hw/arm/virt: tcg: adjust MPIDR like KVM
[qemu/ar7.git] / target-ppc / mmu-hash64.c
blob82c2186bcf7d5aa2b33ea89cd9a13e3908dad48f
1 /*
2 * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 * Copyright (c) 2013 David Gibson, IBM Corporation
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/error-report.h"
26 #include "sysemu/kvm.h"
27 #include "qemu/error-report.h"
28 #include "kvm_ppc.h"
29 #include "mmu-hash64.h"
30 #include "exec/log.h"
32 //#define DEBUG_SLB
34 #ifdef DEBUG_SLB
35 # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
36 #else
37 # define LOG_SLB(...) do { } while (0)
38 #endif
41 * Used to indicate that a CPU has its hash page table (HPT) managed
42 * within the host kernel
44 #define MMU_HASH64_KVM_MANAGED_HPT ((void *)-1)
47 * SLB handling
50 static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
52 CPUPPCState *env = &cpu->env;
53 uint64_t esid_256M, esid_1T;
54 int n;
56 LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
58 esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
59 esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
61 for (n = 0; n < env->slb_nr; n++) {
62 ppc_slb_t *slb = &env->slb[n];
64 LOG_SLB("%s: slot %d %016" PRIx64 " %016"
65 PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
66 /* We check for 1T matches on all MMUs here - if the MMU
67 * doesn't have 1T segment support, we will have prevented 1T
68 * entries from being inserted in the slbmte code. */
69 if (((slb->esid == esid_256M) &&
70 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
71 || ((slb->esid == esid_1T) &&
72 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
73 return slb;
77 return NULL;
80 void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
82 CPUPPCState *env = &cpu->env;
83 int i;
84 uint64_t slbe, slbv;
86 cpu_synchronize_state(CPU(cpu));
88 cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
89 for (i = 0; i < env->slb_nr; i++) {
90 slbe = env->slb[i].esid;
91 slbv = env->slb[i].vsid;
92 if (slbe == 0 && slbv == 0) {
93 continue;
95 cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
96 i, slbe, slbv);
100 void helper_slbia(CPUPPCState *env)
102 int n;
104 /* XXX: Warning: slbia never invalidates the first segment */
105 for (n = 1; n < env->slb_nr; n++) {
106 ppc_slb_t *slb = &env->slb[n];
108 if (slb->esid & SLB_ESID_V) {
109 slb->esid &= ~SLB_ESID_V;
110 /* XXX: given the fact that segment size is 256 MB or 1TB,
111 * and we still don't have a tlb_flush_mask(env, n, mask)
112 * in QEMU, we just invalidate all TLBs
114 env->tlb_need_flush = 1;
119 void helper_slbie(CPUPPCState *env, target_ulong addr)
121 PowerPCCPU *cpu = ppc_env_get_cpu(env);
122 ppc_slb_t *slb;
124 slb = slb_lookup(cpu, addr);
125 if (!slb) {
126 return;
129 if (slb->esid & SLB_ESID_V) {
130 slb->esid &= ~SLB_ESID_V;
132 /* XXX: given the fact that segment size is 256 MB or 1TB,
133 * and we still don't have a tlb_flush_mask(env, n, mask)
134 * in QEMU, we just invalidate all TLBs
136 env->tlb_need_flush = 1;
140 int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
141 target_ulong esid, target_ulong vsid)
143 CPUPPCState *env = &cpu->env;
144 ppc_slb_t *slb = &env->slb[slot];
145 const struct ppc_one_seg_page_size *sps = NULL;
146 int i;
148 if (slot >= env->slb_nr) {
149 return -1; /* Bad slot number */
151 if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
152 return -1; /* Reserved bits set */
154 if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
155 return -1; /* Bad segment size */
157 if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
158 return -1; /* 1T segment on MMU that doesn't support it */
161 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
162 const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
164 if (!sps1->page_shift) {
165 break;
168 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
169 sps = sps1;
170 break;
174 if (!sps) {
175 error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
176 " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
177 slot, esid, vsid);
178 return -1;
181 slb->esid = esid;
182 slb->vsid = vsid;
183 slb->sps = sps;
185 LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
186 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
187 slb->esid, slb->vsid);
189 return 0;
192 static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
193 target_ulong *rt)
195 CPUPPCState *env = &cpu->env;
196 int slot = rb & 0xfff;
197 ppc_slb_t *slb = &env->slb[slot];
199 if (slot >= env->slb_nr) {
200 return -1;
203 *rt = slb->esid;
