
1832 RVVCALL(OPIVX2, vdiv_vx_w, OP_SSS_W, H4, H4, DO_DIV)
1833 RVVCALL(OPIVX2, vdiv_vx_d, OP_SSS_D, H8, H8, DO_DIV)
1834 RVVCALL(OPIVX2, vremu_vx_b, OP_UUU_B, H1, H1, DO_REMU)
1835 RVVCALL(OPIVX2, vremu_vx_h, OP_UUU_H, H2, H2, DO_REMU)
1836 RVVCALL(OPIVX2, vremu_vx_w, OP_UUU_W, H4, H4, DO_REMU)
1837 RVVCALL(OPIVX2, vremu_vx_d, OP_UUU_D, H8, H8, DO_REMU)
1838 RVVCALL(OPIVX2, vrem_vx_b, OP_SSS_B, H1, H1, DO_REM)
1839 RVVCALL(OPIVX2, vrem_vx_h, OP_SSS_H, H2, H2, DO_REM)
1840 RVVCALL(OPIVX2, vrem_vx_w, OP_SSS_W, H4, H4, DO_REM)
1841 RVVCALL(OPIVX2, vrem_vx_d, OP_SSS_D, H8, H8, DO_REM)
1842 GEN_VEXT_VX(vdivu_vx_b, 1, 1, clearb)
1843 GEN_VEXT_VX(vdivu_vx_h, 2, 2, clearh)
1844 GEN_VEXT_VX(vdivu_vx_w, 4, 4, clearl)
1845 GEN_VEXT_VX(vdivu_vx_d, 8, 8, clearq)
1846 GEN_VEXT_VX(vdiv_vx_b, 1, 1, clearb)
1847 GEN_VEXT_VX(vdiv_vx_h, 2, 2, clearh)
1848 GEN_VEXT_VX(vdiv_vx_w, 4, 4, clearl)
1849 GEN_VEXT_VX(vdiv_vx_d, 8, 8, clearq)
1850 GEN_VEXT_VX(vremu_vx_b, 1, 1, clearb)
1851 GEN_VEXT_VX(vremu_vx_h, 2, 2, clearh)
1852 GEN_VEXT_VX(vremu_vx_w, 4, 4, clearl)
1853 GEN_VEXT_VX(vremu_vx_d, 8, 8, clearq)
1854 GEN_VEXT_VX(vrem_vx_b, 1, 1, clearb)
1855 GEN_VEXT_VX(vrem_vx_h, 2, 2, clearh)
1856 GEN_VEXT_VX(vrem_vx_w, 4, 4, clearl)
1857 GEN_VEXT_VX(vrem_vx_d, 8, 8, clearq)
1859 /* Vector Widening Integer Multiply Instructions */
1860 RVVCALL(OPIVV2, vwmul_vv_b, WOP_SSS_B, H2, H1, H1, DO_MUL)
1861 RVVCALL(OPIVV2, vwmul_vv_h, WOP_SSS_H, H4, H2, H2, DO_MUL)
1862 RVVCALL(OPIVV2, vwmul_vv_w, WOP_SSS_W, H8, H4, H4, DO_MUL)
1863 RVVCALL(OPIVV2, vwmulu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MUL)
1864 RVVCALL(OPIVV2, vwmulu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MUL)
1865 RVVCALL(OPIVV2, vwmulu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MUL)
1866 RVVCALL(OPIVV2, vwmulsu_vv_b, WOP_SUS_B, H2, H1, H1, DO_MUL)
1867 RVVCALL(OPIVV2, vwmulsu_vv_h, WOP_SUS_H, H4, H2, H2, DO_MUL)
1868 RVVCALL(OPIVV2, vwmulsu_vv_w, WOP_SUS_W, H8, H4, H4, DO_MUL)
1869 GEN_VEXT_VV(vwmul_vv_b, 1, 2, clearh)
1870 GEN_VEXT_VV(vwmul_vv_h, 2, 4, clearl)
1871 GEN_VEXT_VV(vwmul_vv_w, 4, 8, clearq)
1872 GEN_VEXT_VV(vwmulu_vv_b, 1, 2, clearh)
1873 GEN_VEXT_VV(vwmulu_vv_h, 2, 4, clearl)
1874 GEN_VEXT_VV(vwmulu_vv_w, 4, 8, clearq)
1875 GEN_VEXT_VV(vwmulsu_vv_b, 1, 2, clearh)
1876 GEN_VEXT_VV(vwmulsu_vv_h, 2, 4, clearl)
1877 GEN_VEXT_VV(vwmulsu_vv_w, 4, 8, clearq)
1879 RVVCALL(OPIVX2, vwmul_vx_b, WOP_SSS_B, H2, H1, DO_MUL)
1880 RVVCALL(OPIVX2, vwmul_vx_h, WOP_SSS_H, H4, H2, DO_MUL)
1881 RVVCALL(OPIVX2, vwmul_vx_w, WOP_SSS_W, H8, H4, DO_MUL)
1882 RVVCALL(OPIVX2, vwmulu_vx_b, WOP_UUU_B, H2, H1, DO_MUL)
1883 RVVCALL(OPIVX2, vwmulu_vx_h, WOP_UUU_H, H4, H2, DO_MUL)
1884 RVVCALL(OPIVX2, vwmulu_vx_w, WOP_UUU_W, H8, H4, DO_MUL)
1885 RVVCALL(OPIVX2, vwmulsu_vx_b, WOP_SUS_B, H2, H1, DO_MUL)
1886 RVVCALL(OPIVX2, vwmulsu_vx_h, WOP_SUS_H, H4, H2, DO_MUL)
1887 RVVCALL(OPIVX2, vwmulsu_vx_w, WOP_SUS_W, H8, H4, DO_MUL)
1888 GEN_VEXT_VX(vwmul_vx_b, 1, 2, clearh)
1889 GEN_VEXT_VX(vwmul_vx_h, 2, 4, clearl)
1890 GEN_VEXT_VX(vwmul_vx_w, 4, 8, clearq)
1891 GEN_VEXT_VX(vwmulu_vx_b, 1, 2, clearh)
1892 GEN_VEXT_VX(vwmulu_vx_h, 2, 4, clearl)
1893 GEN_VEXT_VX(vwmulu_vx_w, 4, 8, clearq)
1894 GEN_VEXT_VX(vwmulsu_vx_b, 1, 2, clearh)
1895 GEN_VEXT_VX(vwmulsu_vx_h, 2, 4, clearl)
1896 GEN_VEXT_VX(vwmulsu_vx_w, 4, 8, clearq)
1898 /* Vector Single-Width Integer Multiply-Add Instructions */
1899 #define OPIVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
1900 static void do_##NAME(void *vd, void *vs1, void *vs2, int i) \
1902 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
1903 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
1904 TD d = *((TD *)vd + HD(i)); \
1905 *((TD *)vd + HD(i)) = OP(s2, s1, d); \
1908 #define DO_MACC(N, M, D) (M * N + D)
1909 #define DO_NMSAC(N, M, D) (-(M * N) + D)
1910 #define DO_MADD(N, M, D) (M * D + N)
1911 #define DO_NMSUB(N, M, D) (-(M * D) + N)
1912 RVVCALL(OPIVV3, vmacc_vv_b, OP_SSS_B, H1, H1, H1, DO_MACC)
1913 RVVCALL(OPIVV3, vmacc_vv_h, OP_SSS_H, H2, H2, H2, DO_MACC)
1914 RVVCALL(OPIVV3, vmacc_vv_w, OP_SSS_W, H4, H4, H4, DO_MACC)
1915 RVVCALL(OPIVV3, vmacc_vv_d, OP_SSS_D, H8, H8, H8, DO_MACC)
1916 RVVCALL(OPIVV3, vnmsac_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSAC)
1917 RVVCALL(OPIVV3, vnmsac_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSAC)
1918 RVVCALL(OPIVV3, vnmsac_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSAC)
1919 RVVCALL(OPIVV3, vnmsac_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSAC)
1920 RVVCALL(OPIVV3, vmadd_vv_b, OP_SSS_B, H1, H1, H1, DO_MADD)
1921 RVVCALL(OPIVV3, vmadd_vv_h, OP_SSS_H, H2, H2, H2, DO_MADD)
1922 RVVCALL(OPIVV3, vmadd_vv_w, OP_SSS_W, H4, H4, H4, DO_MADD)
1923 RVVCALL(OPIVV3, vmadd_vv_d, OP_SSS_D, H8, H8, H8, DO_MADD)
1924 RVVCALL(OPIVV3, vnmsub_vv_b, OP_SSS_B, H1, H1, H1, DO_NMSUB)
1925 RVVCALL(OPIVV3, vnmsub_vv_h, OP_SSS_H, H2, H2, H2, DO_NMSUB)
1926 RVVCALL(OPIVV3, vnmsub_vv_w, OP_SSS_W, H4, H4, H4, DO_NMSUB)
1927 RVVCALL(OPIVV3, vnmsub_vv_d, OP_SSS_D, H8, H8, H8, DO_NMSUB)
1928 GEN_VEXT_VV(vmacc_vv_b, 1, 1, clearb)
1929 GEN_VEXT_VV(vmacc_vv_h, 2, 2, clearh)
1930 GEN_VEXT_VV(vmacc_vv_w, 4, 4, clearl)
1931 GEN_VEXT_VV(vmacc_vv_d, 8, 8, clearq)
1932 GEN_VEXT_VV(vnmsac_vv_b, 1, 1, clearb)
1933 GEN_VEXT_VV(vnmsac_vv_h, 2, 2, clearh)
1934 GEN_VEXT_VV(vnmsac_vv_w, 4, 4, clearl)
1935 GEN_VEXT_VV(vnmsac_vv_d, 8, 8, clearq)
1936 GEN_VEXT_VV(vmadd_vv_b, 1, 1, clearb)
1937 GEN_VEXT_VV(vmadd_vv_h, 2, 2, clearh)
1938 GEN_VEXT_VV(vmadd_vv_w, 4, 4, clearl)
1939 GEN_VEXT_VV(vmadd_vv_d, 8, 8, clearq)
1940 GEN_VEXT_VV(vnmsub_vv_b, 1, 1, clearb)
1941 GEN_VEXT_VV(vnmsub_vv_h, 2, 2, clearh)
1942 GEN_VEXT_VV(vnmsub_vv_w, 4, 4, clearl)
1943 GEN_VEXT_VV(vnmsub_vv_d, 8, 8, clearq)
1945 #define OPIVX3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
1946 static void do_##NAME(void *vd, target_long s1, void *vs2, int i) \
1948 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
1949 TD d = *((TD *)vd + HD(i)); \
1950 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d); \
1953 RVVCALL(OPIVX3, vmacc_vx_b, OP_SSS_B, H1, H1, DO_MACC)
1954 RVVCALL(OPIVX3, vmacc_vx_h, OP_SSS_H, H2, H2, DO_MACC)
1955 RVVCALL(OPIVX3, vmacc_vx_w, OP_SSS_W, H4, H4, DO_MACC)
1956 RVVCALL(OPIVX3, vmacc_vx_d, OP_SSS_D, H8, H8, DO_MACC)
1957 RVVCALL(OPIVX3, vnmsac_vx_b, OP_SSS_B, H1, H1, DO_NMSAC)
1958 RVVCALL(OPIVX3, vnmsac_vx_h, OP_SSS_H, H2, H2, DO_NMSAC)
1959 RVVCALL(OPIVX3, vnmsac_vx_w, OP_SSS_W, H4, H4, DO_NMSAC)
1960 RVVCALL(OPIVX3, vnmsac_vx_d, OP_SSS_D, H8, H8, DO_NMSAC)
1961 RVVCALL(OPIVX3, vmadd_vx_b, OP_SSS_B, H1, H1, DO_MADD)
1962 RVVCALL(OPIVX3, vmadd_vx_h, OP_SSS_H, H2, H2, DO_MADD)
1963 RVVCALL(OPIVX3, vmadd_vx_w, OP_SSS_W, H4, H4, DO_MADD)
1964 RVVCALL(OPIVX3, vmadd_vx_d, OP_SSS_D, H8, H8, DO_MADD)
1965 RVVCALL(OPIVX3, vnmsub_vx_b, OP_SSS_B, H1, H1, DO_NMSUB)
1966 RVVCALL(OPIVX3, vnmsub_vx_h, OP_SSS_H, H2, H2, DO_NMSUB)
1967 RVVCALL(OPIVX3, vnmsub_vx_w, OP_SSS_W, H4, H4, DO_NMSUB)
1968 RVVCALL(OPIVX3, vnmsub_vx_d, OP_SSS_D, H8, H8, DO_NMSUB)
1969 GEN_VEXT_VX(vmacc_vx_b, 1, 1, clearb)
1970 GEN_VEXT_VX(vmacc_vx_h, 2, 2, clearh)
1971 GEN_VEXT_VX(vmacc_vx_w, 4, 4, clearl)
1972 GEN_VEXT_VX(vmacc_vx_d, 8, 8, clearq)
1973 GEN_VEXT_VX(vnmsac_vx_b, 1, 1, clearb)
1974 GEN_VEXT_VX(vnmsac_vx_h, 2, 2, clearh)
1975 GEN_VEXT_VX(vnmsac_vx_w, 4, 4, clearl)
1976 GEN_VEXT_VX(vnmsac_vx_d, 8, 8, clearq)
1977 GEN_VEXT_VX(vmadd_vx_b, 1, 1, clearb)
1978 GEN_VEXT_VX(vmadd_vx_h, 2, 2, clearh)
1979 GEN_VEXT_VX(vmadd_vx_w, 4, 4, clearl)
1980 GEN_VEXT_VX(vmadd_vx_d, 8, 8, clearq)
1981 GEN_VEXT_VX(vnmsub_vx_b, 1, 1, clearb)
1982 GEN_VEXT_VX(vnmsub_vx_h, 2, 2, clearh)
1983 GEN_VEXT_VX(vnmsub_vx_w, 4, 4, clearl)
1984 GEN_VEXT_VX(vnmsub_vx_d, 8, 8, clearq)
1986 /* Vector Widening Integer Multiply-Add Instructions */
1987 RVVCALL(OPIVV3, vwmaccu_vv_b, WOP_UUU_B, H2, H1, H1, DO_MACC)
1988 RVVCALL(OPIVV3, vwmaccu_vv_h, WOP_UUU_H, H4, H2, H2, DO_MACC)
1989 RVVCALL(OPIVV3, vwmaccu_vv_w, WOP_UUU_W, H8, H4, H4, DO_MACC)
1990 RVVCALL(OPIVV3, vwmacc_vv_b, WOP_SSS_B, H2, H1, H1, DO_MACC)
1991 RVVCALL(OPIVV3, vwmacc_vv_h, WOP_SSS_H, H4, H2, H2, DO_MACC)
1992 RVVCALL(OPIVV3, vwmacc_vv_w, WOP_SSS_W, H8, H4, H4, DO_MACC)
1993 RVVCALL(OPIVV3, vwmaccsu_vv_b, WOP_SSU_B, H2, H1, H1, DO_MACC)
1994 RVVCALL(OPIVV3, vwmaccsu_vv_h, WOP_SSU_H, H4, H2, H2, DO_MACC)
1995 RVVCALL(OPIVV3, vwmaccsu_vv_w, WOP_SSU_W, H8, H4, H4, DO_MACC)
1996 GEN_VEXT_VV(vwmaccu_vv_b, 1, 2, clearh)
1997 GEN_VEXT_VV(vwmaccu_vv_h, 2, 4, clearl)
1998 GEN_VEXT_VV(vwmaccu_vv_w, 4, 8, clearq)
1999 GEN_VEXT_VV(vwmacc_vv_b, 1, 2, clearh)
2000 GEN_VEXT_VV(vwmacc_vv_h, 2, 4, clearl)
2001 GEN_VEXT_VV(vwmacc_vv_w, 4, 8, clearq)
2002 GEN_VEXT_VV(vwmaccsu_vv_b, 1, 2, clearh)
2003 GEN_VEXT_VV(vwmaccsu_vv_h, 2, 4, clearl)
2004 GEN_VEXT_VV(vwmaccsu_vv_w, 4, 8, clearq)
2006 RVVCALL(OPIVX3, vwmaccu_vx_b, WOP_UUU_B, H2, H1, DO_MACC)
2007 RVVCALL(OPIVX3, vwmaccu_vx_h, WOP_UUU_H, H4, H2, DO_MACC)
2008 RVVCALL(OPIVX3, vwmaccu_vx_w, WOP_UUU_W, H8, H4, DO_MACC)
2009 RVVCALL(OPIVX3, vwmacc_vx_b, WOP_SSS_B, H2, H1, DO_MACC)
2010 RVVCALL(OPIVX3, vwmacc_vx_h, WOP_SSS_H, H4, H2, DO_MACC)
2011 RVVCALL(OPIVX3, vwmacc_vx_w, WOP_SSS_W, H8, H4, DO_MACC)
2012 RVVCALL(OPIVX3, vwmaccsu_vx_b, WOP_SSU_B, H2, H1, DO_MACC)
2013 RVVCALL(OPIVX3, vwmaccsu_vx_h, WOP_SSU_H, H4, H2, DO_MACC)
2014 RVVCALL(OPIVX3, vwmaccsu_vx_w, WOP_SSU_W, H8, H4, DO_MACC)
2015 RVVCALL(OPIVX3, vwmaccus_vx_b, WOP_SUS_B, H2, H1, DO_MACC)
2016 RVVCALL(OPIVX3, vwmaccus_vx_h, WOP_SUS_H, H4, H2, DO_MACC)
2017 RVVCALL(OPIVX3, vwmaccus_vx_w, WOP_SUS_W, H8, H4, DO_MACC)
2018 GEN_VEXT_VX(vwmaccu_vx_b, 1, 2, clearh)
2019 GEN_VEXT_VX(vwmaccu_vx_h, 2, 4, clearl)
2020 GEN_VEXT_VX(vwmaccu_vx_w, 4, 8, clearq)
2021 GEN_VEXT_VX(vwmacc_vx_b, 1, 2, clearh)
2022 GEN_VEXT_VX(vwmacc_vx_h, 2, 4, clearl)
2023 GEN_VEXT_VX(vwmacc_vx_w, 4, 8, clearq)
2024 GEN_VEXT_VX(vwmaccsu_vx_b, 1, 2, clearh)
2025 GEN_VEXT_VX(vwmaccsu_vx_h, 2, 4, clearl)
2026 GEN_VEXT_VX(vwmaccsu_vx_w, 4, 8, clearq)
2027 GEN_VEXT_VX(vwmaccus_vx_b, 1, 2, clearh)
2028 GEN_VEXT_VX(vwmaccus_vx_h, 2, 4, clearl)
2029 GEN_VEXT_VX(vwmaccus_vx_w, 4, 8, clearq)
2031 /* Vector Integer Merge and Move Instructions */
2032 #define GEN_VEXT_VMV_VV(NAME, ETYPE, H, CLEAR_FN) \
2033 void HELPER(NAME)(void *vd, void *vs1, CPURISCVState *env, \
2034 uint32_t desc) \
2036 uint32_t vl = env->vl; \
2037 uint32_t esz = sizeof(ETYPE); \
2038 uint32_t vlmax = vext_maxsz(desc) / esz; \
2039 uint32_t i; \
2041 for (i = 0; i < vl; i++) { \
2042 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
2043 *((ETYPE *)vd + H(i)) = s1; \
2045 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
2048 GEN_VEXT_VMV_VV(vmv_v_v_b, int8_t, H1, clearb)
2049 GEN_VEXT_VMV_VV(vmv_v_v_h, int16_t, H2, clearh)
2050 GEN_VEXT_VMV_VV(vmv_v_v_w, int32_t, H4, clearl)
2051 GEN_VEXT_VMV_VV(vmv_v_v_d, int64_t, H8, clearq)
2053 #define GEN_VEXT_VMV_VX(NAME, ETYPE, H, CLEAR_FN) \
2054 void HELPER(NAME)(void *vd, uint64_t s1, CPURISCVState *env, \
2055 uint32_t desc) \
2057 uint32_t vl = env->vl; \
2058 uint32_t esz = sizeof(ETYPE); \
2059 uint32_t vlmax = vext_maxsz(desc) / esz; \
2060 uint32_t i; \
2062 for (i = 0; i < vl; i++) { \
2063 *((ETYPE *)vd + H(i)) = (ETYPE)s1; \
2065 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
2068 GEN_VEXT_VMV_VX(vmv_v_x_b, int8_t, H1, clearb)
2069 GEN_VEXT_VMV_VX(vmv_v_x_h, int16_t, H2, clearh)
2070 GEN_VEXT_VMV_VX(vmv_v_x_w, int32_t, H4, clearl)
2071 GEN_VEXT_VMV_VX(vmv_v_x_d, int64_t, H8, clearq)
2073 #define GEN_VEXT_VMERGE_VV(NAME, ETYPE, H, CLEAR_FN) \
2074 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
2075 CPURISCVState *env, uint32_t desc) \
2077 uint32_t mlen = vext_mlen(desc); \
2078 uint32_t vl = env->vl; \
2079 uint32_t esz = sizeof(ETYPE); \
2080 uint32_t vlmax = vext_maxsz(desc) / esz; \
2081 uint32_t i; \
2083 for (i = 0; i < vl; i++) { \
2084 ETYPE *vt = (!vext_elem_mask(v0, mlen, i) ? vs2 : vs1); \
2085 *((ETYPE *)vd + H(i)) = *(vt + H(i)); \
2087 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
2090 GEN_VEXT_VMERGE_VV(vmerge_vvm_b, int8_t, H1, clearb)
2091 GEN_VEXT_VMERGE_VV(vmerge_vvm_h, int16_t, H2, clearh)
2092 GEN_VEXT_VMERGE_VV(vmerge_vvm_w, int32_t, H4, clearl)
2093 GEN_VEXT_VMERGE_VV(vmerge_vvm_d, int64_t, H8, clearq)
2095 #define GEN_VEXT_VMERGE_VX(NAME, ETYPE, H, CLEAR_FN) \
2096 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
2097 void *vs2, CPURISCVState *env, uint32_t desc) \
2099 uint32_t mlen = vext_mlen(desc); \
2100 uint32_t vl = env->vl; \
2101 uint32_t esz = sizeof(ETYPE); \
2102 uint32_t vlmax = vext_maxsz(desc) / esz; \
2103 uint32_t i; \
2105 for (i = 0; i < vl; i++) { \
2106 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
2107 ETYPE d = (!vext_elem_mask(v0, mlen, i) ? s2 : \
2108 (ETYPE)(target_long)s1); \
2109 *((ETYPE *)vd + H(i)) = d; \
2111 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
2114 GEN_VEXT_VMERGE_VX(vmerge_vxm_b, int8_t, H1, clearb)
2115 GEN_VEXT_VMERGE_VX(vmerge_vxm_h, int16_t, H2, clearh)
2116 GEN_VEXT_VMERGE_VX(vmerge_vxm_w, int32_t, H4, clearl)
2117 GEN_VEXT_VMERGE_VX(vmerge_vxm_d, int64_t, H8, clearq)
2120 *** Vector Fixed-Point Arithmetic Instructions
2123 /* Vector Single-Width Saturating Add and Subtract */
2126 * As fixed point instructions probably have round mode and saturation,
2127 * define common macros for fixed point here.
