libqos: add MSI-X callbacks to QVirtioPCIDevice
[qemu/ar7.git] / target / i386 / kvm.c
blob8c73438c6731529200ed401a756cd7cf8d43ab9b
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include "standard-headers/asm-x86/kvm_para.h"
23 #include "cpu.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/hw_accel.h"
26 #include "sysemu/kvm_int.h"
27 #include "sysemu/reset.h"
28 #include "sysemu/runstate.h"
29 #include "kvm_i386.h"
30 #include "hyperv.h"
31 #include "hyperv-proto.h"
33 #include "exec/gdbstub.h"
34 #include "qemu/host-utils.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "hw/i386/pc.h"
39 #include "hw/i386/apic.h"
40 #include "hw/i386/apic_internal.h"
41 #include "hw/i386/apic-msidef.h"
42 #include "hw/i386/intel_iommu.h"
43 #include "hw/i386/x86-iommu.h"
44 #include "hw/i386/e820_memory_layout.h"
46 #include "hw/pci/pci.h"
47 #include "hw/pci/msi.h"
48 #include "hw/pci/msix.h"
49 #include "migration/blocker.h"
50 #include "exec/memattrs.h"
51 #include "trace.h"
53 //#define DEBUG_KVM
55 #ifdef DEBUG_KVM
56 #define DPRINTF(fmt, ...) \
57 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58 #else
59 #define DPRINTF(fmt, ...) \
60 do { } while (0)
61 #endif
63 #define MSR_KVM_WALL_CLOCK 0x11
64 #define MSR_KVM_SYSTEM_TIME 0x12
66 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
67 * 255 kvm_msr_entry structs */
68 #define MSR_BUF_SIZE 4096
70 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
71 KVM_CAP_INFO(SET_TSS_ADDR),
72 KVM_CAP_INFO(EXT_CPUID),
73 KVM_CAP_INFO(MP_STATE),
74 KVM_CAP_LAST_INFO
77 static bool has_msr_star;
78 static bool has_msr_hsave_pa;
79 static bool has_msr_tsc_aux;
80 static bool has_msr_tsc_adjust;
81 static bool has_msr_tsc_deadline;
82 static bool has_msr_feature_control;
83 static bool has_msr_misc_enable;
84 static bool has_msr_smbase;
85 static bool has_msr_bndcfgs;
86 static int lm_capable_kernel;
87 static bool has_msr_hv_hypercall;
88 static bool has_msr_hv_crash;
89 static bool has_msr_hv_reset;
90 static bool has_msr_hv_vpindex;
91 static bool hv_vpindex_settable;
92 static bool has_msr_hv_runtime;
93 static bool has_msr_hv_synic;
94 static bool has_msr_hv_stimer;
95 static bool has_msr_hv_frequencies;
96 static bool has_msr_hv_reenlightenment;
97 static bool has_msr_xss;
98 static bool has_msr_spec_ctrl;
99 static bool has_msr_virt_ssbd;
100 static bool has_msr_smi_count;
101 static bool has_msr_arch_capabs;
102 static bool has_msr_core_capabs;
103 static bool has_msr_vmx_vmfunc;
105 static uint32_t has_architectural_pmu_version;
106 static uint32_t num_architectural_pmu_gp_counters;
107 static uint32_t num_architectural_pmu_fixed_counters;
109 static int has_xsave;
110 static int has_xcrs;
111 static int has_pit_state2;
112 static int has_exception_payload;
114 static bool has_msr_mcg_ext_ctl;
116 static struct kvm_cpuid2 *cpuid_cache;
117 static struct kvm_msr_list *kvm_feature_msrs;
119 int kvm_has_pit_state2(void)
121 return has_pit_state2;
124 bool kvm_has_smm(void)
126 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
129 bool kvm_has_adjust_clock_stable(void)
131 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
133 return (ret == KVM_CLOCK_TSC_STABLE);
136 bool kvm_has_exception_payload(void)
138 return has_exception_payload;
141 bool kvm_allows_irq0_override(void)
143 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
146 static bool kvm_x2apic_api_set_flags(uint64_t flags)
148 KVMState *s = KVM_STATE(current_machine->accelerator);
150 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
153 #define MEMORIZE(fn, _result) \
154 ({ \
155 static bool _memorized; \
157 if (_memorized) { \
158 return _result; \
160 _memorized = true; \
161 _result = fn; \
164 static bool has_x2apic_api;
166 bool kvm_has_x2apic_api(void)
168 return has_x2apic_api;
171 bool kvm_enable_x2apic(void)
173 return MEMORIZE(
174 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
175 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
176 has_x2apic_api);
179 bool kvm_hv_vpindex_settable(void)
181 return hv_vpindex_settable;
184 static int kvm_get_tsc(CPUState *cs)
186 X86CPU *cpu = X86_CPU(cs);
187 CPUX86State *env = &cpu->env;
188 struct {
189 struct kvm_msrs info;
190 struct kvm_msr_entry entries[1];
191 } msr_data = {};
192 int ret;
194 if (env->tsc_valid) {
195 return 0;
198 memset(&msr_data, 0, sizeof(msr_data));
199 msr_data.info.nmsrs = 1;
200 msr_data.entries[0].index = MSR_IA32_TSC;
201 env->tsc_valid = !runstate_is_running();
203 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
204 if (ret < 0) {
205 return ret;
208 assert(ret == 1);
209 env->tsc = msr_data.entries[0].data;
210 return 0;
213 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
215 kvm_get_tsc(cpu);
218 void kvm_synchronize_all_tsc(void)
220 CPUState *cpu;
222 if (kvm_enabled()) {
223 CPU_FOREACH(cpu) {
224 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
229 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
231 struct kvm_cpuid2 *cpuid;
232 int r, size;
234 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
235 cpuid = g_malloc0(size);
236 cpuid->nent = max;
237 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
238 if (r == 0 && cpuid->nent >= max) {
239 r = -E2BIG;
241 if (r < 0) {
242 if (r == -E2BIG) {
243 g_free(cpuid);
244 return NULL;
245 } else {
246 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
247 strerror(-r));
248 exit(1);
251 return cpuid;
254 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
255 * for all entries.
257 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
259 struct kvm_cpuid2 *cpuid;
260 int max = 1;
262 if (cpuid_cache != NULL) {
263 return cpuid_cache;
265 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
266 max *= 2;
268 cpuid_cache = cpuid;
269 return cpuid;
272 static const struct kvm_para_features {
273 int cap;
274 int feature;
275 } para_features[] = {
276 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
277 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
278 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
279 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
282 static int get_para_features(KVMState *s)
284 int i, features = 0;
286 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
287 if (kvm_check_extension(s, para_features[i].cap)) {
288 features |= (1 << para_features[i].feature);
292 return features;
295 static bool host_tsx_blacklisted(void)
297 int family, model, stepping;\
298 char vendor[CPUID_VENDOR_SZ + 1];
300 host_vendor_fms(vendor, &family, &model, &stepping);
302 /* Check if we are running on a Haswell host known to have broken TSX */
303 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
304 (family == 6) &&
305 ((model == 63 && stepping < 4) ||
306 model == 60 || model == 69 || model == 70);
309 /* Returns the value for a specific register on the cpuid entry
311 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
313 uint32_t ret = 0;
314 switch (reg) {
315 case R_EAX:
316 ret = entry->eax;
317 break;
318 case R_EBX:
319 ret = entry->ebx;
320 break;
321 case R_ECX:
322 ret = entry->ecx;
323 break;
324 case R_EDX:
325 ret = entry->edx;
326 break;
328 return ret;
331 /* Find matching entry for function/index on kvm_cpuid2 struct
333 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
334 uint32_t function,
335 uint32_t index)
337 int i;
338 for (i = 0; i < cpuid->nent; ++i) {
339 if (cpuid->entries[i].function == function &&
340 cpuid->entries[i].index == index) {
341 return &cpuid->entries[i];
344 /* not found: */
345 return NULL;
348 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
349 uint32_t index, int reg)
351 struct kvm_cpuid2 *cpuid;
352 uint32_t ret = 0;
353 uint32_t cpuid_1_edx;
354 bool found = false;
356 cpuid = get_supported_cpuid(s);
358 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
359 if (entry) {
360 found = true;
361 ret = cpuid_entry_get_reg(entry, reg);
364 /* Fixups for the data returned by KVM, below */
366 if (function == 1 && reg == R_EDX) {
367 /* KVM before 2.6.30 misreports the following features */
368 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
369 } else if (function == 1 && reg == R_ECX) {
370 /* We can set the hypervisor flag, even if KVM does not return it on
371 * GET_SUPPORTED_CPUID
373 ret |= CPUID_EXT_HYPERVISOR;
374 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
375 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
376 * and the irqchip is in the kernel.
378 if (kvm_irqchip_in_kernel() &&
379 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
380 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
383 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
384 * without the in-kernel irqchip
386 if (!kvm_irqchip_in_kernel()) {
387 ret &= ~CPUID_EXT_X2APIC;
390 if (enable_cpu_pm) {
391 int disable_exits = kvm_check_extension(s,
392 KVM_CAP_X86_DISABLE_EXITS);
394 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
395 ret |= CPUID_EXT_MONITOR;
398 } else if (function == 6 && reg == R_EAX) {
399 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
400 } else if (function == 7 && index == 0 && reg == R_EBX) {
401 if (host_tsx_blacklisted()) {
402 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
404 } else if (function == 7 && index == 0 && reg == R_EDX) {
406 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
407 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
408 * returned by KVM_GET_MSR_INDEX_LIST.
410 if (!has_msr_arch_capabs) {
411 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
413 } else if (function == 0x80000001 && reg == R_ECX) {
415 * It's safe to enable TOPOEXT even if it's not returned by
416 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
417 * us to keep CPU models including TOPOEXT runnable on older kernels.
419 ret |= CPUID_EXT3_TOPOEXT;
420 } else if (function == 0x80000001 && reg == R_EDX) {
421 /* On Intel, kvm returns cpuid according to the Intel spec,
422 * so add missing bits according to the AMD spec:
424 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
425 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
426 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
427 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
428 * be enabled without the in-kernel irqchip
430 if (!kvm_irqchip_in_kernel()) {
431 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
433 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
434 ret |= 1U << KVM_HINTS_REALTIME;
435 found = 1;
438 /* fallback for older kernels */
439 if ((function == KVM_CPUID_FEATURES) && !found) {
440 ret = get_para_features(s);
443 return ret;
446 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
448 struct {
449 struct kvm_msrs info;
450 struct kvm_msr_entry entries[1];
451 } msr_data = {};
452 uint64_t value;
453 uint32_t ret, can_be_one, must_be_one;
455 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
456 return 0;
459 /* Check if requested MSR is supported feature MSR */
460 int i;
461 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
462 if (kvm_feature_msrs->indices[i] == index) {
463 break;
465 if (i == kvm_feature_msrs->nmsrs) {
466 return 0; /* if the feature MSR is not supported, simply return 0 */
469 msr_data.info.nmsrs = 1;
470 msr_data.entries[0].index = index;
472 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
473 if (ret != 1) {
474 error_report("KVM get MSR (index=0x%x) feature failed, %s",
475 index, strerror(-ret));
476 exit(1);
479 value = msr_data.entries[0].data;
480 switch (index) {
481 case MSR_IA32_VMX_PROCBASED_CTLS2:
482 /* KVM forgot to add these bits for some time, do this ourselves. */
483 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & CPUID_XSAVE_XSAVES) {
484 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
486 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & CPUID_EXT_RDRAND) {
487 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
489 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & CPUID_7_0_EBX_INVPCID) {
490 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
492 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & CPUID_7_0_EBX_RDSEED) {
493 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
495 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & CPUID_EXT2_RDTSCP) {
496 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
498 /* fall through */
499 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
500 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
501 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
502 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
504 * Return true for bits that can be one, but do not have to be one.
505 * The SDM tells us which bits could have a "must be one" setting,
506 * so we can do the opposite transformation in make_vmx_msr_value.
508 must_be_one = (uint32_t)value;
509 can_be_one = (uint32_t)(value >> 32);
510 return can_be_one & ~must_be_one;
512 default:
513 return value;
518 typedef struct HWPoisonPage {
519 ram_addr_t ram_addr;
520 QLIST_ENTRY(HWPoisonPage) list;
521 } HWPoisonPage;
523 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
524 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
526 static void kvm_unpoison_all(void *param)
528 HWPoisonPage *page, *next_page;
530 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
531 QLIST_REMOVE(page, list);
532 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
533 g_free(page);
537 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
539 HWPoisonPage *page;
541 QLIST_FOREACH(page, &hwpoison_page_list, list) {
542 if (page->ram_addr == ram_addr) {
543 return;
546 page = g_new(HWPoisonPage, 1);
547 page->ram_addr = ram_addr;
548 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
551 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
552 int *max_banks)
554 int r;
556 r = kvm_check_extension(s, KVM_CAP_MCE);
557 if (r > 0) {
558 *max_banks = r;
559 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
561 return -ENOSYS;
564 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
566 CPUState *cs = CPU(cpu);
567 CPUX86State *env = &cpu->env;
568 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
569 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
570 uint64_t mcg_status = MCG_STATUS_MCIP;
571 int flags = 0;
573 if (code == BUS_MCEERR_AR) {
574 status |= MCI_STATUS_AR | 0x134;
575 mcg_status |= MCG_STATUS_EIPV;
576 } else {
577 status |= 0xc0;
578 mcg_status |= MCG_STATUS_RIPV;
581 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
582 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
583 * guest kernel back into env->mcg_ext_ctl.
585 cpu_synchronize_state(cs);
586 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
587 mcg_status |= MCG_STATUS_LMCE;
588 flags = 0;
591 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
592 (MCM_ADDR_PHYS << 6) | 0xc, flags);
595 static void hardware_memory_error(void)
597 fprintf(stderr, "Hardware memory error!\n");
598 exit(1);
601 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
603 X86CPU *cpu = X86_CPU(c);
604 CPUX86State *env = &cpu->env;
605 ram_addr_t ram_addr;
606 hwaddr paddr;
608 /* If we get an action required MCE, it has been injected by KVM
609 * while the VM was running. An action optional MCE instead should
610 * be coming from the main thread, which qemu_init_sigbus identifies
611 * as the "early kill" thread.
