gdbstub: add multiprocess support to gdb_vm_state_change()
[qemu/ar7.git] / gdbstub.c
blobedee38b6136383762f688b90b7ecf6c1a63af764
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #include "qemu/error-report.h"
22 #include "qemu/cutils.h"
23 #include "trace-root.h"
24 #ifdef CONFIG_USER_ONLY
25 #include "qemu.h"
26 #else
27 #include "monitor/monitor.h"
28 #include "chardev/char.h"
29 #include "chardev/char-fe.h"
30 #include "sysemu/sysemu.h"
31 #include "exec/gdbstub.h"
32 #include "hw/cpu/cluster.h"
33 #endif
35 #define MAX_PACKET_LENGTH 4096
37 #include "qemu/sockets.h"
38 #include "sysemu/hw_accel.h"
39 #include "sysemu/kvm.h"
40 #include "exec/semihost.h"
41 #include "exec/exec-all.h"
43 #ifdef CONFIG_USER_ONLY
44 #define GDB_ATTACHED "0"
45 #else
46 #define GDB_ATTACHED "1"
47 #endif
49 static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
50 uint8_t *buf, int len, bool is_write)
52 CPUClass *cc = CPU_GET_CLASS(cpu);
54 if (cc->memory_rw_debug) {
55 return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
57 return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
60 /* Return the GDB index for a given vCPU state.
62 * For user mode this is simply the thread id. In system mode GDB
63 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
65 static inline int cpu_gdb_index(CPUState *cpu)
67 #if defined(CONFIG_USER_ONLY)
68 TaskState *ts = (TaskState *) cpu->opaque;
69 return ts->ts_tid;
70 #else
71 return cpu->cpu_index + 1;
72 #endif
75 enum {
76 GDB_SIGNAL_0 = 0,
77 GDB_SIGNAL_INT = 2,
78 GDB_SIGNAL_QUIT = 3,
79 GDB_SIGNAL_TRAP = 5,
80 GDB_SIGNAL_ABRT = 6,
81 GDB_SIGNAL_ALRM = 14,
82 GDB_SIGNAL_IO = 23,
83 GDB_SIGNAL_XCPU = 24,
84 GDB_SIGNAL_UNKNOWN = 143
87 #ifdef CONFIG_USER_ONLY
89 /* Map target signal numbers to GDB protocol signal numbers and vice
90 * versa. For user emulation's currently supported systems, we can
91 * assume most signals are defined.
94 static int gdb_signal_table[] = {
96 TARGET_SIGHUP,
97 TARGET_SIGINT,
98 TARGET_SIGQUIT,
99 TARGET_SIGILL,
100 TARGET_SIGTRAP,
101 TARGET_SIGABRT,
102 -1, /* SIGEMT */
103 TARGET_SIGFPE,
104 TARGET_SIGKILL,
105 TARGET_SIGBUS,
106 TARGET_SIGSEGV,
107 TARGET_SIGSYS,
108 TARGET_SIGPIPE,
109 TARGET_SIGALRM,
110 TARGET_SIGTERM,
111 TARGET_SIGURG,
112 TARGET_SIGSTOP,
113 TARGET_SIGTSTP,
114 TARGET_SIGCONT,
115 TARGET_SIGCHLD,
116 TARGET_SIGTTIN,
117 TARGET_SIGTTOU,
118 TARGET_SIGIO,
119 TARGET_SIGXCPU,
120 TARGET_SIGXFSZ,
121 TARGET_SIGVTALRM,
122 TARGET_SIGPROF,
123 TARGET_SIGWINCH,
124 -1, /* SIGLOST */
125 TARGET_SIGUSR1,
126 TARGET_SIGUSR2,
127 #ifdef TARGET_SIGPWR
128 TARGET_SIGPWR,
129 #else
131 #endif
132 -1, /* SIGPOLL */
144 #ifdef __SIGRTMIN
145 __SIGRTMIN + 1,
146 __SIGRTMIN + 2,
147 __SIGRTMIN + 3,
148 __SIGRTMIN + 4,
149 __SIGRTMIN + 5,
150 __SIGRTMIN + 6,
151 __SIGRTMIN + 7,
152 __SIGRTMIN + 8,
153 __SIGRTMIN + 9,
154 __SIGRTMIN + 10,
155 __SIGRTMIN + 11,
156 __SIGRTMIN + 12,
157 __SIGRTMIN + 13,
158 __SIGRTMIN + 14,
159 __SIGRTMIN + 15,
160 __SIGRTMIN + 16,
161 __SIGRTMIN + 17,
162 __SIGRTMIN + 18,
163 __SIGRTMIN + 19,
164 __SIGRTMIN + 20,
165 __SIGRTMIN + 21,
166 __SIGRTMIN + 22,
167 __SIGRTMIN + 23,
168 __SIGRTMIN + 24,
169 __SIGRTMIN + 25,
170 __SIGRTMIN + 26,
171 __SIGRTMIN + 27,
172 __SIGRTMIN + 28,
173 __SIGRTMIN + 29,
174 __SIGRTMIN + 30,
175 __SIGRTMIN + 31,
176 -1, /* SIGCANCEL */
177 __SIGRTMIN,
178 __SIGRTMIN + 32,
179 __SIGRTMIN + 33,
180 __SIGRTMIN + 34,
181 __SIGRTMIN + 35,
182 __SIGRTMIN + 36,
183 __SIGRTMIN + 37,
184 __SIGRTMIN + 38,
185 __SIGRTMIN + 39,
186 __SIGRTMIN + 40,
187 __SIGRTMIN + 41,
188 __SIGRTMIN + 42,
189 __SIGRTMIN + 43,
190 __SIGRTMIN + 44,
191 __SIGRTMIN + 45,
192 __SIGRTMIN + 46,
193 __SIGRTMIN + 47,
194 __SIGRTMIN + 48,
195 __SIGRTMIN + 49,
196 __SIGRTMIN + 50,
197 __SIGRTMIN + 51,
198 __SIGRTMIN + 52,
199 __SIGRTMIN + 53,
200 __SIGRTMIN + 54,
201 __SIGRTMIN + 55,
202 __SIGRTMIN + 56,
203 __SIGRTMIN + 57,
204 __SIGRTMIN + 58,
205 __SIGRTMIN + 59,
206 __SIGRTMIN + 60,
207 __SIGRTMIN + 61,
208 __SIGRTMIN + 62,
209 __SIGRTMIN + 63,
210 __SIGRTMIN + 64,
211 __SIGRTMIN + 65,
212 __SIGRTMIN + 66,
213 __SIGRTMIN + 67,
214 __SIGRTMIN + 68,
215 __SIGRTMIN + 69,
216 __SIGRTMIN + 70,
217 __SIGRTMIN + 71,
218 __SIGRTMIN + 72,
219 __SIGRTMIN + 73,
220 __SIGRTMIN + 74,
221 __SIGRTMIN + 75,
222 __SIGRTMIN + 76,
223 __SIGRTMIN + 77,
224 __SIGRTMIN + 78,
225 __SIGRTMIN + 79,
226 __SIGRTMIN + 80,
227 __SIGRTMIN + 81,
228 __SIGRTMIN + 82,
229 __SIGRTMIN + 83,
230 __SIGRTMIN + 84,
231 __SIGRTMIN + 85,
232 __SIGRTMIN + 86,
233 __SIGRTMIN + 87,
234 __SIGRTMIN + 88,
235 __SIGRTMIN + 89,
236 __SIGRTMIN + 90,
237 __SIGRTMIN + 91,
238 __SIGRTMIN + 92,
239 __SIGRTMIN + 93,
240 __SIGRTMIN + 94,
241 __SIGRTMIN + 95,
242 -1, /* SIGINFO */
243 -1, /* UNKNOWN */
244 -1, /* DEFAULT */
251 #endif
253 #else
254 /* In system mode we only need SIGINT and SIGTRAP; other signals
255 are not yet supported. */
257 enum {
258 TARGET_SIGINT = 2,
259 TARGET_SIGTRAP = 5
262 static int gdb_signal_table[] = {
265 TARGET_SIGINT,
268 TARGET_SIGTRAP
270 #endif
272 #ifdef CONFIG_USER_ONLY
273 static int target_signal_to_gdb (int sig)
275 int i;
276 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
277 if (gdb_signal_table[i] == sig)
278 return i;
279 return GDB_SIGNAL_UNKNOWN;
281 #endif
283 static int gdb_signal_to_target (int sig)
285 if (sig < ARRAY_SIZE (gdb_signal_table))
286 return gdb_signal_table[sig];
287 else
288 return -1;
291 typedef struct GDBRegisterState {
292 int base_reg;
293 int num_regs;
294 gdb_reg_cb get_reg;
295 gdb_reg_cb set_reg;
296 const char *xml;
297 struct GDBRegisterState *next;
298 } GDBRegisterState;
300 typedef struct GDBProcess {
301 uint32_t pid;
302 bool attached;
304 char target_xml[1024];
305 } GDBProcess;
307 enum RSState {
308 RS_INACTIVE,
309 RS_IDLE,
310 RS_GETLINE,
311 RS_GETLINE_ESC,
312 RS_GETLINE_RLE,
313 RS_CHKSUM1,
314 RS_CHKSUM2,
316 typedef struct GDBState {
317 CPUState *c_cpu; /* current CPU for step/continue ops */
318 CPUState *g_cpu; /* current CPU for other ops */
319 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
320 enum RSState state; /* parsing state */
321 char line_buf[MAX_PACKET_LENGTH];
322 int line_buf_index;
323 int line_sum; /* running checksum */
324 int line_csum; /* checksum at the end of the packet */
325 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
326 int last_packet_len;
327 int signal;
328 #ifdef CONFIG_USER_ONLY
329 int fd;
330 int running_state;
331 #else
332 CharBackend chr;
333 Chardev *mon_chr;
334 #endif
335 bool multiprocess;
336 GDBProcess *processes;
337 int process_num;
338 char syscall_buf[256];
339 gdb_syscall_complete_cb current_syscall_cb;
340 } GDBState;
342 /* By default use no IRQs and no timers while single stepping so as to
343 * make single stepping like an ICE HW step.