2129 typedef void opivv2_rm_fn(void *vd, void *vs1, void *vs2, int i,
2130 CPURISCVState *env, int vxrm);
2132 #define OPIVV2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
2133 static inline void \
2134 do_##NAME(void *vd, void *vs1, void *vs2, int i, \
2135 CPURISCVState *env, int vxrm) \
2137 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
2138 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
2139 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1); \
2142 static inline void
2143 vext_vv_rm_1(void *vd, void *v0, void *vs1, void *vs2,
2144 CPURISCVState *env,
2145 uint32_t vl, uint32_t vm, uint32_t mlen, int vxrm,
2146 opivv2_rm_fn *fn)
2148 for (uint32_t i = 0; i < vl; i++) {
2149 if (!vm && !vext_elem_mask(v0, mlen, i)) {
2150 continue;
2152 fn(vd, vs1, vs2, i, env, vxrm);
2156 static inline void
2157 vext_vv_rm_2(void *vd, void *v0, void *vs1, void *vs2,
2158 CPURISCVState *env,
2159 uint32_t desc, uint32_t esz, uint32_t dsz,
2160 opivv2_rm_fn *fn, clear_fn *clearfn)
2162 uint32_t vlmax = vext_maxsz(desc) / esz;
2163 uint32_t mlen = vext_mlen(desc);
2164 uint32_t vm = vext_vm(desc);
2165 uint32_t vl = env->vl;
2167 switch (env->vxrm) {
2168 case 0: /* rnu */
2169 vext_vv_rm_1(vd, v0, vs1, vs2,
2170 env, vl, vm, mlen, 0, fn);
2171 break;
2172 case 1: /* rne */
2173 vext_vv_rm_1(vd, v0, vs1, vs2,
2174 env, vl, vm, mlen, 1, fn);
2175 break;
2176 case 2: /* rdn */
2177 vext_vv_rm_1(vd, v0, vs1, vs2,
2178 env, vl, vm, mlen, 2, fn);
2179 break;
2180 default: /* rod */
2181 vext_vv_rm_1(vd, v0, vs1, vs2,
2182 env, vl, vm, mlen, 3, fn);
2183 break;
2186 clearfn(vd, vl, vl * dsz, vlmax * dsz);
2189 /* generate helpers for fixed point instructions with OPIVV format */
2190 #define GEN_VEXT_VV_RM(NAME, ESZ, DSZ, CLEAR_FN) \
2191 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
2192 CPURISCVState *env, uint32_t desc) \
2194 vext_vv_rm_2(vd, v0, vs1, vs2, env, desc, ESZ, DSZ, \
2195 do_##NAME, CLEAR_FN); \
2198 static inline uint8_t saddu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
2200 uint8_t res = a + b;
2201 if (res < a) {
2202 res = UINT8_MAX;
2203 env->vxsat = 0x1;
2205 return res;
2208 static inline uint16_t saddu16(CPURISCVState *env, int vxrm, uint16_t a,
2209 uint16_t b)
2211 uint16_t res = a + b;
2212 if (res < a) {
2213 res = UINT16_MAX;
2214 env->vxsat = 0x1;
2216 return res;
2219 static inline uint32_t saddu32(CPURISCVState *env, int vxrm, uint32_t a,
2220 uint32_t b)
2222 uint32_t res = a + b;
2223 if (res < a) {
2224 res = UINT32_MAX;
2225 env->vxsat = 0x1;
2227 return res;
2230 static inline uint64_t saddu64(CPURISCVState *env, int vxrm, uint64_t a,
2231 uint64_t b)
2233 uint64_t res = a + b;
2234 if (res < a) {
2235 res = UINT64_MAX;
2236 env->vxsat = 0x1;
2238 return res;
2241 RVVCALL(OPIVV2_RM, vsaddu_vv_b, OP_UUU_B, H1, H1, H1, saddu8)
2242 RVVCALL(OPIVV2_RM, vsaddu_vv_h, OP_UUU_H, H2, H2, H2, saddu16)
2243 RVVCALL(OPIVV2_RM, vsaddu_vv_w, OP_UUU_W, H4, H4, H4, saddu32)
2244 RVVCALL(OPIVV2_RM, vsaddu_vv_d, OP_UUU_D, H8, H8, H8, saddu64)
2245 GEN_VEXT_VV_RM(vsaddu_vv_b, 1, 1, clearb)
2246 GEN_VEXT_VV_RM(vsaddu_vv_h, 2, 2, clearh)
2247 GEN_VEXT_VV_RM(vsaddu_vv_w, 4, 4, clearl)
2248 GEN_VEXT_VV_RM(vsaddu_vv_d, 8, 8, clearq)
2250 typedef void opivx2_rm_fn(void *vd, target_long s1, void *vs2, int i,
2251 CPURISCVState *env, int vxrm);
2253 #define OPIVX2_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
2254 static inline void \
2255 do_##NAME(void *vd, target_long s1, void *vs2, int i, \
2256 CPURISCVState *env, int vxrm) \
2258 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
2259 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1); \
2262 static inline void
2263 vext_vx_rm_1(void *vd, void *v0, target_long s1, void *vs2,
2264 CPURISCVState *env,
2265 uint32_t vl, uint32_t vm, uint32_t mlen, int vxrm,
2266 opivx2_rm_fn *fn)
2268 for (uint32_t i = 0; i < vl; i++) {
2269 if (!vm && !vext_elem_mask(v0, mlen, i)) {
2270 continue;
2272 fn(vd, s1, vs2, i, env, vxrm);
2276 static inline void
2277 vext_vx_rm_2(void *vd, void *v0, target_long s1, void *vs2,
2278 CPURISCVState *env,
2279 uint32_t desc, uint32_t esz, uint32_t dsz,
2280 opivx2_rm_fn *fn, clear_fn *clearfn)
2282 uint32_t vlmax = vext_maxsz(desc) / esz;
2283 uint32_t mlen = vext_mlen(desc);
2284 uint32_t vm = vext_vm(desc);
2285 uint32_t vl = env->vl;
2287 switch (env->vxrm) {
2288 case 0: /* rnu */
2289 vext_vx_rm_1(vd, v0, s1, vs2,
2290 env, vl, vm, mlen, 0, fn);
2291 break;
2292 case 1: /* rne */
2293 vext_vx_rm_1(vd, v0, s1, vs2,
2294 env, vl, vm, mlen, 1, fn);
2295 break;
2296 case 2: /* rdn */
2297 vext_vx_rm_1(vd, v0, s1, vs2,
2298 env, vl, vm, mlen, 2, fn);
2299 break;
2300 default: /* rod */
2301 vext_vx_rm_1(vd, v0, s1, vs2,
2302 env, vl, vm, mlen, 3, fn);
2303 break;
2306 clearfn(vd, vl, vl * dsz, vlmax * dsz);
2309 /* generate helpers for fixed point instructions with OPIVX format */
2310 #define GEN_VEXT_VX_RM(NAME, ESZ, DSZ, CLEAR_FN) \
2311 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, \
2312 void *vs2, CPURISCVState *env, uint32_t desc) \
2314 vext_vx_rm_2(vd, v0, s1, vs2, env, desc, ESZ, DSZ, \
2315 do_##NAME, CLEAR_FN); \
2318 RVVCALL(OPIVX2_RM, vsaddu_vx_b, OP_UUU_B, H1, H1, saddu8)
2319 RVVCALL(OPIVX2_RM, vsaddu_vx_h, OP_UUU_H, H2, H2, saddu16)
2320 RVVCALL(OPIVX2_RM, vsaddu_vx_w, OP_UUU_W, H4, H4, saddu32)
2321 RVVCALL(OPIVX2_RM, vsaddu_vx_d, OP_UUU_D, H8, H8, saddu64)
2322 GEN_VEXT_VX_RM(vsaddu_vx_b, 1, 1, clearb)
2323 GEN_VEXT_VX_RM(vsaddu_vx_h, 2, 2, clearh)
2324 GEN_VEXT_VX_RM(vsaddu_vx_w, 4, 4, clearl)
2325 GEN_VEXT_VX_RM(vsaddu_vx_d, 8, 8, clearq)
2327 static inline int8_t sadd8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2329 int8_t res = a + b;
2330 if ((res ^ a) & (res ^ b) & INT8_MIN) {
2331 res = a > 0 ? INT8_MAX : INT8_MIN;
2332 env->vxsat = 0x1;
2334 return res;
2337 static inline int16_t sadd16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2339 int16_t res = a + b;
2340 if ((res ^ a) & (res ^ b) & INT16_MIN) {
2341 res = a > 0 ? INT16_MAX : INT16_MIN;
2342 env->vxsat = 0x1;
2344 return res;
2347 static inline int32_t sadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2349 int32_t res = a + b;
2350 if ((res ^ a) & (res ^ b) & INT32_MIN) {
2351 res = a > 0 ? INT32_MAX : INT32_MIN;
2352 env->vxsat = 0x1;
2354 return res;
2357 static inline int64_t sadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2359 int64_t res = a + b;
2360 if ((res ^ a) & (res ^ b) & INT64_MIN) {
2361 res = a > 0 ? INT64_MAX : INT64_MIN;
2362 env->vxsat = 0x1;
2364 return res;
2367 RVVCALL(OPIVV2_RM, vsadd_vv_b, OP_SSS_B, H1, H1, H1, sadd8)
2368 RVVCALL(OPIVV2_RM, vsadd_vv_h, OP_SSS_H, H2, H2, H2, sadd16)
2369 RVVCALL(OPIVV2_RM, vsadd_vv_w, OP_SSS_W, H4, H4, H4, sadd32)
2370 RVVCALL(OPIVV2_RM, vsadd_vv_d, OP_SSS_D, H8, H8, H8, sadd64)
2371 GEN_VEXT_VV_RM(vsadd_vv_b, 1, 1, clearb)
2372 GEN_VEXT_VV_RM(vsadd_vv_h, 2, 2, clearh)
2373 GEN_VEXT_VV_RM(vsadd_vv_w, 4, 4, clearl)
2374 GEN_VEXT_VV_RM(vsadd_vv_d, 8, 8, clearq)
2376 RVVCALL(OPIVX2_RM, vsadd_vx_b, OP_SSS_B, H1, H1, sadd8)
2377 RVVCALL(OPIVX2_RM, vsadd_vx_h, OP_SSS_H, H2, H2, sadd16)
2378 RVVCALL(OPIVX2_RM, vsadd_vx_w, OP_SSS_W, H4, H4, sadd32)
2379 RVVCALL(OPIVX2_RM, vsadd_vx_d, OP_SSS_D, H8, H8, sadd64)
2380 GEN_VEXT_VX_RM(vsadd_vx_b, 1, 1, clearb)
2381 GEN_VEXT_VX_RM(vsadd_vx_h, 2, 2, clearh)
2382 GEN_VEXT_VX_RM(vsadd_vx_w, 4, 4, clearl)
2383 GEN_VEXT_VX_RM(vsadd_vx_d, 8, 8, clearq)
2385 static inline uint8_t ssubu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
2387 uint8_t res = a - b;
2388 if (res > a) {
2389 res = 0;
2390 env->vxsat = 0x1;
2392 return res;
2395 static inline uint16_t ssubu16(CPURISCVState *env, int vxrm, uint16_t a,
2396 uint16_t b)
2398 uint16_t res = a - b;
2399 if (res > a) {
2400 res = 0;
2401 env->vxsat = 0x1;
2403 return res;
2406 static inline uint32_t ssubu32(CPURISCVState *env, int vxrm, uint32_t a,
2407 uint32_t b)
2409 uint32_t res = a - b;
2410 if (res > a) {
2411 res = 0;
2412 env->vxsat = 0x1;
2414 return res;
2417 static inline uint64_t ssubu64(CPURISCVState *env, int vxrm, uint64_t a,
2418 uint64_t b)
2420 uint64_t res = a - b;
2421 if (res > a) {
2422 res = 0;
2423 env->vxsat = 0x1;
2425 return res;
2428 RVVCALL(OPIVV2_RM, vssubu_vv_b, OP_UUU_B, H1, H1, H1, ssubu8)
2429 RVVCALL(OPIVV2_RM, vssubu_vv_h, OP_UUU_H, H2, H2, H2, ssubu16)
2430 RVVCALL(OPIVV2_RM, vssubu_vv_w, OP_UUU_W, H4, H4, H4, ssubu32)
2431 RVVCALL(OPIVV2_RM, vssubu_vv_d, OP_UUU_D, H8, H8, H8, ssubu64)
2432 GEN_VEXT_VV_RM(vssubu_vv_b, 1, 1, clearb)
2433 GEN_VEXT_VV_RM(vssubu_vv_h, 2, 2, clearh)
2434 GEN_VEXT_VV_RM(vssubu_vv_w, 4, 4, clearl)
2435 GEN_VEXT_VV_RM(vssubu_vv_d, 8, 8, clearq)
2437 RVVCALL(OPIVX2_RM, vssubu_vx_b, OP_UUU_B, H1, H1, ssubu8)
2438 RVVCALL(OPIVX2_RM, vssubu_vx_h, OP_UUU_H, H2, H2, ssubu16)
2439 RVVCALL(OPIVX2_RM, vssubu_vx_w, OP_UUU_W, H4, H4, ssubu32)
2440 RVVCALL(OPIVX2_RM, vssubu_vx_d, OP_UUU_D, H8, H8, ssubu64)
2441 GEN_VEXT_VX_RM(vssubu_vx_b, 1, 1, clearb)
2442 GEN_VEXT_VX_RM(vssubu_vx_h, 2, 2, clearh)
2443 GEN_VEXT_VX_RM(vssubu_vx_w, 4, 4, clearl)
2444 GEN_VEXT_VX_RM(vssubu_vx_d, 8, 8, clearq)
2446 static inline int8_t ssub8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2448 int8_t res = a - b;
2449 if ((res ^ a) & (a ^ b) & INT8_MIN) {
2450 res = a >= 0 ? INT8_MAX : INT8_MIN;
2451 env->vxsat = 0x1;
2453 return res;
2456 static inline int16_t ssub16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2458 int16_t res = a - b;
2459 if ((res ^ a) & (a ^ b) & INT16_MIN) {
2460 res = a >= 0 ? INT16_MAX : INT16_MIN;
2461 env->vxsat = 0x1;
2463 return res;
2466 static inline int32_t ssub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2468 int32_t res = a - b;
2469 if ((res ^ a) & (a ^ b) & INT32_MIN) {
2470 res = a >= 0 ? INT32_MAX : INT32_MIN;
2471 env->vxsat = 0x1;
2473 return res;
2476 static inline int64_t ssub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2478 int64_t res = a - b;
2479 if ((res ^ a) & (a ^ b) & INT64_MIN) {
2480 res = a >= 0 ? INT64_MAX : INT64_MIN;
2481 env->vxsat = 0x1;
2483 return res;
2486 RVVCALL(OPIVV2_RM, vssub_vv_b, OP_SSS_B, H1, H1, H1, ssub8)
2487 RVVCALL(OPIVV2_RM, vssub_vv_h, OP_SSS_H, H2, H2, H2, ssub16)
2488 RVVCALL(OPIVV2_RM, vssub_vv_w, OP_SSS_W, H4, H4, H4, ssub32)
2489 RVVCALL(OPIVV2_RM, vssub_vv_d, OP_SSS_D, H8, H8, H8, ssub64)
2490 GEN_VEXT_VV_RM(vssub_vv_b, 1, 1, clearb)
2491 GEN_VEXT_VV_RM(vssub_vv_h, 2, 2, clearh)
2492 GEN_VEXT_VV_RM(vssub_vv_w, 4, 4, clearl)
2493 GEN_VEXT_VV_RM(vssub_vv_d, 8, 8, clearq)
2495 RVVCALL(OPIVX2_RM, vssub_vx_b, OP_SSS_B, H1, H1, ssub8)
2496 RVVCALL(OPIVX2_RM, vssub_vx_h, OP_SSS_H, H2, H2, ssub16)
2497 RVVCALL(OPIVX2_RM, vssub_vx_w, OP_SSS_W, H4, H4, ssub32)
2498 RVVCALL(OPIVX2_RM, vssub_vx_d, OP_SSS_D, H8, H8, ssub64)
2499 GEN_VEXT_VX_RM(vssub_vx_b, 1, 1, clearb)
2500 GEN_VEXT_VX_RM(vssub_vx_h, 2, 2, clearh)
2501 GEN_VEXT_VX_RM(vssub_vx_w, 4, 4, clearl)
2502 GEN_VEXT_VX_RM(vssub_vx_d, 8, 8, clearq)
2504 /* Vector Single-Width Averaging Add and Subtract */
2505 static inline uint8_t get_round(int vxrm, uint64_t v, uint8_t shift)
2507 uint8_t d = extract64(v, shift, 1);
2508 uint8_t d1;
2509 uint64_t D1, D2;
2511 if (shift == 0 || shift > 64) {
2512 return 0;
2515 d1 = extract64(v, shift - 1, 1);
2516 D1 = extract64(v, 0, shift);
2517 if (vxrm == 0) { /* round-to-nearest-up (add +0.5 LSB) */
2518 return d1;
2519 } else if (vxrm == 1) { /* round-to-nearest-even */
2520 if (shift > 1) {
2521 D2 = extract64(v, 0, shift - 1);
2522 return d1 & ((D2 != 0) | d);
2523 } else {
2524 return d1 & d;
2526 } else if (vxrm == 3) { /* round-to-odd (OR bits into LSB, aka "jam") */
2527 return !d & (D1 != 0);
2529 return 0; /* round-down (truncate) */
2532 static inline int32_t aadd32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2534 int64_t res = (int64_t)a + b;
2535 uint8_t round = get_round(vxrm, res, 1);
2537 return (res >> 1) + round;
2540 static inline int64_t aadd64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2542 int64_t res = a + b;
2543 uint8_t round = get_round(vxrm, res, 1);
2544 int64_t over = (res ^ a) & (res ^ b) & INT64_MIN;
2546 /* With signed overflow, bit 64 is inverse of bit 63. */
2547 return ((res >> 1) ^ over) + round;
2550 RVVCALL(OPIVV2_RM, vaadd_vv_b, OP_SSS_B, H1, H1, H1, aadd32)
2551 RVVCALL(OPIVV2_RM, vaadd_vv_h, OP_SSS_H, H2, H2, H2, aadd32)
2552 RVVCALL(OPIVV2_RM, vaadd_vv_w, OP_SSS_W, H4, H4, H4, aadd32)
2553 RVVCALL(OPIVV2_RM, vaadd_vv_d, OP_SSS_D, H8, H8, H8, aadd64)
2554 GEN_VEXT_VV_RM(vaadd_vv_b, 1, 1, clearb)
2555 GEN_VEXT_VV_RM(vaadd_vv_h, 2, 2, clearh)
2556 GEN_VEXT_VV_RM(vaadd_vv_w, 4, 4, clearl)
2557 GEN_VEXT_VV_RM(vaadd_vv_d, 8, 8, clearq)
2559 RVVCALL(OPIVX2_RM, vaadd_vx_b, OP_SSS_B, H1, H1, aadd32)
2560 RVVCALL(OPIVX2_RM, vaadd_vx_h, OP_SSS_H, H2, H2, aadd32)
2561 RVVCALL(OPIVX2_RM, vaadd_vx_w, OP_SSS_W, H4, H4, aadd32)
2562 RVVCALL(OPIVX2_RM, vaadd_vx_d, OP_SSS_D, H8, H8, aadd64)
2563 GEN_VEXT_VX_RM(vaadd_vx_b, 1, 1, clearb)
2564 GEN_VEXT_VX_RM(vaadd_vx_h, 2, 2, clearh)
2565 GEN_VEXT_VX_RM(vaadd_vx_w, 4, 4, clearl)
2566 GEN_VEXT_VX_RM(vaadd_vx_d, 8, 8, clearq)
2568 static inline int32_t asub32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2570 int64_t res = (int64_t)a - b;
2571 uint8_t round = get_round(vxrm, res, 1);
2573 return (res >> 1) + round;
2576 static inline int64_t asub64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2578 int64_t res = (int64_t)a - b;
2579 uint8_t round = get_round(vxrm, res, 1);
2580 int64_t over = (res ^ a) & (a ^ b) & INT64_MIN;
2582 /* With signed overflow, bit 64 is inverse of bit 63. */
2583 return ((res >> 1) ^ over) + round;
2586 RVVCALL(OPIVV2_RM, vasub_vv_b, OP_SSS_B, H1, H1, H1, asub32)
2587 RVVCALL(OPIVV2_RM, vasub_vv_h, OP_SSS_H, H2, H2, H2, asub32)
2588 RVVCALL(OPIVV2_RM, vasub_vv_w, OP_SSS_W, H4, H4, H4, asub32)
2589 RVVCALL(OPIVV2_RM, vasub_vv_d, OP_SSS_D, H8, H8, H8, asub64)
2590 GEN_VEXT_VV_RM(vasub_vv_b, 1, 1, clearb)
2591 GEN_VEXT_VV_RM(vasub_vv_h, 2, 2, clearh)
2592 GEN_VEXT_VV_RM(vasub_vv_w, 4, 4, clearl)
2593 GEN_VEXT_VV_RM(vasub_vv_d, 8, 8, clearq)
2595 RVVCALL(OPIVX2_RM, vasub_vx_b, OP_SSS_B, H1, H1, asub32)
2596 RVVCALL(OPIVX2_RM, vasub_vx_h, OP_SSS_H, H2, H2, asub32)
2597 RVVCALL(OPIVX2_RM, vasub_vx_w, OP_SSS_W, H4, H4, asub32)
2598 RVVCALL(OPIVX2_RM, vasub_vx_d, OP_SSS_D, H8, H8, asub64)
2599 GEN_VEXT_VX_RM(vasub_vx_b, 1, 1, clearb)
2600 GEN_VEXT_VX_RM(vasub_vx_h, 2, 2, clearh)
2601 GEN_VEXT_VX_RM(vasub_vx_w, 4, 4, clearl)
2602 GEN_VEXT_VX_RM(vasub_vx_d, 8, 8, clearq)
2604 /* Vector Single-Width Fractional Multiply with Rounding and Saturation */
2605 static inline int8_t vsmul8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2607 uint8_t round;
2608 int16_t res;
2610 res = (int16_t)a * (int16_t)b;
2611 round = get_round(vxrm, res, 7);
2612 res = (res >> 7) + round;
2614 if (res > INT8_MAX) {
2615 env->vxsat = 0x1;
2616 return INT8_MAX;
2617 } else if (res < INT8_MIN) {
2618 env->vxsat = 0x1;
2619 return INT8_MIN;
2620 } else {
2621 return res;
2625 static int16_t vsmul16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2627 uint8_t round;
2628 int32_t res;
2630 res = (int32_t)a * (int32_t)b;
2631 round = get_round(vxrm, res, 15);
2632 res = (res >> 15) + round;
2634 if (res > INT16_MAX) {
2635 env->vxsat = 0x1;
2636 return INT16_MAX;
2637 } else if (res < INT16_MIN) {
2638 env->vxsat = 0x1;
2639 return INT16_MIN;
2640 } else {
2641 return res;
2645 static int32_t vsmul32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2647 uint8_t round;
2648 int64_t res;
2650 res = (int64_t)a * (int64_t)b;
2651 round = get_round(vxrm, res, 31);
2652 res = (res >> 31) + round;
2654 if (res > INT32_MAX) {
2655 env->vxsat = 0x1;
2656 return INT32_MAX;
2657 } else if (res < INT32_MIN) {
2658 env->vxsat = 0x1;
2659 return INT32_MIN;
2660 } else {
2661 return res;
2665 static int64_t vsmul64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
2667 uint8_t round;
2668 uint64_t hi_64, lo_64;
2669 int64_t res;
2671 if (a == INT64_MIN && b == INT64_MIN) {
2672 env->vxsat = 1;
2673 return INT64_MAX;
2676 muls64(&lo_64, &hi_64, a, b);
2677 round = get_round(vxrm, lo_64, 63);
2679 * Cannot overflow, as there are always
2680 * 2 sign bits after multiply.