613 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
615 if ((env->mcg_cap & MCG_SER_P) && addr) {
616 ram_addr = qemu_ram_addr_from_host(addr);
617 if (ram_addr != RAM_ADDR_INVALID &&
618 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
619 kvm_hwpoison_page_add(ram_addr);
620 kvm_mce_inject(cpu, paddr, code);
621 return;
624 fprintf(stderr, "Hardware memory error for memory used by "
625 "QEMU itself instead of guest system!\n");
628 if (code == BUS_MCEERR_AR) {
629 hardware_memory_error();
632 /* Hope we are lucky for AO MCE */
635 static void kvm_reset_exception(CPUX86State *env)
637 env->exception_nr = -1;
638 env->exception_pending = 0;
639 env->exception_injected = 0;
640 env->exception_has_payload = false;
641 env->exception_payload = 0;
644 static void kvm_queue_exception(CPUX86State *env,
645 int32_t exception_nr,
646 uint8_t exception_has_payload,
647 uint64_t exception_payload)
649 assert(env->exception_nr == -1);
650 assert(!env->exception_pending);
651 assert(!env->exception_injected);
652 assert(!env->exception_has_payload);
654 env->exception_nr = exception_nr;
656 if (has_exception_payload) {
657 env->exception_pending = 1;
659 env->exception_has_payload = exception_has_payload;
660 env->exception_payload = exception_payload;
661 } else {
662 env->exception_injected = 1;
664 if (exception_nr == EXCP01_DB) {
665 assert(exception_has_payload);
666 env->dr[6] = exception_payload;
667 } else if (exception_nr == EXCP0E_PAGE) {
668 assert(exception_has_payload);
669 env->cr[2] = exception_payload;
670 } else {
671 assert(!exception_has_payload);
676 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
678 CPUX86State *env = &cpu->env;
680 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
681 unsigned int bank, bank_num = env->mcg_cap & 0xff;
682 struct kvm_x86_mce mce;
684 kvm_reset_exception(env);
687 * There must be at least one bank in use if an MCE is pending.
688 * Find it and use its values for the event injection.
690 for (bank = 0; bank < bank_num; bank++) {
691 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
692 break;
695 assert(bank < bank_num);
697 mce.bank = bank;
698 mce.status = env->mce_banks[bank * 4 + 1];
699 mce.mcg_status = env->mcg_status;
700 mce.addr = env->mce_banks[bank * 4 + 2];
701 mce.misc = env->mce_banks[bank * 4 + 3];
703 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
705 return 0;
708 static void cpu_update_state(void *opaque, int running, RunState state)
710 CPUX86State *env = opaque;
712 if (running) {
713 env->tsc_valid = false;
717 unsigned long kvm_arch_vcpu_id(CPUState *cs)
719 X86CPU *cpu = X86_CPU(cs);
720 return cpu->apic_id;
723 #ifndef KVM_CPUID_SIGNATURE_NEXT
724 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
725 #endif
727 static bool hyperv_enabled(X86CPU *cpu)
729 CPUState *cs = CPU(cpu);
730 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
731 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) ||
732 cpu->hyperv_features || cpu->hyperv_passthrough);
735 static int kvm_arch_set_tsc_khz(CPUState *cs)
737 X86CPU *cpu = X86_CPU(cs);
738 CPUX86State *env = &cpu->env;
739 int r;
741 if (!env->tsc_khz) {
742 return 0;
745 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
746 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
747 -ENOTSUP;
748 if (r < 0) {
749 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
750 * TSC frequency doesn't match the one we want.
752 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
753 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
754 -ENOTSUP;
755 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
756 warn_report("TSC frequency mismatch between "
757 "VM (%" PRId64 " kHz) and host (%d kHz), "
758 "and TSC scaling unavailable",
759 env->tsc_khz, cur_freq);
760 return r;
764 return 0;
767 static bool tsc_is_stable_and_known(CPUX86State *env)
769 if (!env->tsc_khz) {
770 return false;
772 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
773 || env->user_tsc_khz;
776 static struct {
777 const char *desc;
778 struct {
779 uint32_t fw;
780 uint32_t bits;
781 } flags[2];
782 uint64_t dependencies;
783 } kvm_hyperv_properties[] = {
784 [HYPERV_FEAT_RELAXED] = {
785 .desc = "relaxed timing (hv-relaxed)",
786 .flags = {
787 {.fw = FEAT_HYPERV_EAX,
788 .bits = HV_HYPERCALL_AVAILABLE},
789 {.fw = FEAT_HV_RECOMM_EAX,
790 .bits = HV_RELAXED_TIMING_RECOMMENDED}
793 [HYPERV_FEAT_VAPIC] = {
794 .desc = "virtual APIC (hv-vapic)",
795 .flags = {
796 {.fw = FEAT_HYPERV_EAX,
797 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
798 {.fw = FEAT_HV_RECOMM_EAX,
799 .bits = HV_APIC_ACCESS_RECOMMENDED}
802 [HYPERV_FEAT_TIME] = {
803 .desc = "clocksources (hv-time)",
804 .flags = {
805 {.fw = FEAT_HYPERV_EAX,
806 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
807 HV_REFERENCE_TSC_AVAILABLE}
810 [HYPERV_FEAT_CRASH] = {
811 .desc = "crash MSRs (hv-crash)",
812 .flags = {
813 {.fw = FEAT_HYPERV_EDX,
814 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
817 [HYPERV_FEAT_RESET] = {
818 .desc = "reset MSR (hv-reset)",
819 .flags = {
820 {.fw = FEAT_HYPERV_EAX,
821 .bits = HV_RESET_AVAILABLE}
824 [HYPERV_FEAT_VPINDEX] = {
825 .desc = "VP_INDEX MSR (hv-vpindex)",
826 .flags = {
827 {.fw = FEAT_HYPERV_EAX,
828 .bits = HV_VP_INDEX_AVAILABLE}
831 [HYPERV_FEAT_RUNTIME] = {
832 .desc = "VP_RUNTIME MSR (hv-runtime)",
833 .flags = {
834 {.fw = FEAT_HYPERV_EAX,
835 .bits = HV_VP_RUNTIME_AVAILABLE}
838 [HYPERV_FEAT_SYNIC] = {
839 .desc = "synthetic interrupt controller (hv-synic)",
840 .flags = {
841 {.fw = FEAT_HYPERV_EAX,
842 .bits = HV_SYNIC_AVAILABLE}
845 [HYPERV_FEAT_STIMER] = {
846 .desc = "synthetic timers (hv-stimer)",
847 .flags = {
848 {.fw = FEAT_HYPERV_EAX,
849 .bits = HV_SYNTIMERS_AVAILABLE}
851 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
853 [HYPERV_FEAT_FREQUENCIES] = {
854 .desc = "frequency MSRs (hv-frequencies)",
855 .flags = {
856 {.fw = FEAT_HYPERV_EAX,
857 .bits = HV_ACCESS_FREQUENCY_MSRS},
858 {.fw = FEAT_HYPERV_EDX,
859 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
862 [HYPERV_FEAT_REENLIGHTENMENT] = {
863 .desc = "reenlightenment MSRs (hv-reenlightenment)",
864 .flags = {
865 {.fw = FEAT_HYPERV_EAX,
866 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
869 [HYPERV_FEAT_TLBFLUSH] = {
870 .desc = "paravirtualized TLB flush (hv-tlbflush)",
871 .flags = {
872 {.fw = FEAT_HV_RECOMM_EAX,
873 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
874 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
876 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
878 [HYPERV_FEAT_EVMCS] = {
879 .desc = "enlightened VMCS (hv-evmcs)",
880 .flags = {
881 {.fw = FEAT_HV_RECOMM_EAX,
882 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
884 .dependencies = BIT(HYPERV_FEAT_VAPIC)
886 [HYPERV_FEAT_IPI] = {
887 .desc = "paravirtualized IPI (hv-ipi)",
888 .flags = {
889 {.fw = FEAT_HV_RECOMM_EAX,
890 .bits = HV_CLUSTER_IPI_RECOMMENDED |
891 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
893 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
895 [HYPERV_FEAT_STIMER_DIRECT] = {
896 .desc = "direct mode synthetic timers (hv-stimer-direct)",
897 .flags = {
898 {.fw = FEAT_HYPERV_EDX,
899 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
901 .dependencies = BIT(HYPERV_FEAT_STIMER)
905 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
907 struct kvm_cpuid2 *cpuid;
908 int r, size;
910 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
911 cpuid = g_malloc0(size);
912 cpuid->nent = max;
914 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
915 if (r == 0 && cpuid->nent >= max) {
916 r = -E2BIG;
918 if (r < 0) {
919 if (r == -E2BIG) {
920 g_free(cpuid);
921 return NULL;
922 } else {
923 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
924 strerror(-r));
925 exit(1);
928 return cpuid;
932 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
933 * for all entries.
935 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
937 struct kvm_cpuid2 *cpuid;
938 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
941 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
942 * -E2BIG, however, it doesn't report back the right size. Keep increasing
943 * it and re-trying until we succeed.
945 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
946 max++;
948 return cpuid;
952 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
953 * leaves from KVM_CAP_HYPERV* and present MSRs data.
955 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
957 X86CPU *cpu = X86_CPU(cs);
958 struct kvm_cpuid2 *cpuid;
959 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
961 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
962 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
963 cpuid->nent = 2;
965 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
966 entry_feat = &cpuid->entries[0];
967 entry_feat->function = HV_CPUID_FEATURES;
969 entry_recomm = &cpuid->entries[1];
970 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
971 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
973 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
974 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
975 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
976 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
977 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
978 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
981 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
982 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
983 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
986 if (has_msr_hv_frequencies) {
987 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
988 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
991 if (has_msr_hv_crash) {
992 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
995 if (has_msr_hv_reenlightenment) {
996 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
999 if (has_msr_hv_reset) {
1000 entry_feat->eax |= HV_RESET_AVAILABLE;
1003 if (has_msr_hv_vpindex) {
1004 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1007 if (has_msr_hv_runtime) {
1008 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1011 if (has_msr_hv_synic) {
1012 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1013 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1015 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1016 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1020 if (has_msr_hv_stimer) {
1021 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1024 if (kvm_check_extension(cs->kvm_state,
1025 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1026 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1027 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1030 if (kvm_check_extension(cs->kvm_state,
1031 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1032 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1035 if (kvm_check_extension(cs->kvm_state,
1036 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1037 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1038 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1041 return cpuid;
1044 static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1046 struct kvm_cpuid_entry2 *entry;
1047 uint32_t func;
1048 int reg;
1050 switch (fw) {
1051 case FEAT_HYPERV_EAX:
1052 reg = R_EAX;
1053 func = HV_CPUID_FEATURES;
1054 break;
1055 case FEAT_HYPERV_EDX:
1056 reg = R_EDX;
1057 func = HV_CPUID_FEATURES;
1058 break;
1059 case FEAT_HV_RECOMM_EAX:
1060 reg = R_EAX;
1061 func = HV_CPUID_ENLIGHTMENT_INFO;
1062 break;
1063 default:
1064 return -EINVAL;
1067 entry = cpuid_find_entry(cpuid, func, 0);
1068 if (!entry) {
1069 return -ENOENT;
1072 switch (reg) {
1073 case R_EAX:
1074 *r = entry->eax;
1075 break;
1076 case R_EDX:
1077 *r = entry->edx;
1078 break;
1079 default:
1080 return -EINVAL;
1083 return 0;
1086 static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1087 int feature)
1089 X86CPU *cpu = X86_CPU(cs);
1090 CPUX86State *env = &cpu->env;
1091 uint32_t r, fw, bits;
1092 uint64_t deps;
1093 int i, dep_feat;
1095 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
1096 return 0;
1099 deps = kvm_hyperv_properties[feature].dependencies;
1100 while (deps) {
1101 dep_feat = ctz64(deps);
1102 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1103 fprintf(stderr,
1104 "Hyper-V %s requires Hyper-V %s\n",
1105 kvm_hyperv_properties[feature].desc,
1106 kvm_hyperv_properties[dep_feat].desc);
1107 return 1;
1109 deps &= ~(1ull << dep_feat);
1112 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1113 fw = kvm_hyperv_properties[feature].flags[i].fw;
1114 bits = kvm_hyperv_properties[feature].flags[i].bits;
1116 if (!fw) {
1117 continue;
1120 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
1121 if (hyperv_feat_enabled(cpu, feature)) {
1122 fprintf(stderr,
1123 "Hyper-V %s is not supported by kernel\n",
1124 kvm_hyperv_properties[feature].desc);
1125 return 1;
1126 } else {
1127 return 0;
1131 env->features[fw] |= bits;
1134 if (cpu->hyperv_passthrough) {
1135 cpu->hyperv_features |= BIT(feature);
1138 return 0;
1142 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1143 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1144 * extentions are enabled.