345 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
347 static GDBState *gdbserver_state;
349 bool gdb_has_xml;
351 #ifdef CONFIG_USER_ONLY
352 /* XXX: This is not thread safe. Do we care? */
353 static int gdbserver_fd = -1;
355 static int get_char(GDBState *s)
357 uint8_t ch;
358 int ret;
360 for(;;) {
361 ret = qemu_recv(s->fd, &ch, 1, 0);
362 if (ret < 0) {
363 if (errno == ECONNRESET)
364 s->fd = -1;
365 if (errno != EINTR)
366 return -1;
367 } else if (ret == 0) {
368 close(s->fd);
369 s->fd = -1;
370 return -1;
371 } else {
372 break;
375 return ch;
377 #endif
379 static enum {
380 GDB_SYS_UNKNOWN,
381 GDB_SYS_ENABLED,
382 GDB_SYS_DISABLED,
383 } gdb_syscall_mode;
385 /* Decide if either remote gdb syscalls or native file IO should be used. */
386 int use_gdb_syscalls(void)
388 SemihostingTarget target = semihosting_get_target();
389 if (target == SEMIHOSTING_TARGET_NATIVE) {
390 /* -semihosting-config target=native */
391 return false;
392 } else if (target == SEMIHOSTING_TARGET_GDB) {
393 /* -semihosting-config target=gdb */
394 return true;
397 /* -semihosting-config target=auto */
398 /* On the first call check if gdb is connected and remember. */
399 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
400 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
401 : GDB_SYS_DISABLED);
403 return gdb_syscall_mode == GDB_SYS_ENABLED;
406 /* Resume execution. */
407 static inline void gdb_continue(GDBState *s)
410 #ifdef CONFIG_USER_ONLY
411 s->running_state = 1;
412 trace_gdbstub_op_continue();
413 #else
414 if (!runstate_needs_reset()) {
415 trace_gdbstub_op_continue();
416 vm_start();
418 #endif
422 * Resume execution, per CPU actions. For user-mode emulation it's
423 * equivalent to gdb_continue.
425 static int gdb_continue_partial(GDBState *s, char *newstates)
427 CPUState *cpu;
428 int res = 0;
429 #ifdef CONFIG_USER_ONLY
431 * This is not exactly accurate, but it's an improvement compared to the
432 * previous situation, where only one CPU would be single-stepped.
434 CPU_FOREACH(cpu) {
435 if (newstates[cpu->cpu_index] == 's') {
436 trace_gdbstub_op_stepping(cpu->cpu_index);
437 cpu_single_step(cpu, sstep_flags);
440 s->running_state = 1;
441 #else
442 int flag = 0;
444 if (!runstate_needs_reset()) {
445 if (vm_prepare_start()) {
446 return 0;
449 CPU_FOREACH(cpu) {
450 switch (newstates[cpu->cpu_index]) {
451 case 0:
452 case 1:
453 break; /* nothing to do here */
454 case 's':
455 trace_gdbstub_op_stepping(cpu->cpu_index);
456 cpu_single_step(cpu, sstep_flags);
457 cpu_resume(cpu);
458 flag = 1;
459 break;
460 case 'c':
461 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
462 cpu_resume(cpu);
463 flag = 1;
464 break;
465 default:
466 res = -1;
467 break;
471 if (flag) {
472 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
474 #endif
475 return res;
478 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
480 #ifdef CONFIG_USER_ONLY
481 int ret;
483 while (len > 0) {
484 ret = send(s->fd, buf, len, 0);
485 if (ret < 0) {
486 if (errno != EINTR)
487 return;
488 } else {
489 buf += ret;
490 len -= ret;
493 #else
494 /* XXX this blocks entire thread. Rewrite to use
495 * qemu_chr_fe_write and background I/O callbacks */
496 qemu_chr_fe_write_all(&s->chr, buf, len);
497 #endif
500 static inline int fromhex(int v)
502 if (v >= '0' && v <= '9')
503 return v - '0';
504 else if (v >= 'A' && v <= 'F')
505 return v - 'A' + 10;
506 else if (v >= 'a' && v <= 'f')
507 return v - 'a' + 10;
508 else
509 return 0;
512 static inline int tohex(int v)
514 if (v < 10)
515 return v + '0';
516 else
517 return v - 10 + 'a';
520 /* writes 2*len+1 bytes in buf */
521 static void memtohex(char *buf, const uint8_t *mem, int len)
523 int i, c;
524 char *q;
525 q = buf;
526 for(i = 0; i < len; i++) {
527 c = mem[i];
528 *q++ = tohex(c >> 4);
529 *q++ = tohex(c & 0xf);
531 *q = '\0';
534 static void hextomem(uint8_t *mem, const char *buf, int len)
536 int i;
538 for(i = 0; i < len; i++) {
539 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
540 buf += 2;
544 static void hexdump(const char *buf, int len,
545 void (*trace_fn)(size_t ofs, char const *text))
547 char line_buffer[3 * 16 + 4 + 16 + 1];
549 size_t i;
550 for (i = 0; i < len || (i & 0xF); ++i) {
551 size_t byte_ofs = i & 15;
553 if (byte_ofs == 0) {
554 memset(line_buffer, ' ', 3 * 16 + 4 + 16);
555 line_buffer[3 * 16 + 4 + 16] = 0;
558 size_t col_group = (i >> 2) & 3;
559 size_t hex_col = byte_ofs * 3 + col_group;
560 size_t txt_col = 3 * 16 + 4 + byte_ofs;
562 if (i < len) {
563 char value = buf[i];
565 line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
566 line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
567 line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
568 ? value
569 : '.';
572 if (byte_ofs == 0xF)
573 trace_fn(i & -16, line_buffer);
577 /* return -1 if error, 0 if OK */
578 static int put_packet_binary(GDBState *s, const char *buf, int len, bool dump)
580 int csum, i;
581 uint8_t *p;
583 if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
584 hexdump(buf, len, trace_gdbstub_io_binaryreply);
587 for(;;) {
588 p = s->last_packet;
589 *(p++) = '$';
590 memcpy(p, buf, len);
591 p += len;
592 csum = 0;
593 for(i = 0; i < len; i++) {
594 csum += buf[i];
596 *(p++) = '#';
597 *(p++) = tohex((csum >> 4) & 0xf);
598 *(p++) = tohex((csum) & 0xf);
600 s->last_packet_len = p - s->last_packet;
601 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
603 #ifdef CONFIG_USER_ONLY
604 i = get_char(s);
605 if (i < 0)
606 return -1;
607 if (i == '+')
608 break;
609 #else
610 break;
611 #endif
613 return 0;
616 /* return -1 if error, 0 if OK */
617 static int put_packet(GDBState *s, const char *buf)
619 trace_gdbstub_io_reply(buf);
621 return put_packet_binary(s, buf, strlen(buf), false);
624 /* Encode data using the encoding for 'x' packets. */
625 static int memtox(char *buf, const char *mem, int len)
627 char *p = buf;
628 char c;
630 while (len--) {
631 c = *(mem++);
632 switch (c) {
633 case '#': case '$': case '*': case '}':
634 *(p++) = '}';
635 *(p++) = c ^ 0x20;
636 break;
637 default:
638 *(p++) = c;
639 break;
642 return p - buf;
645 static uint32_t gdb_get_cpu_pid(const GDBState *s, CPUState *cpu)
647 #ifndef CONFIG_USER_ONLY
648 gchar *path, *name = NULL;
649 Object *obj;
650 CPUClusterState *cluster;
651 uint32_t ret;
653 path = object_get_canonical_path(OBJECT(cpu));
655 if (path == NULL) {
656 /* Return the default process' PID */
657 ret = s->processes[s->process_num - 1].pid;
658 goto out;
661 name = object_get_canonical_path_component(OBJECT(cpu));
662 assert(name != NULL);
665 * Retrieve the CPU parent path by removing the last '/' and the CPU name
666 * from the CPU canonical path.