2682 res = (hi_64 << 1) | (lo_64 >> 63);
2683 if (round) {
2684 if (res == INT64_MAX) {
2685 env->vxsat = 1;
2686 } else {
2687 res += 1;
2690 return res;
2693 RVVCALL(OPIVV2_RM, vsmul_vv_b, OP_SSS_B, H1, H1, H1, vsmul8)
2694 RVVCALL(OPIVV2_RM, vsmul_vv_h, OP_SSS_H, H2, H2, H2, vsmul16)
2695 RVVCALL(OPIVV2_RM, vsmul_vv_w, OP_SSS_W, H4, H4, H4, vsmul32)
2696 RVVCALL(OPIVV2_RM, vsmul_vv_d, OP_SSS_D, H8, H8, H8, vsmul64)
2697 GEN_VEXT_VV_RM(vsmul_vv_b, 1, 1, clearb)
2698 GEN_VEXT_VV_RM(vsmul_vv_h, 2, 2, clearh)
2699 GEN_VEXT_VV_RM(vsmul_vv_w, 4, 4, clearl)
2700 GEN_VEXT_VV_RM(vsmul_vv_d, 8, 8, clearq)
2702 RVVCALL(OPIVX2_RM, vsmul_vx_b, OP_SSS_B, H1, H1, vsmul8)
2703 RVVCALL(OPIVX2_RM, vsmul_vx_h, OP_SSS_H, H2, H2, vsmul16)
2704 RVVCALL(OPIVX2_RM, vsmul_vx_w, OP_SSS_W, H4, H4, vsmul32)
2705 RVVCALL(OPIVX2_RM, vsmul_vx_d, OP_SSS_D, H8, H8, vsmul64)
2706 GEN_VEXT_VX_RM(vsmul_vx_b, 1, 1, clearb)
2707 GEN_VEXT_VX_RM(vsmul_vx_h, 2, 2, clearh)
2708 GEN_VEXT_VX_RM(vsmul_vx_w, 4, 4, clearl)
2709 GEN_VEXT_VX_RM(vsmul_vx_d, 8, 8, clearq)
2711 /* Vector Widening Saturating Scaled Multiply-Add */
2712 static inline uint16_t
2713 vwsmaccu8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b,
2714 uint16_t c)
2716 uint8_t round;
2717 uint16_t res = (uint16_t)a * b;
2719 round = get_round(vxrm, res, 4);
2720 res = (res >> 4) + round;
2721 return saddu16(env, vxrm, c, res);
2724 static inline uint32_t
2725 vwsmaccu16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b,
2726 uint32_t c)
2728 uint8_t round;
2729 uint32_t res = (uint32_t)a * b;
2731 round = get_round(vxrm, res, 8);
2732 res = (res >> 8) + round;
2733 return saddu32(env, vxrm, c, res);
2736 static inline uint64_t
2737 vwsmaccu32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b,
2738 uint64_t c)
2740 uint8_t round;
2741 uint64_t res = (uint64_t)a * b;
2743 round = get_round(vxrm, res, 16);
2744 res = (res >> 16) + round;
2745 return saddu64(env, vxrm, c, res);
2748 #define OPIVV3_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
2749 static inline void \
2750 do_##NAME(void *vd, void *vs1, void *vs2, int i, \
2751 CPURISCVState *env, int vxrm) \
2753 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
2754 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
2755 TD d = *((TD *)vd + HD(i)); \
2756 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, s1, d); \
2759 RVVCALL(OPIVV3_RM, vwsmaccu_vv_b, WOP_UUU_B, H2, H1, H1, vwsmaccu8)
2760 RVVCALL(OPIVV3_RM, vwsmaccu_vv_h, WOP_UUU_H, H4, H2, H2, vwsmaccu16)
2761 RVVCALL(OPIVV3_RM, vwsmaccu_vv_w, WOP_UUU_W, H8, H4, H4, vwsmaccu32)
2762 GEN_VEXT_VV_RM(vwsmaccu_vv_b, 1, 2, clearh)
2763 GEN_VEXT_VV_RM(vwsmaccu_vv_h, 2, 4, clearl)
2764 GEN_VEXT_VV_RM(vwsmaccu_vv_w, 4, 8, clearq)
2766 #define OPIVX3_RM(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
2767 static inline void \
2768 do_##NAME(void *vd, target_long s1, void *vs2, int i, \
2769 CPURISCVState *env, int vxrm) \
2771 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
2772 TD d = *((TD *)vd + HD(i)); \
2773 *((TD *)vd + HD(i)) = OP(env, vxrm, s2, (TX1)(T1)s1, d); \
2776 RVVCALL(OPIVX3_RM, vwsmaccu_vx_b, WOP_UUU_B, H2, H1, vwsmaccu8)
2777 RVVCALL(OPIVX3_RM, vwsmaccu_vx_h, WOP_UUU_H, H4, H2, vwsmaccu16)
2778 RVVCALL(OPIVX3_RM, vwsmaccu_vx_w, WOP_UUU_W, H8, H4, vwsmaccu32)
2779 GEN_VEXT_VX_RM(vwsmaccu_vx_b, 1, 2, clearh)
2780 GEN_VEXT_VX_RM(vwsmaccu_vx_h, 2, 4, clearl)
2781 GEN_VEXT_VX_RM(vwsmaccu_vx_w, 4, 8, clearq)
2783 static inline int16_t
2784 vwsmacc8(CPURISCVState *env, int vxrm, int8_t a, int8_t b, int16_t c)
2786 uint8_t round;
2787 int16_t res = (int16_t)a * b;
2789 round = get_round(vxrm, res, 4);
2790 res = (res >> 4) + round;
2791 return sadd16(env, vxrm, c, res);
2794 static inline int32_t
2795 vwsmacc16(CPURISCVState *env, int vxrm, int16_t a, int16_t b, int32_t c)
2797 uint8_t round;
2798 int32_t res = (int32_t)a * b;
2800 round = get_round(vxrm, res, 8);
2801 res = (res >> 8) + round;
2802 return sadd32(env, vxrm, c, res);
2806 static inline int64_t
2807 vwsmacc32(CPURISCVState *env, int vxrm, int32_t a, int32_t b, int64_t c)
2809 uint8_t round;
2810 int64_t res = (int64_t)a * b;
2812 round = get_round(vxrm, res, 16);
2813 res = (res >> 16) + round;
2814 return sadd64(env, vxrm, c, res);
2817 RVVCALL(OPIVV3_RM, vwsmacc_vv_b, WOP_SSS_B, H2, H1, H1, vwsmacc8)
2818 RVVCALL(OPIVV3_RM, vwsmacc_vv_h, WOP_SSS_H, H4, H2, H2, vwsmacc16)
2819 RVVCALL(OPIVV3_RM, vwsmacc_vv_w, WOP_SSS_W, H8, H4, H4, vwsmacc32)
2820 GEN_VEXT_VV_RM(vwsmacc_vv_b, 1, 2, clearh)
2821 GEN_VEXT_VV_RM(vwsmacc_vv_h, 2, 4, clearl)
2822 GEN_VEXT_VV_RM(vwsmacc_vv_w, 4, 8, clearq)
2823 RVVCALL(OPIVX3_RM, vwsmacc_vx_b, WOP_SSS_B, H2, H1, vwsmacc8)
2824 RVVCALL(OPIVX3_RM, vwsmacc_vx_h, WOP_SSS_H, H4, H2, vwsmacc16)
2825 RVVCALL(OPIVX3_RM, vwsmacc_vx_w, WOP_SSS_W, H8, H4, vwsmacc32)
2826 GEN_VEXT_VX_RM(vwsmacc_vx_b, 1, 2, clearh)
2827 GEN_VEXT_VX_RM(vwsmacc_vx_h, 2, 4, clearl)
2828 GEN_VEXT_VX_RM(vwsmacc_vx_w, 4, 8, clearq)
2830 static inline int16_t
2831 vwsmaccsu8(CPURISCVState *env, int vxrm, uint8_t a, int8_t b, int16_t c)
2833 uint8_t round;
2834 int16_t res = a * (int16_t)b;
2836 round = get_round(vxrm, res, 4);
2837 res = (res >> 4) + round;
2838 return ssub16(env, vxrm, c, res);
2841 static inline int32_t
2842 vwsmaccsu16(CPURISCVState *env, int vxrm, uint16_t a, int16_t b, uint32_t c)
2844 uint8_t round;
2845 int32_t res = a * (int32_t)b;
2847 round = get_round(vxrm, res, 8);
2848 res = (res >> 8) + round;
2849 return ssub32(env, vxrm, c, res);
2852 static inline int64_t
2853 vwsmaccsu32(CPURISCVState *env, int vxrm, uint32_t a, int32_t b, int64_t c)
2855 uint8_t round;
2856 int64_t res = a * (int64_t)b;
2858 round = get_round(vxrm, res, 16);
2859 res = (res >> 16) + round;
2860 return ssub64(env, vxrm, c, res);
2863 RVVCALL(OPIVV3_RM, vwsmaccsu_vv_b, WOP_SSU_B, H2, H1, H1, vwsmaccsu8)
2864 RVVCALL(OPIVV3_RM, vwsmaccsu_vv_h, WOP_SSU_H, H4, H2, H2, vwsmaccsu16)
2865 RVVCALL(OPIVV3_RM, vwsmaccsu_vv_w, WOP_SSU_W, H8, H4, H4, vwsmaccsu32)
2866 GEN_VEXT_VV_RM(vwsmaccsu_vv_b, 1, 2, clearh)
2867 GEN_VEXT_VV_RM(vwsmaccsu_vv_h, 2, 4, clearl)
2868 GEN_VEXT_VV_RM(vwsmaccsu_vv_w, 4, 8, clearq)
2869 RVVCALL(OPIVX3_RM, vwsmaccsu_vx_b, WOP_SSU_B, H2, H1, vwsmaccsu8)
2870 RVVCALL(OPIVX3_RM, vwsmaccsu_vx_h, WOP_SSU_H, H4, H2, vwsmaccsu16)
2871 RVVCALL(OPIVX3_RM, vwsmaccsu_vx_w, WOP_SSU_W, H8, H4, vwsmaccsu32)
2872 GEN_VEXT_VX_RM(vwsmaccsu_vx_b, 1, 2, clearh)
2873 GEN_VEXT_VX_RM(vwsmaccsu_vx_h, 2, 4, clearl)
2874 GEN_VEXT_VX_RM(vwsmaccsu_vx_w, 4, 8, clearq)
2876 static inline int16_t
2877 vwsmaccus8(CPURISCVState *env, int vxrm, int8_t a, uint8_t b, int16_t c)
2879 uint8_t round;
2880 int16_t res = (int16_t)a * b;
2882 round = get_round(vxrm, res, 4);
2883 res = (res >> 4) + round;
2884 return ssub16(env, vxrm, c, res);
2887 static inline int32_t
2888 vwsmaccus16(CPURISCVState *env, int vxrm, int16_t a, uint16_t b, int32_t c)
2890 uint8_t round;
2891 int32_t res = (int32_t)a * b;
2893 round = get_round(vxrm, res, 8);
2894 res = (res >> 8) + round;
2895 return ssub32(env, vxrm, c, res);
2898 static inline int64_t
2899 vwsmaccus32(CPURISCVState *env, int vxrm, int32_t a, uint32_t b, int64_t c)
2901 uint8_t round;
2902 int64_t res = (int64_t)a * b;
2904 round = get_round(vxrm, res, 16);
2905 res = (res >> 16) + round;
2906 return ssub64(env, vxrm, c, res);
2909 RVVCALL(OPIVX3_RM, vwsmaccus_vx_b, WOP_SUS_B, H2, H1, vwsmaccus8)
2910 RVVCALL(OPIVX3_RM, vwsmaccus_vx_h, WOP_SUS_H, H4, H2, vwsmaccus16)
2911 RVVCALL(OPIVX3_RM, vwsmaccus_vx_w, WOP_SUS_W, H8, H4, vwsmaccus32)
2912 GEN_VEXT_VX_RM(vwsmaccus_vx_b, 1, 2, clearh)
2913 GEN_VEXT_VX_RM(vwsmaccus_vx_h, 2, 4, clearl)
2914 GEN_VEXT_VX_RM(vwsmaccus_vx_w, 4, 8, clearq)
2916 /* Vector Single-Width Scaling Shift Instructions */
2917 static inline uint8_t
2918 vssrl8(CPURISCVState *env, int vxrm, uint8_t a, uint8_t b)
2920 uint8_t round, shift = b & 0x7;
2921 uint8_t res;
2923 round = get_round(vxrm, a, shift);
2924 res = (a >> shift) + round;
2925 return res;
2927 static inline uint16_t
2928 vssrl16(CPURISCVState *env, int vxrm, uint16_t a, uint16_t b)
2930 uint8_t round, shift = b & 0xf;
2931 uint16_t res;
2933 round = get_round(vxrm, a, shift);
2934 res = (a >> shift) + round;
2935 return res;
2937 static inline uint32_t
2938 vssrl32(CPURISCVState *env, int vxrm, uint32_t a, uint32_t b)
2940 uint8_t round, shift = b & 0x1f;
2941 uint32_t res;
2943 round = get_round(vxrm, a, shift);
2944 res = (a >> shift) + round;
2945 return res;
2947 static inline uint64_t
2948 vssrl64(CPURISCVState *env, int vxrm, uint64_t a, uint64_t b)
2950 uint8_t round, shift = b & 0x3f;
2951 uint64_t res;
2953 round = get_round(vxrm, a, shift);
2954 res = (a >> shift) + round;
2955 return res;
2957 RVVCALL(OPIVV2_RM, vssrl_vv_b, OP_UUU_B, H1, H1, H1, vssrl8)
2958 RVVCALL(OPIVV2_RM, vssrl_vv_h, OP_UUU_H, H2, H2, H2, vssrl16)
2959 RVVCALL(OPIVV2_RM, vssrl_vv_w, OP_UUU_W, H4, H4, H4, vssrl32)
2960 RVVCALL(OPIVV2_RM, vssrl_vv_d, OP_UUU_D, H8, H8, H8, vssrl64)
2961 GEN_VEXT_VV_RM(vssrl_vv_b, 1, 1, clearb)
2962 GEN_VEXT_VV_RM(vssrl_vv_h, 2, 2, clearh)
2963 GEN_VEXT_VV_RM(vssrl_vv_w, 4, 4, clearl)
2964 GEN_VEXT_VV_RM(vssrl_vv_d, 8, 8, clearq)
2966 RVVCALL(OPIVX2_RM, vssrl_vx_b, OP_UUU_B, H1, H1, vssrl8)
2967 RVVCALL(OPIVX2_RM, vssrl_vx_h, OP_UUU_H, H2, H2, vssrl16)
2968 RVVCALL(OPIVX2_RM, vssrl_vx_w, OP_UUU_W, H4, H4, vssrl32)
2969 RVVCALL(OPIVX2_RM, vssrl_vx_d, OP_UUU_D, H8, H8, vssrl64)
2970 GEN_VEXT_VX_RM(vssrl_vx_b, 1, 1, clearb)
2971 GEN_VEXT_VX_RM(vssrl_vx_h, 2, 2, clearh)
2972 GEN_VEXT_VX_RM(vssrl_vx_w, 4, 4, clearl)
2973 GEN_VEXT_VX_RM(vssrl_vx_d, 8, 8, clearq)
2975 static inline int8_t
2976 vssra8(CPURISCVState *env, int vxrm, int8_t a, int8_t b)
2978 uint8_t round, shift = b & 0x7;
2979 int8_t res;
2981 round = get_round(vxrm, a, shift);
2982 res = (a >> shift) + round;
2983 return res;
2985 static inline int16_t
2986 vssra16(CPURISCVState *env, int vxrm, int16_t a, int16_t b)
2988 uint8_t round, shift = b & 0xf;
2989 int16_t res;
2991 round = get_round(vxrm, a, shift);
2992 res = (a >> shift) + round;
2993 return res;
2995 static inline int32_t
2996 vssra32(CPURISCVState *env, int vxrm, int32_t a, int32_t b)
2998 uint8_t round, shift = b & 0x1f;
2999 int32_t res;
3001 round = get_round(vxrm, a, shift);
3002 res = (a >> shift) + round;
3003 return res;
3005 static inline int64_t
3006 vssra64(CPURISCVState *env, int vxrm, int64_t a, int64_t b)
3008 uint8_t round, shift = b & 0x3f;
3009 int64_t res;
3011 round = get_round(vxrm, a, shift);
3012 res = (a >> shift) + round;
3013 return res;
3016 RVVCALL(OPIVV2_RM, vssra_vv_b, OP_SSS_B, H1, H1, H1, vssra8)
3017 RVVCALL(OPIVV2_RM, vssra_vv_h, OP_SSS_H, H2, H2, H2, vssra16)
3018 RVVCALL(OPIVV2_RM, vssra_vv_w, OP_SSS_W, H4, H4, H4, vssra32)
3019 RVVCALL(OPIVV2_RM, vssra_vv_d, OP_SSS_D, H8, H8, H8, vssra64)
3020 GEN_VEXT_VV_RM(vssra_vv_b, 1, 1, clearb)
3021 GEN_VEXT_VV_RM(vssra_vv_h, 2, 2, clearh)
3022 GEN_VEXT_VV_RM(vssra_vv_w, 4, 4, clearl)
3023 GEN_VEXT_VV_RM(vssra_vv_d, 8, 8, clearq)
3025 RVVCALL(OPIVX2_RM, vssra_vx_b, OP_SSS_B, H1, H1, vssra8)
3026 RVVCALL(OPIVX2_RM, vssra_vx_h, OP_SSS_H, H2, H2, vssra16)
3027 RVVCALL(OPIVX2_RM, vssra_vx_w, OP_SSS_W, H4, H4, vssra32)
3028 RVVCALL(OPIVX2_RM, vssra_vx_d, OP_SSS_D, H8, H8, vssra64)
3029 GEN_VEXT_VX_RM(vssra_vx_b, 1, 1, clearb)
3030 GEN_VEXT_VX_RM(vssra_vx_h, 2, 2, clearh)
3031 GEN_VEXT_VX_RM(vssra_vx_w, 4, 4, clearl)
3032 GEN_VEXT_VX_RM(vssra_vx_d, 8, 8, clearq)
3034 /* Vector Narrowing Fixed-Point Clip Instructions */
3035 static inline int8_t
3036 vnclip8(CPURISCVState *env, int vxrm, int16_t a, int8_t b)
3038 uint8_t round, shift = b & 0xf;
3039 int16_t res;
3041 round = get_round(vxrm, a, shift);
3042 res = (a >> shift) + round;
3043 if (res > INT8_MAX) {
3044 env->vxsat = 0x1;
3045 return INT8_MAX;
3046 } else if (res < INT8_MIN) {
3047 env->vxsat = 0x1;
3048 return INT8_MIN;
3049 } else {
3050 return res;
3054 static inline int16_t
3055 vnclip16(CPURISCVState *env, int vxrm, int32_t a, int16_t b)
3057 uint8_t round, shift = b & 0x1f;
3058 int32_t res;
3060 round = get_round(vxrm, a, shift);
3061 res = (a >> shift) + round;
3062 if (res > INT16_MAX) {
3063 env->vxsat = 0x1;
3064 return INT16_MAX;
3065 } else if (res < INT16_MIN) {
3066 env->vxsat = 0x1;
3067 return INT16_MIN;
3068 } else {
3069 return res;
3073 static inline int32_t
3074 vnclip32(CPURISCVState *env, int vxrm, int64_t a, int32_t b)
3076 uint8_t round, shift = b & 0x3f;
3077 int64_t res;
3079 round = get_round(vxrm, a, shift);
3080 res = (a >> shift) + round;
3081 if (res > INT32_MAX) {
3082 env->vxsat = 0x1;
3083 return INT32_MAX;
3084 } else if (res < INT32_MIN) {
3085 env->vxsat = 0x1;
3086 return INT32_MIN;
3087 } else {
3088 return res;
3092 RVVCALL(OPIVV2_RM, vnclip_vv_b, NOP_SSS_B, H1, H2, H1, vnclip8)
3093 RVVCALL(OPIVV2_RM, vnclip_vv_h, NOP_SSS_H, H2, H4, H2, vnclip16)
3094 RVVCALL(OPIVV2_RM, vnclip_vv_w, NOP_SSS_W, H4, H8, H4, vnclip32)
3095 GEN_VEXT_VV_RM(vnclip_vv_b, 1, 1, clearb)
3096 GEN_VEXT_VV_RM(vnclip_vv_h, 2, 2, clearh)