1146 static int hyperv_handle_properties(CPUState *cs,
1147 struct kvm_cpuid_entry2 *cpuid_ent)
1149 X86CPU *cpu = X86_CPU(cs);
1150 CPUX86State *env = &cpu->env;
1151 struct kvm_cpuid2 *cpuid;
1152 struct kvm_cpuid_entry2 *c;
1153 uint32_t signature[3];
1154 uint32_t cpuid_i = 0;
1155 int r;
1157 if (!hyperv_enabled(cpu))
1158 return 0;
1160 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1161 cpu->hyperv_passthrough) {
1162 uint16_t evmcs_version;
1164 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1165 (uintptr_t)&evmcs_version);
1167 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
1168 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1169 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1170 return -ENOSYS;
1173 if (!r) {
1174 env->features[FEAT_HV_RECOMM_EAX] |=
1175 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1176 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1180 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1181 cpuid = get_supported_hv_cpuid(cs);
1182 } else {
1183 cpuid = get_supported_hv_cpuid_legacy(cs);
1186 if (cpu->hyperv_passthrough) {
1187 memcpy(cpuid_ent, &cpuid->entries[0],
1188 cpuid->nent * sizeof(cpuid->entries[0]));
1190 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1191 if (c) {
1192 env->features[FEAT_HYPERV_EAX] = c->eax;
1193 env->features[FEAT_HYPERV_EBX] = c->ebx;
1194 env->features[FEAT_HYPERV_EDX] = c->eax;
1196 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1197 if (c) {
1198 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1200 /* hv-spinlocks may have been overriden */
1201 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) {
1202 c->ebx = cpu->hyperv_spinlock_attempts;
1205 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1206 if (c) {
1207 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1211 /* Features */
1212 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
1213 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1214 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1215 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1216 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1217 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1218 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1219 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1220 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1221 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1222 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1223 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1224 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1225 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
1226 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
1228 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1229 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1230 !cpu->hyperv_synic_kvm_only &&
1231 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1232 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
1233 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1234 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1235 r |= 1;
1238 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1239 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1241 if (r) {
1242 r = -ENOSYS;
1243 goto free;
1246 if (cpu->hyperv_passthrough) {
1247 /* We already copied all feature words from KVM as is */
1248 r = cpuid->nent;
1249 goto free;
1252 c = &cpuid_ent[cpuid_i++];
1253 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1254 if (!cpu->hyperv_vendor_id) {
1255 memcpy(signature, "Microsoft Hv", 12);
1256 } else {
1257 size_t len = strlen(cpu->hyperv_vendor_id);
1259 if (len > 12) {
1260 error_report("hv-vendor-id truncated to 12 characters");
1261 len = 12;
1263 memset(signature, 0, 12);
1264 memcpy(signature, cpu->hyperv_vendor_id, len);
1266 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1267 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1268 c->ebx = signature[0];
1269 c->ecx = signature[1];
1270 c->edx = signature[2];
1272 c = &cpuid_ent[cpuid_i++];
1273 c->function = HV_CPUID_INTERFACE;
1274 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1275 c->eax = signature[0];
1276 c->ebx = 0;
1277 c->ecx = 0;
1278 c->edx = 0;
1280 c = &cpuid_ent[cpuid_i++];
1281 c->function = HV_CPUID_VERSION;
1282 c->eax = 0x00001bbc;
1283 c->ebx = 0x00060001;
1285 c = &cpuid_ent[cpuid_i++];
1286 c->function = HV_CPUID_FEATURES;
1287 c->eax = env->features[FEAT_HYPERV_EAX];
1288 c->ebx = env->features[FEAT_HYPERV_EBX];
1289 c->edx = env->features[FEAT_HYPERV_EDX];
1291 c = &cpuid_ent[cpuid_i++];
1292 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1293 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1294 c->ebx = cpu->hyperv_spinlock_attempts;
1296 c = &cpuid_ent[cpuid_i++];
1297 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1298 c->eax = cpu->hv_max_vps;
1299 c->ebx = 0x40;
1301 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1302 __u32 function;
1304 /* Create zeroed 0x40000006..0x40000009 leaves */
1305 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1306 function < HV_CPUID_NESTED_FEATURES; function++) {
1307 c = &cpuid_ent[cpuid_i++];
1308 c->function = function;
1311 c = &cpuid_ent[cpuid_i++];
1312 c->function = HV_CPUID_NESTED_FEATURES;
1313 c->eax = env->features[FEAT_HV_NESTED_EAX];
1315 r = cpuid_i;
1317 free:
1318 g_free(cpuid);
1320 return r;
1323 static Error *hv_passthrough_mig_blocker;
1325 static int hyperv_init_vcpu(X86CPU *cpu)
1327 CPUState *cs = CPU(cpu);
1328 Error *local_err = NULL;
1329 int ret;
1331 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1332 error_setg(&hv_passthrough_mig_blocker,
1333 "'hv-passthrough' CPU flag prevents migration, use explicit"
1334 " set of hv-* flags instead");
1335 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1336 if (local_err) {
1337 error_report_err(local_err);
1338 error_free(hv_passthrough_mig_blocker);
1339 return ret;
1343 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1345 * the kernel doesn't support setting vp_index; assert that its value
1346 * is in sync
1348 struct {
1349 struct kvm_msrs info;
1350 struct kvm_msr_entry entries[1];
1351 } msr_data = {
1352 .info.nmsrs = 1,
1353 .entries[0].index = HV_X64_MSR_VP_INDEX,
1356 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1357 if (ret < 0) {
1358 return ret;
1360 assert(ret == 1);
1362 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1363 error_report("kernel's vp_index != QEMU's vp_index");
1364 return -ENXIO;
1368 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1369 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1370 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1371 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1372 if (ret < 0) {
1373 error_report("failed to turn on HyperV SynIC in KVM: %s",
1374 strerror(-ret));
1375 return ret;
1378 if (!cpu->hyperv_synic_kvm_only) {
1379 ret = hyperv_x86_synic_add(cpu);
1380 if (ret < 0) {
1381 error_report("failed to create HyperV SynIC: %s",
1382 strerror(-ret));
1383 return ret;
1388 return 0;
1391 static Error *invtsc_mig_blocker;
1393 #define KVM_MAX_CPUID_ENTRIES 100
1395 int kvm_arch_init_vcpu(CPUState *cs)
1397 struct {
1398 struct kvm_cpuid2 cpuid;
1399 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1400 } cpuid_data;
1402 * The kernel defines these structs with padding fields so there
1403 * should be no extra padding in our cpuid_data struct.
1405 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1406 sizeof(struct kvm_cpuid2) +
1407 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1409 X86CPU *cpu = X86_CPU(cs);
1410 CPUX86State *env = &cpu->env;
1411 uint32_t limit, i, j, cpuid_i;
1412 uint32_t unused;
1413 struct kvm_cpuid_entry2 *c;
1414 uint32_t signature[3];
1415 int kvm_base = KVM_CPUID_SIGNATURE;
1416 int max_nested_state_len;
1417 int r;
1418 Error *local_err = NULL;
1420 memset(&cpuid_data, 0, sizeof(cpuid_data));
1422 cpuid_i = 0;
1424 r = kvm_arch_set_tsc_khz(cs);
1425 if (r < 0) {
1426 return r;
1429 /* vcpu's TSC frequency is either specified by user, or following
1430 * the value used by KVM if the former is not present. In the
1431 * latter case, we query it from KVM and record in env->tsc_khz,
1432 * so that vcpu's TSC frequency can be migrated later via this field.
1434 if (!env->tsc_khz) {
1435 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1436 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1437 -ENOTSUP;
1438 if (r > 0) {
1439 env->tsc_khz = r;
1443 /* Paravirtualization CPUIDs */
1444 r = hyperv_handle_properties(cs, cpuid_data.entries);
1445 if (r < 0) {
1446 return r;
1447 } else if (r > 0) {
1448 cpuid_i = r;
1449 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1450 has_msr_hv_hypercall = true;
1453 if (cpu->expose_kvm) {
1454 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1455 c = &cpuid_data.entries[cpuid_i++];
1456 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1457 c->eax = KVM_CPUID_FEATURES | kvm_base;
1458 c->ebx = signature[0];
1459 c->ecx = signature[1];
1460 c->edx = signature[2];
1462 c = &cpuid_data.entries[cpuid_i++];
1463 c->function = KVM_CPUID_FEATURES | kvm_base;
1464 c->eax = env->features[FEAT_KVM];
1465 c->edx = env->features[FEAT_KVM_HINTS];
1468 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1470 for (i = 0; i <= limit; i++) {
1471 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1472 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1473 abort();
1475 c = &cpuid_data.entries[cpuid_i++];
1477 switch (i) {
1478 case 2: {
1479 /* Keep reading function 2 till all the input is received */
1480 int times;
1482 c->function = i;
1483 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1484 KVM_CPUID_FLAG_STATE_READ_NEXT;
1485 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1486 times = c->eax & 0xff;
1488 for (j = 1; j < times; ++j) {
1489 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1490 fprintf(stderr, "cpuid_data is full, no space for "
1491 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1492 abort();
1494 c = &cpuid_data.entries[cpuid_i++];
1495 c->function = i;
1496 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1497 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1499 break;
1501 case 0x1f:
1502 if (env->nr_dies < 2) {
1503 break;
1505 case 4:
1506 case 0xb:
1507 case 0xd:
1508 for (j = 0; ; j++) {
1509 if (i == 0xd && j == 64) {
1510 break;
1513 if (i == 0x1f && j == 64) {
1514 break;
1517 c->function = i;
1518 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1519 c->index = j;
1520 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1522 if (i == 4 && c->eax == 0) {
1523 break;
1525 if (i == 0xb && !(c->ecx & 0xff00)) {
1526 break;
1528 if (i == 0x1f && !(c->ecx & 0xff00)) {
1529 break;
1531 if (i == 0xd && c->eax == 0) {
1532 continue;
1534 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1535 fprintf(stderr, "cpuid_data is full, no space for "
1536 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1537 abort();
1539 c = &cpuid_data.entries[cpuid_i++];
1541 break;
1542 case 0x7:
1543 case 0x14: {
1544 uint32_t times;
1546 c->function = i;
1547 c->index = 0;
1548 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1549 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1550 times = c->eax;
1552 for (j = 1; j <= times; ++j) {
1553 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1554 fprintf(stderr, "cpuid_data is full, no space for "
1555 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1556 abort();
1558 c = &cpuid_data.entries[cpuid_i++];
1559 c->function = i;
1560 c->index = j;
1561 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1562 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1564 break;
1566 default:
1567 c->function = i;
1568 c->flags = 0;
1569 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1570 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1572 * KVM already returns all zeroes if a CPUID entry is missing,
1573 * so we can omit it and avoid hitting KVM's 80-entry limit.
1575 cpuid_i--;
1577 break;
1581 if (limit >= 0x0a) {
1582 uint32_t eax, edx;
1584 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1586 has_architectural_pmu_version = eax & 0xff;
1587 if (has_architectural_pmu_version > 0) {
1588 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1590 /* Shouldn't be more than 32, since that's the number of bits
1591 * available in EBX to tell us _which_ counters are available.
1592 * Play it safe.
1594 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1595 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1598 if (has_architectural_pmu_version > 1) {
1599 num_architectural_pmu_fixed_counters = edx & 0x1f;
1601 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1602 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1608 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1610 for (i = 0x80000000; i <= limit; i++) {
1611 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1612 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1613 abort();
1615 c = &cpuid_data.entries[cpuid_i++];
1617 switch (i) {
1618 case 0x8000001d:
1619 /* Query for all AMD cache information leaves */
1620 for (j = 0; ; j++) {
1621 c->function = i;
1622 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1623 c->index = j;
1624 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1626 if (c->eax == 0) {
1627 break;
1629 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1630 fprintf(stderr, "cpuid_data is full, no space for "
1631 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1632 abort();
1634 c = &cpuid_data.entries[cpuid_i++];
1636 break;
1637 default:
1638 c->function = i;
1639 c->flags = 0;
1640 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1641 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1643 * KVM already returns all zeroes if a CPUID entry is missing,
1644 * so we can omit it and avoid hitting KVM's 80-entry limit.
1646 cpuid_i--;
1648 break;
1652 /* Call Centaur's CPUID instructions they are supported. */
1653 if (env->cpuid_xlevel2 > 0) {
1654 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1656 for (i = 0xC0000000; i <= limit; i++) {
1657 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1658 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1659 abort();
1661 c = &cpuid_data.entries[cpuid_i++];
1663 c->function = i;
1664 c->flags = 0;
1665 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1669 cpuid_data.cpuid.nent = cpuid_i;
1671 if (((env->cpuid_version >> 8)&0xF) >= 6
1672 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1673 (CPUID_MCE | CPUID_MCA)
1674 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1675 uint64_t mcg_cap, unsupported_caps;
1676 int banks;
1677 int ret;
1679 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1680 if (ret < 0) {
1681 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1682 return ret;
1685 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1686 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1687 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1688 return -ENOTSUP;
1691 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1692 if (unsupported_caps) {
1693 if (unsupported_caps & MCG_LMCE_P) {
1694 error_report("kvm: LMCE not supported");
1695 return -ENOTSUP;
1697 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1698 unsupported_caps);
1701 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1702 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1703 if (ret < 0) {
1704 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1705 return ret;
1709 qemu_add_vm_change_state_handler(cpu_update_state, env);
1711 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1712 if (c) {
1713 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1714 !!(c->ecx & CPUID_EXT_SMX);
1717 if (env->mcg_cap & MCG_LMCE_P) {
1718 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1721 if (!env->user_tsc_khz) {
1722 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1723 invtsc_mig_blocker == NULL) {
1724 error_setg(&invtsc_mig_blocker,
1725 "State blocked by non-migratable CPU device"
1726 " (invtsc flag)");
1727 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1728 if (local_err) {
1729 error_report_err(local_err);
1730 error_free(invtsc_mig_blocker);
1731 return r;
1736 if (cpu->vmware_cpuid_freq
1737 /* Guests depend on 0x40000000 to detect this feature, so only expose
1738 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1739 && cpu->expose_kvm
1740 && kvm_base == KVM_CPUID_SIGNATURE
1741 /* TSC clock must be stable and known for this feature. */
1742 && tsc_is_stable_and_known(env)) {
1744 c = &cpuid_data.entries[cpuid_i++];
1745 c->function = KVM_CPUID_SIGNATURE | 0x10;
1746 c->eax = env->tsc_khz;
1747 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1748 * APIC_BUS_CYCLE_NS */
1749 c->ebx = 1000000;
1750 c->ecx = c->edx = 0;
1752 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1753 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1756 cpuid_data.cpuid.nent = cpuid_i;
1758 cpuid_data.cpuid.padding = 0;
1759 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1760 if (r) {
1761 goto fail;
1764 if (has_xsave) {
1765 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1766 memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
1769 max_nested_state_len = kvm_max_nested_state_length();
1770 if (max_nested_state_len > 0) {
1771 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1773 if (cpu_has_vmx(env)) {
1774 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1776 env->nested_state = g_malloc0(max_nested_state_len);
1777 env->nested_state->size = max_nested_state_len;
1778 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1780 vmx_hdr = &env->nested_state->hdr.vmx;
1781 vmx_hdr->vmxon_pa = -1ull;
1782 vmx_hdr->vmcs12_pa = -1ull;
1786 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1788 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1789 has_msr_tsc_aux = false;
1792 r = hyperv_init_vcpu(cpu);
1793 if (r) {
1794 goto fail;
1797 return 0;
1799 fail:
1800 migrate_del_blocker(invtsc_mig_blocker);
1802 return r;
1805 int kvm_arch_destroy_vcpu(CPUState *cs)
1807 X86CPU *cpu = X86_CPU(cs);
1808 CPUX86State *env = &cpu->env;
1810 if (cpu->kvm_msr_buf) {
1811 g_free(cpu->kvm_msr_buf);
1812 cpu->kvm_msr_buf = NULL;
1815 if (env->nested_state) {
1816 g_free(env->nested_state);
1817 env->nested_state = NULL;
1820 return 0;
1823 void kvm_arch_reset_vcpu(X86CPU *cpu)
1825 CPUX86State *env = &cpu->env;
1827 env->xcr0 = 1;
1828 if (kvm_irqchip_in_kernel()) {
1829 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1830 KVM_MP_STATE_UNINITIALIZED;
1831 } else {
1832 env->mp_state = KVM_MP_STATE_RUNNABLE;
1835 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1836 int i;
1837 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1838 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1841 hyperv_x86_synic_reset(cpu);
1843 /* enabled by default */
1844 env->poll_control_msr = 1;
1847 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1849 CPUX86State *env = &cpu->env;
1851 /* APs get directly into wait-for-SIPI state. */
1852 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1853 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1857 static int kvm_get_supported_feature_msrs(KVMState *s)
1859 int ret = 0;
1861 if (kvm_feature_msrs != NULL) {
1862 return 0;
1865 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1866 return 0;
1869 struct kvm_msr_list msr_list;
1871 msr_list.nmsrs = 0;
1872 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1873 if (ret < 0 && ret != -E2BIG) {
1874 error_report("Fetch KVM feature MSR list failed: %s",
1875 strerror(-ret));
1876 return ret;
1879 assert(msr_list.nmsrs > 0);
1880 kvm_feature_msrs = (struct kvm_msr_list *) \
1881 g_malloc0(sizeof(msr_list) +
1882 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1884 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1885 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1887 if (ret < 0) {
1888 error_report("Fetch KVM feature MSR list failed: %s",
1889 strerror(-ret));
1890 g_free(kvm_feature_msrs);
1891 kvm_feature_msrs = NULL;
1892 return ret;
1895 return 0;
1898 static int kvm_get_supported_msrs(KVMState *s)
1900 int ret = 0;
1901 struct kvm_msr_list msr_list, *kvm_msr_list;
1904 * Obtain MSR list from KVM. These are the MSRs that we must
1905 * save/restore.