204 return 0;
207 static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
208 target_ulong *rt)
210 CPUPPCState *env = &cpu->env;
211 int slot = rb & 0xfff;
212 ppc_slb_t *slb = &env->slb[slot];
214 if (slot >= env->slb_nr) {
215 return -1;
218 *rt = slb->vsid;
219 return 0;
222 static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
223 target_ulong *rt)
225 CPUPPCState *env = &cpu->env;
226 ppc_slb_t *slb;
228 if (!msr_is_64bit(env, env->msr)) {
229 rb &= 0xffffffff;
231 slb = slb_lookup(cpu, rb);
232 if (slb == NULL) {
233 *rt = (target_ulong)-1ul;
234 } else {
235 *rt = slb->vsid;
237 return 0;
240 void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
242 PowerPCCPU *cpu = ppc_env_get_cpu(env);
244 if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
245 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
246 POWERPC_EXCP_INVAL);
250 target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
252 PowerPCCPU *cpu = ppc_env_get_cpu(env);
253 target_ulong rt = 0;
255 if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
256 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
257 POWERPC_EXCP_INVAL);
259 return rt;
262 target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
264 PowerPCCPU *cpu = ppc_env_get_cpu(env);
265 target_ulong rt = 0;
267 if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
268 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
269 POWERPC_EXCP_INVAL);
271 return rt;
274 target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
276 PowerPCCPU *cpu = ppc_env_get_cpu(env);
277 target_ulong rt = 0;
279 if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
280 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
281 POWERPC_EXCP_INVAL);
283 return rt;
287 * 64-bit hash table MMU handling
289 void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value,
290 Error **errp)
292 CPUPPCState *env = &cpu->env;
293 target_ulong htabsize = value & SDR_64_HTABSIZE;
295 env->spr[SPR_SDR1] = value;
296 if (htabsize > 28) {
297 error_setg(errp,
298 "Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1",
299 htabsize);
300 htabsize = 28;
302 env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1;
303 env->htab_base = value & SDR_64_HTABORG;
306 void ppc_hash64_set_external_hpt(PowerPCCPU *cpu, void *hpt, int shift,
307 Error **errp)
309 CPUPPCState *env = &cpu->env;
310 Error *local_err = NULL;
312 if (hpt) {
313 env->external_htab = hpt;
314 } else {
315 env->external_htab = MMU_HASH64_KVM_MANAGED_HPT;
317 ppc_hash64_set_sdr1(cpu, (target_ulong)(uintptr_t)hpt | (shift - 18),
318 &local_err);
319 if (local_err) {
320 error_propagate(errp, local_err);
321 return;
324 /* Not strictly necessary, but makes it clearer that an external
325 * htab is in use when debugging */
326 env->htab_base = -1;
328 if (kvm_enabled()) {
329 if (kvmppc_put_books_sregs(cpu) < 0) {
330 error_setg(errp, "Unable to update SDR1 in KVM");
335 static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
336 ppc_slb_t *slb, ppc_hash_pte64_t pte)
338 CPUPPCState *env = &cpu->env;
339 unsigned pp, key;
340 /* Some pp bit combinations have undefined behaviour, so default
341 * to no access in those cases */
342 int prot = 0;
344 key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
345 : (slb->vsid & SLB_VSID_KS));
346 pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
348 if (key == 0) {
349 switch (pp) {
350 case 0x0:
351 case 0x1:
352 case 0x2:
353 prot = PAGE_READ | PAGE_WRITE;
354 break;
356 case 0x3:
357 case 0x6:
358 prot = PAGE_READ;
359 break;
361 } else {
362 switch (pp) {
363 case 0x0:
364 case 0x6:
365 prot = 0;
366 break;
368 case 0x1:
369 case 0x3:
370 prot = PAGE_READ;
371 break;
373 case 0x2:
374 prot = PAGE_READ | PAGE_WRITE;
375 break;
379 /* No execute if either noexec or guarded bits set */
380 if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
381 || (slb->vsid & SLB_VSID_N)) {
382 prot |= PAGE_EXEC;
385 return prot;
388 static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
390 CPUPPCState *env = &cpu->env;
391 int key, amrbits;
392 int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
394 /* Only recent MMUs implement Virtual Page Class Key Protection */
395 if (!(env->mmu_model & POWERPC_MMU_AMR)) {
396 return prot;
399 key = HPTE64_R_KEY(pte.pte1);
400 amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
402 /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
403 /* env->spr[SPR_AMR]); */
406 * A store is permitted if the AMR bit is 0. Remove write
407 * protection if it is set.