668 path[strlen(path) - strlen(name) - 1] = '\0';
670 obj = object_resolve_path_type(path, TYPE_CPU_CLUSTER, NULL);
672 if (obj == NULL) {
673 /* Return the default process' PID */
674 ret = s->processes[s->process_num - 1].pid;
675 goto out;
678 cluster = CPU_CLUSTER(obj);
679 ret = cluster->cluster_id + 1;
681 out:
682 g_free(name);
683 g_free(path);
685 return ret;
687 #else
688 /* TODO: In user mode, we should use the task state PID */
689 return s->processes[s->process_num - 1].pid;
690 #endif
693 static GDBProcess *gdb_get_process(const GDBState *s, uint32_t pid)
695 int i;
697 if (!pid) {
698 /* 0 means any process, we take the first one */
699 return &s->processes[0];
702 for (i = 0; i < s->process_num; i++) {
703 if (s->processes[i].pid == pid) {
704 return &s->processes[i];
708 return NULL;
711 static GDBProcess *gdb_get_cpu_process(const GDBState *s, CPUState *cpu)
713 return gdb_get_process(s, gdb_get_cpu_pid(s, cpu));
716 static CPUState *find_cpu(uint32_t thread_id)
718 CPUState *cpu;
720 CPU_FOREACH(cpu) {
721 if (cpu_gdb_index(cpu) == thread_id) {
722 return cpu;
726 return NULL;
729 static CPUState *get_first_cpu_in_process(const GDBState *s,
730 GDBProcess *process)
732 CPUState *cpu;
734 CPU_FOREACH(cpu) {
735 if (gdb_get_cpu_pid(s, cpu) == process->pid) {
736 return cpu;
740 return NULL;
743 static CPUState *gdb_next_cpu_in_process(const GDBState *s, CPUState *cpu)
745 uint32_t pid = gdb_get_cpu_pid(s, cpu);
746 cpu = CPU_NEXT(cpu);
748 while (cpu) {
749 if (gdb_get_cpu_pid(s, cpu) == pid) {
750 break;
753 cpu = CPU_NEXT(cpu);
756 return cpu;
759 static CPUState *gdb_get_cpu(const GDBState *s, uint32_t pid, uint32_t tid)
761 GDBProcess *process;
762 CPUState *cpu;
764 if (!tid) {
765 /* 0 means any thread, we take the first one */
766 tid = 1;
769 cpu = find_cpu(tid);
771 if (cpu == NULL) {
772 return NULL;
775 process = gdb_get_cpu_process(s, cpu);
777 if (process->pid != pid) {
778 return NULL;
781 if (!process->attached) {
782 return NULL;
785 return cpu;
788 /* Return the cpu following @cpu, while ignoring unattached processes. */
789 static CPUState *gdb_next_attached_cpu(const GDBState *s, CPUState *cpu)
791 cpu = CPU_NEXT(cpu);
793 while (cpu) {
794 if (gdb_get_cpu_process(s, cpu)->attached) {
795 break;
798 cpu = CPU_NEXT(cpu);
801 return cpu;
804 /* Return the first attached cpu */
805 static CPUState *gdb_first_attached_cpu(const GDBState *s)
807 CPUState *cpu = first_cpu;
808 GDBProcess *process = gdb_get_cpu_process(s, cpu);
810 if (!process->attached) {
811 return gdb_next_attached_cpu(s, cpu);
814 return cpu;
817 static const char *get_feature_xml(const GDBState *s, const char *p,
818 const char **newp, GDBProcess *process)
820 size_t len;
821 int i;
822 const char *name;
823 CPUState *cpu = get_first_cpu_in_process(s, process);
824 CPUClass *cc = CPU_GET_CLASS(cpu);
826 len = 0;
827 while (p[len] && p[len] != ':')
828 len++;
829 *newp = p + len;
831 name = NULL;
832 if (strncmp(p, "target.xml", len) == 0) {
833 char *buf = process->target_xml;
834 const size_t buf_sz = sizeof(process->target_xml);
836 /* Generate the XML description for this CPU. */
837 if (!buf[0]) {
838 GDBRegisterState *r;
840 pstrcat(buf, buf_sz,
841 "<?xml version=\"1.0\"?>"
842 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
843 "<target>");
844 if (cc->gdb_arch_name) {
845 gchar *arch = cc->gdb_arch_name(cpu);
846 pstrcat(buf, buf_sz, "<architecture>");
847 pstrcat(buf, buf_sz, arch);
848 pstrcat(buf, buf_sz, "</architecture>");
849 g_free(arch);
851 pstrcat(buf, buf_sz, "<xi:include href=\"");
852 pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
853 pstrcat(buf, buf_sz, "\"/>");
854 for (r = cpu->gdb_regs; r; r = r->next) {
855 pstrcat(buf, buf_sz, "<xi:include href=\"");
856 pstrcat(buf, buf_sz, r->xml);
857 pstrcat(buf, buf_sz, "\"/>");
859 pstrcat(buf, buf_sz, "</target>");
861 return buf;
863 if (cc->gdb_get_dynamic_xml) {
864 char *xmlname = g_strndup(p, len);
865 const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
867 g_free(xmlname);
868 if (xml) {
869 return xml;
872 for (i = 0; ; i++) {
873 name = xml_builtin[i][0];
874 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
875 break;
877 return name ? xml_builtin[i][1] : NULL;
880 static int gdb_read_register(CPUState *cpu, uint8_t *mem_buf, int reg)
882 CPUClass *cc = CPU_GET_CLASS(cpu);
883 CPUArchState *env = cpu->env_ptr;
884 GDBRegisterState *r;
886 if (reg < cc->gdb_num_core_regs) {
887 return cc->gdb_read_register(cpu, mem_buf, reg);
890 for (r = cpu->gdb_regs; r; r = r->next) {
891 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
892 return r->get_reg(env, mem_buf, reg - r->base_reg);
895 return 0;
898 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
900 CPUClass *cc = CPU_GET_CLASS(cpu);
901 CPUArchState *env = cpu->env_ptr;
902 GDBRegisterState *r;
904 if (reg < cc->gdb_num_core_regs) {
905 return cc->gdb_write_register(cpu, mem_buf, reg);
908 for (r = cpu->gdb_regs; r; r = r->next) {
909 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
910 return r->set_reg(env, mem_buf, reg - r->base_reg);
913 return 0;
916 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
917 specifies the first register number and these registers are included in
918 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
919 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
922 void gdb_register_coprocessor(CPUState *cpu,
923 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
924 int num_regs, const char *xml, int g_pos)
926 GDBRegisterState *s;
927 GDBRegisterState **p;
929 p = &cpu->gdb_regs;
930 while (*p) {
931 /* Check for duplicates. */
932 if (strcmp((*p)->xml, xml) == 0)
933 return;
934 p = &(*p)->next;
937 s = g_new0(GDBRegisterState, 1);
938 s->base_reg = cpu->gdb_num_regs;
939 s->num_regs = num_regs;
940 s->get_reg = get_reg;
941 s->set_reg = set_reg;
942 s->xml = xml;
944 /* Add to end of list. */
945 cpu->gdb_num_regs += num_regs;
946 *p = s;
947 if (g_pos) {
948 if (g_pos != s->base_reg) {
949 error_report("Error: Bad gdb register numbering for '%s', "
950 "expected %d got %d", xml, g_pos, s->base_reg);
951 } else {
952 cpu->gdb_num_g_regs = cpu->gdb_num_regs;
957 #ifndef CONFIG_USER_ONLY
958 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
959 static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
961 static const int xlat[] = {
962 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
963 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
964 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
967 CPUClass *cc = CPU_GET_CLASS(cpu);
968 int cputype = xlat[gdbtype];
970 if (cc->gdb_stop_before_watchpoint) {
971 cputype |= BP_STOP_BEFORE_ACCESS;
973 return cputype;
975 #endif
977 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