3097 GEN_VEXT_VV_RM(vnclip_vv_w, 4, 4, clearl)
3099 RVVCALL(OPIVX2_RM, vnclip_vx_b, NOP_SSS_B, H1, H2, vnclip8)
3100 RVVCALL(OPIVX2_RM, vnclip_vx_h, NOP_SSS_H, H2, H4, vnclip16)
3101 RVVCALL(OPIVX2_RM, vnclip_vx_w, NOP_SSS_W, H4, H8, vnclip32)
3102 GEN_VEXT_VX_RM(vnclip_vx_b, 1, 1, clearb)
3103 GEN_VEXT_VX_RM(vnclip_vx_h, 2, 2, clearh)
3104 GEN_VEXT_VX_RM(vnclip_vx_w, 4, 4, clearl)
3106 static inline uint8_t
3107 vnclipu8(CPURISCVState *env, int vxrm, uint16_t a, uint8_t b)
3109 uint8_t round, shift = b & 0xf;
3110 uint16_t res;
3112 round = get_round(vxrm, a, shift);
3113 res = (a >> shift) + round;
3114 if (res > UINT8_MAX) {
3115 env->vxsat = 0x1;
3116 return UINT8_MAX;
3117 } else {
3118 return res;
3122 static inline uint16_t
3123 vnclipu16(CPURISCVState *env, int vxrm, uint32_t a, uint16_t b)
3125 uint8_t round, shift = b & 0x1f;
3126 uint32_t res;
3128 round = get_round(vxrm, a, shift);
3129 res = (a >> shift) + round;
3130 if (res > UINT16_MAX) {
3131 env->vxsat = 0x1;
3132 return UINT16_MAX;
3133 } else {
3134 return res;
3138 static inline uint32_t
3139 vnclipu32(CPURISCVState *env, int vxrm, uint64_t a, uint32_t b)
3141 uint8_t round, shift = b & 0x3f;
3142 int64_t res;
3144 round = get_round(vxrm, a, shift);
3145 res = (a >> shift) + round;
3146 if (res > UINT32_MAX) {
3147 env->vxsat = 0x1;
3148 return UINT32_MAX;
3149 } else {
3150 return res;
3154 RVVCALL(OPIVV2_RM, vnclipu_vv_b, NOP_UUU_B, H1, H2, H1, vnclipu8)
3155 RVVCALL(OPIVV2_RM, vnclipu_vv_h, NOP_UUU_H, H2, H4, H2, vnclipu16)
3156 RVVCALL(OPIVV2_RM, vnclipu_vv_w, NOP_UUU_W, H4, H8, H4, vnclipu32)
3157 GEN_VEXT_VV_RM(vnclipu_vv_b, 1, 1, clearb)
3158 GEN_VEXT_VV_RM(vnclipu_vv_h, 2, 2, clearh)
3159 GEN_VEXT_VV_RM(vnclipu_vv_w, 4, 4, clearl)
3161 RVVCALL(OPIVX2_RM, vnclipu_vx_b, NOP_UUU_B, H1, H2, vnclipu8)
3162 RVVCALL(OPIVX2_RM, vnclipu_vx_h, NOP_UUU_H, H2, H4, vnclipu16)
3163 RVVCALL(OPIVX2_RM, vnclipu_vx_w, NOP_UUU_W, H4, H8, vnclipu32)
3164 GEN_VEXT_VX_RM(vnclipu_vx_b, 1, 1, clearb)
3165 GEN_VEXT_VX_RM(vnclipu_vx_h, 2, 2, clearh)
3166 GEN_VEXT_VX_RM(vnclipu_vx_w, 4, 4, clearl)
3169 *** Vector Float Point Arithmetic Instructions
3171 /* Vector Single-Width Floating-Point Add/Subtract Instructions */
3172 #define OPFVV2(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
3173 static void do_##NAME(void *vd, void *vs1, void *vs2, int i, \
3174 CPURISCVState *env) \
3176 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
3177 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3178 *((TD *)vd + HD(i)) = OP(s2, s1, &env->fp_status); \
3181 #define GEN_VEXT_VV_ENV(NAME, ESZ, DSZ, CLEAR_FN) \
3182 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
3183 void *vs2, CPURISCVState *env, \
3184 uint32_t desc) \
3186 uint32_t vlmax = vext_maxsz(desc) / ESZ; \
3187 uint32_t mlen = vext_mlen(desc); \
3188 uint32_t vm = vext_vm(desc); \
3189 uint32_t vl = env->vl; \
3190 uint32_t i; \
3192 for (i = 0; i < vl; i++) { \
3193 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
3194 continue; \
3196 do_##NAME(vd, vs1, vs2, i, env); \
3198 CLEAR_FN(vd, vl, vl * DSZ, vlmax * DSZ); \
3201 RVVCALL(OPFVV2, vfadd_vv_h, OP_UUU_H, H2, H2, H2, float16_add)
3202 RVVCALL(OPFVV2, vfadd_vv_w, OP_UUU_W, H4, H4, H4, float32_add)
3203 RVVCALL(OPFVV2, vfadd_vv_d, OP_UUU_D, H8, H8, H8, float64_add)
3204 GEN_VEXT_VV_ENV(vfadd_vv_h, 2, 2, clearh)
3205 GEN_VEXT_VV_ENV(vfadd_vv_w, 4, 4, clearl)
3206 GEN_VEXT_VV_ENV(vfadd_vv_d, 8, 8, clearq)
3208 #define OPFVF2(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
3209 static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \
3210 CPURISCVState *env) \
3212 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3213 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, &env->fp_status);\
3216 #define GEN_VEXT_VF(NAME, ESZ, DSZ, CLEAR_FN) \
3217 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, \
3218 void *vs2, CPURISCVState *env, \
3219 uint32_t desc) \
3221 uint32_t vlmax = vext_maxsz(desc) / ESZ; \
3222 uint32_t mlen = vext_mlen(desc); \
3223 uint32_t vm = vext_vm(desc); \
3224 uint32_t vl = env->vl; \
3225 uint32_t i; \
3227 for (i = 0; i < vl; i++) { \
3228 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
3229 continue; \
3231 do_##NAME(vd, s1, vs2, i, env); \
3233 CLEAR_FN(vd, vl, vl * DSZ, vlmax * DSZ); \
3236 RVVCALL(OPFVF2, vfadd_vf_h, OP_UUU_H, H2, H2, float16_add)
3237 RVVCALL(OPFVF2, vfadd_vf_w, OP_UUU_W, H4, H4, float32_add)
3238 RVVCALL(OPFVF2, vfadd_vf_d, OP_UUU_D, H8, H8, float64_add)
3239 GEN_VEXT_VF(vfadd_vf_h, 2, 2, clearh)
3240 GEN_VEXT_VF(vfadd_vf_w, 4, 4, clearl)
3241 GEN_VEXT_VF(vfadd_vf_d, 8, 8, clearq)
3243 RVVCALL(OPFVV2, vfsub_vv_h, OP_UUU_H, H2, H2, H2, float16_sub)
3244 RVVCALL(OPFVV2, vfsub_vv_w, OP_UUU_W, H4, H4, H4, float32_sub)
3245 RVVCALL(OPFVV2, vfsub_vv_d, OP_UUU_D, H8, H8, H8, float64_sub)
3246 GEN_VEXT_VV_ENV(vfsub_vv_h, 2, 2, clearh)
3247 GEN_VEXT_VV_ENV(vfsub_vv_w, 4, 4, clearl)
3248 GEN_VEXT_VV_ENV(vfsub_vv_d, 8, 8, clearq)
3249 RVVCALL(OPFVF2, vfsub_vf_h, OP_UUU_H, H2, H2, float16_sub)
3250 RVVCALL(OPFVF2, vfsub_vf_w, OP_UUU_W, H4, H4, float32_sub)
3251 RVVCALL(OPFVF2, vfsub_vf_d, OP_UUU_D, H8, H8, float64_sub)
3252 GEN_VEXT_VF(vfsub_vf_h, 2, 2, clearh)
3253 GEN_VEXT_VF(vfsub_vf_w, 4, 4, clearl)
3254 GEN_VEXT_VF(vfsub_vf_d, 8, 8, clearq)
3256 static uint16_t float16_rsub(uint16_t a, uint16_t b, float_status *s)
3258 return float16_sub(b, a, s);
3261 static uint32_t float32_rsub(uint32_t a, uint32_t b, float_status *s)
3263 return float32_sub(b, a, s);
3266 static uint64_t float64_rsub(uint64_t a, uint64_t b, float_status *s)
3268 return float64_sub(b, a, s);
3271 RVVCALL(OPFVF2, vfrsub_vf_h, OP_UUU_H, H2, H2, float16_rsub)
3272 RVVCALL(OPFVF2, vfrsub_vf_w, OP_UUU_W, H4, H4, float32_rsub)
3273 RVVCALL(OPFVF2, vfrsub_vf_d, OP_UUU_D, H8, H8, float64_rsub)
3274 GEN_VEXT_VF(vfrsub_vf_h, 2, 2, clearh)
3275 GEN_VEXT_VF(vfrsub_vf_w, 4, 4, clearl)
3276 GEN_VEXT_VF(vfrsub_vf_d, 8, 8, clearq)
3278 /* Vector Widening Floating-Point Add/Subtract Instructions */
3279 static uint32_t vfwadd16(uint16_t a, uint16_t b, float_status *s)
3281 return float32_add(float16_to_float32(a, true, s),
3282 float16_to_float32(b, true, s), s);
3285 static uint64_t vfwadd32(uint32_t a, uint32_t b, float_status *s)
3287 return float64_add(float32_to_float64(a, s),
3288 float32_to_float64(b, s), s);
3292 RVVCALL(OPFVV2, vfwadd_vv_h, WOP_UUU_H, H4, H2, H2, vfwadd16)
3293 RVVCALL(OPFVV2, vfwadd_vv_w, WOP_UUU_W, H8, H4, H4, vfwadd32)
3294 GEN_VEXT_VV_ENV(vfwadd_vv_h, 2, 4, clearl)
3295 GEN_VEXT_VV_ENV(vfwadd_vv_w, 4, 8, clearq)
3296 RVVCALL(OPFVF2, vfwadd_vf_h, WOP_UUU_H, H4, H2, vfwadd16)
3297 RVVCALL(OPFVF2, vfwadd_vf_w, WOP_UUU_W, H8, H4, vfwadd32)
3298 GEN_VEXT_VF(vfwadd_vf_h, 2, 4, clearl)
3299 GEN_VEXT_VF(vfwadd_vf_w, 4, 8, clearq)
3301 static uint32_t vfwsub16(uint16_t a, uint16_t b, float_status *s)
3303 return float32_sub(float16_to_float32(a, true, s),
3304 float16_to_float32(b, true, s), s);
3307 static uint64_t vfwsub32(uint32_t a, uint32_t b, float_status *s)
3309 return float64_sub(float32_to_float64(a, s),
3310 float32_to_float64(b, s), s);
3314 RVVCALL(OPFVV2, vfwsub_vv_h, WOP_UUU_H, H4, H2, H2, vfwsub16)
3315 RVVCALL(OPFVV2, vfwsub_vv_w, WOP_UUU_W, H8, H4, H4, vfwsub32)
3316 GEN_VEXT_VV_ENV(vfwsub_vv_h, 2, 4, clearl)
3317 GEN_VEXT_VV_ENV(vfwsub_vv_w, 4, 8, clearq)
3318 RVVCALL(OPFVF2, vfwsub_vf_h, WOP_UUU_H, H4, H2, vfwsub16)
3319 RVVCALL(OPFVF2, vfwsub_vf_w, WOP_UUU_W, H8, H4, vfwsub32)
3320 GEN_VEXT_VF(vfwsub_vf_h, 2, 4, clearl)
3321 GEN_VEXT_VF(vfwsub_vf_w, 4, 8, clearq)
3323 static uint32_t vfwaddw16(uint32_t a, uint16_t b, float_status *s)
3325 return float32_add(a, float16_to_float32(b, true, s), s);
3328 static uint64_t vfwaddw32(uint64_t a, uint32_t b, float_status *s)
3330 return float64_add(a, float32_to_float64(b, s), s);
3333 RVVCALL(OPFVV2, vfwadd_wv_h, WOP_WUUU_H, H4, H2, H2, vfwaddw16)
3334 RVVCALL(OPFVV2, vfwadd_wv_w, WOP_WUUU_W, H8, H4, H4, vfwaddw32)
3335 GEN_VEXT_VV_ENV(vfwadd_wv_h, 2, 4, clearl)
3336 GEN_VEXT_VV_ENV(vfwadd_wv_w, 4, 8, clearq)
3337 RVVCALL(OPFVF2, vfwadd_wf_h, WOP_WUUU_H, H4, H2, vfwaddw16)
3338 RVVCALL(OPFVF2, vfwadd_wf_w, WOP_WUUU_W, H8, H4, vfwaddw32)
3339 GEN_VEXT_VF(vfwadd_wf_h, 2, 4, clearl)
3340 GEN_VEXT_VF(vfwadd_wf_w, 4, 8, clearq)
3342 static uint32_t vfwsubw16(uint32_t a, uint16_t b, float_status *s)
3344 return float32_sub(a, float16_to_float32(b, true, s), s);
3347 static uint64_t vfwsubw32(uint64_t a, uint32_t b, float_status *s)
3349 return float64_sub(a, float32_to_float64(b, s), s);
3352 RVVCALL(OPFVV2, vfwsub_wv_h, WOP_WUUU_H, H4, H2, H2, vfwsubw16)
3353 RVVCALL(OPFVV2, vfwsub_wv_w, WOP_WUUU_W, H8, H4, H4, vfwsubw32)
3354 GEN_VEXT_VV_ENV(vfwsub_wv_h, 2, 4, clearl)
3355 GEN_VEXT_VV_ENV(vfwsub_wv_w, 4, 8, clearq)
3356 RVVCALL(OPFVF2, vfwsub_wf_h, WOP_WUUU_H, H4, H2, vfwsubw16)
3357 RVVCALL(OPFVF2, vfwsub_wf_w, WOP_WUUU_W, H8, H4, vfwsubw32)
3358 GEN_VEXT_VF(vfwsub_wf_h, 2, 4, clearl)
3359 GEN_VEXT_VF(vfwsub_wf_w, 4, 8, clearq)
3361 /* Vector Single-Width Floating-Point Multiply/Divide Instructions */
3362 RVVCALL(OPFVV2, vfmul_vv_h, OP_UUU_H, H2, H2, H2, float16_mul)
3363 RVVCALL(OPFVV2, vfmul_vv_w, OP_UUU_W, H4, H4, H4, float32_mul)
3364 RVVCALL(OPFVV2, vfmul_vv_d, OP_UUU_D, H8, H8, H8, float64_mul)
3365 GEN_VEXT_VV_ENV(vfmul_vv_h, 2, 2, clearh)
3366 GEN_VEXT_VV_ENV(vfmul_vv_w, 4, 4, clearl)
3367 GEN_VEXT_VV_ENV(vfmul_vv_d, 8, 8, clearq)
3368 RVVCALL(OPFVF2, vfmul_vf_h, OP_UUU_H, H2, H2, float16_mul)
3369 RVVCALL(OPFVF2, vfmul_vf_w, OP_UUU_W, H4, H4, float32_mul)
3370 RVVCALL(OPFVF2, vfmul_vf_d, OP_UUU_D, H8, H8, float64_mul)
3371 GEN_VEXT_VF(vfmul_vf_h, 2, 2, clearh)
3372 GEN_VEXT_VF(vfmul_vf_w, 4, 4, clearl)
3373 GEN_VEXT_VF(vfmul_vf_d, 8, 8, clearq)
3375 RVVCALL(OPFVV2, vfdiv_vv_h, OP_UUU_H, H2, H2, H2, float16_div)
3376 RVVCALL(OPFVV2, vfdiv_vv_w, OP_UUU_W, H4, H4, H4, float32_div)
3377 RVVCALL(OPFVV2, vfdiv_vv_d, OP_UUU_D, H8, H8, H8, float64_div)
3378 GEN_VEXT_VV_ENV(vfdiv_vv_h, 2, 2, clearh)
3379 GEN_VEXT_VV_ENV(vfdiv_vv_w, 4, 4, clearl)
3380 GEN_VEXT_VV_ENV(vfdiv_vv_d, 8, 8, clearq)
3381 RVVCALL(OPFVF2, vfdiv_vf_h, OP_UUU_H, H2, H2, float16_div)
3382 RVVCALL(OPFVF2, vfdiv_vf_w, OP_UUU_W, H4, H4, float32_div)
3383 RVVCALL(OPFVF2, vfdiv_vf_d, OP_UUU_D, H8, H8, float64_div)
3384 GEN_VEXT_VF(vfdiv_vf_h, 2, 2, clearh)
3385 GEN_VEXT_VF(vfdiv_vf_w, 4, 4, clearl)
3386 GEN_VEXT_VF(vfdiv_vf_d, 8, 8, clearq)
3388 static uint16_t float16_rdiv(uint16_t a, uint16_t b, float_status *s)
3390 return float16_div(b, a, s);
3393 static uint32_t float32_rdiv(uint32_t a, uint32_t b, float_status *s)
3395 return float32_div(b, a, s);
3398 static uint64_t float64_rdiv(uint64_t a, uint64_t b, float_status *s)
3400 return float64_div(b, a, s);
3403 RVVCALL(OPFVF2, vfrdiv_vf_h, OP_UUU_H, H2, H2, float16_rdiv)
3404 RVVCALL(OPFVF2, vfrdiv_vf_w, OP_UUU_W, H4, H4, float32_rdiv)
3405 RVVCALL(OPFVF2, vfrdiv_vf_d, OP_UUU_D, H8, H8, float64_rdiv)
3406 GEN_VEXT_VF(vfrdiv_vf_h, 2, 2, clearh)
3407 GEN_VEXT_VF(vfrdiv_vf_w, 4, 4, clearl)
3408 GEN_VEXT_VF(vfrdiv_vf_d, 8, 8, clearq)
3410 /* Vector Widening Floating-Point Multiply */
3411 static uint32_t vfwmul16(uint16_t a, uint16_t b, float_status *s)
3413 return float32_mul(float16_to_float32(a, true, s),
3414 float16_to_float32(b, true, s), s);
3417 static uint64_t vfwmul32(uint32_t a, uint32_t b, float_status *s)
3419 return float64_mul(float32_to_float64(a, s),
3420 float32_to_float64(b, s), s);
3423 RVVCALL(OPFVV2, vfwmul_vv_h, WOP_UUU_H, H4, H2, H2, vfwmul16)
3424 RVVCALL(OPFVV2, vfwmul_vv_w, WOP_UUU_W, H8, H4, H4, vfwmul32)
3425 GEN_VEXT_VV_ENV(vfwmul_vv_h, 2, 4, clearl)
3426 GEN_VEXT_VV_ENV(vfwmul_vv_w, 4, 8, clearq)
3427 RVVCALL(OPFVF2, vfwmul_vf_h, WOP_UUU_H, H4, H2, vfwmul16)
3428 RVVCALL(OPFVF2, vfwmul_vf_w, WOP_UUU_W, H8, H4, vfwmul32)
3429 GEN_VEXT_VF(vfwmul_vf_h, 2, 4, clearl)
3430 GEN_VEXT_VF(vfwmul_vf_w, 4, 8, clearq)
3432 /* Vector Single-Width Floating-Point Fused Multiply-Add Instructions */
3433 #define OPFVV3(NAME, TD, T1, T2, TX1, TX2, HD, HS1, HS2, OP) \
3434 static void do_##NAME(void *vd, void *vs1, void *vs2, int i, \
3435 CPURISCVState *env) \
3437 TX1 s1 = *((T1 *)vs1 + HS1(i)); \
3438 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3439 TD d = *((TD *)vd + HD(i)); \
3440 *((TD *)vd + HD(i)) = OP(s2, s1, d, &env->fp_status); \
3443 static uint16_t fmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3445 return float16_muladd(a, b, d, 0, s);
3448 static uint32_t fmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3450 return float32_muladd(a, b, d, 0, s);
3453 static uint64_t fmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3455 return float64_muladd(a, b, d, 0, s);
3458 RVVCALL(OPFVV3, vfmacc_vv_h, OP_UUU_H, H2, H2, H2, fmacc16)
3459 RVVCALL(OPFVV3, vfmacc_vv_w, OP_UUU_W, H4, H4, H4, fmacc32)
3460 RVVCALL(OPFVV3, vfmacc_vv_d, OP_UUU_D, H8, H8, H8, fmacc64)
3461 GEN_VEXT_VV_ENV(vfmacc_vv_h, 2, 2, clearh)
3462 GEN_VEXT_VV_ENV(vfmacc_vv_w, 4, 4, clearl)
3463 GEN_VEXT_VV_ENV(vfmacc_vv_d, 8, 8, clearq)