409 if (amrbits & 0x2) {
410 prot &= ~PAGE_WRITE;
413 * A load is permitted if the AMR bit is 0. Remove read
414 * protection if it is set.
416 if (amrbits & 0x1) {
417 prot &= ~PAGE_READ;
420 return prot;
423 uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
425 uint64_t token = 0;
426 hwaddr pte_offset;
428 pte_offset = pte_index * HASH_PTE_SIZE_64;
429 if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
431 * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
433 token = kvmppc_hash64_read_pteg(cpu, pte_index);
434 } else if (cpu->env.external_htab) {
436 * HTAB is controlled by QEMU. Just point to the internally
437 * accessible PTEG.
439 token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
440 } else if (cpu->env.htab_base) {
441 token = cpu->env.htab_base + pte_offset;
443 return token;
446 void ppc_hash64_stop_access(PowerPCCPU *cpu, uint64_t token)
448 if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
449 kvmppc_hash64_free_pteg(token);
453 static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
454 uint64_t pte0, uint64_t pte1)
456 int i;
458 if (!(pte0 & HPTE64_V_LARGE)) {
459 if (sps->page_shift != 12) {
460 /* 4kiB page in a non 4kiB segment */
461 return 0;
463 /* Normal 4kiB page */
464 return 12;
467 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
468 const struct ppc_one_page_size *ps = &sps->enc[i];
469 uint64_t mask;
471 if (!ps->page_shift) {
472 break;
475 if (ps->page_shift == 12) {
476 /* L bit is set so this can't be a 4kiB page */
477 continue;
480 mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
482 if ((pte1 & mask) == (ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
483 return ps->page_shift;
487 return 0; /* Bad page size encoding */
490 static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
491 const struct ppc_one_seg_page_size *sps,
492 target_ulong ptem,
493 ppc_hash_pte64_t *pte, unsigned *pshift)
495 CPUPPCState *env = &cpu->env;
496 int i;
497 uint64_t token;
498 target_ulong pte0, pte1;
499 target_ulong pte_index;
501 pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
502 token = ppc_hash64_start_access(cpu, pte_index);
503 if (!token) {
504 return -1;
506 for (i = 0; i < HPTES_PER_GROUP; i++) {
507 pte0 = ppc_hash64_load_hpte0(cpu, token, i);
508 pte1 = ppc_hash64_load_hpte1(cpu, token, i);
510 /* This compares V, B, H (secondary) and the AVPN */
511 if (HPTE64_V_COMPARE(pte0, ptem)) {
512 *pshift = hpte_page_shift(sps, pte0, pte1);
514 * If there is no match, ignore the PTE, it could simply
515 * be for a different segment size encoding and the
516 * architecture specifies we should not match. Linux will
517 * potentially leave behind PTEs for the wrong base page
518 * size when demoting segments.
520 if (*pshift == 0) {
521 continue;
523 /* We don't do anything with pshift yet as qemu TLB only deals
524 * with 4K pages anyway
526 pte->pte0 = pte0;
527 pte->pte1 = pte1;
528 ppc_hash64_stop_access(cpu, token);
529 return (pte_index + i) * HASH_PTE_SIZE_64;
532 ppc_hash64_stop_access(cpu, token);
534 * We didn't find a valid entry.