1907 msr_list.nmsrs = 0;
1908 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1909 if (ret < 0 && ret != -E2BIG) {
1910 return ret;
1913 * Old kernel modules had a bug and could write beyond the provided
1914 * memory. Allocate at least a safe amount of 1K.
1916 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1917 msr_list.nmsrs *
1918 sizeof(msr_list.indices[0])));
1920 kvm_msr_list->nmsrs = msr_list.nmsrs;
1921 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1922 if (ret >= 0) {
1923 int i;
1925 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1926 switch (kvm_msr_list->indices[i]) {
1927 case MSR_STAR:
1928 has_msr_star = true;
1929 break;
1930 case MSR_VM_HSAVE_PA:
1931 has_msr_hsave_pa = true;
1932 break;
1933 case MSR_TSC_AUX:
1934 has_msr_tsc_aux = true;
1935 break;
1936 case MSR_TSC_ADJUST:
1937 has_msr_tsc_adjust = true;
1938 break;
1939 case MSR_IA32_TSCDEADLINE:
1940 has_msr_tsc_deadline = true;
1941 break;
1942 case MSR_IA32_SMBASE:
1943 has_msr_smbase = true;
1944 break;
1945 case MSR_SMI_COUNT:
1946 has_msr_smi_count = true;
1947 break;
1948 case MSR_IA32_MISC_ENABLE:
1949 has_msr_misc_enable = true;
1950 break;
1951 case MSR_IA32_BNDCFGS:
1952 has_msr_bndcfgs = true;
1953 break;
1954 case MSR_IA32_XSS:
1955 has_msr_xss = true;
1956 break;
1957 case HV_X64_MSR_CRASH_CTL:
1958 has_msr_hv_crash = true;
1959 break;
1960 case HV_X64_MSR_RESET:
1961 has_msr_hv_reset = true;
1962 break;
1963 case HV_X64_MSR_VP_INDEX:
1964 has_msr_hv_vpindex = true;
1965 break;
1966 case HV_X64_MSR_VP_RUNTIME:
1967 has_msr_hv_runtime = true;
1968 break;
1969 case HV_X64_MSR_SCONTROL:
1970 has_msr_hv_synic = true;
1971 break;
1972 case HV_X64_MSR_STIMER0_CONFIG:
1973 has_msr_hv_stimer = true;
1974 break;
1975 case HV_X64_MSR_TSC_FREQUENCY:
1976 has_msr_hv_frequencies = true;
1977 break;
1978 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1979 has_msr_hv_reenlightenment = true;
1980 break;
1981 case MSR_IA32_SPEC_CTRL:
1982 has_msr_spec_ctrl = true;
1983 break;
1984 case MSR_VIRT_SSBD:
1985 has_msr_virt_ssbd = true;
1986 break;
1987 case MSR_IA32_ARCH_CAPABILITIES:
1988 has_msr_arch_capabs = true;
1989 break;
1990 case MSR_IA32_CORE_CAPABILITY:
1991 has_msr_core_capabs = true;
1992 break;
1993 case MSR_IA32_VMX_VMFUNC:
1994 has_msr_vmx_vmfunc = true;
1995 break;
2000 g_free(kvm_msr_list);
2002 return ret;
2005 static Notifier smram_machine_done;
2006 static KVMMemoryListener smram_listener;
2007 static AddressSpace smram_address_space;
2008 static MemoryRegion smram_as_root;
2009 static MemoryRegion smram_as_mem;
2011 static void register_smram_listener(Notifier *n, void *unused)
2013 MemoryRegion *smram =
2014 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2016 /* Outer container... */
2017 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2018 memory_region_set_enabled(&smram_as_root, true);
2020 /* ... with two regions inside: normal system memory with low
2021 * priority, and...
2023 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2024 get_system_memory(), 0, ~0ull);
2025 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2026 memory_region_set_enabled(&smram_as_mem, true);
2028 if (smram) {
2029 /* ... SMRAM with higher priority */
2030 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2031 memory_region_set_enabled(smram, true);
2034 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2035 kvm_memory_listener_register(kvm_state, &smram_listener,
2036 &smram_address_space, 1);
2039 int kvm_arch_init(MachineState *ms, KVMState *s)
2041 uint64_t identity_base = 0xfffbc000;
2042 uint64_t shadow_mem;
2043 int ret;
2044 struct utsname utsname;
2046 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2047 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2048 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2050 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2052 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2053 if (has_exception_payload) {
2054 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2055 if (ret < 0) {
2056 error_report("kvm: Failed to enable exception payload cap: %s",
2057 strerror(-ret));
2058 return ret;
2062 ret = kvm_get_supported_msrs(s);
2063 if (ret < 0) {
2064 return ret;
2067 kvm_get_supported_feature_msrs(s);
2069 uname(&utsname);
2070 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2073 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2074 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2075 * Since these must be part of guest physical memory, we need to allocate
2076 * them, both by setting their start addresses in the kernel and by
2077 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2079 * Older KVM versions may not support setting the identity map base. In
2080 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2081 * size.
2083 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2084 /* Allows up to 16M BIOSes. */
2085 identity_base = 0xfeffc000;
2087 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2088 if (ret < 0) {
2089 return ret;
2093 /* Set TSS base one page after EPT identity map. */
2094 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2095 if (ret < 0) {
2096 return ret;
2099 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2100 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2101 if (ret < 0) {
2102 fprintf(stderr, "e820_add_entry() table is full\n");
2103 return ret;
2105 qemu_register_reset(kvm_unpoison_all, NULL);
2107 shadow_mem = machine_kvm_shadow_mem(ms);
2108 if (shadow_mem != -1) {
2109 shadow_mem /= 4096;
2110 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2111 if (ret < 0) {
2112 return ret;
2116 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2117 object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
2118 pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
2119 smram_machine_done.notify = register_smram_listener;
2120 qemu_add_machine_init_done_notifier(&smram_machine_done);
2123 if (enable_cpu_pm) {
2124 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2125 int ret;
2127 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2128 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2129 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2130 #endif
2131 if (disable_exits) {
2132 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2133 KVM_X86_DISABLE_EXITS_HLT |
2134 KVM_X86_DISABLE_EXITS_PAUSE |
2135 KVM_X86_DISABLE_EXITS_CSTATE);
2138 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2139 disable_exits);
2140 if (ret < 0) {
2141 error_report("kvm: guest stopping CPU not supported: %s",
2142 strerror(-ret));
2146 return 0;
2149 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2151 lhs->selector = rhs->selector;
2152 lhs->base = rhs->base;
2153 lhs->limit = rhs->limit;
2154 lhs->type = 3;
2155 lhs->present = 1;
2156 lhs->dpl = 3;
2157 lhs->db = 0;
2158 lhs->s = 1;
2159 lhs->l = 0;
2160 lhs->g = 0;
2161 lhs->avl = 0;
2162 lhs->unusable = 0;
2165 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2167 unsigned flags = rhs->flags;
2168 lhs->selector = rhs->selector;
2169 lhs->base = rhs->base;
2170 lhs->limit = rhs->limit;
2171 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2172 lhs->present = (flags & DESC_P_MASK) != 0;
2173 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2174 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2175 lhs->s = (flags & DESC_S_MASK) != 0;
2176 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2177 lhs->g = (flags & DESC_G_MASK) != 0;
2178 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2179 lhs->unusable = !lhs->present;
2180 lhs->padding = 0;
2183 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2185 lhs->selector = rhs->selector;
2186 lhs->base = rhs->base;
2187 lhs->limit = rhs->limit;
2188 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2189 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2190 (rhs->dpl << DESC_DPL_SHIFT) |
2191 (rhs->db << DESC_B_SHIFT) |
2192 (rhs->s * DESC_S_MASK) |
2193 (rhs->l << DESC_L_SHIFT) |
2194 (rhs->g * DESC_G_MASK) |
2195 (rhs->avl * DESC_AVL_MASK);
2198 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2200 if (set) {
2201 *kvm_reg = *qemu_reg;
2202 } else {
2203 *qemu_reg = *kvm_reg;
2207 static int kvm_getput_regs(X86CPU *cpu, int set)
2209 CPUX86State *env = &cpu->env;
2210 struct kvm_regs regs;
2211 int ret = 0;
2213 if (!set) {
2214 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2215 if (ret < 0) {
2216 return ret;
2220 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2221 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2222 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2223 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2224 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2225 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2226 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2227 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2228 #ifdef TARGET_X86_64
2229 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2230 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2231 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2232 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2233 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2234 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2235 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2236 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2237 #endif
2239 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2240 kvm_getput_reg(&regs.rip, &env->eip, set);
2242 if (set) {
2243 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2246 return ret;
2249 static int kvm_put_fpu(X86CPU *cpu)
2251 CPUX86State *env = &cpu->env;
2252 struct kvm_fpu fpu;
2253 int i;
2255 memset(&fpu, 0, sizeof fpu);
2256 fpu.fsw = env->fpus & ~(7 << 11);
2257 fpu.fsw |= (env->fpstt & 7) << 11;
2258 fpu.fcw = env->fpuc;
2259 fpu.last_opcode = env->fpop;
2260 fpu.last_ip = env->fpip;
2261 fpu.last_dp = env->fpdp;
2262 for (i = 0; i < 8; ++i) {
2263 fpu.ftwx |= (!env->fptags[i]) << i;
2265 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2266 for (i = 0; i < CPU_NB_REGS; i++) {
2267 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2268 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2270 fpu.mxcsr = env->mxcsr;
2272 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2275 #define XSAVE_FCW_FSW 0
2276 #define XSAVE_FTW_FOP 1
2277 #define XSAVE_CWD_RIP 2
2278 #define XSAVE_CWD_RDP 4
2279 #define XSAVE_MXCSR 6
2280 #define XSAVE_ST_SPACE 8
2281 #define XSAVE_XMM_SPACE 40
2282 #define XSAVE_XSTATE_BV 128
2283 #define XSAVE_YMMH_SPACE 144
2284 #define XSAVE_BNDREGS 240
2285 #define XSAVE_BNDCSR 256
2286 #define XSAVE_OPMASK 272
2287 #define XSAVE_ZMM_Hi256 288
2288 #define XSAVE_Hi16_ZMM 416
2289 #define XSAVE_PKRU 672
2291 #define XSAVE_BYTE_OFFSET(word_offset) \
2292 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2294 #define ASSERT_OFFSET(word_offset, field) \
2295 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2296 offsetof(X86XSaveArea, field))
2298 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2299 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2300 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2301 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2302 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2303 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2304 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2305 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2306 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2307 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2308 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2309 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2310 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2311 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2312 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2314 static int kvm_put_xsave(X86CPU *cpu)
2316 CPUX86State *env = &cpu->env;
2317 X86XSaveArea *xsave = env->xsave_buf;
2319 if (!has_xsave) {
2320 return kvm_put_fpu(cpu);
2322 x86_cpu_xsave_all_areas(cpu, xsave);
2324 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2327 static int kvm_put_xcrs(X86CPU *cpu)
2329 CPUX86State *env = &cpu->env;
2330 struct kvm_xcrs xcrs = {};
2332 if (!has_xcrs) {
2333 return 0;
2336 xcrs.nr_xcrs = 1;
2337 xcrs.flags = 0;
2338 xcrs.xcrs[0].xcr = 0;
2339 xcrs.xcrs[0].value = env->xcr0;
2340 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2343 static int kvm_put_sregs(X86CPU *cpu)
2345 CPUX86State *env = &cpu->env;
2346 struct kvm_sregs sregs;
2348 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2349 if (env->interrupt_injected >= 0) {
2350 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2351 (uint64_t)1 << (env->interrupt_injected % 64);
2354 if ((env->eflags & VM_MASK)) {
2355 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2356 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2357 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2358 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2359 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2360 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2361 } else {
2362 set_seg(&sregs.cs, &env->segs[R_CS]);
2363 set_seg(&sregs.ds, &env->segs[R_DS]);
2364 set_seg(&sregs.es, &env->segs[R_ES]);
2365 set_seg(&sregs.fs, &env->segs[R_FS]);
2366 set_seg(&sregs.gs, &env->segs[R_GS]);
2367 set_seg(&sregs.ss, &env->segs[R_SS]);
2370 set_seg(&sregs.tr, &env->tr);
2371 set_seg(&sregs.ldt, &env->ldt);
2373 sregs.idt.limit = env->idt.limit;
2374 sregs.idt.base = env->idt.base;
2375 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2376 sregs.gdt.limit = env->gdt.limit;
2377 sregs.gdt.base = env->gdt.base;
2378 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2380 sregs.cr0 = env->cr[0];
2381 sregs.cr2 = env->cr[2];
2382 sregs.cr3 = env->cr[3];
2383 sregs.cr4 = env->cr[4];
2385 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2386 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2388 sregs.efer = env->efer;
2390 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2393 static void kvm_msr_buf_reset(X86CPU *cpu)
2395 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2398 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2400 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2401 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2402 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2404 assert((void *)(entry + 1) <= limit);
2406 entry->index = index;
2407 entry->reserved = 0;
2408 entry->data = value;
2409 msrs->nmsrs++;
2412 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2414 kvm_msr_buf_reset(cpu);
2415 kvm_msr_entry_add(cpu, index, value);
2417 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2420 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2422 int ret;
2424 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2425 assert(ret == 1);
2428 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2430 CPUX86State *env = &cpu->env;
2431 int ret;
2433 if (!has_msr_tsc_deadline) {
2434 return 0;
2437 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2438 if (ret < 0) {
2439 return ret;
2442 assert(ret == 1);
2443 return 0;
2447 * Provide a separate write service for the feature control MSR in order to
2448 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2449 * before writing any other state because forcibly leaving nested mode
2450 * invalidates the VCPU state.