3465 #define OPFVF3(NAME, TD, T1, T2, TX1, TX2, HD, HS2, OP) \
3466 static void do_##NAME(void *vd, uint64_t s1, void *vs2, int i, \
3467 CPURISCVState *env) \
3469 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3470 TD d = *((TD *)vd + HD(i)); \
3471 *((TD *)vd + HD(i)) = OP(s2, (TX1)(T1)s1, d, &env->fp_status);\
3474 RVVCALL(OPFVF3, vfmacc_vf_h, OP_UUU_H, H2, H2, fmacc16)
3475 RVVCALL(OPFVF3, vfmacc_vf_w, OP_UUU_W, H4, H4, fmacc32)
3476 RVVCALL(OPFVF3, vfmacc_vf_d, OP_UUU_D, H8, H8, fmacc64)
3477 GEN_VEXT_VF(vfmacc_vf_h, 2, 2, clearh)
3478 GEN_VEXT_VF(vfmacc_vf_w, 4, 4, clearl)
3479 GEN_VEXT_VF(vfmacc_vf_d, 8, 8, clearq)
3481 static uint16_t fnmacc16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3483 return float16_muladd(a, b, d,
3484 float_muladd_negate_c | float_muladd_negate_product, s);
3487 static uint32_t fnmacc32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3489 return float32_muladd(a, b, d,
3490 float_muladd_negate_c | float_muladd_negate_product, s);
3493 static uint64_t fnmacc64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3495 return float64_muladd(a, b, d,
3496 float_muladd_negate_c | float_muladd_negate_product, s);
3499 RVVCALL(OPFVV3, vfnmacc_vv_h, OP_UUU_H, H2, H2, H2, fnmacc16)
3500 RVVCALL(OPFVV3, vfnmacc_vv_w, OP_UUU_W, H4, H4, H4, fnmacc32)
3501 RVVCALL(OPFVV3, vfnmacc_vv_d, OP_UUU_D, H8, H8, H8, fnmacc64)
3502 GEN_VEXT_VV_ENV(vfnmacc_vv_h, 2, 2, clearh)
3503 GEN_VEXT_VV_ENV(vfnmacc_vv_w, 4, 4, clearl)
3504 GEN_VEXT_VV_ENV(vfnmacc_vv_d, 8, 8, clearq)
3505 RVVCALL(OPFVF3, vfnmacc_vf_h, OP_UUU_H, H2, H2, fnmacc16)
3506 RVVCALL(OPFVF3, vfnmacc_vf_w, OP_UUU_W, H4, H4, fnmacc32)
3507 RVVCALL(OPFVF3, vfnmacc_vf_d, OP_UUU_D, H8, H8, fnmacc64)
3508 GEN_VEXT_VF(vfnmacc_vf_h, 2, 2, clearh)
3509 GEN_VEXT_VF(vfnmacc_vf_w, 4, 4, clearl)
3510 GEN_VEXT_VF(vfnmacc_vf_d, 8, 8, clearq)
3512 static uint16_t fmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3514 return float16_muladd(a, b, d, float_muladd_negate_c, s);
3517 static uint32_t fmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3519 return float32_muladd(a, b, d, float_muladd_negate_c, s);
3522 static uint64_t fmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3524 return float64_muladd(a, b, d, float_muladd_negate_c, s);
3527 RVVCALL(OPFVV3, vfmsac_vv_h, OP_UUU_H, H2, H2, H2, fmsac16)
3528 RVVCALL(OPFVV3, vfmsac_vv_w, OP_UUU_W, H4, H4, H4, fmsac32)
3529 RVVCALL(OPFVV3, vfmsac_vv_d, OP_UUU_D, H8, H8, H8, fmsac64)
3530 GEN_VEXT_VV_ENV(vfmsac_vv_h, 2, 2, clearh)
3531 GEN_VEXT_VV_ENV(vfmsac_vv_w, 4, 4, clearl)
3532 GEN_VEXT_VV_ENV(vfmsac_vv_d, 8, 8, clearq)
3533 RVVCALL(OPFVF3, vfmsac_vf_h, OP_UUU_H, H2, H2, fmsac16)
3534 RVVCALL(OPFVF3, vfmsac_vf_w, OP_UUU_W, H4, H4, fmsac32)
3535 RVVCALL(OPFVF3, vfmsac_vf_d, OP_UUU_D, H8, H8, fmsac64)
3536 GEN_VEXT_VF(vfmsac_vf_h, 2, 2, clearh)
3537 GEN_VEXT_VF(vfmsac_vf_w, 4, 4, clearl)
3538 GEN_VEXT_VF(vfmsac_vf_d, 8, 8, clearq)
3540 static uint16_t fnmsac16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3542 return float16_muladd(a, b, d, float_muladd_negate_product, s);
3545 static uint32_t fnmsac32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3547 return float32_muladd(a, b, d, float_muladd_negate_product, s);
3550 static uint64_t fnmsac64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3552 return float64_muladd(a, b, d, float_muladd_negate_product, s);
3555 RVVCALL(OPFVV3, vfnmsac_vv_h, OP_UUU_H, H2, H2, H2, fnmsac16)
3556 RVVCALL(OPFVV3, vfnmsac_vv_w, OP_UUU_W, H4, H4, H4, fnmsac32)
3557 RVVCALL(OPFVV3, vfnmsac_vv_d, OP_UUU_D, H8, H8, H8, fnmsac64)
3558 GEN_VEXT_VV_ENV(vfnmsac_vv_h, 2, 2, clearh)
3559 GEN_VEXT_VV_ENV(vfnmsac_vv_w, 4, 4, clearl)
3560 GEN_VEXT_VV_ENV(vfnmsac_vv_d, 8, 8, clearq)
3561 RVVCALL(OPFVF3, vfnmsac_vf_h, OP_UUU_H, H2, H2, fnmsac16)
3562 RVVCALL(OPFVF3, vfnmsac_vf_w, OP_UUU_W, H4, H4, fnmsac32)
3563 RVVCALL(OPFVF3, vfnmsac_vf_d, OP_UUU_D, H8, H8, fnmsac64)
3564 GEN_VEXT_VF(vfnmsac_vf_h, 2, 2, clearh)
3565 GEN_VEXT_VF(vfnmsac_vf_w, 4, 4, clearl)
3566 GEN_VEXT_VF(vfnmsac_vf_d, 8, 8, clearq)
3568 static uint16_t fmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3570 return float16_muladd(d, b, a, 0, s);
3573 static uint32_t fmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3575 return float32_muladd(d, b, a, 0, s);
3578 static uint64_t fmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3580 return float64_muladd(d, b, a, 0, s);
3583 RVVCALL(OPFVV3, vfmadd_vv_h, OP_UUU_H, H2, H2, H2, fmadd16)
3584 RVVCALL(OPFVV3, vfmadd_vv_w, OP_UUU_W, H4, H4, H4, fmadd32)
3585 RVVCALL(OPFVV3, vfmadd_vv_d, OP_UUU_D, H8, H8, H8, fmadd64)
3586 GEN_VEXT_VV_ENV(vfmadd_vv_h, 2, 2, clearh)
3587 GEN_VEXT_VV_ENV(vfmadd_vv_w, 4, 4, clearl)
3588 GEN_VEXT_VV_ENV(vfmadd_vv_d, 8, 8, clearq)
3589 RVVCALL(OPFVF3, vfmadd_vf_h, OP_UUU_H, H2, H2, fmadd16)
3590 RVVCALL(OPFVF3, vfmadd_vf_w, OP_UUU_W, H4, H4, fmadd32)
3591 RVVCALL(OPFVF3, vfmadd_vf_d, OP_UUU_D, H8, H8, fmadd64)
3592 GEN_VEXT_VF(vfmadd_vf_h, 2, 2, clearh)
3593 GEN_VEXT_VF(vfmadd_vf_w, 4, 4, clearl)
3594 GEN_VEXT_VF(vfmadd_vf_d, 8, 8, clearq)
3596 static uint16_t fnmadd16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3598 return float16_muladd(d, b, a,
3599 float_muladd_negate_c | float_muladd_negate_product, s);
3602 static uint32_t fnmadd32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3604 return float32_muladd(d, b, a,
3605 float_muladd_negate_c | float_muladd_negate_product, s);
3608 static uint64_t fnmadd64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3610 return float64_muladd(d, b, a,
3611 float_muladd_negate_c | float_muladd_negate_product, s);
3614 RVVCALL(OPFVV3, vfnmadd_vv_h, OP_UUU_H, H2, H2, H2, fnmadd16)
3615 RVVCALL(OPFVV3, vfnmadd_vv_w, OP_UUU_W, H4, H4, H4, fnmadd32)
3616 RVVCALL(OPFVV3, vfnmadd_vv_d, OP_UUU_D, H8, H8, H8, fnmadd64)
3617 GEN_VEXT_VV_ENV(vfnmadd_vv_h, 2, 2, clearh)
3618 GEN_VEXT_VV_ENV(vfnmadd_vv_w, 4, 4, clearl)
3619 GEN_VEXT_VV_ENV(vfnmadd_vv_d, 8, 8, clearq)
3620 RVVCALL(OPFVF3, vfnmadd_vf_h, OP_UUU_H, H2, H2, fnmadd16)
3621 RVVCALL(OPFVF3, vfnmadd_vf_w, OP_UUU_W, H4, H4, fnmadd32)
3622 RVVCALL(OPFVF3, vfnmadd_vf_d, OP_UUU_D, H8, H8, fnmadd64)
3623 GEN_VEXT_VF(vfnmadd_vf_h, 2, 2, clearh)
3624 GEN_VEXT_VF(vfnmadd_vf_w, 4, 4, clearl)
3625 GEN_VEXT_VF(vfnmadd_vf_d, 8, 8, clearq)
3627 static uint16_t fmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3629 return float16_muladd(d, b, a, float_muladd_negate_c, s);
3632 static uint32_t fmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3634 return float32_muladd(d, b, a, float_muladd_negate_c, s);
3637 static uint64_t fmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3639 return float64_muladd(d, b, a, float_muladd_negate_c, s);
3642 RVVCALL(OPFVV3, vfmsub_vv_h, OP_UUU_H, H2, H2, H2, fmsub16)
3643 RVVCALL(OPFVV3, vfmsub_vv_w, OP_UUU_W, H4, H4, H4, fmsub32)
3644 RVVCALL(OPFVV3, vfmsub_vv_d, OP_UUU_D, H8, H8, H8, fmsub64)
3645 GEN_VEXT_VV_ENV(vfmsub_vv_h, 2, 2, clearh)
3646 GEN_VEXT_VV_ENV(vfmsub_vv_w, 4, 4, clearl)
3647 GEN_VEXT_VV_ENV(vfmsub_vv_d, 8, 8, clearq)
3648 RVVCALL(OPFVF3, vfmsub_vf_h, OP_UUU_H, H2, H2, fmsub16)
3649 RVVCALL(OPFVF3, vfmsub_vf_w, OP_UUU_W, H4, H4, fmsub32)
3650 RVVCALL(OPFVF3, vfmsub_vf_d, OP_UUU_D, H8, H8, fmsub64)
3651 GEN_VEXT_VF(vfmsub_vf_h, 2, 2, clearh)
3652 GEN_VEXT_VF(vfmsub_vf_w, 4, 4, clearl)
3653 GEN_VEXT_VF(vfmsub_vf_d, 8, 8, clearq)
3655 static uint16_t fnmsub16(uint16_t a, uint16_t b, uint16_t d, float_status *s)
3657 return float16_muladd(d, b, a, float_muladd_negate_product, s);
3660 static uint32_t fnmsub32(uint32_t a, uint32_t b, uint32_t d, float_status *s)
3662 return float32_muladd(d, b, a, float_muladd_negate_product, s);
3665 static uint64_t fnmsub64(uint64_t a, uint64_t b, uint64_t d, float_status *s)
3667 return float64_muladd(d, b, a, float_muladd_negate_product, s);
3670 RVVCALL(OPFVV3, vfnmsub_vv_h, OP_UUU_H, H2, H2, H2, fnmsub16)
3671 RVVCALL(OPFVV3, vfnmsub_vv_w, OP_UUU_W, H4, H4, H4, fnmsub32)
3672 RVVCALL(OPFVV3, vfnmsub_vv_d, OP_UUU_D, H8, H8, H8, fnmsub64)
3673 GEN_VEXT_VV_ENV(vfnmsub_vv_h, 2, 2, clearh)
3674 GEN_VEXT_VV_ENV(vfnmsub_vv_w, 4, 4, clearl)
3675 GEN_VEXT_VV_ENV(vfnmsub_vv_d, 8, 8, clearq)
3676 RVVCALL(OPFVF3, vfnmsub_vf_h, OP_UUU_H, H2, H2, fnmsub16)
3677 RVVCALL(OPFVF3, vfnmsub_vf_w, OP_UUU_W, H4, H4, fnmsub32)
3678 RVVCALL(OPFVF3, vfnmsub_vf_d, OP_UUU_D, H8, H8, fnmsub64)
3679 GEN_VEXT_VF(vfnmsub_vf_h, 2, 2, clearh)
3680 GEN_VEXT_VF(vfnmsub_vf_w, 4, 4, clearl)
3681 GEN_VEXT_VF(vfnmsub_vf_d, 8, 8, clearq)
3683 /* Vector Widening Floating-Point Fused Multiply-Add Instructions */
3684 static uint32_t fwmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3686 return float32_muladd(float16_to_float32(a, true, s),
3687 float16_to_float32(b, true, s), d, 0, s);
3690 static uint64_t fwmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3692 return float64_muladd(float32_to_float64(a, s),
3693 float32_to_float64(b, s), d, 0, s);
3696 RVVCALL(OPFVV3, vfwmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwmacc16)
3697 RVVCALL(OPFVV3, vfwmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwmacc32)
3698 GEN_VEXT_VV_ENV(vfwmacc_vv_h, 2, 4, clearl)
3699 GEN_VEXT_VV_ENV(vfwmacc_vv_w, 4, 8, clearq)
3700 RVVCALL(OPFVF3, vfwmacc_vf_h, WOP_UUU_H, H4, H2, fwmacc16)
3701 RVVCALL(OPFVF3, vfwmacc_vf_w, WOP_UUU_W, H8, H4, fwmacc32)
3702 GEN_VEXT_VF(vfwmacc_vf_h, 2, 4, clearl)
3703 GEN_VEXT_VF(vfwmacc_vf_w, 4, 8, clearq)
3705 static uint32_t fwnmacc16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3707 return float32_muladd(float16_to_float32(a, true, s),
3708 float16_to_float32(b, true, s), d,
3709 float_muladd_negate_c | float_muladd_negate_product, s);
3712 static uint64_t fwnmacc32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3714 return float64_muladd(float32_to_float64(a, s),
3715 float32_to_float64(b, s), d,
3716 float_muladd_negate_c | float_muladd_negate_product, s);
3719 RVVCALL(OPFVV3, vfwnmacc_vv_h, WOP_UUU_H, H4, H2, H2, fwnmacc16)
3720 RVVCALL(OPFVV3, vfwnmacc_vv_w, WOP_UUU_W, H8, H4, H4, fwnmacc32)
3721 GEN_VEXT_VV_ENV(vfwnmacc_vv_h, 2, 4, clearl)
3722 GEN_VEXT_VV_ENV(vfwnmacc_vv_w, 4, 8, clearq)
3723 RVVCALL(OPFVF3, vfwnmacc_vf_h, WOP_UUU_H, H4, H2, fwnmacc16)
3724 RVVCALL(OPFVF3, vfwnmacc_vf_w, WOP_UUU_W, H8, H4, fwnmacc32)
3725 GEN_VEXT_VF(vfwnmacc_vf_h, 2, 4, clearl)
3726 GEN_VEXT_VF(vfwnmacc_vf_w, 4, 8, clearq)
3728 static uint32_t fwmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3730 return float32_muladd(float16_to_float32(a, true, s),
3731 float16_to_float32(b, true, s), d,
3732 float_muladd_negate_c, s);
3735 static uint64_t fwmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3737 return float64_muladd(float32_to_float64(a, s),
3738 float32_to_float64(b, s), d,
3739 float_muladd_negate_c, s);
3742 RVVCALL(OPFVV3, vfwmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwmsac16)
3743 RVVCALL(OPFVV3, vfwmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwmsac32)
3744 GEN_VEXT_VV_ENV(vfwmsac_vv_h, 2, 4, clearl)
3745 GEN_VEXT_VV_ENV(vfwmsac_vv_w, 4, 8, clearq)
3746 RVVCALL(OPFVF3, vfwmsac_vf_h, WOP_UUU_H, H4, H2, fwmsac16)
3747 RVVCALL(OPFVF3, vfwmsac_vf_w, WOP_UUU_W, H8, H4, fwmsac32)
3748 GEN_VEXT_VF(vfwmsac_vf_h, 2, 4, clearl)
3749 GEN_VEXT_VF(vfwmsac_vf_w, 4, 8, clearq)
3751 static uint32_t fwnmsac16(uint16_t a, uint16_t b, uint32_t d, float_status *s)
3753 return float32_muladd(float16_to_float32(a, true, s),
3754 float16_to_float32(b, true, s), d,
3755 float_muladd_negate_product, s);
3758 static uint64_t fwnmsac32(uint32_t a, uint32_t b, uint64_t d, float_status *s)
3760 return float64_muladd(float32_to_float64(a, s),
3761 float32_to_float64(b, s), d,
3762 float_muladd_negate_product, s);
3765 RVVCALL(OPFVV3, vfwnmsac_vv_h, WOP_UUU_H, H4, H2, H2, fwnmsac16)
3766 RVVCALL(OPFVV3, vfwnmsac_vv_w, WOP_UUU_W, H8, H4, H4, fwnmsac32)
3767 GEN_VEXT_VV_ENV(vfwnmsac_vv_h, 2, 4, clearl)
3768 GEN_VEXT_VV_ENV(vfwnmsac_vv_w, 4, 8, clearq)
3769 RVVCALL(OPFVF3, vfwnmsac_vf_h, WOP_UUU_H, H4, H2, fwnmsac16)
3770 RVVCALL(OPFVF3, vfwnmsac_vf_w, WOP_UUU_W, H8, H4, fwnmsac32)
3771 GEN_VEXT_VF(vfwnmsac_vf_h, 2, 4, clearl)
3772 GEN_VEXT_VF(vfwnmsac_vf_w, 4, 8, clearq)
3774 /* Vector Floating-Point Square-Root Instruction */
3775 /* (TD, T2, TX2) */
3776 #define OP_UU_H uint16_t, uint16_t, uint16_t
3777 #define OP_UU_W uint32_t, uint32_t, uint32_t
3778 #define OP_UU_D uint64_t, uint64_t, uint64_t
3780 #define OPFVV1(NAME, TD, T2, TX2, HD, HS2, OP) \
3781 static void do_##NAME(void *vd, void *vs2, int i, \
3782 CPURISCVState *env) \
3784 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
3785 *((TD *)vd + HD(i)) = OP(s2, &env->fp_status); \
3788 #define GEN_VEXT_V_ENV(NAME, ESZ, DSZ, CLEAR_FN) \
3789 void HELPER(NAME)(void *vd, void *v0, void *vs2, \
3790 CPURISCVState *env, uint32_t desc) \
3792 uint32_t vlmax = vext_maxsz(desc) / ESZ; \
3793 uint32_t mlen = vext_mlen(desc); \
3794 uint32_t vm = vext_vm(desc); \
3795 uint32_t vl = env->vl; \
3796 uint32_t i; \
3798 if (vl == 0) { \
3799 return; \
3801 for (i = 0; i < vl; i++) { \