979 CPUState *cpu;
980 int err = 0;
982 if (kvm_enabled()) {
983 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
986 switch (type) {
987 case GDB_BREAKPOINT_SW:
988 case GDB_BREAKPOINT_HW:
989 CPU_FOREACH(cpu) {
990 err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
991 if (err) {
992 break;
995 return err;
996 #ifndef CONFIG_USER_ONLY
997 case GDB_WATCHPOINT_WRITE:
998 case GDB_WATCHPOINT_READ:
999 case GDB_WATCHPOINT_ACCESS:
1000 CPU_FOREACH(cpu) {
1001 err = cpu_watchpoint_insert(cpu, addr, len,
1002 xlat_gdb_type(cpu, type), NULL);
1003 if (err) {
1004 break;
1007 return err;
1008 #endif
1009 default:
1010 return -ENOSYS;
1014 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1016 CPUState *cpu;
1017 int err = 0;
1019 if (kvm_enabled()) {
1020 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1023 switch (type) {
1024 case GDB_BREAKPOINT_SW:
1025 case GDB_BREAKPOINT_HW:
1026 CPU_FOREACH(cpu) {
1027 err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
1028 if (err) {
1029 break;
1032 return err;
1033 #ifndef CONFIG_USER_ONLY
1034 case GDB_WATCHPOINT_WRITE:
1035 case GDB_WATCHPOINT_READ:
1036 case GDB_WATCHPOINT_ACCESS:
1037 CPU_FOREACH(cpu) {
1038 err = cpu_watchpoint_remove(cpu, addr, len,
1039 xlat_gdb_type(cpu, type));
1040 if (err)
1041 break;
1043 return err;
1044 #endif
1045 default:
1046 return -ENOSYS;
1050 static void gdb_breakpoint_remove_all(void)
1052 CPUState *cpu;
1054 if (kvm_enabled()) {
1055 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1056 return;
1059 CPU_FOREACH(cpu) {
1060 cpu_breakpoint_remove_all(cpu, BP_GDB);
1061 #ifndef CONFIG_USER_ONLY
1062 cpu_watchpoint_remove_all(cpu, BP_GDB);
1063 #endif
1067 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1069 CPUState *cpu = s->c_cpu;
1071 cpu_synchronize_state(cpu);
1072 cpu_set_pc(cpu, pc);
1075 static char *gdb_fmt_thread_id(const GDBState *s, CPUState *cpu,
1076 char *buf, size_t buf_size)
1078 if (s->multiprocess) {
1079 snprintf(buf, buf_size, "p%02x.%02x",
1080 gdb_get_cpu_pid(s, cpu), cpu_gdb_index(cpu));
1081 } else {
1082 snprintf(buf, buf_size, "%02x", cpu_gdb_index(cpu));
1085 return buf;
1088 typedef enum GDBThreadIdKind {
1089 GDB_ONE_THREAD = 0,
1090 GDB_ALL_THREADS, /* One process, all threads */
1091 GDB_ALL_PROCESSES,
1092 GDB_READ_THREAD_ERR
1093 } GDBThreadIdKind;
1095 static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
1096 uint32_t *pid, uint32_t *tid)
1098 unsigned long p, t;
1099 int ret;
1101 if (*buf == 'p') {
1102 buf++;
1103 ret = qemu_strtoul(buf, &buf, 16, &p);
1105 if (ret) {
1106 return GDB_READ_THREAD_ERR;
1109 /* Skip '.' */
1110 buf++;
1111 } else {
1112 p = 1;
1115 ret = qemu_strtoul(buf, &buf, 16, &t);
1117 if (ret) {
1118 return GDB_READ_THREAD_ERR;
1121 *end_buf = buf;
1123 if (p == -1) {
1124 return GDB_ALL_PROCESSES;
1127 if (pid) {
1128 *pid = p;
1131 if (t == -1) {
1132 return GDB_ALL_THREADS;
1135 if (tid) {
1136 *tid = t;
1139 return GDB_ONE_THREAD;
1142 static int is_query_packet(const char *p, const char *query, char separator)
1144 unsigned int query_len = strlen(query);
1146 return strncmp(p, query, query_len) == 0 &&
1147 (p[query_len] == '\0' || p[query_len] == separator);
1151 * gdb_handle_vcont - Parses and handles a vCont packet.
1152 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1153 * a format error, 0 on success.
1155 static int gdb_handle_vcont(GDBState *s, const char *p)
1157 int res, signal = 0;
1158 char cur_action;
1159 char *newstates;
1160 unsigned long tmp;
1161 uint32_t pid, tid;
1162 GDBProcess *process;
1163 CPUState *cpu;
1164 #ifdef CONFIG_USER_ONLY
1165 int max_cpus = 1; /* global variable max_cpus exists only in system mode */
1167 CPU_FOREACH(cpu) {
1168 max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
1170 #endif
1171 /* uninitialised CPUs stay 0 */
1172 newstates = g_new0(char, max_cpus);
1174 /* mark valid CPUs with 1 */
1175 CPU_FOREACH(cpu) {
1176 newstates[cpu->cpu_index] = 1;
1180 * res keeps track of what error we are returning, with -ENOTSUP meaning
1181 * that the command is unknown or unsupported, thus returning an empty
1182 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1183 * or incorrect parameters passed.
1185 res = 0;
1186 while (*p) {
1187 if (*p++ != ';') {
1188 res = -ENOTSUP;
1189 goto out;
1192 cur_action = *p++;
1193 if (cur_action == 'C' || cur_action == 'S') {
1194 cur_action = qemu_tolower(cur_action);
1195 res = qemu_strtoul(p + 1, &p, 16, &tmp);
1196 if (res) {
1197 goto out;
1199 signal = gdb_signal_to_target(tmp);
1200 } else if (cur_action != 'c' && cur_action != 's') {
1201 /* unknown/invalid/unsupported command */
1202 res = -ENOTSUP;
1203 goto out;
1206 if (*p++ != ':') {
1207 res = -ENOTSUP;
1208 goto out;
1211 switch (read_thread_id(p, &p, &pid, &tid)) {
1212 case GDB_READ_THREAD_ERR:
1213 res = -EINVAL;
1214 goto out;
1216 case GDB_ALL_PROCESSES:
1217 cpu = gdb_first_attached_cpu(s);
1218 while (cpu) {
1219 if (newstates[cpu->cpu_index] == 1) {
1220 newstates[cpu->cpu_index] = cur_action;
1223 cpu = gdb_next_attached_cpu(s, cpu);
1225 break;
1227 case GDB_ALL_THREADS:
1228 process = gdb_get_process(s, pid);
1230 if (!process->attached) {
1231 res = -EINVAL;
1232 goto out;
1235 cpu = get_first_cpu_in_process(s, process);
1236 while (cpu) {
1237 if (newstates[cpu->cpu_index] == 1) {
1238 newstates[cpu->cpu_index] = cur_action;
1241 cpu = gdb_next_cpu_in_process(s, cpu);
1243 break;
1245 case GDB_ONE_THREAD:
1246 cpu = gdb_get_cpu(s, pid, tid);
1248 /* invalid CPU/thread specified */
1249 if (!cpu) {
1250 res = -EINVAL;
1251 goto out;
1254 /* only use if no previous match occourred */
1255 if (newstates[cpu->cpu_index] == 1) {
1256 newstates[cpu->cpu_index] = cur_action;
1258 break;
1261 s->signal = signal;
1262 gdb_continue_partial(s, newstates);
1264 out:
1265 g_free(newstates);
1267 return res;
1270 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1272 CPUState *cpu;
1273 GDBProcess *process;
1274 CPUClass *cc;
1275 const char *p;
1276 uint32_t pid, tid;
1277 int ch, reg_size, type, res;
1278 uint8_t mem_buf[MAX_PACKET_LENGTH];
1279 char buf[sizeof(mem_buf) + 1 /* trailing NUL */];
1280 char thread_id[16];
1281 uint8_t *registers;
1282 target_ulong addr, len;
1283 GDBThreadIdKind thread_kind;
1285 trace_gdbstub_io_command(line_buf);
1287 p = line_buf;
1288 ch = *p++;
1289 switch(ch) {
1290 case '?':
1291 /* TODO: Make this return the correct value for user-mode. */
1292 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1293 gdb_fmt_thread_id(s, s->c_cpu, thread_id, sizeof(thread_id)));
1294 put_packet(s, buf);
1295 /* Remove all the breakpoints when this query is issued,
1296 * because gdb is doing and initial connect and the state
1297 * should be cleaned up.