2452 static int kvm_put_msr_feature_control(X86CPU *cpu)
2454 int ret;
2456 if (!has_msr_feature_control) {
2457 return 0;
2460 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2461 cpu->env.msr_ia32_feature_control);
2462 if (ret < 0) {
2463 return ret;
2466 assert(ret == 1);
2467 return 0;
2470 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2472 uint32_t default1, can_be_one, can_be_zero;
2473 uint32_t must_be_one;
2475 switch (index) {
2476 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2477 default1 = 0x00000016;
2478 break;
2479 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2480 default1 = 0x0401e172;
2481 break;
2482 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2483 default1 = 0x000011ff;
2484 break;
2485 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2486 default1 = 0x00036dff;
2487 break;
2488 case MSR_IA32_VMX_PROCBASED_CTLS2:
2489 default1 = 0;
2490 break;
2491 default:
2492 abort();
2495 /* If a feature bit is set, the control can be either set or clear.
2496 * Otherwise the value is limited to either 0 or 1 by default1.
2498 can_be_one = features | default1;
2499 can_be_zero = features | ~default1;
2500 must_be_one = ~can_be_zero;
2503 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2504 * Bit 32:63 -> 1 if the control bit can be one.
2506 return must_be_one | (((uint64_t)can_be_one) << 32);
2509 #define VMCS12_MAX_FIELD_INDEX (0x17)
2511 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2513 uint64_t kvm_vmx_basic =
2514 kvm_arch_get_supported_msr_feature(kvm_state,
2515 MSR_IA32_VMX_BASIC);
2516 uint64_t kvm_vmx_misc =
2517 kvm_arch_get_supported_msr_feature(kvm_state,
2518 MSR_IA32_VMX_MISC);
2519 uint64_t kvm_vmx_ept_vpid =
2520 kvm_arch_get_supported_msr_feature(kvm_state,
2521 MSR_IA32_VMX_EPT_VPID_CAP);
2524 * If the guest is 64-bit, a value of 1 is allowed for the host address
2525 * space size vmexit control.
2527 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2528 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2531 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2532 * not change them for backwards compatibility.
2534 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2535 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2536 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2537 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2540 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2541 * change in the future but are always zero for now, clear them to be
2542 * future proof. Bits 32-63 in theory could change, though KVM does
2543 * not support dual-monitor treatment and probably never will; mask
2544 * them out as well.
2546 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2547 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2548 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2551 * EPT memory types should not change either, so we do not bother
2552 * adding features for them.
2554 uint64_t fixed_vmx_ept_mask =
2555 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2556 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2557 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2559 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2560 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2561 f[FEAT_VMX_PROCBASED_CTLS]));
2562 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2563 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2564 f[FEAT_VMX_PINBASED_CTLS]));
2565 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2566 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2567 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2568 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2569 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2570 f[FEAT_VMX_ENTRY_CTLS]));
2571 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2572 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2573 f[FEAT_VMX_SECONDARY_CTLS]));
2574 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2575 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2576 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2577 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2578 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2579 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2580 if (has_msr_vmx_vmfunc) {
2581 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2585 * Just to be safe, write these with constant values. The CRn_FIXED1
2586 * MSRs are generated by KVM based on the vCPU's CPUID.
2588 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2589 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2590 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2591 CR4_VMXE_MASK);
2592 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2593 VMCS12_MAX_FIELD_INDEX << 1);
2596 static int kvm_put_msrs(X86CPU *cpu, int level)
2598 CPUX86State *env = &cpu->env;
2599 int i;
2600 int ret;
2602 kvm_msr_buf_reset(cpu);
2604 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2605 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2606 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2607 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2608 if (has_msr_star) {
2609 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2611 if (has_msr_hsave_pa) {
2612 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2614 if (has_msr_tsc_aux) {
2615 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2617 if (has_msr_tsc_adjust) {
2618 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2620 if (has_msr_misc_enable) {
2621 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2622 env->msr_ia32_misc_enable);
2624 if (has_msr_smbase) {
2625 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2627 if (has_msr_smi_count) {
2628 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2630 if (has_msr_bndcfgs) {
2631 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2633 if (has_msr_xss) {
2634 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2636 if (has_msr_spec_ctrl) {
2637 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2639 if (has_msr_virt_ssbd) {
2640 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2643 #ifdef TARGET_X86_64
2644 if (lm_capable_kernel) {
2645 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2646 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2647 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2648 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2650 #endif
2652 /* If host supports feature MSR, write down. */
2653 if (has_msr_arch_capabs) {
2654 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2655 env->features[FEAT_ARCH_CAPABILITIES]);
2658 if (has_msr_core_capabs) {
2659 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2660 env->features[FEAT_CORE_CAPABILITY]);
2664 * The following MSRs have side effects on the guest or are too heavy
2665 * for normal writeback. Limit them to reset or full state updates.
2667 if (level >= KVM_PUT_RESET_STATE) {
2668 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2669 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2670 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2671 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2672 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2674 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2675 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2677 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2678 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2681 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2682 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2685 if (has_architectural_pmu_version > 0) {
2686 if (has_architectural_pmu_version > 1) {
2687 /* Stop the counter. */
2688 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2689 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2692 /* Set the counter values. */
2693 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2694 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2695 env->msr_fixed_counters[i]);
2697 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2698 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2699 env->msr_gp_counters[i]);
2700 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2701 env->msr_gp_evtsel[i]);
2703 if (has_architectural_pmu_version > 1) {
2704 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2705 env->msr_global_status);
2706 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2707 env->msr_global_ovf_ctrl);
2709 /* Now start the PMU. */
2710 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2711 env->msr_fixed_ctr_ctrl);
2712 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2713 env->msr_global_ctrl);
2717 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2718 * only sync them to KVM on the first cpu
2720 if (current_cpu == first_cpu) {
2721 if (has_msr_hv_hypercall) {
2722 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2723 env->msr_hv_guest_os_id);
2724 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2725 env->msr_hv_hypercall);
2727 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2728 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2729 env->msr_hv_tsc);
2731 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2732 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2733 env->msr_hv_reenlightenment_control);
2734 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2735 env->msr_hv_tsc_emulation_control);
2736 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2737 env->msr_hv_tsc_emulation_status);
2740 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2741 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2742 env->msr_hv_vapic);
2744 if (has_msr_hv_crash) {
2745 int j;
2747 for (j = 0; j < HV_CRASH_PARAMS; j++)
2748 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2749 env->msr_hv_crash_params[j]);
2751 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2753 if (has_msr_hv_runtime) {
2754 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2756 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2757 && hv_vpindex_settable) {
2758 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2759 hyperv_vp_index(CPU(cpu)));
2761 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2762 int j;
2764 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2766 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2767 env->msr_hv_synic_control);
2768 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2769 env->msr_hv_synic_evt_page);
2770 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2771 env->msr_hv_synic_msg_page);
2773 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2774 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2775 env->msr_hv_synic_sint[j]);
2778 if (has_msr_hv_stimer) {
2779 int j;
2781 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2782 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2783 env->msr_hv_stimer_config[j]);
2786 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2787 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2788 env->msr_hv_stimer_count[j]);
2791 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2792 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2794 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2795 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2796 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2797 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2798 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2799 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2800 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2801 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2802 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2803 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2804 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2805 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2806 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2807 /* The CPU GPs if we write to a bit above the physical limit of
2808 * the host CPU (and KVM emulates that)
2810 uint64_t mask = env->mtrr_var[i].mask;
2811 mask &= phys_mask;
2813 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2814 env->mtrr_var[i].base);
2815 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2818 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2819 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2820 0x14, 1, R_EAX) & 0x7;
2822 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2823 env->msr_rtit_ctrl);
2824 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2825 env->msr_rtit_status);
2826 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2827 env->msr_rtit_output_base);
2828 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2829 env->msr_rtit_output_mask);
2830 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2831 env->msr_rtit_cr3_match);
2832 for (i = 0; i < addr_num; i++) {
2833 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2834 env->msr_rtit_addrs[i]);
2838 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2839 * kvm_put_msr_feature_control. */
2842 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2843 * all kernels with MSR features should have them.
2845 if (kvm_feature_msrs && cpu_has_vmx(env)) {
2846 kvm_msr_entry_add_vmx(cpu, env->features);
2850 if (env->mcg_cap) {
2851 int i;
2853 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2854 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2855 if (has_msr_mcg_ext_ctl) {
2856 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2858 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2859 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2863 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2864 if (ret < 0) {
2865 return ret;
2868 if (ret < cpu->kvm_msr_buf->nmsrs) {
2869 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2870 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2871 (uint32_t)e->index, (uint64_t)e->data);
2874 assert(ret == cpu->kvm_msr_buf->nmsrs);
2875 return 0;
2879 static int kvm_get_fpu(X86CPU *cpu)
2881 CPUX86State *env = &cpu->env;
2882 struct kvm_fpu fpu;
2883 int i, ret;
2885 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
2886 if (ret < 0) {
2887 return ret;
2890 env->fpstt = (fpu.fsw >> 11) & 7;
2891 env->fpus = fpu.fsw;
2892 env->fpuc = fpu.fcw;
2893 env->fpop = fpu.last_opcode;
2894 env->fpip = fpu.last_ip;
2895 env->fpdp = fpu.last_dp;
2896 for (i = 0; i < 8; ++i) {
2897 env->fptags[i] = !((fpu.ftwx >> i) & 1);
2899 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
2900 for (i = 0; i < CPU_NB_REGS; i++) {
2901 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2902 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
2904 env->mxcsr = fpu.mxcsr;
2906 return 0;
2909 static int kvm_get_xsave(X86CPU *cpu)
2911 CPUX86State *env = &cpu->env;
2912 X86XSaveArea *xsave = env->xsave_buf;
2913 int ret;
2915 if (!has_xsave) {
2916 return kvm_get_fpu(cpu);
2919 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
2920 if (ret < 0) {
2921 return ret;
2923 x86_cpu_xrstor_all_areas(cpu, xsave);
2925 return 0;
2928 static int kvm_get_xcrs(X86CPU *cpu)
2930 CPUX86State *env = &cpu->env;
2931 int i, ret;
2932 struct kvm_xcrs xcrs;
2934 if (!has_xcrs) {
2935 return 0;
2938 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
2939 if (ret < 0) {
2940 return ret;
2943 for (i = 0; i < xcrs.nr_xcrs; i++) {
2944 /* Only support xcr0 now */
2945 if (xcrs.xcrs[i].xcr == 0) {
2946 env->xcr0 = xcrs.xcrs[i].value;
2947 break;
2950 return 0;
2953 static int kvm_get_sregs(X86CPU *cpu)
2955 CPUX86State *env = &cpu->env;
2956 struct kvm_sregs sregs;
2957 int bit, i, ret;
2959 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
2960 if (ret < 0) {
2961 return ret;
2964 /* There can only be one pending IRQ set in the bitmap at a time, so try
2965 to find it and save its number instead (-1 for none). */
2966 env->interrupt_injected = -1;
2967 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
2968 if (sregs.interrupt_bitmap[i]) {
2969 bit = ctz64(sregs.interrupt_bitmap[i]);
2970 env->interrupt_injected = i * 64 + bit;
2971 break;
2975 get_seg(&env->segs[R_CS], &sregs.cs);
2976 get_seg(&env->segs[R_DS], &sregs.ds);
2977 get_seg(&env->segs[R_ES], &sregs.es);
2978 get_seg(&env->segs[R_FS], &sregs.fs);
2979 get_seg(&env->segs[R_GS], &sregs.gs);
2980 get_seg(&env->segs[R_SS], &sregs.ss);
2982 get_seg(&env->tr, &sregs.tr);
2983 get_seg(&env->ldt, &sregs.ldt);
2985 env->idt.limit = sregs.idt.limit;
2986 env->idt.base = sregs.idt.base;
2987 env->gdt.limit = sregs.gdt.limit;
2988 env->gdt.base = sregs.gdt.base;
2990 env->cr[0] = sregs.cr0;
2991 env->cr[2] = sregs.cr2;
2992 env->cr[3] = sregs.cr3;
2993 env->cr[4] = sregs.cr4;
2995 env->efer = sregs.efer;
2997 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
2998 x86_update_hflags(env);
3000 return 0;
3003 static int kvm_get_msrs(X86CPU *cpu)
3005 CPUX86State *env = &cpu->env;
3006 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3007 int ret, i;
3008 uint64_t mtrr_top_bits;
3010 kvm_msr_buf_reset(cpu);
3012 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3013 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3014 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3015 kvm_msr_entry_add(cpu, MSR_PAT, 0);
3016 if (has_msr_star) {
3017 kvm_msr_entry_add(cpu, MSR_STAR, 0);
3019 if (has_msr_hsave_pa) {
3020 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3022 if (has_msr_tsc_aux) {
3023 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3025 if (has_msr_tsc_adjust) {
3026 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3028 if (has_msr_tsc_deadline) {
3029 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3031 if (has_msr_misc_enable) {
3032 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3034 if (has_msr_smbase) {
3035 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3037 if (has_msr_smi_count) {
3038 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3040 if (has_msr_feature_control) {
3041 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3043 if (has_msr_bndcfgs) {
3044 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3046 if (has_msr_xss) {
3047 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3049 if (has_msr_spec_ctrl) {
3050 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3052 if (has_msr_virt_ssbd) {
3053 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3055 if (!env->tsc_valid) {
3056 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3057 env->tsc_valid = !runstate_is_running();
3060 #ifdef TARGET_X86_64
3061 if (lm_capable_kernel) {
3062 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3063 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3064 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3065 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3067 #endif
3068 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3069 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3070 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3071 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3073 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3074 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3076 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3077 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3079 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3080 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3082 if (has_architectural_pmu_version > 0) {
3083 if (has_architectural_pmu_version > 1) {
3084 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3085 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3086 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3087 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3089 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3090 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3092 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3093 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3094 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3098 if (env->mcg_cap) {
3099 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3100 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3101 if (has_msr_mcg_ext_ctl) {
3102 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3104 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3105 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3109 if (has_msr_hv_hypercall) {
3110 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3111 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3113 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3114 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3116 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3117 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3119 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3120 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3121 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3122 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3124 if (has_msr_hv_crash) {
3125 int j;
3127 for (j = 0; j < HV_CRASH_PARAMS; j++) {
3128 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3131 if (has_msr_hv_runtime) {
3132 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3134 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3135 uint32_t msr;
3137 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3138 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3139 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3140 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3141 kvm_msr_entry_add(cpu, msr, 0);
3144 if (has_msr_hv_stimer) {
3145 uint32_t msr;
3147 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3148 msr++) {
3149 kvm_msr_entry_add(cpu, msr, 0);
3152 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3153 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3154 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3155 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3156 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3157 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3158 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3159 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3160 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3161 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3162 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3163 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3164 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3165 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3166 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3167 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3171 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3172 int addr_num =
3173 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3175 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3176 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3177 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3178 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3179 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3180 for (i = 0; i < addr_num; i++) {
3181 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3185 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3186 if (ret < 0) {
3187 return ret;
3190 if (ret < cpu->kvm_msr_buf->nmsrs) {
3191 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3192 error_report("error: failed to get MSR 0x%" PRIx32,
3193 (uint32_t)e->index);
3196 assert(ret == cpu->kvm_msr_buf->nmsrs);
3198 * MTRR masks: Each mask consists of 5 parts
3199 * a 10..0: must be zero
3200 * b 11 : valid bit
3201 * c n-1.12: actual mask bits
3202 * d 51..n: reserved must be zero
3203 * e 63.52: reserved must be zero
3205 * 'n' is the number of physical bits supported by the CPU and is
3206 * apparently always <= 52. We know our 'n' but don't know what
3207 * the destinations 'n' is; it might be smaller, in which case
3208 * it masks (c) on loading. It might be larger, in which case
3209 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3210 * we're migrating to.