3802 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
3803 continue; \
3805 do_##NAME(vd, vs2, i, env); \
3807 CLEAR_FN(vd, vl, vl * DSZ, vlmax * DSZ); \
3810 RVVCALL(OPFVV1, vfsqrt_v_h, OP_UU_H, H2, H2, float16_sqrt)
3811 RVVCALL(OPFVV1, vfsqrt_v_w, OP_UU_W, H4, H4, float32_sqrt)
3812 RVVCALL(OPFVV1, vfsqrt_v_d, OP_UU_D, H8, H8, float64_sqrt)
3813 GEN_VEXT_V_ENV(vfsqrt_v_h, 2, 2, clearh)
3814 GEN_VEXT_V_ENV(vfsqrt_v_w, 4, 4, clearl)
3815 GEN_VEXT_V_ENV(vfsqrt_v_d, 8, 8, clearq)
3817 /* Vector Floating-Point MIN/MAX Instructions */
3818 RVVCALL(OPFVV2, vfmin_vv_h, OP_UUU_H, H2, H2, H2, float16_minnum)
3819 RVVCALL(OPFVV2, vfmin_vv_w, OP_UUU_W, H4, H4, H4, float32_minnum)
3820 RVVCALL(OPFVV2, vfmin_vv_d, OP_UUU_D, H8, H8, H8, float64_minnum)
3821 GEN_VEXT_VV_ENV(vfmin_vv_h, 2, 2, clearh)
3822 GEN_VEXT_VV_ENV(vfmin_vv_w, 4, 4, clearl)
3823 GEN_VEXT_VV_ENV(vfmin_vv_d, 8, 8, clearq)
3824 RVVCALL(OPFVF2, vfmin_vf_h, OP_UUU_H, H2, H2, float16_minnum)
3825 RVVCALL(OPFVF2, vfmin_vf_w, OP_UUU_W, H4, H4, float32_minnum)
3826 RVVCALL(OPFVF2, vfmin_vf_d, OP_UUU_D, H8, H8, float64_minnum)
3827 GEN_VEXT_VF(vfmin_vf_h, 2, 2, clearh)
3828 GEN_VEXT_VF(vfmin_vf_w, 4, 4, clearl)
3829 GEN_VEXT_VF(vfmin_vf_d, 8, 8, clearq)
3831 RVVCALL(OPFVV2, vfmax_vv_h, OP_UUU_H, H2, H2, H2, float16_maxnum)
3832 RVVCALL(OPFVV2, vfmax_vv_w, OP_UUU_W, H4, H4, H4, float32_maxnum)
3833 RVVCALL(OPFVV2, vfmax_vv_d, OP_UUU_D, H8, H8, H8, float64_maxnum)
3834 GEN_VEXT_VV_ENV(vfmax_vv_h, 2, 2, clearh)
3835 GEN_VEXT_VV_ENV(vfmax_vv_w, 4, 4, clearl)
3836 GEN_VEXT_VV_ENV(vfmax_vv_d, 8, 8, clearq)
3837 RVVCALL(OPFVF2, vfmax_vf_h, OP_UUU_H, H2, H2, float16_maxnum)
3838 RVVCALL(OPFVF2, vfmax_vf_w, OP_UUU_W, H4, H4, float32_maxnum)
3839 RVVCALL(OPFVF2, vfmax_vf_d, OP_UUU_D, H8, H8, float64_maxnum)
3840 GEN_VEXT_VF(vfmax_vf_h, 2, 2, clearh)
3841 GEN_VEXT_VF(vfmax_vf_w, 4, 4, clearl)
3842 GEN_VEXT_VF(vfmax_vf_d, 8, 8, clearq)
3844 /* Vector Floating-Point Sign-Injection Instructions */
3845 static uint16_t fsgnj16(uint16_t a, uint16_t b, float_status *s)
3847 return deposit64(b, 0, 15, a);
3850 static uint32_t fsgnj32(uint32_t a, uint32_t b, float_status *s)
3852 return deposit64(b, 0, 31, a);
3855 static uint64_t fsgnj64(uint64_t a, uint64_t b, float_status *s)
3857 return deposit64(b, 0, 63, a);
3860 RVVCALL(OPFVV2, vfsgnj_vv_h, OP_UUU_H, H2, H2, H2, fsgnj16)
3861 RVVCALL(OPFVV2, vfsgnj_vv_w, OP_UUU_W, H4, H4, H4, fsgnj32)
3862 RVVCALL(OPFVV2, vfsgnj_vv_d, OP_UUU_D, H8, H8, H8, fsgnj64)
3863 GEN_VEXT_VV_ENV(vfsgnj_vv_h, 2, 2, clearh)
3864 GEN_VEXT_VV_ENV(vfsgnj_vv_w, 4, 4, clearl)
3865 GEN_VEXT_VV_ENV(vfsgnj_vv_d, 8, 8, clearq)
3866 RVVCALL(OPFVF2, vfsgnj_vf_h, OP_UUU_H, H2, H2, fsgnj16)
3867 RVVCALL(OPFVF2, vfsgnj_vf_w, OP_UUU_W, H4, H4, fsgnj32)
3868 RVVCALL(OPFVF2, vfsgnj_vf_d, OP_UUU_D, H8, H8, fsgnj64)
3869 GEN_VEXT_VF(vfsgnj_vf_h, 2, 2, clearh)
3870 GEN_VEXT_VF(vfsgnj_vf_w, 4, 4, clearl)
3871 GEN_VEXT_VF(vfsgnj_vf_d, 8, 8, clearq)
3873 static uint16_t fsgnjn16(uint16_t a, uint16_t b, float_status *s)
3875 return deposit64(~b, 0, 15, a);
3878 static uint32_t fsgnjn32(uint32_t a, uint32_t b, float_status *s)
3880 return deposit64(~b, 0, 31, a);
3883 static uint64_t fsgnjn64(uint64_t a, uint64_t b, float_status *s)
3885 return deposit64(~b, 0, 63, a);
3888 RVVCALL(OPFVV2, vfsgnjn_vv_h, OP_UUU_H, H2, H2, H2, fsgnjn16)
3889 RVVCALL(OPFVV2, vfsgnjn_vv_w, OP_UUU_W, H4, H4, H4, fsgnjn32)
3890 RVVCALL(OPFVV2, vfsgnjn_vv_d, OP_UUU_D, H8, H8, H8, fsgnjn64)
3891 GEN_VEXT_VV_ENV(vfsgnjn_vv_h, 2, 2, clearh)
3892 GEN_VEXT_VV_ENV(vfsgnjn_vv_w, 4, 4, clearl)
3893 GEN_VEXT_VV_ENV(vfsgnjn_vv_d, 8, 8, clearq)
3894 RVVCALL(OPFVF2, vfsgnjn_vf_h, OP_UUU_H, H2, H2, fsgnjn16)
3895 RVVCALL(OPFVF2, vfsgnjn_vf_w, OP_UUU_W, H4, H4, fsgnjn32)
3896 RVVCALL(OPFVF2, vfsgnjn_vf_d, OP_UUU_D, H8, H8, fsgnjn64)
3897 GEN_VEXT_VF(vfsgnjn_vf_h, 2, 2, clearh)
3898 GEN_VEXT_VF(vfsgnjn_vf_w, 4, 4, clearl)
3899 GEN_VEXT_VF(vfsgnjn_vf_d, 8, 8, clearq)
3901 static uint16_t fsgnjx16(uint16_t a, uint16_t b, float_status *s)
3903 return deposit64(b ^ a, 0, 15, a);
3906 static uint32_t fsgnjx32(uint32_t a, uint32_t b, float_status *s)
3908 return deposit64(b ^ a, 0, 31, a);
3911 static uint64_t fsgnjx64(uint64_t a, uint64_t b, float_status *s)
3913 return deposit64(b ^ a, 0, 63, a);
3916 RVVCALL(OPFVV2, vfsgnjx_vv_h, OP_UUU_H, H2, H2, H2, fsgnjx16)
3917 RVVCALL(OPFVV2, vfsgnjx_vv_w, OP_UUU_W, H4, H4, H4, fsgnjx32)
3918 RVVCALL(OPFVV2, vfsgnjx_vv_d, OP_UUU_D, H8, H8, H8, fsgnjx64)
3919 GEN_VEXT_VV_ENV(vfsgnjx_vv_h, 2, 2, clearh)
3920 GEN_VEXT_VV_ENV(vfsgnjx_vv_w, 4, 4, clearl)
3921 GEN_VEXT_VV_ENV(vfsgnjx_vv_d, 8, 8, clearq)
3922 RVVCALL(OPFVF2, vfsgnjx_vf_h, OP_UUU_H, H2, H2, fsgnjx16)
3923 RVVCALL(OPFVF2, vfsgnjx_vf_w, OP_UUU_W, H4, H4, fsgnjx32)
3924 RVVCALL(OPFVF2, vfsgnjx_vf_d, OP_UUU_D, H8, H8, fsgnjx64)
3925 GEN_VEXT_VF(vfsgnjx_vf_h, 2, 2, clearh)
3926 GEN_VEXT_VF(vfsgnjx_vf_w, 4, 4, clearl)
3927 GEN_VEXT_VF(vfsgnjx_vf_d, 8, 8, clearq)
3929 /* Vector Floating-Point Compare Instructions */
3930 #define GEN_VEXT_CMP_VV_ENV(NAME, ETYPE, H, DO_OP) \
3931 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
3932 CPURISCVState *env, uint32_t desc) \
3934 uint32_t mlen = vext_mlen(desc); \
3935 uint32_t vm = vext_vm(desc); \
3936 uint32_t vl = env->vl; \
3937 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
3938 uint32_t i; \
3940 for (i = 0; i < vl; i++) { \
3941 ETYPE s1 = *((ETYPE *)vs1 + H(i)); \
3942 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
3943 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
3944 continue; \
3946 vext_set_elem_mask(vd, mlen, i, \
3947 DO_OP(s2, s1, &env->fp_status)); \
3949 for (; i < vlmax; i++) { \
3950 vext_set_elem_mask(vd, mlen, i, 0); \
3954 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_h, uint16_t, H2, float16_eq_quiet)
3955 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_w, uint32_t, H4, float32_eq_quiet)
3956 GEN_VEXT_CMP_VV_ENV(vmfeq_vv_d, uint64_t, H8, float64_eq_quiet)
3958 #define GEN_VEXT_CMP_VF(NAME, ETYPE, H, DO_OP) \
3959 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
3960 CPURISCVState *env, uint32_t desc) \
3962 uint32_t mlen = vext_mlen(desc); \
3963 uint32_t vm = vext_vm(desc); \
3964 uint32_t vl = env->vl; \
3965 uint32_t vlmax = vext_maxsz(desc) / sizeof(ETYPE); \
3966 uint32_t i; \
3968 for (i = 0; i < vl; i++) { \
3969 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
3970 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
3971 continue; \
3973 vext_set_elem_mask(vd, mlen, i, \
3974 DO_OP(s2, (ETYPE)s1, &env->fp_status)); \
3976 for (; i < vlmax; i++) { \
3977 vext_set_elem_mask(vd, mlen, i, 0); \
3981 GEN_VEXT_CMP_VF(vmfeq_vf_h, uint16_t, H2, float16_eq_quiet)
3982 GEN_VEXT_CMP_VF(vmfeq_vf_w, uint32_t, H4, float32_eq_quiet)
3983 GEN_VEXT_CMP_VF(vmfeq_vf_d, uint64_t, H8, float64_eq_quiet)
3985 static bool vmfne16(uint16_t a, uint16_t b, float_status *s)
3987 FloatRelation compare = float16_compare_quiet(a, b, s);
3988 return compare != float_relation_equal;
3991 static bool vmfne32(uint32_t a, uint32_t b, float_status *s)
3993 FloatRelation compare = float32_compare_quiet(a, b, s);
3994 return compare != float_relation_equal;
3997 static bool vmfne64(uint64_t a, uint64_t b, float_status *s)
3999 FloatRelation compare = float64_compare_quiet(a, b, s);
4000 return compare != float_relation_equal;
4003 GEN_VEXT_CMP_VV_ENV(vmfne_vv_h, uint16_t, H2, vmfne16)
4004 GEN_VEXT_CMP_VV_ENV(vmfne_vv_w, uint32_t, H4, vmfne32)
4005 GEN_VEXT_CMP_VV_ENV(vmfne_vv_d, uint64_t, H8, vmfne64)
4006 GEN_VEXT_CMP_VF(vmfne_vf_h, uint16_t, H2, vmfne16)
4007 GEN_VEXT_CMP_VF(vmfne_vf_w, uint32_t, H4, vmfne32)
4008 GEN_VEXT_CMP_VF(vmfne_vf_d, uint64_t, H8, vmfne64)
4010 GEN_VEXT_CMP_VV_ENV(vmflt_vv_h, uint16_t, H2, float16_lt)
4011 GEN_VEXT_CMP_VV_ENV(vmflt_vv_w, uint32_t, H4, float32_lt)
4012 GEN_VEXT_CMP_VV_ENV(vmflt_vv_d, uint64_t, H8, float64_lt)
4013 GEN_VEXT_CMP_VF(vmflt_vf_h, uint16_t, H2, float16_lt)
4014 GEN_VEXT_CMP_VF(vmflt_vf_w, uint32_t, H4, float32_lt)
4015 GEN_VEXT_CMP_VF(vmflt_vf_d, uint64_t, H8, float64_lt)
4017 GEN_VEXT_CMP_VV_ENV(vmfle_vv_h, uint16_t, H2, float16_le)
4018 GEN_VEXT_CMP_VV_ENV(vmfle_vv_w, uint32_t, H4, float32_le)
4019 GEN_VEXT_CMP_VV_ENV(vmfle_vv_d, uint64_t, H8, float64_le)
4020 GEN_VEXT_CMP_VF(vmfle_vf_h, uint16_t, H2, float16_le)
4021 GEN_VEXT_CMP_VF(vmfle_vf_w, uint32_t, H4, float32_le)
4022 GEN_VEXT_CMP_VF(vmfle_vf_d, uint64_t, H8, float64_le)
4024 static bool vmfgt16(uint16_t a, uint16_t b, float_status *s)
4026 FloatRelation compare = float16_compare(a, b, s);
4027 return compare == float_relation_greater;
4030 static bool vmfgt32(uint32_t a, uint32_t b, float_status *s)
4032 FloatRelation compare = float32_compare(a, b, s);
4033 return compare == float_relation_greater;
4036 static bool vmfgt64(uint64_t a, uint64_t b, float_status *s)
4038 FloatRelation compare = float64_compare(a, b, s);
4039 return compare == float_relation_greater;
4042 GEN_VEXT_CMP_VF(vmfgt_vf_h, uint16_t, H2, vmfgt16)
4043 GEN_VEXT_CMP_VF(vmfgt_vf_w, uint32_t, H4, vmfgt32)
4044 GEN_VEXT_CMP_VF(vmfgt_vf_d, uint64_t, H8, vmfgt64)
4046 static bool vmfge16(uint16_t a, uint16_t b, float_status *s)
4048 FloatRelation compare = float16_compare(a, b, s);
4049 return compare == float_relation_greater ||
4050 compare == float_relation_equal;
4053 static bool vmfge32(uint32_t a, uint32_t b, float_status *s)
4055 FloatRelation compare = float32_compare(a, b, s);
4056 return compare == float_relation_greater ||
4057 compare == float_relation_equal;
4060 static bool vmfge64(uint64_t a, uint64_t b, float_status *s)
4062 FloatRelation compare = float64_compare(a, b, s);
4063 return compare == float_relation_greater ||
4064 compare == float_relation_equal;
4067 GEN_VEXT_CMP_VF(vmfge_vf_h, uint16_t, H2, vmfge16)
4068 GEN_VEXT_CMP_VF(vmfge_vf_w, uint32_t, H4, vmfge32)
4069 GEN_VEXT_CMP_VF(vmfge_vf_d, uint64_t, H8, vmfge64)
4071 GEN_VEXT_CMP_VV_ENV(vmford_vv_h, uint16_t, H2, !float16_unordered_quiet)
4072 GEN_VEXT_CMP_VV_ENV(vmford_vv_w, uint32_t, H4, !float32_unordered_quiet)
4073 GEN_VEXT_CMP_VV_ENV(vmford_vv_d, uint64_t, H8, !float64_unordered_quiet)
4074 GEN_VEXT_CMP_VF(vmford_vf_h, uint16_t, H2, !float16_unordered_quiet)
4075 GEN_VEXT_CMP_VF(vmford_vf_w, uint32_t, H4, !float32_unordered_quiet)
4076 GEN_VEXT_CMP_VF(vmford_vf_d, uint64_t, H8, !float64_unordered_quiet)
4078 /* Vector Floating-Point Classify Instruction */
4079 #define OPIVV1(NAME, TD, T2, TX2, HD, HS2, OP) \
4080 static void do_##NAME(void *vd, void *vs2, int i) \
4082 TX2 s2 = *((T2 *)vs2 + HS2(i)); \
4083 *((TD *)vd + HD(i)) = OP(s2); \
4086 #define GEN_VEXT_V(NAME, ESZ, DSZ, CLEAR_FN) \
4087 void HELPER(NAME)(void *vd, void *v0, void *vs2, \
4088 CPURISCVState *env, uint32_t desc) \
4090 uint32_t vlmax = vext_maxsz(desc) / ESZ; \
4091 uint32_t mlen = vext_mlen(desc); \
4092 uint32_t vm = vext_vm(desc); \
4093 uint32_t vl = env->vl; \
4094 uint32_t i; \
4096 for (i = 0; i < vl; i++) { \
4097 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4098 continue; \
4100 do_##NAME(vd, vs2, i); \
4102 CLEAR_FN(vd, vl, vl * DSZ, vlmax * DSZ); \
4105 target_ulong fclass_h(uint64_t frs1)
4107 float16 f = frs1;
4108 bool sign = float16_is_neg(f);
4110 if (float16_is_infinity(f)) {
4111 return sign ? 1 << 0 : 1 << 7;
4112 } else if (float16_is_zero(f)) {
4113 return sign ? 1 << 3 : 1 << 4;
4114 } else if (float16_is_zero_or_denormal(f)) {
4115 return sign ? 1 << 2 : 1 << 5;
4116 } else if (float16_is_any_nan(f)) {
4117 float_status s = { }; /* for snan_bit_is_one */
4118 return float16_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
4119 } else {
4120 return sign ? 1 << 1 : 1 << 6;
4124 target_ulong fclass_s(uint64_t frs1)
4126 float32 f = frs1;
4127 bool sign = float32_is_neg(f);
4129 if (float32_is_infinity(f)) {
4130 return sign ? 1 << 0 : 1 << 7;
4131 } else if (float32_is_zero(f)) {
4132 return sign ? 1 << 3 : 1 << 4;
4133 } else if (float32_is_zero_or_denormal(f)) {
4134 return sign ? 1 << 2 : 1 << 5;
4135 } else if (float32_is_any_nan(f)) {
4136 float_status s = { }; /* for snan_bit_is_one */
4137 return float32_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
4138 } else {
4139 return sign ? 1 << 1 : 1 << 6;
4143 target_ulong fclass_d(uint64_t frs1)
4145 float64 f = frs1;
4146 bool sign = float64_is_neg(f);
4148 if (float64_is_infinity(f)) {
4149 return sign ? 1 << 0 : 1 << 7;
4150 } else if (float64_is_zero(f)) {
4151 return sign ? 1 << 3 : 1 << 4;
4152 } else if (float64_is_zero_or_denormal(f)) {
4153 return sign ? 1 << 2 : 1 << 5;
4154 } else if (float64_is_any_nan(f)) {
4155 float_status s = { }; /* for snan_bit_is_one */
4156 return float64_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
4157 } else {
4158 return sign ? 1 << 1 : 1 << 6;
4162 RVVCALL(OPIVV1, vfclass_v_h, OP_UU_H, H2, H2, fclass_h)
4163 RVVCALL(OPIVV1, vfclass_v_w, OP_UU_W, H4, H4, fclass_s)
4164 RVVCALL(OPIVV1, vfclass_v_d, OP_UU_D, H8, H8, fclass_d)
4165 GEN_VEXT_V(vfclass_v_h, 2, 2, clearh)
4166 GEN_VEXT_V(vfclass_v_w, 4, 4, clearl)