1299 gdb_breakpoint_remove_all();
1300 break;
1301 case 'c':
1302 if (*p != '\0') {
1303 addr = strtoull(p, (char **)&p, 16);
1304 gdb_set_cpu_pc(s, addr);
1306 s->signal = 0;
1307 gdb_continue(s);
1308 return RS_IDLE;
1309 case 'C':
1310 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1311 if (s->signal == -1)
1312 s->signal = 0;
1313 gdb_continue(s);
1314 return RS_IDLE;
1315 case 'v':
1316 if (strncmp(p, "Cont", 4) == 0) {
1317 p += 4;
1318 if (*p == '?') {
1319 put_packet(s, "vCont;c;C;s;S");
1320 break;
1323 res = gdb_handle_vcont(s, p);
1325 if (res) {
1326 if ((res == -EINVAL) || (res == -ERANGE)) {
1327 put_packet(s, "E22");
1328 break;
1330 goto unknown_command;
1332 break;
1333 } else {
1334 goto unknown_command;
1336 case 'k':
1337 /* Kill the target */
1338 error_report("QEMU: Terminated via GDBstub");
1339 exit(0);
1340 case 'D':
1341 /* Detach packet */
1342 gdb_breakpoint_remove_all();
1343 gdb_syscall_mode = GDB_SYS_DISABLED;
1344 gdb_continue(s);
1345 put_packet(s, "OK");
1346 break;
1347 case 's':
1348 if (*p != '\0') {
1349 addr = strtoull(p, (char **)&p, 16);
1350 gdb_set_cpu_pc(s, addr);
1352 cpu_single_step(s->c_cpu, sstep_flags);
1353 gdb_continue(s);
1354 return RS_IDLE;
1355 case 'F':
1357 target_ulong ret;
1358 target_ulong err;
1360 ret = strtoull(p, (char **)&p, 16);
1361 if (*p == ',') {
1362 p++;
1363 err = strtoull(p, (char **)&p, 16);
1364 } else {
1365 err = 0;
1367 if (*p == ',')
1368 p++;
1369 type = *p;
1370 if (s->current_syscall_cb) {
1371 s->current_syscall_cb(s->c_cpu, ret, err);
1372 s->current_syscall_cb = NULL;
1374 if (type == 'C') {
1375 put_packet(s, "T02");
1376 } else {
1377 gdb_continue(s);
1380 break;
1381 case 'g':
1382 cpu_synchronize_state(s->g_cpu);
1383 len = 0;
1384 for (addr = 0; addr < s->g_cpu->gdb_num_g_regs; addr++) {
1385 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1386 len += reg_size;
1388 memtohex(buf, mem_buf, len);
1389 put_packet(s, buf);
1390 break;
1391 case 'G':
1392 cpu_synchronize_state(s->g_cpu);
1393 registers = mem_buf;
1394 len = strlen(p) / 2;
1395 hextomem((uint8_t *)registers, p, len);
1396 for (addr = 0; addr < s->g_cpu->gdb_num_g_regs && len > 0; addr++) {
1397 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1398 len -= reg_size;
1399 registers += reg_size;
1401 put_packet(s, "OK");
1402 break;
1403 case 'm':
1404 addr = strtoull(p, (char **)&p, 16);
1405 if (*p == ',')
1406 p++;
1407 len = strtoull(p, NULL, 16);
1409 /* memtohex() doubles the required space */
1410 if (len > MAX_PACKET_LENGTH / 2) {
1411 put_packet (s, "E22");
1412 break;
1415 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, false) != 0) {
1416 put_packet (s, "E14");
1417 } else {
1418 memtohex(buf, mem_buf, len);
1419 put_packet(s, buf);
1421 break;
1422 case 'M':
1423 addr = strtoull(p, (char **)&p, 16);
1424 if (*p == ',')
1425 p++;
1426 len = strtoull(p, (char **)&p, 16);
1427 if (*p == ':')
1428 p++;
1430 /* hextomem() reads 2*len bytes */
1431 if (len > strlen(p) / 2) {
1432 put_packet (s, "E22");
1433 break;
1435 hextomem(mem_buf, p, len);
1436 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len,
1437 true) != 0) {
1438 put_packet(s, "E14");
1439 } else {
1440 put_packet(s, "OK");
1442 break;
1443 case 'p':
1444 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1445 This works, but can be very slow. Anything new enough to
1446 understand XML also knows how to use this properly. */
1447 if (!gdb_has_xml)
1448 goto unknown_command;
1449 addr = strtoull(p, (char **)&p, 16);
1450 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1451 if (reg_size) {
1452 memtohex(buf, mem_buf, reg_size);
1453 put_packet(s, buf);
1454 } else {
1455 put_packet(s, "E14");
1457 break;
1458 case 'P':
1459 if (!gdb_has_xml)
1460 goto unknown_command;
1461 addr = strtoull(p, (char **)&p, 16);
1462 if (*p == '=')
1463 p++;
1464 reg_size = strlen(p) / 2;
1465 hextomem(mem_buf, p, reg_size);
1466 gdb_write_register(s->g_cpu, mem_buf, addr);
1467 put_packet(s, "OK");
1468 break;
1469 case 'Z':
1470 case 'z':
1471 type = strtoul(p, (char **)&p, 16);
1472 if (*p == ',')
1473 p++;
1474 addr = strtoull(p, (char **)&p, 16);
1475 if (*p == ',')
1476 p++;
1477 len = strtoull(p, (char **)&p, 16);
1478 if (ch == 'Z')
1479 res = gdb_breakpoint_insert(addr, len, type);
1480 else
1481 res = gdb_breakpoint_remove(addr, len, type);
1482 if (res >= 0)
1483 put_packet(s, "OK");
1484 else if (res == -ENOSYS)
1485 put_packet(s, "");
1486 else
1487 put_packet(s, "E22");
1488 break;
1489 case 'H':
1490 type = *p++;
1492 thread_kind = read_thread_id(p, &p, &pid, &tid);
1493 if (thread_kind == GDB_READ_THREAD_ERR) {
1494 put_packet(s, "E22");
1495 break;
1498 if (thread_kind != GDB_ONE_THREAD) {
1499 put_packet(s, "OK");
1500 break;
1502 cpu = gdb_get_cpu(s, pid, tid);
1503 if (cpu == NULL) {
1504 put_packet(s, "E22");
1505 break;
1507 switch (type) {
1508 case 'c':
1509 s->c_cpu = cpu;
1510 put_packet(s, "OK");
1511 break;
1512 case 'g':
1513 s->g_cpu = cpu;
1514 put_packet(s, "OK");
1515 break;
1516 default:
1517 put_packet(s, "E22");
1518 break;
1520 break;
1521 case 'T':
1522 thread_kind = read_thread_id(p, &p, &pid, &tid);
1523 if (thread_kind == GDB_READ_THREAD_ERR) {
1524 put_packet(s, "E22");
1525 break;
1527 cpu = gdb_get_cpu(s, pid, tid);
1529 if (cpu != NULL) {
1530 put_packet(s, "OK");
1531 } else {
1532 put_packet(s, "E22");
1534 break;
1535 case 'q':
1536 case 'Q':
1537 /* parse any 'q' packets here */
1538 if (!strcmp(p,"qemu.sstepbits")) {
1539 /* Query Breakpoint bit definitions */
1540 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1541 SSTEP_ENABLE,
1542 SSTEP_NOIRQ,
1543 SSTEP_NOTIMER);
1544 put_packet(s, buf);
1545 break;
1546 } else if (is_query_packet(p, "qemu.sstep", '=')) {
1547 /* Display or change the sstep_flags */
1548 p += 10;
1549 if (*p != '=') {
1550 /* Display current setting */
1551 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1552 put_packet(s, buf);
1553 break;
1555 p++;
1556 type = strtoul(p, (char **)&p, 16);
1557 sstep_flags = type;
1558 put_packet(s, "OK");
1559 break;
1560 } else if (strcmp(p,"C") == 0) {
1562 * "Current thread" remains vague in the spec, so always return
1563 * the first thread of the current process (gdb returns the
1564 * first thread).