3213 if (cpu->fill_mtrr_mask) {
3214 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3215 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3216 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3217 } else {
3218 mtrr_top_bits = 0;
3221 for (i = 0; i < ret; i++) {
3222 uint32_t index = msrs[i].index;
3223 switch (index) {
3224 case MSR_IA32_SYSENTER_CS:
3225 env->sysenter_cs = msrs[i].data;
3226 break;
3227 case MSR_IA32_SYSENTER_ESP:
3228 env->sysenter_esp = msrs[i].data;
3229 break;
3230 case MSR_IA32_SYSENTER_EIP:
3231 env->sysenter_eip = msrs[i].data;
3232 break;
3233 case MSR_PAT:
3234 env->pat = msrs[i].data;
3235 break;
3236 case MSR_STAR:
3237 env->star = msrs[i].data;
3238 break;
3239 #ifdef TARGET_X86_64
3240 case MSR_CSTAR:
3241 env->cstar = msrs[i].data;
3242 break;
3243 case MSR_KERNELGSBASE:
3244 env->kernelgsbase = msrs[i].data;
3245 break;
3246 case MSR_FMASK:
3247 env->fmask = msrs[i].data;
3248 break;
3249 case MSR_LSTAR:
3250 env->lstar = msrs[i].data;
3251 break;
3252 #endif
3253 case MSR_IA32_TSC:
3254 env->tsc = msrs[i].data;
3255 break;
3256 case MSR_TSC_AUX:
3257 env->tsc_aux = msrs[i].data;
3258 break;
3259 case MSR_TSC_ADJUST:
3260 env->tsc_adjust = msrs[i].data;
3261 break;
3262 case MSR_IA32_TSCDEADLINE:
3263 env->tsc_deadline = msrs[i].data;
3264 break;
3265 case MSR_VM_HSAVE_PA:
3266 env->vm_hsave = msrs[i].data;
3267 break;
3268 case MSR_KVM_SYSTEM_TIME:
3269 env->system_time_msr = msrs[i].data;
3270 break;
3271 case MSR_KVM_WALL_CLOCK:
3272 env->wall_clock_msr = msrs[i].data;
3273 break;
3274 case MSR_MCG_STATUS:
3275 env->mcg_status = msrs[i].data;
3276 break;
3277 case MSR_MCG_CTL:
3278 env->mcg_ctl = msrs[i].data;
3279 break;
3280 case MSR_MCG_EXT_CTL:
3281 env->mcg_ext_ctl = msrs[i].data;
3282 break;
3283 case MSR_IA32_MISC_ENABLE:
3284 env->msr_ia32_misc_enable = msrs[i].data;
3285 break;
3286 case MSR_IA32_SMBASE:
3287 env->smbase = msrs[i].data;
3288 break;
3289 case MSR_SMI_COUNT:
3290 env->msr_smi_count = msrs[i].data;
3291 break;
3292 case MSR_IA32_FEATURE_CONTROL:
3293 env->msr_ia32_feature_control = msrs[i].data;
3294 break;
3295 case MSR_IA32_BNDCFGS:
3296 env->msr_bndcfgs = msrs[i].data;
3297 break;
3298 case MSR_IA32_XSS:
3299 env->xss = msrs[i].data;
3300 break;
3301 default:
3302 if (msrs[i].index >= MSR_MC0_CTL &&
3303 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3304 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3306 break;
3307 case MSR_KVM_ASYNC_PF_EN:
3308 env->async_pf_en_msr = msrs[i].data;
3309 break;
3310 case MSR_KVM_PV_EOI_EN:
3311 env->pv_eoi_en_msr = msrs[i].data;
3312 break;
3313 case MSR_KVM_STEAL_TIME:
3314 env->steal_time_msr = msrs[i].data;
3315 break;
3316 case MSR_KVM_POLL_CONTROL: {
3317 env->poll_control_msr = msrs[i].data;
3318 break;
3320 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3321 env->msr_fixed_ctr_ctrl = msrs[i].data;
3322 break;
3323 case MSR_CORE_PERF_GLOBAL_CTRL:
3324 env->msr_global_ctrl = msrs[i].data;
3325 break;
3326 case MSR_CORE_PERF_GLOBAL_STATUS:
3327 env->msr_global_status = msrs[i].data;
3328 break;
3329 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3330 env->msr_global_ovf_ctrl = msrs[i].data;
3331 break;
3332 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3333 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3334 break;
3335 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3336 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3337 break;
3338 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3339 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3340 break;
3341 case HV_X64_MSR_HYPERCALL:
3342 env->msr_hv_hypercall = msrs[i].data;
3343 break;
3344 case HV_X64_MSR_GUEST_OS_ID:
3345 env->msr_hv_guest_os_id = msrs[i].data;
3346 break;
3347 case HV_X64_MSR_APIC_ASSIST_PAGE:
3348 env->msr_hv_vapic = msrs[i].data;
3349 break;
3350 case HV_X64_MSR_REFERENCE_TSC:
3351 env->msr_hv_tsc = msrs[i].data;
3352 break;
3353 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3354 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3355 break;
3356 case HV_X64_MSR_VP_RUNTIME:
3357 env->msr_hv_runtime = msrs[i].data;
3358 break;
3359 case HV_X64_MSR_SCONTROL:
3360 env->msr_hv_synic_control = msrs[i].data;
3361 break;
3362 case HV_X64_MSR_SIEFP:
3363 env->msr_hv_synic_evt_page = msrs[i].data;
3364 break;
3365 case HV_X64_MSR_SIMP:
3366 env->msr_hv_synic_msg_page = msrs[i].data;
3367 break;
3368 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3369 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3370 break;
3371 case HV_X64_MSR_STIMER0_CONFIG:
3372 case HV_X64_MSR_STIMER1_CONFIG:
3373 case HV_X64_MSR_STIMER2_CONFIG:
3374 case HV_X64_MSR_STIMER3_CONFIG:
3375 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3376 msrs[i].data;
3377 break;
3378 case HV_X64_MSR_STIMER0_COUNT:
3379 case HV_X64_MSR_STIMER1_COUNT:
3380 case HV_X64_MSR_STIMER2_COUNT:
3381 case HV_X64_MSR_STIMER3_COUNT:
3382 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3383 msrs[i].data;
3384 break;
3385 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3386 env->msr_hv_reenlightenment_control = msrs[i].data;
3387 break;
3388 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3389 env->msr_hv_tsc_emulation_control = msrs[i].data;
3390 break;
3391 case HV_X64_MSR_TSC_EMULATION_STATUS:
3392 env->msr_hv_tsc_emulation_status = msrs[i].data;
3393 break;
3394 case MSR_MTRRdefType:
3395 env->mtrr_deftype = msrs[i].data;
3396 break;
3397 case MSR_MTRRfix64K_00000:
3398 env->mtrr_fixed[0] = msrs[i].data;
3399 break;
3400 case MSR_MTRRfix16K_80000:
3401 env->mtrr_fixed[1] = msrs[i].data;
3402 break;
3403 case MSR_MTRRfix16K_A0000:
3404 env->mtrr_fixed[2] = msrs[i].data;
3405 break;
3406 case MSR_MTRRfix4K_C0000:
3407 env->mtrr_fixed[3] = msrs[i].data;
3408 break;
3409 case MSR_MTRRfix4K_C8000:
3410 env->mtrr_fixed[4] = msrs[i].data;
3411 break;
3412 case MSR_MTRRfix4K_D0000:
3413 env->mtrr_fixed[5] = msrs[i].data;
3414 break;
3415 case MSR_MTRRfix4K_D8000:
3416 env->mtrr_fixed[6] = msrs[i].data;
3417 break;
3418 case MSR_MTRRfix4K_E0000:
3419 env->mtrr_fixed[7] = msrs[i].data;
3420 break;
3421 case MSR_MTRRfix4K_E8000:
3422 env->mtrr_fixed[8] = msrs[i].data;
3423 break;
3424 case MSR_MTRRfix4K_F0000:
3425 env->mtrr_fixed[9] = msrs[i].data;
3426 break;
3427 case MSR_MTRRfix4K_F8000:
3428 env->mtrr_fixed[10] = msrs[i].data;
3429 break;
3430 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3431 if (index & 1) {
3432 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3433 mtrr_top_bits;
3434 } else {
3435 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3437 break;
3438 case MSR_IA32_SPEC_CTRL:
3439 env->spec_ctrl = msrs[i].data;
3440 break;
3441 case MSR_VIRT_SSBD:
3442 env->virt_ssbd = msrs[i].data;
3443 break;
3444 case MSR_IA32_RTIT_CTL:
3445 env->msr_rtit_ctrl = msrs[i].data;
3446 break;
3447 case MSR_IA32_RTIT_STATUS:
3448 env->msr_rtit_status = msrs[i].data;
3449 break;
3450 case MSR_IA32_RTIT_OUTPUT_BASE:
3451 env->msr_rtit_output_base = msrs[i].data;
3452 break;
3453 case MSR_IA32_RTIT_OUTPUT_MASK:
3454 env->msr_rtit_output_mask = msrs[i].data;
3455 break;
3456 case MSR_IA32_RTIT_CR3_MATCH:
3457 env->msr_rtit_cr3_match = msrs[i].data;
3458 break;
3459 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3460 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3461 break;
3465 return 0;
3468 static int kvm_put_mp_state(X86CPU *cpu)
3470 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3472 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3475 static int kvm_get_mp_state(X86CPU *cpu)
3477 CPUState *cs = CPU(cpu);
3478 CPUX86State *env = &cpu->env;
3479 struct kvm_mp_state mp_state;
3480 int ret;
3482 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3483 if (ret < 0) {
3484 return ret;
3486 env->mp_state = mp_state.mp_state;
3487 if (kvm_irqchip_in_kernel()) {
3488 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3490 return 0;
3493 static int kvm_get_apic(X86CPU *cpu)
3495 DeviceState *apic = cpu->apic_state;
3496 struct kvm_lapic_state kapic;
3497 int ret;
3499 if (apic && kvm_irqchip_in_kernel()) {
3500 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3501 if (ret < 0) {
3502 return ret;
3505 kvm_get_apic_state(apic, &kapic);
3507 return 0;
3510 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3512 CPUState *cs = CPU(cpu);
3513 CPUX86State *env = &cpu->env;
3514 struct kvm_vcpu_events events = {};
3516 if (!kvm_has_vcpu_events()) {
3517 return 0;
3520 events.flags = 0;
3522 if (has_exception_payload) {
3523 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3524 events.exception.pending = env->exception_pending;
3525 events.exception_has_payload = env->exception_has_payload;
3526 events.exception_payload = env->exception_payload;
3528 events.exception.nr = env->exception_nr;
3529 events.exception.injected = env->exception_injected;
3530 events.exception.has_error_code = env->has_error_code;
3531 events.exception.error_code = env->error_code;
3533 events.interrupt.injected = (env->interrupt_injected >= 0);
3534 events.interrupt.nr = env->interrupt_injected;
3535 events.interrupt.soft = env->soft_interrupt;
3537 events.nmi.injected = env->nmi_injected;
3538 events.nmi.pending = env->nmi_pending;
3539 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3541 events.sipi_vector = env->sipi_vector;
3543 if (has_msr_smbase) {
3544 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3545 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3546 if (kvm_irqchip_in_kernel()) {
3547 /* As soon as these are moved to the kernel, remove them
3548 * from cs->interrupt_request.