4167 GEN_VEXT_V(vfclass_v_d, 8, 8, clearq)
4169 /* Vector Floating-Point Merge Instruction */
4170 #define GEN_VFMERGE_VF(NAME, ETYPE, H, CLEAR_FN) \
4171 void HELPER(NAME)(void *vd, void *v0, uint64_t s1, void *vs2, \
4172 CPURISCVState *env, uint32_t desc) \
4174 uint32_t mlen = vext_mlen(desc); \
4175 uint32_t vm = vext_vm(desc); \
4176 uint32_t vl = env->vl; \
4177 uint32_t esz = sizeof(ETYPE); \
4178 uint32_t vlmax = vext_maxsz(desc) / esz; \
4179 uint32_t i; \
4181 for (i = 0; i < vl; i++) { \
4182 ETYPE s2 = *((ETYPE *)vs2 + H(i)); \
4183 *((ETYPE *)vd + H(i)) \
4184 = (!vm && !vext_elem_mask(v0, mlen, i) ? s2 : s1); \
4186 CLEAR_FN(vd, vl, vl * esz, vlmax * esz); \
4189 GEN_VFMERGE_VF(vfmerge_vfm_h, int16_t, H2, clearh)
4190 GEN_VFMERGE_VF(vfmerge_vfm_w, int32_t, H4, clearl)
4191 GEN_VFMERGE_VF(vfmerge_vfm_d, int64_t, H8, clearq)
4193 /* Single-Width Floating-Point/Integer Type-Convert Instructions */
4194 /* vfcvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */
4195 RVVCALL(OPFVV1, vfcvt_xu_f_v_h, OP_UU_H, H2, H2, float16_to_uint16)
4196 RVVCALL(OPFVV1, vfcvt_xu_f_v_w, OP_UU_W, H4, H4, float32_to_uint32)
4197 RVVCALL(OPFVV1, vfcvt_xu_f_v_d, OP_UU_D, H8, H8, float64_to_uint64)
4198 GEN_VEXT_V_ENV(vfcvt_xu_f_v_h, 2, 2, clearh)
4199 GEN_VEXT_V_ENV(vfcvt_xu_f_v_w, 4, 4, clearl)
4200 GEN_VEXT_V_ENV(vfcvt_xu_f_v_d, 8, 8, clearq)
4202 /* vfcvt.x.f.v vd, vs2, vm # Convert float to signed integer. */
4203 RVVCALL(OPFVV1, vfcvt_x_f_v_h, OP_UU_H, H2, H2, float16_to_int16)
4204 RVVCALL(OPFVV1, vfcvt_x_f_v_w, OP_UU_W, H4, H4, float32_to_int32)
4205 RVVCALL(OPFVV1, vfcvt_x_f_v_d, OP_UU_D, H8, H8, float64_to_int64)
4206 GEN_VEXT_V_ENV(vfcvt_x_f_v_h, 2, 2, clearh)
4207 GEN_VEXT_V_ENV(vfcvt_x_f_v_w, 4, 4, clearl)
4208 GEN_VEXT_V_ENV(vfcvt_x_f_v_d, 8, 8, clearq)
4210 /* vfcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to float. */
4211 RVVCALL(OPFVV1, vfcvt_f_xu_v_h, OP_UU_H, H2, H2, uint16_to_float16)
4212 RVVCALL(OPFVV1, vfcvt_f_xu_v_w, OP_UU_W, H4, H4, uint32_to_float32)
4213 RVVCALL(OPFVV1, vfcvt_f_xu_v_d, OP_UU_D, H8, H8, uint64_to_float64)
4214 GEN_VEXT_V_ENV(vfcvt_f_xu_v_h, 2, 2, clearh)
4215 GEN_VEXT_V_ENV(vfcvt_f_xu_v_w, 4, 4, clearl)
4216 GEN_VEXT_V_ENV(vfcvt_f_xu_v_d, 8, 8, clearq)
4218 /* vfcvt.f.x.v vd, vs2, vm # Convert integer to float. */
4219 RVVCALL(OPFVV1, vfcvt_f_x_v_h, OP_UU_H, H2, H2, int16_to_float16)
4220 RVVCALL(OPFVV1, vfcvt_f_x_v_w, OP_UU_W, H4, H4, int32_to_float32)
4221 RVVCALL(OPFVV1, vfcvt_f_x_v_d, OP_UU_D, H8, H8, int64_to_float64)
4222 GEN_VEXT_V_ENV(vfcvt_f_x_v_h, 2, 2, clearh)
4223 GEN_VEXT_V_ENV(vfcvt_f_x_v_w, 4, 4, clearl)
4224 GEN_VEXT_V_ENV(vfcvt_f_x_v_d, 8, 8, clearq)
4226 /* Widening Floating-Point/Integer Type-Convert Instructions */
4227 /* (TD, T2, TX2) */
4228 #define WOP_UU_H uint32_t, uint16_t, uint16_t
4229 #define WOP_UU_W uint64_t, uint32_t, uint32_t
4230 /* vfwcvt.xu.f.v vd, vs2, vm # Convert float to double-width unsigned integer.*/
4231 RVVCALL(OPFVV1, vfwcvt_xu_f_v_h, WOP_UU_H, H4, H2, float16_to_uint32)
4232 RVVCALL(OPFVV1, vfwcvt_xu_f_v_w, WOP_UU_W, H8, H4, float32_to_uint64)
4233 GEN_VEXT_V_ENV(vfwcvt_xu_f_v_h, 2, 4, clearl)
4234 GEN_VEXT_V_ENV(vfwcvt_xu_f_v_w, 4, 8, clearq)
4236 /* vfwcvt.x.f.v vd, vs2, vm # Convert float to double-width signed integer. */
4237 RVVCALL(OPFVV1, vfwcvt_x_f_v_h, WOP_UU_H, H4, H2, float16_to_int32)
4238 RVVCALL(OPFVV1, vfwcvt_x_f_v_w, WOP_UU_W, H8, H4, float32_to_int64)
4239 GEN_VEXT_V_ENV(vfwcvt_x_f_v_h, 2, 4, clearl)
4240 GEN_VEXT_V_ENV(vfwcvt_x_f_v_w, 4, 8, clearq)
4242 /* vfwcvt.f.xu.v vd, vs2, vm # Convert unsigned integer to double-width float */
4243 RVVCALL(OPFVV1, vfwcvt_f_xu_v_h, WOP_UU_H, H4, H2, uint16_to_float32)
4244 RVVCALL(OPFVV1, vfwcvt_f_xu_v_w, WOP_UU_W, H8, H4, uint32_to_float64)
4245 GEN_VEXT_V_ENV(vfwcvt_f_xu_v_h, 2, 4, clearl)
4246 GEN_VEXT_V_ENV(vfwcvt_f_xu_v_w, 4, 8, clearq)
4248 /* vfwcvt.f.x.v vd, vs2, vm # Convert integer to double-width float. */
4249 RVVCALL(OPFVV1, vfwcvt_f_x_v_h, WOP_UU_H, H4, H2, int16_to_float32)
4250 RVVCALL(OPFVV1, vfwcvt_f_x_v_w, WOP_UU_W, H8, H4, int32_to_float64)
4251 GEN_VEXT_V_ENV(vfwcvt_f_x_v_h, 2, 4, clearl)
4252 GEN_VEXT_V_ENV(vfwcvt_f_x_v_w, 4, 8, clearq)
4255 * vfwcvt.f.f.v vd, vs2, vm #
4256 * Convert single-width float to double-width float.
4258 static uint32_t vfwcvtffv16(uint16_t a, float_status *s)
4260 return float16_to_float32(a, true, s);
4263 RVVCALL(OPFVV1, vfwcvt_f_f_v_h, WOP_UU_H, H4, H2, vfwcvtffv16)
4264 RVVCALL(OPFVV1, vfwcvt_f_f_v_w, WOP_UU_W, H8, H4, float32_to_float64)
4265 GEN_VEXT_V_ENV(vfwcvt_f_f_v_h, 2, 4, clearl)
4266 GEN_VEXT_V_ENV(vfwcvt_f_f_v_w, 4, 8, clearq)
4268 /* Narrowing Floating-Point/Integer Type-Convert Instructions */
4269 /* (TD, T2, TX2) */
4270 #define NOP_UU_H uint16_t, uint32_t, uint32_t
4271 #define NOP_UU_W uint32_t, uint64_t, uint64_t
4272 /* vfncvt.xu.f.v vd, vs2, vm # Convert float to unsigned integer. */
4273 RVVCALL(OPFVV1, vfncvt_xu_f_v_h, NOP_UU_H, H2, H4, float32_to_uint16)
4274 RVVCALL(OPFVV1, vfncvt_xu_f_v_w, NOP_UU_W, H4, H8, float64_to_uint32)
4275 GEN_VEXT_V_ENV(vfncvt_xu_f_v_h, 2, 2, clearh)
4276 GEN_VEXT_V_ENV(vfncvt_xu_f_v_w, 4, 4, clearl)
4278 /* vfncvt.x.f.v vd, vs2, vm # Convert double-width float to signed integer. */
4279 RVVCALL(OPFVV1, vfncvt_x_f_v_h, NOP_UU_H, H2, H4, float32_to_int16)
4280 RVVCALL(OPFVV1, vfncvt_x_f_v_w, NOP_UU_W, H4, H8, float64_to_int32)
4281 GEN_VEXT_V_ENV(vfncvt_x_f_v_h, 2, 2, clearh)
4282 GEN_VEXT_V_ENV(vfncvt_x_f_v_w, 4, 4, clearl)
4284 /* vfncvt.f.xu.v vd, vs2, vm # Convert double-width unsigned integer to float */
4285 RVVCALL(OPFVV1, vfncvt_f_xu_v_h, NOP_UU_H, H2, H4, uint32_to_float16)
4286 RVVCALL(OPFVV1, vfncvt_f_xu_v_w, NOP_UU_W, H4, H8, uint64_to_float32)
4287 GEN_VEXT_V_ENV(vfncvt_f_xu_v_h, 2, 2, clearh)
4288 GEN_VEXT_V_ENV(vfncvt_f_xu_v_w, 4, 4, clearl)
4290 /* vfncvt.f.x.v vd, vs2, vm # Convert double-width integer to float. */
4291 RVVCALL(OPFVV1, vfncvt_f_x_v_h, NOP_UU_H, H2, H4, int32_to_float16)
4292 RVVCALL(OPFVV1, vfncvt_f_x_v_w, NOP_UU_W, H4, H8, int64_to_float32)
4293 GEN_VEXT_V_ENV(vfncvt_f_x_v_h, 2, 2, clearh)
4294 GEN_VEXT_V_ENV(vfncvt_f_x_v_w, 4, 4, clearl)
4296 /* vfncvt.f.f.v vd, vs2, vm # Convert double float to single-width float. */
4297 static uint16_t vfncvtffv16(uint32_t a, float_status *s)
4299 return float32_to_float16(a, true, s);
4302 RVVCALL(OPFVV1, vfncvt_f_f_v_h, NOP_UU_H, H2, H4, vfncvtffv16)
4303 RVVCALL(OPFVV1, vfncvt_f_f_v_w, NOP_UU_W, H4, H8, float64_to_float32)
4304 GEN_VEXT_V_ENV(vfncvt_f_f_v_h, 2, 2, clearh)
4305 GEN_VEXT_V_ENV(vfncvt_f_f_v_w, 4, 4, clearl)
4308 *** Vector Reduction Operations
4310 /* Vector Single-Width Integer Reduction Instructions */
4311 #define GEN_VEXT_RED(NAME, TD, TS2, HD, HS2, OP, CLEAR_FN)\
4312 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
4313 void *vs2, CPURISCVState *env, uint32_t desc) \
4315 uint32_t mlen = vext_mlen(desc); \
4316 uint32_t vm = vext_vm(desc); \
4317 uint32_t vl = env->vl; \
4318 uint32_t i; \
4319 uint32_t tot = env_archcpu(env)->cfg.vlen / 8; \
4320 TD s1 = *((TD *)vs1 + HD(0)); \
4322 for (i = 0; i < vl; i++) { \
4323 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
4324 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4325 continue; \
4327 s1 = OP(s1, (TD)s2); \
4329 *((TD *)vd + HD(0)) = s1; \
4330 CLEAR_FN(vd, 1, sizeof(TD), tot); \
4333 /* vd[0] = sum(vs1[0], vs2[*]) */
4334 GEN_VEXT_RED(vredsum_vs_b, int8_t, int8_t, H1, H1, DO_ADD, clearb)
4335 GEN_VEXT_RED(vredsum_vs_h, int16_t, int16_t, H2, H2, DO_ADD, clearh)
4336 GEN_VEXT_RED(vredsum_vs_w, int32_t, int32_t, H4, H4, DO_ADD, clearl)
4337 GEN_VEXT_RED(vredsum_vs_d, int64_t, int64_t, H8, H8, DO_ADD, clearq)
4339 /* vd[0] = maxu(vs1[0], vs2[*]) */
4340 GEN_VEXT_RED(vredmaxu_vs_b, uint8_t, uint8_t, H1, H1, DO_MAX, clearb)
4341 GEN_VEXT_RED(vredmaxu_vs_h, uint16_t, uint16_t, H2, H2, DO_MAX, clearh)
4342 GEN_VEXT_RED(vredmaxu_vs_w, uint32_t, uint32_t, H4, H4, DO_MAX, clearl)
4343 GEN_VEXT_RED(vredmaxu_vs_d, uint64_t, uint64_t, H8, H8, DO_MAX, clearq)
4345 /* vd[0] = max(vs1[0], vs2[*]) */
4346 GEN_VEXT_RED(vredmax_vs_b, int8_t, int8_t, H1, H1, DO_MAX, clearb)
4347 GEN_VEXT_RED(vredmax_vs_h, int16_t, int16_t, H2, H2, DO_MAX, clearh)
4348 GEN_VEXT_RED(vredmax_vs_w, int32_t, int32_t, H4, H4, DO_MAX, clearl)
4349 GEN_VEXT_RED(vredmax_vs_d, int64_t, int64_t, H8, H8, DO_MAX, clearq)
4351 /* vd[0] = minu(vs1[0], vs2[*]) */
4352 GEN_VEXT_RED(vredminu_vs_b, uint8_t, uint8_t, H1, H1, DO_MIN, clearb)
4353 GEN_VEXT_RED(vredminu_vs_h, uint16_t, uint16_t, H2, H2, DO_MIN, clearh)
4354 GEN_VEXT_RED(vredminu_vs_w, uint32_t, uint32_t, H4, H4, DO_MIN, clearl)
4355 GEN_VEXT_RED(vredminu_vs_d, uint64_t, uint64_t, H8, H8, DO_MIN, clearq)
4357 /* vd[0] = min(vs1[0], vs2[*]) */
4358 GEN_VEXT_RED(vredmin_vs_b, int8_t, int8_t, H1, H1, DO_MIN, clearb)
4359 GEN_VEXT_RED(vredmin_vs_h, int16_t, int16_t, H2, H2, DO_MIN, clearh)
4360 GEN_VEXT_RED(vredmin_vs_w, int32_t, int32_t, H4, H4, DO_MIN, clearl)
4361 GEN_VEXT_RED(vredmin_vs_d, int64_t, int64_t, H8, H8, DO_MIN, clearq)
4363 /* vd[0] = and(vs1[0], vs2[*]) */
4364 GEN_VEXT_RED(vredand_vs_b, int8_t, int8_t, H1, H1, DO_AND, clearb)
4365 GEN_VEXT_RED(vredand_vs_h, int16_t, int16_t, H2, H2, DO_AND, clearh)
4366 GEN_VEXT_RED(vredand_vs_w, int32_t, int32_t, H4, H4, DO_AND, clearl)
4367 GEN_VEXT_RED(vredand_vs_d, int64_t, int64_t, H8, H8, DO_AND, clearq)
4369 /* vd[0] = or(vs1[0], vs2[*]) */
4370 GEN_VEXT_RED(vredor_vs_b, int8_t, int8_t, H1, H1, DO_OR, clearb)
4371 GEN_VEXT_RED(vredor_vs_h, int16_t, int16_t, H2, H2, DO_OR, clearh)
4372 GEN_VEXT_RED(vredor_vs_w, int32_t, int32_t, H4, H4, DO_OR, clearl)
4373 GEN_VEXT_RED(vredor_vs_d, int64_t, int64_t, H8, H8, DO_OR, clearq)
4375 /* vd[0] = xor(vs1[0], vs2[*]) */
4376 GEN_VEXT_RED(vredxor_vs_b, int8_t, int8_t, H1, H1, DO_XOR, clearb)
4377 GEN_VEXT_RED(vredxor_vs_h, int16_t, int16_t, H2, H2, DO_XOR, clearh)
4378 GEN_VEXT_RED(vredxor_vs_w, int32_t, int32_t, H4, H4, DO_XOR, clearl)
4379 GEN_VEXT_RED(vredxor_vs_d, int64_t, int64_t, H8, H8, DO_XOR, clearq)
4381 /* Vector Widening Integer Reduction Instructions */
4382 /* signed sum reduction into double-width accumulator */
4383 GEN_VEXT_RED(vwredsum_vs_b, int16_t, int8_t, H2, H1, DO_ADD, clearh)
4384 GEN_VEXT_RED(vwredsum_vs_h, int32_t, int16_t, H4, H2, DO_ADD, clearl)
4385 GEN_VEXT_RED(vwredsum_vs_w, int64_t, int32_t, H8, H4, DO_ADD, clearq)
4387 /* Unsigned sum reduction into double-width accumulator */
4388 GEN_VEXT_RED(vwredsumu_vs_b, uint16_t, uint8_t, H2, H1, DO_ADD, clearh)
4389 GEN_VEXT_RED(vwredsumu_vs_h, uint32_t, uint16_t, H4, H2, DO_ADD, clearl)
4390 GEN_VEXT_RED(vwredsumu_vs_w, uint64_t, uint32_t, H8, H4, DO_ADD, clearq)
4392 /* Vector Single-Width Floating-Point Reduction Instructions */
4393 #define GEN_VEXT_FRED(NAME, TD, TS2, HD, HS2, OP, CLEAR_FN)\
4394 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
4395 void *vs2, CPURISCVState *env, \
4396 uint32_t desc) \
4398 uint32_t mlen = vext_mlen(desc); \
4399 uint32_t vm = vext_vm(desc); \
4400 uint32_t vl = env->vl; \
4401 uint32_t i; \
4402 uint32_t tot = env_archcpu(env)->cfg.vlen / 8; \
4403 TD s1 = *((TD *)vs1 + HD(0)); \
4405 for (i = 0; i < vl; i++) { \
4406 TS2 s2 = *((TS2 *)vs2 + HS2(i)); \
4407 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4408 continue; \
4410 s1 = OP(s1, (TD)s2, &env->fp_status); \
4412 *((TD *)vd + HD(0)) = s1; \
4413 CLEAR_FN(vd, 1, sizeof(TD), tot); \
4416 /* Unordered sum */
4417 GEN_VEXT_FRED(vfredsum_vs_h, uint16_t, uint16_t, H2, H2, float16_add, clearh)
4418 GEN_VEXT_FRED(vfredsum_vs_w, uint32_t, uint32_t, H4, H4, float32_add, clearl)
4419 GEN_VEXT_FRED(vfredsum_vs_d, uint64_t, uint64_t, H8, H8, float64_add, clearq)
4421 /* Maximum value */
4422 GEN_VEXT_FRED(vfredmax_vs_h, uint16_t, uint16_t, H2, H2, float16_maxnum, clearh)
4423 GEN_VEXT_FRED(vfredmax_vs_w, uint32_t, uint32_t, H4, H4, float32_maxnum, clearl)
4424 GEN_VEXT_FRED(vfredmax_vs_d, uint64_t, uint64_t, H8, H8, float64_maxnum, clearq)
4426 /* Minimum value */
4427 GEN_VEXT_FRED(vfredmin_vs_h, uint16_t, uint16_t, H2, H2, float16_minnum, clearh)
4428 GEN_VEXT_FRED(vfredmin_vs_w, uint32_t, uint32_t, H4, H4, float32_minnum, clearl)
4429 GEN_VEXT_FRED(vfredmin_vs_d, uint64_t, uint64_t, H8, H8, float64_minnum, clearq)
4431 /* Vector Widening Floating-Point Reduction Instructions */
4432 /* Unordered reduce 2*SEW = 2*SEW + sum(promote(SEW)) */
4433 void HELPER(vfwredsum_vs_h)(void *vd, void *v0, void *vs1,
4434 void *vs2, CPURISCVState *env, uint32_t desc)
4436 uint32_t mlen = vext_mlen(desc);
4437 uint32_t vm = vext_vm(desc);
4438 uint32_t vl = env->vl;
4439 uint32_t i;
4440 uint32_t tot = env_archcpu(env)->cfg.vlen / 8;
4441 uint32_t s1 = *((uint32_t *)vs1 + H4(0));
4443 for (i = 0; i < vl; i++) {
4444 uint16_t s2 = *((uint16_t *)vs2 + H2(i));
4445 if (!vm && !vext_elem_mask(v0, mlen, i)) {
4446 continue;
4448 s1 = float32_add(s1, float16_to_float32(s2, true, &env->fp_status),
4449 &env->fp_status);
4451 *((uint32_t *)vd + H4(0)) = s1;
4452 clearl(vd, 1, sizeof(uint32_t), tot);