536 return -1;
539 static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
540 ppc_slb_t *slb, target_ulong eaddr,
541 ppc_hash_pte64_t *pte, unsigned *pshift)
543 CPUPPCState *env = &cpu->env;
544 hwaddr pte_offset;
545 hwaddr hash;
546 uint64_t vsid, epnmask, epn, ptem;
547 const struct ppc_one_seg_page_size *sps = slb->sps;
549 /* The SLB store path should prevent any bad page size encodings
550 * getting in there, so: */
551 assert(sps);
553 /* If ISL is set in LPCR we need to clamp the page size to 4K */
554 if (env->spr[SPR_LPCR] & LPCR_ISL) {
555 /* We assume that when using TCG, 4k is first entry of SPS */
556 sps = &env->sps.sps[0];
557 assert(sps->page_shift == 12);
560 epnmask = ~((1ULL << sps->page_shift) - 1);
562 if (slb->vsid & SLB_VSID_B) {
563 /* 1TB segment */
564 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
565 epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
566 hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
567 } else {
568 /* 256M segment */
569 vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
570 epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
571 hash = vsid ^ (epn >> sps->page_shift);
573 ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
574 ptem |= HPTE64_V_VALID;
576 /* Page address translation */
577 qemu_log_mask(CPU_LOG_MMU,
578 "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
579 " hash " TARGET_FMT_plx "\n",
580 env->htab_base, env->htab_mask, hash);
582 /* Primary PTEG lookup */
583 qemu_log_mask(CPU_LOG_MMU,
584 "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
585 " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
586 " hash=" TARGET_FMT_plx "\n",
587 env->htab_base, env->htab_mask, vsid, ptem, hash);
588 pte_offset = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
590 if (pte_offset == -1) {
591 /* Secondary PTEG lookup */
592 ptem |= HPTE64_V_SECONDARY;
593 qemu_log_mask(CPU_LOG_MMU,
594 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
595 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
596 " hash=" TARGET_FMT_plx "\n", env->htab_base,
597 env->htab_mask, vsid, ptem, ~hash);
599 pte_offset = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
602 return pte_offset;
605 unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
606 uint64_t pte0, uint64_t pte1)
608 CPUPPCState *env = &cpu->env;
609 int i;
611 if (!(pte0 & HPTE64_V_LARGE)) {
612 return 12;
616 * The encodings in env->sps need to be carefully chosen so that
617 * this gives an unambiguous result.
619 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
620 const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
621 unsigned shift;
623 if (!sps->page_shift) {
624 break;
627 shift = hpte_page_shift(sps, pte0, pte1);
628 if (shift) {
629 return shift;
633 return 0;
636 static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env,
637 uint64_t error_code)
639 bool vpm;
641 if (msr_ir) {
642 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
643 } else {
644 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
646 if (vpm && !msr_hv) {
647 cs->exception_index = POWERPC_EXCP_HISI;
648 } else {
649 cs->exception_index = POWERPC_EXCP_ISI;
651 env->error_code = error_code;
654 static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar,
655 uint64_t dsisr)
657 bool vpm;
659 if (msr_dr) {
660 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
661 } else {
662 vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
664 if (vpm && !msr_hv) {
665 cs->exception_index = POWERPC_EXCP_HDSI;
666 env->spr[SPR_HDAR] = dar;
667 env->spr[SPR_HDSISR] = dsisr;
668 } else {
669 cs->exception_index = POWERPC_EXCP_DSI;
670 env->spr[SPR_DAR] = dar;
671 env->spr[SPR_DSISR] = dsisr;
673 env->error_code = 0;
677 int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
678 int rwx, int mmu_idx)
680 CPUState *cs = CPU(cpu);
681 CPUPPCState *env = &cpu->env;
682 ppc_slb_t *slb;
683 unsigned apshift;
684 hwaddr pte_offset;
685 ppc_hash_pte64_t pte;
686 int pp_prot, amr_prot, prot;
687 uint64_t new_pte1, dsisr;
688 const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
689 hwaddr raddr;
691 assert((rwx == 0) || (rwx == 1) || (rwx == 2));
693 /* Note on LPCR usage: 970 uses HID4, but our special variant
694 * of store_spr copies relevant fields into env->spr[SPR_LPCR].
695 * Similarily we filter unimplemented bits when storing into
696 * LPCR depending on the MMU version. This code can thus just
697 * use the LPCR "as-is".