3550 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3551 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3552 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3553 } else {
3554 /* Keep these in cs->interrupt_request. */
3555 events.smi.pending = 0;
3556 events.smi.latched_init = 0;
3558 /* Stop SMI delivery on old machine types to avoid a reboot
3559 * on an inward migration of an old VM.
3561 if (!cpu->kvm_no_smi_migration) {
3562 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3566 if (level >= KVM_PUT_RESET_STATE) {
3567 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3568 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3569 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3573 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3576 static int kvm_get_vcpu_events(X86CPU *cpu)
3578 CPUX86State *env = &cpu->env;
3579 struct kvm_vcpu_events events;
3580 int ret;
3582 if (!kvm_has_vcpu_events()) {
3583 return 0;
3586 memset(&events, 0, sizeof(events));
3587 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3588 if (ret < 0) {
3589 return ret;
3592 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3593 env->exception_pending = events.exception.pending;
3594 env->exception_has_payload = events.exception_has_payload;
3595 env->exception_payload = events.exception_payload;
3596 } else {
3597 env->exception_pending = 0;
3598 env->exception_has_payload = false;
3600 env->exception_injected = events.exception.injected;
3601 env->exception_nr =
3602 (env->exception_pending || env->exception_injected) ?
3603 events.exception.nr : -1;
3604 env->has_error_code = events.exception.has_error_code;
3605 env->error_code = events.exception.error_code;
3607 env->interrupt_injected =
3608 events.interrupt.injected ? events.interrupt.nr : -1;
3609 env->soft_interrupt = events.interrupt.soft;
3611 env->nmi_injected = events.nmi.injected;
3612 env->nmi_pending = events.nmi.pending;
3613 if (events.nmi.masked) {
3614 env->hflags2 |= HF2_NMI_MASK;
3615 } else {
3616 env->hflags2 &= ~HF2_NMI_MASK;
3619 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3620 if (events.smi.smm) {
3621 env->hflags |= HF_SMM_MASK;
3622 } else {
3623 env->hflags &= ~HF_SMM_MASK;
3625 if (events.smi.pending) {
3626 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3627 } else {
3628 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3630 if (events.smi.smm_inside_nmi) {
3631 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3632 } else {
3633 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3635 if (events.smi.latched_init) {
3636 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3637 } else {
3638 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3642 env->sipi_vector = events.sipi_vector;
3644 return 0;
3647 static int kvm_guest_debug_workarounds(X86CPU *cpu)
3649 CPUState *cs = CPU(cpu);
3650 CPUX86State *env = &cpu->env;
3651 int ret = 0;
3652 unsigned long reinject_trap = 0;
3654 if (!kvm_has_vcpu_events()) {
3655 if (env->exception_nr == EXCP01_DB) {
3656 reinject_trap = KVM_GUESTDBG_INJECT_DB;
3657 } else if (env->exception_injected == EXCP03_INT3) {
3658 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3660 kvm_reset_exception(env);
3664 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3665 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3666 * by updating the debug state once again if single-stepping is on.
3667 * Another reason to call kvm_update_guest_debug here is a pending debug
3668 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3669 * reinject them via SET_GUEST_DEBUG.
3671 if (reinject_trap ||
3672 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3673 ret = kvm_update_guest_debug(cs, reinject_trap);
3675 return ret;
3678 static int kvm_put_debugregs(X86CPU *cpu)
3680 CPUX86State *env = &cpu->env;
3681 struct kvm_debugregs dbgregs;
3682 int i;
3684 if (!kvm_has_debugregs()) {
3685 return 0;
3688 memset(&dbgregs, 0, sizeof(dbgregs));
3689 for (i = 0; i < 4; i++) {
3690 dbgregs.db[i] = env->dr[i];
3692 dbgregs.dr6 = env->dr[6];
3693 dbgregs.dr7 = env->dr[7];
3694 dbgregs.flags = 0;
3696 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3699 static int kvm_get_debugregs(X86CPU *cpu)
3701 CPUX86State *env = &cpu->env;
3702 struct kvm_debugregs dbgregs;
3703 int i, ret;
3705 if (!kvm_has_debugregs()) {
3706 return 0;
3709 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3710 if (ret < 0) {
3711 return ret;
3713 for (i = 0; i < 4; i++) {
3714 env->dr[i] = dbgregs.db[i];
3716 env->dr[4] = env->dr[6] = dbgregs.dr6;
3717 env->dr[5] = env->dr[7] = dbgregs.dr7;
3719 return 0;
3722 static int kvm_put_nested_state(X86CPU *cpu)
3724 CPUX86State *env = &cpu->env;
3725 int max_nested_state_len = kvm_max_nested_state_length();
3727 if (!env->nested_state) {
3728 return 0;
3731 assert(env->nested_state->size <= max_nested_state_len);
3732 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3735 static int kvm_get_nested_state(X86CPU *cpu)
3737 CPUX86State *env = &cpu->env;
3738 int max_nested_state_len = kvm_max_nested_state_length();
3739 int ret;
3741 if (!env->nested_state) {
3742 return 0;
3746 * It is possible that migration restored a smaller size into
3747 * nested_state->hdr.size than what our kernel support.
3748 * We preserve migration origin nested_state->hdr.size for
3749 * call to KVM_SET_NESTED_STATE but wish that our next call
3750 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3752 env->nested_state->size = max_nested_state_len;
3754 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3755 if (ret < 0) {
3756 return ret;
3759 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3760 env->hflags |= HF_GUEST_MASK;
3761 } else {
3762 env->hflags &= ~HF_GUEST_MASK;
3765 return ret;
3768 int kvm_arch_put_registers(CPUState *cpu, int level)
3770 X86CPU *x86_cpu = X86_CPU(cpu);
3771 int ret;
3773 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3775 if (level >= KVM_PUT_RESET_STATE) {
3776 ret = kvm_put_nested_state(x86_cpu);
3777 if (ret < 0) {
3778 return ret;
3781 ret = kvm_put_msr_feature_control(x86_cpu);
3782 if (ret < 0) {
3783 return ret;
3787 if (level == KVM_PUT_FULL_STATE) {
3788 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3789 * because TSC frequency mismatch shouldn't abort migration,
3790 * unless the user explicitly asked for a more strict TSC
3791 * setting (e.g. using an explicit "tsc-freq" option).
3793 kvm_arch_set_tsc_khz(cpu);
3796 ret = kvm_getput_regs(x86_cpu, 1);
3797 if (ret < 0) {
3798 return ret;
3800 ret = kvm_put_xsave(x86_cpu);
3801 if (ret < 0) {
3802 return ret;
3804 ret = kvm_put_xcrs(x86_cpu);
3805 if (ret < 0) {
3806 return ret;
3808 ret = kvm_put_sregs(x86_cpu);
3809 if (ret < 0) {
3810 return ret;
3812 /* must be before kvm_put_msrs */
3813 ret = kvm_inject_mce_oldstyle(x86_cpu);
3814 if (ret < 0) {
3815 return ret;
3817 ret = kvm_put_msrs(x86_cpu, level);
3818 if (ret < 0) {
3819 return ret;
3821 ret = kvm_put_vcpu_events(x86_cpu, level);
3822 if (ret < 0) {
3823 return ret;
3825 if (level >= KVM_PUT_RESET_STATE) {
3826 ret = kvm_put_mp_state(x86_cpu);
3827 if (ret < 0) {
3828 return ret;
3832 ret = kvm_put_tscdeadline_msr(x86_cpu);
3833 if (ret < 0) {
3834 return ret;
3836 ret = kvm_put_debugregs(x86_cpu);
3837 if (ret < 0) {
3838 return ret;
3840 /* must be last */
3841 ret = kvm_guest_debug_workarounds(x86_cpu);
3842 if (ret < 0) {
3843 return ret;
3845 return 0;
3848 int kvm_arch_get_registers(CPUState *cs)
3850 X86CPU *cpu = X86_CPU(cs);
3851 int ret;
3853 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
3855 ret = kvm_get_vcpu_events(cpu);
3856 if (ret < 0) {
3857 goto out;
3860 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3861 * KVM_GET_REGS and KVM_GET_SREGS.
3863 ret = kvm_get_mp_state(cpu);
3864 if (ret < 0) {
3865 goto out;
3867 ret = kvm_getput_regs(cpu, 0);
3868 if (ret < 0) {
3869 goto out;
3871 ret = kvm_get_xsave(cpu);
3872 if (ret < 0) {
3873 goto out;
3875 ret = kvm_get_xcrs(cpu);
3876 if (ret < 0) {
3877 goto out;
3879 ret = kvm_get_sregs(cpu);
3880 if (ret < 0) {
3881 goto out;
3883 ret = kvm_get_msrs(cpu);
3884 if (ret < 0) {
3885 goto out;
3887 ret = kvm_get_apic(cpu);
3888 if (ret < 0) {
3889 goto out;
3891 ret = kvm_get_debugregs(cpu);
3892 if (ret < 0) {
3893 goto out;
3895 ret = kvm_get_nested_state(cpu);
3896 if (ret < 0) {
3897 goto out;
3899 ret = 0;
3900 out:
3901 cpu_sync_bndcs_hflags(&cpu->env);
3902 return ret;
3905 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
3907 X86CPU *x86_cpu = X86_CPU(cpu);
3908 CPUX86State *env = &x86_cpu->env;
3909 int ret;
3911 /* Inject NMI */
3912 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
3913 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
3914 qemu_mutex_lock_iothread();
3915 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
3916 qemu_mutex_unlock_iothread();
3917 DPRINTF("injected NMI\n");
3918 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
3919 if (ret < 0) {
3920 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
3921 strerror(-ret));
3924 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
3925 qemu_mutex_lock_iothread();
3926 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
3927 qemu_mutex_unlock_iothread();
3928 DPRINTF("injected SMI\n");
3929 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
3930 if (ret < 0) {
3931 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
3932 strerror(-ret));
3937 if (!kvm_pic_in_kernel()) {
3938 qemu_mutex_lock_iothread();
3941 /* Force the VCPU out of its inner loop to process any INIT requests
3942 * or (for userspace APIC, but it is cheap to combine the checks here)
3943 * pending TPR access reports.