4455 void HELPER(vfwredsum_vs_w)(void *vd, void *v0, void *vs1,
4456 void *vs2, CPURISCVState *env, uint32_t desc)
4458 uint32_t mlen = vext_mlen(desc);
4459 uint32_t vm = vext_vm(desc);
4460 uint32_t vl = env->vl;
4461 uint32_t i;
4462 uint32_t tot = env_archcpu(env)->cfg.vlen / 8;
4463 uint64_t s1 = *((uint64_t *)vs1);
4465 for (i = 0; i < vl; i++) {
4466 uint32_t s2 = *((uint32_t *)vs2 + H4(i));
4467 if (!vm && !vext_elem_mask(v0, mlen, i)) {
4468 continue;
4470 s1 = float64_add(s1, float32_to_float64(s2, &env->fp_status),
4471 &env->fp_status);
4473 *((uint64_t *)vd) = s1;
4474 clearq(vd, 1, sizeof(uint64_t), tot);
4478 *** Vector Mask Operations
4480 /* Vector Mask-Register Logical Instructions */
4481 #define GEN_VEXT_MASK_VV(NAME, OP) \
4482 void HELPER(NAME)(void *vd, void *v0, void *vs1, \
4483 void *vs2, CPURISCVState *env, \
4484 uint32_t desc) \
4486 uint32_t mlen = vext_mlen(desc); \
4487 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4488 uint32_t vl = env->vl; \
4489 uint32_t i; \
4490 int a, b; \
4492 for (i = 0; i < vl; i++) { \
4493 a = vext_elem_mask(vs1, mlen, i); \
4494 b = vext_elem_mask(vs2, mlen, i); \
4495 vext_set_elem_mask(vd, mlen, i, OP(b, a)); \
4497 for (; i < vlmax; i++) { \
4498 vext_set_elem_mask(vd, mlen, i, 0); \
4502 #define DO_NAND(N, M) (!(N & M))
4503 #define DO_ANDNOT(N, M) (N & !M)
4504 #define DO_NOR(N, M) (!(N | M))
4505 #define DO_ORNOT(N, M) (N | !M)
4506 #define DO_XNOR(N, M) (!(N ^ M))
4508 GEN_VEXT_MASK_VV(vmand_mm, DO_AND)
4509 GEN_VEXT_MASK_VV(vmnand_mm, DO_NAND)
4510 GEN_VEXT_MASK_VV(vmandnot_mm, DO_ANDNOT)
4511 GEN_VEXT_MASK_VV(vmxor_mm, DO_XOR)
4512 GEN_VEXT_MASK_VV(vmor_mm, DO_OR)
4513 GEN_VEXT_MASK_VV(vmnor_mm, DO_NOR)
4514 GEN_VEXT_MASK_VV(vmornot_mm, DO_ORNOT)
4515 GEN_VEXT_MASK_VV(vmxnor_mm, DO_XNOR)
4517 /* Vector mask population count vmpopc */
4518 target_ulong HELPER(vmpopc_m)(void *v0, void *vs2, CPURISCVState *env,
4519 uint32_t desc)
4521 target_ulong cnt = 0;
4522 uint32_t mlen = vext_mlen(desc);
4523 uint32_t vm = vext_vm(desc);
4524 uint32_t vl = env->vl;
4525 int i;
4527 for (i = 0; i < vl; i++) {
4528 if (vm || vext_elem_mask(v0, mlen, i)) {
4529 if (vext_elem_mask(vs2, mlen, i)) {
4530 cnt++;
4534 return cnt;
4537 /* vmfirst find-first-set mask bit*/
4538 target_ulong HELPER(vmfirst_m)(void *v0, void *vs2, CPURISCVState *env,
4539 uint32_t desc)
4541 uint32_t mlen = vext_mlen(desc);
4542 uint32_t vm = vext_vm(desc);
4543 uint32_t vl = env->vl;
4544 int i;
4546 for (i = 0; i < vl; i++) {
4547 if (vm || vext_elem_mask(v0, mlen, i)) {
4548 if (vext_elem_mask(vs2, mlen, i)) {
4549 return i;
4553 return -1LL;
4556 enum set_mask_type {
4557 ONLY_FIRST = 1,
4558 INCLUDE_FIRST,
4559 BEFORE_FIRST,
4562 static void vmsetm(void *vd, void *v0, void *vs2, CPURISCVState *env,
4563 uint32_t desc, enum set_mask_type type)
4565 uint32_t mlen = vext_mlen(desc);
4566 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen;
4567 uint32_t vm = vext_vm(desc);
4568 uint32_t vl = env->vl;
4569 int i;
4570 bool first_mask_bit = false;
4572 for (i = 0; i < vl; i++) {
4573 if (!vm && !vext_elem_mask(v0, mlen, i)) {
4574 continue;
4576 /* write a zero to all following active elements */
4577 if (first_mask_bit) {
4578 vext_set_elem_mask(vd, mlen, i, 0);
4579 continue;
4581 if (vext_elem_mask(vs2, mlen, i)) {
4582 first_mask_bit = true;
4583 if (type == BEFORE_FIRST) {
4584 vext_set_elem_mask(vd, mlen, i, 0);
4585 } else {
4586 vext_set_elem_mask(vd, mlen, i, 1);
4588 } else {
4589 if (type == ONLY_FIRST) {
4590 vext_set_elem_mask(vd, mlen, i, 0);
4591 } else {
4592 vext_set_elem_mask(vd, mlen, i, 1);
4596 for (; i < vlmax; i++) {
4597 vext_set_elem_mask(vd, mlen, i, 0);
4601 void HELPER(vmsbf_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4602 uint32_t desc)
4604 vmsetm(vd, v0, vs2, env, desc, BEFORE_FIRST);
4607 void HELPER(vmsif_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4608 uint32_t desc)
4610 vmsetm(vd, v0, vs2, env, desc, INCLUDE_FIRST);
4613 void HELPER(vmsof_m)(void *vd, void *v0, void *vs2, CPURISCVState *env,
4614 uint32_t desc)
4616 vmsetm(vd, v0, vs2, env, desc, ONLY_FIRST);
4619 /* Vector Iota Instruction */
4620 #define GEN_VEXT_VIOTA_M(NAME, ETYPE, H, CLEAR_FN) \
4621 void HELPER(NAME)(void *vd, void *v0, void *vs2, CPURISCVState *env, \
4622 uint32_t desc) \
4624 uint32_t mlen = vext_mlen(desc); \
4625 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4626 uint32_t vm = vext_vm(desc); \
4627 uint32_t vl = env->vl; \
4628 uint32_t sum = 0; \
4629 int i; \
4631 for (i = 0; i < vl; i++) { \
4632 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4633 continue; \
4635 *((ETYPE *)vd + H(i)) = sum; \
4636 if (vext_elem_mask(vs2, mlen, i)) { \
4637 sum++; \
4640 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4643 GEN_VEXT_VIOTA_M(viota_m_b, uint8_t, H1, clearb)
4644 GEN_VEXT_VIOTA_M(viota_m_h, uint16_t, H2, clearh)
4645 GEN_VEXT_VIOTA_M(viota_m_w, uint32_t, H4, clearl)
4646 GEN_VEXT_VIOTA_M(viota_m_d, uint64_t, H8, clearq)
4648 /* Vector Element Index Instruction */
4649 #define GEN_VEXT_VID_V(NAME, ETYPE, H, CLEAR_FN) \
4650 void HELPER(NAME)(void *vd, void *v0, CPURISCVState *env, uint32_t desc) \
4652 uint32_t mlen = vext_mlen(desc); \
4653 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4654 uint32_t vm = vext_vm(desc); \
4655 uint32_t vl = env->vl; \
4656 int i; \
4658 for (i = 0; i < vl; i++) { \
4659 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4660 continue; \
4662 *((ETYPE *)vd + H(i)) = i; \
4664 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4667 GEN_VEXT_VID_V(vid_v_b, uint8_t, H1, clearb)
4668 GEN_VEXT_VID_V(vid_v_h, uint16_t, H2, clearh)
4669 GEN_VEXT_VID_V(vid_v_w, uint32_t, H4, clearl)
4670 GEN_VEXT_VID_V(vid_v_d, uint64_t, H8, clearq)
4673 *** Vector Permutation Instructions
4676 /* Vector Slide Instructions */
4677 #define GEN_VEXT_VSLIDEUP_VX(NAME, ETYPE, H, CLEAR_FN) \
4678 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4679 CPURISCVState *env, uint32_t desc) \
4681 uint32_t mlen = vext_mlen(desc); \
4682 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4683 uint32_t vm = vext_vm(desc); \
4684 uint32_t vl = env->vl; \
4685 target_ulong offset = s1, i; \
4687 for (i = offset; i < vl; i++) { \
4688 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4689 continue; \
4691 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - offset)); \
4693 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4696 /* vslideup.vx vd, vs2, rs1, vm # vd[i+rs1] = vs2[i] */
4697 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_b, uint8_t, H1, clearb)
4698 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_h, uint16_t, H2, clearh)
4699 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_w, uint32_t, H4, clearl)
4700 GEN_VEXT_VSLIDEUP_VX(vslideup_vx_d, uint64_t, H8, clearq)
4702 #define GEN_VEXT_VSLIDEDOWN_VX(NAME, ETYPE, H, CLEAR_FN) \
4703 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4704 CPURISCVState *env, uint32_t desc) \
4706 uint32_t mlen = vext_mlen(desc); \
4707 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4708 uint32_t vm = vext_vm(desc); \
4709 uint32_t vl = env->vl; \
4710 target_ulong offset = s1, i; \
4712 for (i = 0; i < vl; ++i) { \
4713 target_ulong j = i + offset; \
4714 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4715 continue; \
4717 *((ETYPE *)vd + H(i)) = j >= vlmax ? 0 : *((ETYPE *)vs2 + H(j)); \
4719 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4722 /* vslidedown.vx vd, vs2, rs1, vm # vd[i] = vs2[i+rs1] */
4723 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_b, uint8_t, H1, clearb)
4724 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_h, uint16_t, H2, clearh)
4725 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_w, uint32_t, H4, clearl)
4726 GEN_VEXT_VSLIDEDOWN_VX(vslidedown_vx_d, uint64_t, H8, clearq)
4728 #define GEN_VEXT_VSLIDE1UP_VX(NAME, ETYPE, H, CLEAR_FN) \
4729 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4730 CPURISCVState *env, uint32_t desc) \
4732 uint32_t mlen = vext_mlen(desc); \
4733 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4734 uint32_t vm = vext_vm(desc); \
4735 uint32_t vl = env->vl; \
4736 uint32_t i; \
4738 for (i = 0; i < vl; i++) { \
4739 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4740 continue; \
4742 if (i == 0) { \
4743 *((ETYPE *)vd + H(i)) = s1; \
4744 } else { \
4745 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i - 1)); \
4748 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4751 /* vslide1up.vx vd, vs2, rs1, vm # vd[0]=x[rs1], vd[i+1] = vs2[i] */
4752 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_b, uint8_t, H1, clearb)
4753 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_h, uint16_t, H2, clearh)
4754 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_w, uint32_t, H4, clearl)
4755 GEN_VEXT_VSLIDE1UP_VX(vslide1up_vx_d, uint64_t, H8, clearq)
4757 #define GEN_VEXT_VSLIDE1DOWN_VX(NAME, ETYPE, H, CLEAR_FN) \
4758 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4759 CPURISCVState *env, uint32_t desc) \
4761 uint32_t mlen = vext_mlen(desc); \
4762 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4763 uint32_t vm = vext_vm(desc); \
4764 uint32_t vl = env->vl; \
4765 uint32_t i; \
4767 for (i = 0; i < vl; i++) { \
4768 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4769 continue; \
4771 if (i == vl - 1) { \
4772 *((ETYPE *)vd + H(i)) = s1; \
4773 } else { \
4774 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(i + 1)); \
4777 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4780 /* vslide1down.vx vd, vs2, rs1, vm # vd[i] = vs2[i+1], vd[vl-1]=x[rs1] */
4781 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_b, uint8_t, H1, clearb)
4782 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_h, uint16_t, H2, clearh)
4783 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_w, uint32_t, H4, clearl)
4784 GEN_VEXT_VSLIDE1DOWN_VX(vslide1down_vx_d, uint64_t, H8, clearq)
4786 /* Vector Register Gather Instruction */
4787 #define GEN_VEXT_VRGATHER_VV(NAME, ETYPE, H, CLEAR_FN) \
4788 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
4789 CPURISCVState *env, uint32_t desc) \
4791 uint32_t mlen = vext_mlen(desc); \
4792 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4793 uint32_t vm = vext_vm(desc); \
4794 uint32_t vl = env->vl; \
4795 uint64_t index; \
4796 uint32_t i; \
4798 for (i = 0; i < vl; i++) { \
4799 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4800 continue; \
4802 index = *((ETYPE *)vs1 + H(i)); \
4803 if (index >= vlmax) { \
4804 *((ETYPE *)vd + H(i)) = 0; \
4805 } else { \
4806 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(index)); \
4809 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4812 /* vd[i] = (vs1[i] >= VLMAX) ? 0 : vs2[vs1[i]]; */
4813 GEN_VEXT_VRGATHER_VV(vrgather_vv_b, uint8_t, H1, clearb)
4814 GEN_VEXT_VRGATHER_VV(vrgather_vv_h, uint16_t, H2, clearh)
4815 GEN_VEXT_VRGATHER_VV(vrgather_vv_w, uint32_t, H4, clearl)
4816 GEN_VEXT_VRGATHER_VV(vrgather_vv_d, uint64_t, H8, clearq)
4818 #define GEN_VEXT_VRGATHER_VX(NAME, ETYPE, H, CLEAR_FN) \
4819 void HELPER(NAME)(void *vd, void *v0, target_ulong s1, void *vs2, \
4820 CPURISCVState *env, uint32_t desc) \
4822 uint32_t mlen = vext_mlen(desc); \
4823 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4824 uint32_t vm = vext_vm(desc); \
4825 uint32_t vl = env->vl; \
4826 uint64_t index = s1; \
4827 uint32_t i; \
4829 for (i = 0; i < vl; i++) { \
4830 if (!vm && !vext_elem_mask(v0, mlen, i)) { \
4831 continue; \
4833 if (index >= vlmax) { \
4834 *((ETYPE *)vd + H(i)) = 0; \
4835 } else { \
4836 *((ETYPE *)vd + H(i)) = *((ETYPE *)vs2 + H(index)); \
4839 CLEAR_FN(vd, vl, vl * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4842 /* vd[i] = (x[rs1] >= VLMAX) ? 0 : vs2[rs1] */
4843 GEN_VEXT_VRGATHER_VX(vrgather_vx_b, uint8_t, H1, clearb)
4844 GEN_VEXT_VRGATHER_VX(vrgather_vx_h, uint16_t, H2, clearh)
4845 GEN_VEXT_VRGATHER_VX(vrgather_vx_w, uint32_t, H4, clearl)
4846 GEN_VEXT_VRGATHER_VX(vrgather_vx_d, uint64_t, H8, clearq)
4848 /* Vector Compress Instruction */
4849 #define GEN_VEXT_VCOMPRESS_VM(NAME, ETYPE, H, CLEAR_FN) \
4850 void HELPER(NAME)(void *vd, void *v0, void *vs1, void *vs2, \
4851 CPURISCVState *env, uint32_t desc) \
4853 uint32_t mlen = vext_mlen(desc); \
4854 uint32_t vlmax = env_archcpu(env)->cfg.vlen / mlen; \
4855 uint32_t vl = env->vl; \
4856 uint32_t num = 0, i; \
4858 for (i = 0; i < vl; i++) { \
4859 if (!vext_elem_mask(vs1, mlen, i)) { \
4860 continue; \
4862 *((ETYPE *)vd + H(num)) = *((ETYPE *)vs2 + H(i)); \
4863 num++; \
4865 CLEAR_FN(vd, num, num * sizeof(ETYPE), vlmax * sizeof(ETYPE)); \
4868 /* Compress into vd elements of vs2 where vs1 is enabled */
4869 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_b, uint8_t, H1, clearb)
4870 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_h, uint16_t, H2, clearh)
4871 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_w, uint32_t, H4, clearl)
4872 GEN_VEXT_VCOMPRESS_VM(vcompress_vm_d, uint64_t, H8, clearq)