700 /* 1. Handle real mode accesses */
701 if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
702 /* Translation is supposedly "off" */
703 /* In real mode the top 4 effective address bits are (mostly) ignored */
704 raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
706 /* In HV mode, add HRMOR if top EA bit is clear */
707 if (msr_hv || !env->has_hv_mode) {
708 if (!(eaddr >> 63)) {
709 raddr |= env->spr[SPR_HRMOR];
711 } else {
712 /* Otherwise, check VPM for RMA vs VRMA */
713 if (env->spr[SPR_LPCR] & LPCR_VPM0) {
714 slb = &env->vrma_slb;
715 if (slb->sps) {
716 goto skip_slb_search;
718 /* Not much else to do here */
719 cs->exception_index = POWERPC_EXCP_MCHECK;
720 env->error_code = 0;
721 return 1;
722 } else if (raddr < env->rmls) {
723 /* RMA. Check bounds in RMLS */
724 raddr |= env->spr[SPR_RMOR];
725 } else {
726 /* The access failed, generate the approriate interrupt */
727 if (rwx == 2) {
728 ppc_hash64_set_isi(cs, env, 0x08000000);
729 } else {
730 dsisr = 0x08000000;
731 if (rwx == 1) {
732 dsisr |= 0x02000000;
734 ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
736 return 1;
739 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
740 PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
741 TARGET_PAGE_SIZE);
742 return 0;
745 /* 2. Translation is on, so look up the SLB */
746 slb = slb_lookup(cpu, eaddr);
747 if (!slb) {
748 if (rwx == 2) {
749 cs->exception_index = POWERPC_EXCP_ISEG;
750 env->error_code = 0;
751 } else {
752 cs->exception_index = POWERPC_EXCP_DSEG;
753 env->error_code = 0;
754 env->spr[SPR_DAR] = eaddr;
756 return 1;
759 skip_slb_search:
761 /* 3. Check for segment level no-execute violation */
762 if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
763 ppc_hash64_set_isi(cs, env, 0x10000000);
764 return 1;
767 /* 4. Locate the PTE in the hash table */
768 pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
769 if (pte_offset == -1) {
770 dsisr = 0x40000000;
771 if (rwx == 2) {
772 ppc_hash64_set_isi(cs, env, dsisr);
773 } else {
774 if (rwx == 1) {
775 dsisr |= 0x02000000;
777 ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
779 return 1;
781 qemu_log_mask(CPU_LOG_MMU,
782 "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
784 /* 5. Check access permissions */
786 pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
787 amr_prot = ppc_hash64_amr_prot(cpu, pte);
788 prot = pp_prot & amr_prot;
790 if ((need_prot[rwx] & ~prot) != 0) {
791 /* Access right violation */
792 qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
793 if (rwx == 2) {
794 ppc_hash64_set_isi(cs, env, 0x08000000);
795 } else {
796 dsisr = 0;
797 if (need_prot[rwx] & ~pp_prot) {
798 dsisr |= 0x08000000;
800 if (rwx == 1) {
801 dsisr |= 0x02000000;
803 if (need_prot[rwx] & ~amr_prot) {
804 dsisr |= 0x00200000;
806 ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
808 return 1;
811 qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
813 /* 6. Update PTE referenced and changed bits if necessary */
815 new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
816 if (rwx == 1) {
817 new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
818 } else {
819 /* Treat the page as read-only for now, so that a later write
820 * will pass through this function again to set the C bit */
821 prot &= ~PAGE_WRITE;
824 if (new_pte1 != pte.pte1) {
825 ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64,
826 pte.pte0, new_pte1);
829 /* 7. Determine the real address from the PTE */
831 raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
833 tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
834 prot, mmu_idx, 1ULL << apshift);
836 return 0;
839 hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
841 CPUPPCState *env = &cpu->env;
842 ppc_slb_t *slb;
843 hwaddr pte_offset, raddr;
844 ppc_hash_pte64_t pte;
845 unsigned apshift;
847 /* Handle real mode */
848 if (msr_dr == 0) {
849 /* In real mode the top 4 effective address bits are ignored */
850 raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
852 /* In HV mode, add HRMOR if top EA bit is clear */
853 if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
854 return raddr | env->spr[SPR_HRMOR];
857 /* Otherwise, check VPM for RMA vs VRMA */
858 if (env->spr[SPR_LPCR] & LPCR_VPM0) {
859 slb = &env->vrma_slb;
860 if (!slb->sps) {
861 return -1;
863 } else if (raddr < env->rmls) {
864 /* RMA. Check bounds in RMLS */
865 return raddr | env->spr[SPR_RMOR];
866 } else {
867 return -1;
869 } else {
870 slb = slb_lookup(cpu, addr);
871 if (!slb) {
872 return -1;
876 pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
877 if (pte_offset == -1) {
878 return -1;
881 return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