3945 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
3946 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
3947 !(env->hflags & HF_SMM_MASK)) {
3948 cpu->exit_request = 1;
3950 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
3951 cpu->exit_request = 1;
3955 if (!kvm_pic_in_kernel()) {
3956 /* Try to inject an interrupt if the guest can accept it */
3957 if (run->ready_for_interrupt_injection &&
3958 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
3959 (env->eflags & IF_MASK)) {
3960 int irq;
3962 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
3963 irq = cpu_get_pic_interrupt(env);
3964 if (irq >= 0) {
3965 struct kvm_interrupt intr;
3967 intr.irq = irq;
3968 DPRINTF("injected interrupt %d\n", irq);
3969 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
3970 if (ret < 0) {
3971 fprintf(stderr,
3972 "KVM: injection failed, interrupt lost (%s)\n",
3973 strerror(-ret));
3978 /* If we have an interrupt but the guest is not ready to receive an
3979 * interrupt, request an interrupt window exit. This will
3980 * cause a return to userspace as soon as the guest is ready to
3981 * receive interrupts. */
3982 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
3983 run->request_interrupt_window = 1;
3984 } else {
3985 run->request_interrupt_window = 0;
3988 DPRINTF("setting tpr\n");
3989 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
3991 qemu_mutex_unlock_iothread();
3995 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
3997 X86CPU *x86_cpu = X86_CPU(cpu);
3998 CPUX86State *env = &x86_cpu->env;
4000 if (run->flags & KVM_RUN_X86_SMM) {
4001 env->hflags |= HF_SMM_MASK;
4002 } else {
4003 env->hflags &= ~HF_SMM_MASK;
4005 if (run->if_flag) {
4006 env->eflags |= IF_MASK;
4007 } else {
4008 env->eflags &= ~IF_MASK;
4011 /* We need to protect the apic state against concurrent accesses from
4012 * different threads in case the userspace irqchip is used. */
4013 if (!kvm_irqchip_in_kernel()) {
4014 qemu_mutex_lock_iothread();
4016 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4017 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4018 if (!kvm_irqchip_in_kernel()) {
4019 qemu_mutex_unlock_iothread();
4021 return cpu_get_mem_attrs(env);
4024 int kvm_arch_process_async_events(CPUState *cs)
4026 X86CPU *cpu = X86_CPU(cs);
4027 CPUX86State *env = &cpu->env;
4029 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4030 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4031 assert(env->mcg_cap);
4033 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4035 kvm_cpu_synchronize_state(cs);
4037 if (env->exception_nr == EXCP08_DBLE) {
4038 /* this means triple fault */
4039 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4040 cs->exit_request = 1;
4041 return 0;
4043 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4044 env->has_error_code = 0;
4046 cs->halted = 0;
4047 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4048 env->mp_state = KVM_MP_STATE_RUNNABLE;
4052 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4053 !(env->hflags & HF_SMM_MASK)) {
4054 kvm_cpu_synchronize_state(cs);
4055 do_cpu_init(cpu);
4058 if (kvm_irqchip_in_kernel()) {
4059 return 0;
4062 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4063 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4064 apic_poll_irq(cpu->apic_state);
4066 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4067 (env->eflags & IF_MASK)) ||
4068 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4069 cs->halted = 0;
4071 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4072 kvm_cpu_synchronize_state(cs);
4073 do_cpu_sipi(cpu);
4075 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4076 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4077 kvm_cpu_synchronize_state(cs);
4078 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4079 env->tpr_access_type);
4082 return cs->halted;
4085 static int kvm_handle_halt(X86CPU *cpu)
4087 CPUState *cs = CPU(cpu);
4088 CPUX86State *env = &cpu->env;
4090 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4091 (env->eflags & IF_MASK)) &&
4092 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4093 cs->halted = 1;
4094 return EXCP_HLT;
4097 return 0;
4100 static int kvm_handle_tpr_access(X86CPU *cpu)
4102 CPUState *cs = CPU(cpu);
4103 struct kvm_run *run = cs->kvm_run;
4105 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4106 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4107 : TPR_ACCESS_READ);
4108 return 1;
4111 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4113 static const uint8_t int3 = 0xcc;
4115 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4116 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4117 return -EINVAL;
4119 return 0;
4122 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4124 uint8_t int3;
4126 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
4127 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4128 return -EINVAL;
4130 return 0;
4133 static struct {
4134 target_ulong addr;
4135 int len;
4136 int type;
4137 } hw_breakpoint[4];
4139 static int nb_hw_breakpoint;
4141 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4143 int n;
4145 for (n = 0; n < nb_hw_breakpoint; n++) {
4146 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4147 (hw_breakpoint[n].len == len || len == -1)) {
4148 return n;
4151 return -1;
4154 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4155 target_ulong len, int type)
4157 switch (type) {
4158 case GDB_BREAKPOINT_HW:
4159 len = 1;
4160 break;
4161 case GDB_WATCHPOINT_WRITE:
4162 case GDB_WATCHPOINT_ACCESS:
4163 switch (len) {
4164 case 1:
4165 break;
4166 case 2:
4167 case 4:
4168 case 8:
4169 if (addr & (len - 1)) {
4170 return -EINVAL;
4172 break;
4173 default:
4174 return -EINVAL;
4176 break;
4177 default:
4178 return -ENOSYS;
4181 if (nb_hw_breakpoint == 4) {
4182 return -ENOBUFS;
4184 if (find_hw_breakpoint(addr, len, type) >= 0) {
4185 return -EEXIST;
4187 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4188 hw_breakpoint[nb_hw_breakpoint].len = len;
4189 hw_breakpoint[nb_hw_breakpoint].type = type;
4190 nb_hw_breakpoint++;
4192 return 0;
4195 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4196 target_ulong len, int type)
4198 int n;
4200 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4201 if (n < 0) {
4202 return -ENOENT;
4204 nb_hw_breakpoint--;
4205 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4207 return 0;
4210 void kvm_arch_remove_all_hw_breakpoints(void)
4212 nb_hw_breakpoint = 0;
4215 static CPUWatchpoint hw_watchpoint;
4217 static int kvm_handle_debug(X86CPU *cpu,
4218 struct kvm_debug_exit_arch *arch_info)
4220 CPUState *cs = CPU(cpu);
4221 CPUX86State *env = &cpu->env;
4222 int ret = 0;
4223 int n;
4225 if (arch_info->exception == EXCP01_DB) {
4226 if (arch_info->dr6 & DR6_BS) {
4227 if (cs->singlestep_enabled) {
4228 ret = EXCP_DEBUG;
4230 } else {
4231 for (n = 0; n < 4; n++) {
4232 if (arch_info->dr6 & (1 << n)) {
4233 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4234 case 0x0:
4235 ret = EXCP_DEBUG;
4236 break;
4237 case 0x1:
4238 ret = EXCP_DEBUG;
4239 cs->watchpoint_hit = &hw_watchpoint;
4240 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4241 hw_watchpoint.flags = BP_MEM_WRITE;
4242 break;
4243 case 0x3:
4244 ret = EXCP_DEBUG;
4245 cs->watchpoint_hit = &hw_watchpoint;
4246 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4247 hw_watchpoint.flags = BP_MEM_ACCESS;
4248 break;
4253 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4254 ret = EXCP_DEBUG;
4256 if (ret == 0) {
4257 cpu_synchronize_state(cs);
4258 assert(env->exception_nr == -1);
4260 /* pass to guest */
4261 kvm_queue_exception(env, arch_info->exception,
4262 arch_info->exception == EXCP01_DB,
4263 arch_info->dr6);
4264 env->has_error_code = 0;
4267 return ret;
4270 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4272 const uint8_t type_code[] = {
4273 [GDB_BREAKPOINT_HW] = 0x0,
4274 [GDB_WATCHPOINT_WRITE] = 0x1,
4275 [GDB_WATCHPOINT_ACCESS] = 0x3
4277 const uint8_t len_code[] = {
4278 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4280 int n;
4282 if (kvm_sw_breakpoints_active(cpu)) {
4283 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4285 if (nb_hw_breakpoint > 0) {
4286 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4287 dbg->arch.debugreg[7] = 0x0600;
4288 for (n = 0; n < nb_hw_breakpoint; n++) {
4289 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4290 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4291 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4292 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4297 static bool host_supports_vmx(void)
4299 uint32_t ecx, unused;
4301 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4302 return ecx & CPUID_EXT_VMX;
4305 #define VMX_INVALID_GUEST_STATE 0x80000021
4307 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4309 X86CPU *cpu = X86_CPU(cs);
4310 uint64_t code;
4311 int ret;
4313 switch (run->exit_reason) {
4314 case KVM_EXIT_HLT:
4315 DPRINTF("handle_hlt\n");
4316 qemu_mutex_lock_iothread();
4317 ret = kvm_handle_halt(cpu);
4318 qemu_mutex_unlock_iothread();
4319 break;
4320 case KVM_EXIT_SET_TPR:
4321 ret = 0;
4322 break;
4323 case KVM_EXIT_TPR_ACCESS:
4324 qemu_mutex_lock_iothread();
4325 ret = kvm_handle_tpr_access(cpu);
4326 qemu_mutex_unlock_iothread();
4327 break;
4328 case KVM_EXIT_FAIL_ENTRY:
4329 code = run->fail_entry.hardware_entry_failure_reason;
4330 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4331 code);
4332 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4333 fprintf(stderr,
4334 "\nIf you're running a guest on an Intel machine without "
4335 "unrestricted mode\n"
4336 "support, the failure can be most likely due to the guest "
4337 "entering an invalid\n"
4338 "state for Intel VT. For example, the guest maybe running "
4339 "in big real mode\n"
4340 "which is not supported on less recent Intel processors."
4341 "\n\n");
4343 ret = -1;
4344 break;
4345 case KVM_EXIT_EXCEPTION:
4346 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4347 run->ex.exception, run->ex.error_code);
4348 ret = -1;
4349 break;
4350 case KVM_EXIT_DEBUG:
4351 DPRINTF("kvm_exit_debug\n");
4352 qemu_mutex_lock_iothread();
4353 ret = kvm_handle_debug(cpu, &run->debug.arch);
4354 qemu_mutex_unlock_iothread();
4355 break;
4356 case KVM_EXIT_HYPERV:
4357 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4358 break;
4359 case KVM_EXIT_IOAPIC_EOI:
4360 ioapic_eoi_broadcast(run->eoi.vector);
4361 ret = 0;
4362 break;
4363 default:
4364 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4365 ret = -1;
4366 break;
4369 return ret;
4372 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4374 X86CPU *cpu = X86_CPU(cs);
4375 CPUX86State *env = &cpu->env;
4377 kvm_cpu_synchronize_state(cs);
4378 return !(env->cr[0] & CR0_PE_MASK) ||
4379 ((env->segs[R_CS].selector & 3) != 3);
4382 void kvm_arch_init_irq_routing(KVMState *s)
4384 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
4385 /* If kernel can't do irq routing, interrupt source
4386 * override 0->2 cannot be set up as required by HPET.
4387 * So we have to disable it.
4389 no_hpet = 1;
4391 /* We know at this point that we're using the in-kernel
4392 * irqchip, so we can use irqfds, and on x86 we know
4393 * we can use msi via irqfd and GSI routing.
4395 kvm_msi_via_irqfd_allowed = true;
4396 kvm_gsi_routing_allowed = true;
4398 if (kvm_irqchip_is_split()) {
4399 int i;
4401 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4402 MSI routes for signaling interrupts to the local apics. */
4403 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4404 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4405 error_report("Could not enable split IRQ mode.");
4406 exit(1);
4412 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
4414 int ret;
4415 if (machine_kernel_irqchip_split(ms)) {
4416 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4417 if (ret) {
4418 error_report("Could not enable split irqchip mode: %s",
4419 strerror(-ret));
4420 exit(1);
4421 } else {
4422 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4423 kvm_split_irqchip = true;
4424 return 1;
4426 } else {
4427 return 0;
4431 /* Classic KVM device assignment interface. Will remain x86 only. */
4432 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
4433 uint32_t flags, uint32_t *dev_id)
4435 struct kvm_assigned_pci_dev dev_data = {
4436 .segnr = dev_addr->domain,
4437 .busnr = dev_addr->bus,
4438 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
4439 .flags = flags,
4441 int ret;
4443 dev_data.assigned_dev_id =
4444 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
4446 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
4447 if (ret < 0) {
4448 return ret;
4451 *dev_id = dev_data.assigned_dev_id;
4453 return 0;
4456 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
4458 struct kvm_assigned_pci_dev dev_data = {
4459 .assigned_dev_id = dev_id,
4462 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
4465 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
4466 uint32_t irq_type, uint32_t guest_irq)
4468 struct kvm_assigned_irq assigned_irq = {
4469 .assigned_dev_id = dev_id,
4470 .guest_irq = guest_irq,
4471 .flags = irq_type,
4474 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
4475 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
4476 } else {
4477 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
4481 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
4482 uint32_t guest_irq)
4484 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
4485 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
4487 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
4490 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
4492 struct kvm_assigned_pci_dev dev_data = {
4493 .assigned_dev_id = dev_id,
4494 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
4497 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
4500 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
4501 uint32_t type)
4503 struct kvm_assigned_irq assigned_irq = {
4504 .assigned_dev_id = dev_id,
4505 .flags = type,
4508 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
4511 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
4513 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
4514 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
4517 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
4519 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
4520 KVM_DEV_IRQ_GUEST_MSI, virq);
4523 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
4525 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
4526 KVM_DEV_IRQ_HOST_MSI);
4529 bool kvm_device_msix_supported(KVMState *s)
4531 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
4532 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
4533 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
4536 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
4537 uint32_t nr_vectors)
4539 struct kvm_assigned_msix_nr msix_nr = {
4540 .assigned_dev_id = dev_id,
4541 .entry_nr = nr_vectors,
4544 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
4547 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
4548 int virq)
4550 struct kvm_assigned_msix_entry msix_entry = {
4551 .assigned_dev_id = dev_id,
4552 .gsi = virq,
4553 .entry = vector,
4556 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
4559 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
4561 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
4562 KVM_DEV_IRQ_GUEST_MSIX, 0);
4565 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
4567 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
4568 KVM_DEV_IRQ_HOST_MSIX);
4571 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4572 uint64_t address, uint32_t data, PCIDevice *dev)
4574 X86IOMMUState *iommu = x86_iommu_get_default();
4576 if (iommu) {
4577 int ret;
4578 MSIMessage src, dst;
4579 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
4581 if (!class->int_remap) {
4582 return 0;
4585 src.address = route->u.msi.address_hi;
4586 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4587 src.address |= route->u.msi.address_lo;
4588 src.data = route->u.msi.data;
4590 ret = class->int_remap(iommu, &src, &dst, dev ? \
4591 pci_requester_id(dev) : \
4592 X86_IOMMU_SID_INVALID);
4593 if (ret) {
4594 trace_kvm_x86_fixup_msi_error(route->gsi);
4595 return 1;
4598 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4599 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4600 route->u.msi.data = dst.data;
4603 return 0;
4606 typedef struct MSIRouteEntry MSIRouteEntry;
4608 struct MSIRouteEntry {
4609 PCIDevice *dev; /* Device pointer */
4610 int vector; /* MSI/MSIX vector index */
4611 int virq; /* Virtual IRQ index */
4612 QLIST_ENTRY(MSIRouteEntry) list;
4615 /* List of used GSI routes */
4616 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4617 QLIST_HEAD_INITIALIZER(msi_route_list);
4619 static void kvm_update_msi_routes_all(void *private, bool global,
4620 uint32_t index, uint32_t mask)
4622 int cnt = 0, vector;
4623 MSIRouteEntry *entry;
4624 MSIMessage msg;
4625 PCIDevice *dev;
4627 /* TODO: explicit route update */
4628 QLIST_FOREACH(entry, &msi_route_list, list) {
4629 cnt++;
4630 vector = entry->vector;
4631 dev = entry->dev;
4632 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4633 msg = msix_get_message(dev, vector);
4634 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4635 msg = msi_get_message(dev, vector);
4636 } else {
4638 * Either MSI/MSIX is disabled for the device, or the
4639 * specific message was masked out. Skip this one.
4641 continue;
4643 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4645 kvm_irqchip_commit_routes(kvm_state);
4646 trace_kvm_x86_update_msi_routes(cnt);
4649 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4650 int vector, PCIDevice *dev)
4652 static bool notify_list_inited = false;
4653 MSIRouteEntry *entry;
4655 if (!dev) {
4656 /* These are (possibly) IOAPIC routes only used for split
4657 * kernel irqchip mode, while what we are housekeeping are
4658 * PCI devices only. */
4659 return 0;
4662 entry = g_new0(MSIRouteEntry, 1);
4663 entry->dev = dev;
4664 entry->vector = vector;
4665 entry->virq = route->gsi;
4666 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4668 trace_kvm_x86_add_msi_route(route->gsi);
4670 if (!notify_list_inited) {
4671 /* For the first time we do add route, add ourselves into
4672 * IOMMU's IEC notify list if needed. */
4673 X86IOMMUState *iommu = x86_iommu_get_default();
4674 if (iommu) {
4675 x86_iommu_iec_register_notifier(iommu,
4676 kvm_update_msi_routes_all,
4677 NULL);
4679 notify_list_inited = true;
4681 return 0;
4684 int kvm_arch_release_virq_post(int virq)
4686 MSIRouteEntry *entry, *next;
4687 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4688 if (entry->virq == virq) {
4689 trace_kvm_x86_remove_msi_route(virq);
4690 QLIST_REMOVE(entry, list);
4691 g_free(entry);
4692 break;
4695 return 0;
4698 int kvm_arch_msi_data_to_gsi(uint32_t data)
4700 abort();