1566 cpu = get_first_cpu_in_process(s, gdb_get_cpu_process(s, s->g_cpu));
1567 snprintf(buf, sizeof(buf), "QC%s",
1568 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
1569 put_packet(s, buf);
1570 break;
1571 } else if (strcmp(p,"fThreadInfo") == 0) {
1572 s->query_cpu = gdb_first_attached_cpu(s);
1573 goto report_cpuinfo;
1574 } else if (strcmp(p,"sThreadInfo") == 0) {
1575 report_cpuinfo:
1576 if (s->query_cpu) {
1577 snprintf(buf, sizeof(buf), "m%s",
1578 gdb_fmt_thread_id(s, s->query_cpu,
1579 thread_id, sizeof(thread_id)));
1580 put_packet(s, buf);
1581 s->query_cpu = gdb_next_attached_cpu(s, s->query_cpu);
1582 } else
1583 put_packet(s, "l");
1584 break;
1585 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1586 if (read_thread_id(p + 16, &p, &pid, &tid) == GDB_READ_THREAD_ERR) {
1587 put_packet(s, "E22");
1588 break;
1590 cpu = gdb_get_cpu(s, pid, tid);
1591 if (cpu != NULL) {
1592 cpu_synchronize_state(cpu);
1594 if (s->multiprocess && (s->process_num > 1)) {
1595 /* Print the CPU model and name in multiprocess mode */
1596 ObjectClass *oc = object_get_class(OBJECT(cpu));
1597 const char *cpu_model = object_class_get_name(oc);
1598 char *cpu_name =
1599 object_get_canonical_path_component(OBJECT(cpu));
1600 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
1601 "%s %s [%s]", cpu_model, cpu_name,
1602 cpu->halted ? "halted " : "running");
1603 g_free(cpu_name);
1604 } else {
1605 /* memtohex() doubles the required space */
1606 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
1607 "CPU#%d [%s]", cpu->cpu_index,
1608 cpu->halted ? "halted " : "running");
1610 trace_gdbstub_op_extra_info((char *)mem_buf);
1611 memtohex(buf, mem_buf, len);
1612 put_packet(s, buf);
1614 break;
1616 #ifdef CONFIG_USER_ONLY
1617 else if (strcmp(p, "Offsets") == 0) {
1618 TaskState *ts = s->c_cpu->opaque;
1620 snprintf(buf, sizeof(buf),
1621 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1622 ";Bss=" TARGET_ABI_FMT_lx,
1623 ts->info->code_offset,
1624 ts->info->data_offset,
1625 ts->info->data_offset);
1626 put_packet(s, buf);
1627 break;
1629 #else /* !CONFIG_USER_ONLY */
1630 else if (strncmp(p, "Rcmd,", 5) == 0) {
1631 int len = strlen(p + 5);
1633 if ((len % 2) != 0) {
1634 put_packet(s, "E01");
1635 break;
1637 len = len / 2;
1638 hextomem(mem_buf, p + 5, len);
1639 mem_buf[len++] = 0;
1640 qemu_chr_be_write(s->mon_chr, mem_buf, len);
1641 put_packet(s, "OK");
1642 break;
1644 #endif /* !CONFIG_USER_ONLY */
1645 if (is_query_packet(p, "Supported", ':')) {
1646 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1647 cc = CPU_GET_CLASS(first_cpu);
1648 if (cc->gdb_core_xml_file != NULL) {
1649 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
1651 put_packet(s, buf);
1652 break;
1654 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1655 const char *xml;
1656 target_ulong total_len;
1658 process = gdb_get_cpu_process(s, s->g_cpu);
1659 cc = CPU_GET_CLASS(s->g_cpu);
1660 if (cc->gdb_core_xml_file == NULL) {
1661 goto unknown_command;
1664 gdb_has_xml = true;
1665 p += 19;
1666 xml = get_feature_xml(s, p, &p, process);
1667 if (!xml) {
1668 snprintf(buf, sizeof(buf), "E00");
1669 put_packet(s, buf);
1670 break;
1673 if (*p == ':')
1674 p++;
1675 addr = strtoul(p, (char **)&p, 16);
1676 if (*p == ',')
1677 p++;
1678 len = strtoul(p, (char **)&p, 16);
1680 total_len = strlen(xml);
1681 if (addr > total_len) {
1682 snprintf(buf, sizeof(buf), "E00");
1683 put_packet(s, buf);
1684 break;
1686 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1687 len = (MAX_PACKET_LENGTH - 5) / 2;
1688 if (len < total_len - addr) {
1689 buf[0] = 'm';
1690 len = memtox(buf + 1, xml + addr, len);
1691 } else {
1692 buf[0] = 'l';
1693 len = memtox(buf + 1, xml + addr, total_len - addr);
1695 put_packet_binary(s, buf, len + 1, true);
1696 break;
1698 if (is_query_packet(p, "Attached", ':')) {
1699 put_packet(s, GDB_ATTACHED);
1700 break;
1702 /* Unrecognised 'q' command. */
1703 goto unknown_command;
1705 default:
1706 unknown_command:
1707 /* put empty packet */
1708 buf[0] = '\0';
1709 put_packet(s, buf);
1710 break;
1712 return RS_IDLE;
1715 void gdb_set_stop_cpu(CPUState *cpu)
1717 gdbserver_state->c_cpu = cpu;
1718 gdbserver_state->g_cpu = cpu;
1721 #ifndef CONFIG_USER_ONLY
1722 static void gdb_vm_state_change(void *opaque, int running, RunState state)
1724 GDBState *s = gdbserver_state;
1725 CPUState *cpu = s->c_cpu;
1726 char buf[256];
1727 char thread_id[16];
1728 const char *type;
1729 int ret;
1731 if (running || s->state == RS_INACTIVE) {
1732 return;
1734 /* Is there a GDB syscall waiting to be sent? */
1735 if (s->current_syscall_cb) {
1736 put_packet(s, s->syscall_buf);
1737 return;
1740 if (cpu == NULL) {
1741 /* No process attached */
1742 return;
1745 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id));
1747 switch (state) {
1748 case RUN_STATE_DEBUG:
1749 if (cpu->watchpoint_hit) {
1750 switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
1751 case BP_MEM_READ:
1752 type = "r";
1753 break;
1754 case BP_MEM_ACCESS:
1755 type = "a";
1756 break;
1757 default:
1758 type = "";
1759 break;
1761 trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
1762 (target_ulong)cpu->watchpoint_hit->vaddr);
1763 snprintf(buf, sizeof(buf),
1764 "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
1765 GDB_SIGNAL_TRAP, thread_id, type,
1766 (target_ulong)cpu->watchpoint_hit->vaddr);
1767 cpu->watchpoint_hit = NULL;
1768 goto send_packet;
1769 } else {
1770 trace_gdbstub_hit_break();
1772 tb_flush(cpu);
1773 ret = GDB_SIGNAL_TRAP;
1774 break;
1775 case RUN_STATE_PAUSED:
1776 trace_gdbstub_hit_paused();
1777 ret = GDB_SIGNAL_INT;
1778 break;
1779 case RUN_STATE_SHUTDOWN:
1780 trace_gdbstub_hit_shutdown();
1781 ret = GDB_SIGNAL_QUIT;
1782 break;
1783 case RUN_STATE_IO_ERROR:
1784 trace_gdbstub_hit_io_error();
1785 ret = GDB_SIGNAL_IO;
1786 break;
1787 case RUN_STATE_WATCHDOG:
1788 trace_gdbstub_hit_watchdog();
1789 ret = GDB_SIGNAL_ALRM;
1790 break;
1791 case RUN_STATE_INTERNAL_ERROR:
1792 trace_gdbstub_hit_internal_error();
1793 ret = GDB_SIGNAL_ABRT;
1794 break;
1795 case RUN_STATE_SAVE_VM:
1796 case RUN_STATE_RESTORE_VM:
1797 return;
1798 case RUN_STATE_FINISH_MIGRATE:
1799 ret = GDB_SIGNAL_XCPU;
1800 break;
1801 default:
1802 trace_gdbstub_hit_unknown(state);
1803 ret = GDB_SIGNAL_UNKNOWN;
1804 break;
1806 gdb_set_stop_cpu(cpu);
1807 snprintf(buf, sizeof(buf), "T%02xthread:%s;", ret, thread_id);
1809 send_packet:
1810 put_packet(s, buf);
1812 /* disable single step if it was enabled */
1813 cpu_single_step(cpu, 0);
1815 #endif
1817 /* Send a gdb syscall request.
1818 This accepts limited printf-style format specifiers, specifically:
1819 %x - target_ulong argument printed in hex.
1820 %lx - 64-bit argument printed in hex.
1821 %s - string pointer (target_ulong) and length (int) pair. */
1822 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
1824 char *p;
1825 char *p_end;
1826 target_ulong addr;
1827 uint64_t i64;
1828 GDBState *s;
1830 s = gdbserver_state;
1831 if (!s)
1832 return;
1833 s->current_syscall_cb = cb;
1834 #ifndef CONFIG_USER_ONLY
1835 vm_stop(RUN_STATE_DEBUG);
1836 #endif
1837 p = s->syscall_buf;
1838 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
1839 *(p++) = 'F';
1840 while (*fmt) {
1841 if (*fmt == '%') {
1842 fmt++;
1843 switch (*fmt++) {
1844 case 'x':
1845 addr = va_arg(va, target_ulong);
1846 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
1847 break;
1848 case 'l':
1849 if (*(fmt++) != 'x')
1850 goto bad_format;
1851 i64 = va_arg(va, uint64_t);
1852 p += snprintf(p, p_end - p, "%" PRIx64, i64);
1853 break;
1854 case 's':
1855 addr = va_arg(va, target_ulong);
1856 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
1857 addr, va_arg(va, int));
1858 break;
1859 default:
1860 bad_format:
1861 error_report("gdbstub: Bad syscall format string '%s'",
1862 fmt - 1);
1863 break;
1865 } else {
1866 *(p++) = *(fmt++);
1869 *p = 0;
1870 #ifdef CONFIG_USER_ONLY
1871 put_packet(s, s->syscall_buf);
1872 /* Return control to gdb for it to process the syscall request.