882 & TARGET_PAGE_MASK;
885 void ppc_hash64_store_hpte(PowerPCCPU *cpu,
886 target_ulong pte_index,
887 target_ulong pte0, target_ulong pte1)
889 CPUPPCState *env = &cpu->env;
891 if (env->external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
892 kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
893 return;
896 pte_index *= HASH_PTE_SIZE_64;
897 if (env->external_htab) {
898 stq_p(env->external_htab + pte_index, pte0);
899 stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
900 } else {
901 stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0);
902 stq_phys(CPU(cpu)->as,
903 env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
907 void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu,
908 target_ulong pte_index,
909 target_ulong pte0, target_ulong pte1)
912 * XXX: given the fact that there are too many segments to
913 * invalidate, and we still don't have a tlb_flush_mask(env, n,
914 * mask) in QEMU, we just invalidate all TLBs
916 tlb_flush(CPU(cpu), 1);
919 void ppc_hash64_update_rmls(CPUPPCState *env)
921 uint64_t lpcr = env->spr[SPR_LPCR];
924 * This is the full 4 bits encoding of POWER8. Previous
925 * CPUs only support a subset of these but the filtering
926 * is done when writing LPCR
928 switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
929 case 0x8: /* 32MB */
930 env->rmls = 0x2000000ull;
931 break;
932 case 0x3: /* 64MB */
933 env->rmls = 0x4000000ull;
934 break;
935 case 0x7: /* 128MB */
936 env->rmls = 0x8000000ull;
937 break;
938 case 0x4: /* 256MB */
939 env->rmls = 0x10000000ull;
940 break;
941 case 0x2: /* 1GB */
942 env->rmls = 0x40000000ull;
943 break;
944 case 0x1: /* 16GB */
945 env->rmls = 0x400000000ull;
946 break;
947 default:
948 /* What to do here ??? */
949 env->rmls = 0;
953 void ppc_hash64_update_vrma(CPUPPCState *env)
955 const struct ppc_one_seg_page_size *sps = NULL;
956 target_ulong esid, vsid, lpcr;
957 ppc_slb_t *slb = &env->vrma_slb;
958 uint32_t vrmasd;
959 int i;
961 /* First clear it */
962 slb->esid = slb->vsid = 0;
963 slb->sps = NULL;
965 /* Is VRMA enabled ? */
966 lpcr = env->spr[SPR_LPCR];
967 if (!(lpcr & LPCR_VPM0)) {
968 return;
971 /* Make one up. Mostly ignore the ESID which will not be
972 * needed for translation
974 vsid = SLB_VSID_VRMA;
975 vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
976 vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
977 esid = SLB_ESID_V;
979 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
980 const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
982 if (!sps1->page_shift) {
983 break;
986 if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
987 sps = sps1;
988 break;
992 if (!sps) {
993 error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
994 " vsid 0x"TARGET_FMT_lx, esid, vsid);
995 return;
998 slb->vsid = vsid;
999 slb->esid = esid;
1000 slb->sps = sps;
1003 void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1005 uint64_t lpcr = 0;
1007 /* Filter out bits */
1008 switch (env->mmu_model) {
1009 case POWERPC_MMU_64B: /* 970 */
1010 if (val & 0x40) {
1011 lpcr |= LPCR_LPES0;
1013 if (val & 0x8000000000000000ull) {
1014 lpcr |= LPCR_LPES1;
1016 if (val & 0x20) {
1017 lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
1019 if (val & 0x4000000000000000ull) {
1020 lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
1022 if (val & 0x2000000000000000ull) {
1023 lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
1025 env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
1027 /* XXX We could also write LPID from HID4 here
1028 * but since we don't tag any translation on it
1029 * it doesn't actually matter
1031 /* XXX For proper emulation of 970 we also need
1032 * to dig HRMOR out of HID5
1034 break;
1035 case POWERPC_MMU_2_03: /* P5p */
1036 lpcr = val & (LPCR_RMLS | LPCR_ILE |
1037 LPCR_LPES0 | LPCR_LPES1 |
1038 LPCR_RMI | LPCR_HDICE);
1039 break;
1040 case POWERPC_MMU_2_06: /* P7 */
1041 lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
1042 LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1043 LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
1044 LPCR_MER | LPCR_TC |
1045 LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
1046 break;
1047 case POWERPC_MMU_2_07: /* P8 */
1048 lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
1049 LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1050 LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
1051 LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
1052 LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
1053 break;
1054 default:
1057 env->spr[SPR_LPCR] = lpcr;
1058 ppc_hash64_update_rmls(env);
1059 ppc_hash64_update_vrma(env);