1873 * Since the protocol requires that gdb hands control back to us
1874 * using a "here are the results" F packet, we don't need to check
1875 * gdb_handlesig's return value (which is the signal to deliver if
1876 * execution was resumed via a continue packet).
1878 gdb_handlesig(s->c_cpu, 0);
1879 #else
1880 /* In this case wait to send the syscall packet until notification that
1881 the CPU has stopped. This must be done because if the packet is sent
1882 now the reply from the syscall request could be received while the CPU
1883 is still in the running state, which can cause packets to be dropped
1884 and state transition 'T' packets to be sent while the syscall is still
1885 being processed. */
1886 qemu_cpu_kick(s->c_cpu);
1887 #endif
1890 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1892 va_list va;
1894 va_start(va, fmt);
1895 gdb_do_syscallv(cb, fmt, va);
1896 va_end(va);
1899 static void gdb_read_byte(GDBState *s, int ch)
1901 uint8_t reply;
1903 #ifndef CONFIG_USER_ONLY
1904 if (s->last_packet_len) {
1905 /* Waiting for a response to the last packet. If we see the start
1906 of a new command then abandon the previous response. */
1907 if (ch == '-') {
1908 trace_gdbstub_err_got_nack();
1909 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1910 } else if (ch == '+') {
1911 trace_gdbstub_io_got_ack();
1912 } else {
1913 trace_gdbstub_io_got_unexpected((uint8_t)ch);
1916 if (ch == '+' || ch == '$')
1917 s->last_packet_len = 0;
1918 if (ch != '$')
1919 return;
1921 if (runstate_is_running()) {
1922 /* when the CPU is running, we cannot do anything except stop
1923 it when receiving a char */
1924 vm_stop(RUN_STATE_PAUSED);
1925 } else
1926 #endif
1928 switch(s->state) {
1929 case RS_IDLE:
1930 if (ch == '$') {
1931 /* start of command packet */
1932 s->line_buf_index = 0;
1933 s->line_sum = 0;
1934 s->state = RS_GETLINE;
1935 } else {
1936 trace_gdbstub_err_garbage((uint8_t)ch);
1938 break;
1939 case RS_GETLINE:
1940 if (ch == '}') {
1941 /* start escape sequence */
1942 s->state = RS_GETLINE_ESC;
1943 s->line_sum += ch;
1944 } else if (ch == '*') {
1945 /* start run length encoding sequence */
1946 s->state = RS_GETLINE_RLE;
1947 s->line_sum += ch;
1948 } else if (ch == '#') {
1949 /* end of command, start of checksum*/
1950 s->state = RS_CHKSUM1;
1951 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1952 trace_gdbstub_err_overrun();
1953 s->state = RS_IDLE;
1954 } else {
1955 /* unescaped command character */
1956 s->line_buf[s->line_buf_index++] = ch;
1957 s->line_sum += ch;
1959 break;
1960 case RS_GETLINE_ESC:
1961 if (ch == '#') {
1962 /* unexpected end of command in escape sequence */
1963 s->state = RS_CHKSUM1;
1964 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1965 /* command buffer overrun */
1966 trace_gdbstub_err_overrun();
1967 s->state = RS_IDLE;
1968 } else {
1969 /* parse escaped character and leave escape state */
1970 s->line_buf[s->line_buf_index++] = ch ^ 0x20;
1971 s->line_sum += ch;
1972 s->state = RS_GETLINE;
1974 break;
1975 case RS_GETLINE_RLE:
1976 if (ch < ' ') {
1977 /* invalid RLE count encoding */
1978 trace_gdbstub_err_invalid_repeat((uint8_t)ch);
1979 s->state = RS_GETLINE;
1980 } else {
1981 /* decode repeat length */
1982 int repeat = (unsigned char)ch - ' ' + 3;
1983 if (s->line_buf_index + repeat >= sizeof(s->line_buf) - 1) {
1984 /* that many repeats would overrun the command buffer */
1985 trace_gdbstub_err_overrun();
1986 s->state = RS_IDLE;
1987 } else if (s->line_buf_index < 1) {
1988 /* got a repeat but we have nothing to repeat */
1989 trace_gdbstub_err_invalid_rle();
1990 s->state = RS_GETLINE;
1991 } else {
1992 /* repeat the last character */
1993 memset(s->line_buf + s->line_buf_index,
1994 s->line_buf[s->line_buf_index - 1], repeat);
1995 s->line_buf_index += repeat;
1996 s->line_sum += ch;
1997 s->state = RS_GETLINE;
2000 break;
2001 case RS_CHKSUM1:
2002 /* get high hex digit of checksum */
2003 if (!isxdigit(ch)) {
2004 trace_gdbstub_err_checksum_invalid((uint8_t)ch);
2005 s->state = RS_GETLINE;
2006 break;
2008 s->line_buf[s->line_buf_index] = '\0';
2009 s->line_csum = fromhex(ch) << 4;
2010 s->state = RS_CHKSUM2;
2011 break;
2012 case RS_CHKSUM2:
2013 /* get low hex digit of checksum */
2014 if (!isxdigit(ch)) {
2015 trace_gdbstub_err_checksum_invalid((uint8_t)ch);
2016 s->state = RS_GETLINE;
2017 break;
2019 s->line_csum |= fromhex(ch);
2021 if (s->line_csum != (s->line_sum & 0xff)) {
2022 trace_gdbstub_err_checksum_incorrect(s->line_sum, s->line_csum);
2023 /* send NAK reply */
2024 reply = '-';
2025 put_buffer(s, &reply, 1);
2026 s->state = RS_IDLE;
2027 } else {
2028 /* send ACK reply */
2029 reply = '+';
2030 put_buffer(s, &reply, 1);
2031 s->state = gdb_handle_packet(s, s->line_buf);
2033 break;
2034 default:
2035 abort();
2040 /* Tell the remote gdb that the process has exited. */
2041 void gdb_exit(CPUArchState *env, int code)
2043 GDBState *s;
2044 char buf[4];
2046 s = gdbserver_state;
2047 if (!s) {
2048 return;
2050 #ifdef CONFIG_USER_ONLY
2051 if (gdbserver_fd < 0 || s->fd < 0) {
2052 return;
2054 #endif
2056 trace_gdbstub_op_exiting((uint8_t)code);
2058 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2059 put_packet(s, buf);
2061 #ifndef CONFIG_USER_ONLY
2062 qemu_chr_fe_deinit(&s->chr, true);
2063 #endif
2067 * Create the process that will contain all the "orphan" CPUs (that are not
2068 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
2069 * be attachable and thus will be invisible to the user.
2071 static void create_default_process(GDBState *s)
2073 GDBProcess *process;
2074 int max_pid = 0;
2076 if (s->process_num) {
2077 max_pid = s->processes[s->process_num - 1].pid;
2080 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2081 process = &s->processes[s->process_num - 1];
2083 /* We need an available PID slot for this process */
2084 assert(max_pid < UINT32_MAX);
2086 process->pid = max_pid + 1;
2087 process->attached = false;
2088 process->target_xml[0] = '\0';
2091 #ifdef CONFIG_USER_ONLY
2093 gdb_handlesig(CPUState *cpu, int sig)
2095 GDBState *s;
2096 char buf[256];
2097 int n;
2099 s = gdbserver_state;
2100 if (gdbserver_fd < 0 || s->fd < 0) {
2101 return sig;
2104 /* disable single step if it was enabled */
2105 cpu_single_step(cpu, 0);
2106 tb_flush(cpu);
2108 if (sig != 0) {
2109 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
2110 put_packet(s, buf);
2112 /* put_packet() might have detected that the peer terminated the
2113 connection. */
2114 if (s->fd < 0) {
2115 return sig;
2118 sig = 0;
2119 s->state = RS_IDLE;
2120 s->running_state = 0;
2121 while (s->running_state == 0) {
2122 n = read(s->fd, buf, 256);
2123 if (n > 0) {
2124 int i;
2126 for (i = 0; i < n; i++) {
2127 gdb_read_byte(s, buf[i]);
2129 } else {
2130 /* XXX: Connection closed. Should probably wait for another
2131 connection before continuing. */
2132 if (n == 0) {
2133 close(s->fd);
2135 s->fd = -1;
2136 return sig;
2139 sig = s->signal;
2140 s->signal = 0;
2141 return sig;
2144 /* Tell the remote gdb that the process has exited due to SIG. */
2145 void gdb_signalled(CPUArchState *env, int sig)
2147 GDBState *s;
2148 char buf[4];
2150 s = gdbserver_state;
2151 if (gdbserver_fd < 0 || s->fd < 0) {
2152 return;
2155 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
2156 put_packet(s, buf);
2159 static bool gdb_accept(void)
2161 GDBState *s;
2162 struct sockaddr_in sockaddr;
2163 socklen_t len;
2164 int fd;
2166 for(;;) {
2167 len = sizeof(sockaddr);
2168 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2169 if (fd < 0 && errno != EINTR) {
2170 perror("accept");
2171 return false;
2172 } else if (fd >= 0) {
2173 qemu_set_cloexec(fd);
2174 break;
2178 /* set short latency */
2179 if (socket_set_nodelay(fd)) {
2180 perror("setsockopt");
2181 close(fd);
2182 return false;
2185 s = g_malloc0(sizeof(GDBState));
2186 s->c_cpu = first_cpu;
2187 s->g_cpu = first_cpu;
2188 create_default_process(s);
2189 s->fd = fd;
2190 gdb_has_xml = false;
2192 gdbserver_state = s;
2193 return true;
2196 static int gdbserver_open(int port)
2198 struct sockaddr_in sockaddr;
2199 int fd, ret;
2201 fd = socket(PF_INET, SOCK_STREAM, 0);
2202 if (fd < 0) {
2203 perror("socket");
2204 return -1;
2206 qemu_set_cloexec(fd);
2208 socket_set_fast_reuse(fd);
2210 sockaddr.sin_family = AF_INET;
2211 sockaddr.sin_port = htons(port);
2212 sockaddr.sin_addr.s_addr = 0;
2213 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2214 if (ret < 0) {
2215 perror("bind");
2216 close(fd);
2217 return -1;
2219 ret = listen(fd, 1);
2220 if (ret < 0) {
2221 perror("listen");
2222 close(fd);
2223 return -1;
2225 return fd;
2228 int gdbserver_start(int port)
2230 gdbserver_fd = gdbserver_open(port);
2231 if (gdbserver_fd < 0)
2232 return -1;
2233 /* accept connections */
2234 if (!gdb_accept()) {
2235 close(gdbserver_fd);
2236 gdbserver_fd = -1;
2237 return -1;
2239 return 0;
2242 /* Disable gdb stub for child processes. */
2243 void gdbserver_fork(CPUState *cpu)
2245 GDBState *s = gdbserver_state;
2247 if (gdbserver_fd < 0 || s->fd < 0) {
2248 return;
2250 close(s->fd);
2251 s->fd = -1;
2252 cpu_breakpoint_remove_all(cpu, BP_GDB);
2253 cpu_watchpoint_remove_all(cpu, BP_GDB);
2255 #else
2256 static int gdb_chr_can_receive(void *opaque)
2258 /* We can handle an arbitrarily large amount of data.
2259 Pick the maximum packet size, which is as good as anything. */
2260 return MAX_PACKET_LENGTH;
2263 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2265 int i;
2267 for (i = 0; i < size; i++) {
2268 gdb_read_byte(gdbserver_state, buf[i]);
2272 static void gdb_chr_event(void *opaque, int event)
2274 switch (event) {
2275 case CHR_EVENT_OPENED:
2276 vm_stop(RUN_STATE_PAUSED);
2277 gdb_has_xml = false;
2278 break;
2279 default:
2280 break;
2284 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2286 char buf[MAX_PACKET_LENGTH];
2288 buf[0] = 'O';
2289 if (len > (MAX_PACKET_LENGTH/2) - 1)
2290 len = (MAX_PACKET_LENGTH/2) - 1;
2291 memtohex(buf + 1, (uint8_t *)msg, len);
2292 put_packet(s, buf);
2295 static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
2297 const char *p = (const char *)buf;
2298 int max_sz;
2300 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2301 for (;;) {
2302 if (len <= max_sz) {
2303 gdb_monitor_output(gdbserver_state, p, len);
2304 break;
2306 gdb_monitor_output(gdbserver_state, p, max_sz);
2307 p += max_sz;
2308 len -= max_sz;
2310 return len;
2313 #ifndef _WIN32
2314 static void gdb_sigterm_handler(int signal)
2316 if (runstate_is_running()) {
2317 vm_stop(RUN_STATE_PAUSED);
2320 #endif
2322 static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
2323 bool *be_opened, Error **errp)
2325 *be_opened = false;
2328 static void char_gdb_class_init(ObjectClass *oc, void *data)
2330 ChardevClass *cc = CHARDEV_CLASS(oc);
2332 cc->internal = true;
2333 cc->open = gdb_monitor_open;
2334 cc->chr_write = gdb_monitor_write;
2337 #define TYPE_CHARDEV_GDB "chardev-gdb"
2339 static const TypeInfo char_gdb_type_info = {
2340 .name = TYPE_CHARDEV_GDB,
2341 .parent = TYPE_CHARDEV,
2342 .class_init = char_gdb_class_init,
2345 static int find_cpu_clusters(Object *child, void *opaque)
2347 if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
2348 GDBState *s = (GDBState *) opaque;
2349 CPUClusterState *cluster = CPU_CLUSTER(child);
2350 GDBProcess *process;
2352 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2354 process = &s->processes[s->process_num - 1];
2357 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
2358 * runtime, we enforce here that the machine does not use a cluster ID
2359 * that would lead to PID 0.
2361 assert(cluster->cluster_id != UINT32_MAX);
2362 process->pid = cluster->cluster_id + 1;
2363 process->attached = false;
2364 process->target_xml[0] = '\0';
2366 return 0;
2369 return object_child_foreach(child, find_cpu_clusters, opaque);
2372 static int pid_order(const void *a, const void *b)
2374 GDBProcess *pa = (GDBProcess *) a;
2375 GDBProcess *pb = (GDBProcess *) b;
2377 if (pa->pid < pb->pid) {
2378 return -1;
2379 } else if (pa->pid > pb->pid) {
2380 return 1;
2381 } else {
2382 return 0;
2386 static void create_processes(GDBState *s)
2388 object_child_foreach(object_get_root(), find_cpu_clusters, s);
2390 if (s->processes) {
2391 /* Sort by PID */
2392 qsort(s->processes, s->process_num, sizeof(s->processes[0]), pid_order);
2395 create_default_process(s);
2398 static void cleanup_processes(GDBState *s)
2400 g_free(s->processes);
2401 s->process_num = 0;
2402 s->processes = NULL;
2405 int gdbserver_start(const char *device)
2407 trace_gdbstub_op_start(device);
2409 GDBState *s;
2410 char gdbstub_device_name[128];
2411 Chardev *chr = NULL;
2412 Chardev *mon_chr;
2414 if (!first_cpu) {
2415 error_report("gdbstub: meaningless to attach gdb to a "
2416 "machine without any CPU.");
2417 return -1;
2420 if (!device)
2421 return -1;
2422 if (strcmp(device, "none") != 0) {
2423 if (strstart(device, "tcp:", NULL)) {
2424 /* enforce required TCP attributes */
2425 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2426 "%s,nowait,nodelay,server", device);
2427 device = gdbstub_device_name;
2429 #ifndef _WIN32
2430 else if (strcmp(device, "stdio") == 0) {
2431 struct sigaction act;
2433 memset(&act, 0, sizeof(act));
2434 act.sa_handler = gdb_sigterm_handler;
2435 sigaction(SIGINT, &act, NULL);
2437 #endif
2439 * FIXME: it's a bit weird to allow using a mux chardev here
2440 * and implicitly setup a monitor. We may want to break this.
2442 chr = qemu_chr_new_noreplay("gdb", device, true);
2443 if (!chr)
2444 return -1;
2447 s = gdbserver_state;
2448 if (!s) {
2449 s = g_malloc0(sizeof(GDBState));
2450 gdbserver_state = s;
2452 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2454 /* Initialize a monitor terminal for gdb */
2455 mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
2456 NULL, &error_abort);
2457 monitor_init(mon_chr, 0);
2458 } else {
2459 qemu_chr_fe_deinit(&s->chr, true);
2460 mon_chr = s->mon_chr;
2461 cleanup_processes(s);
2462 memset(s, 0, sizeof(GDBState));
2463 s->mon_chr = mon_chr;
2465 s->c_cpu = first_cpu;
2466 s->g_cpu = first_cpu;
2468 create_processes(s);
2470 if (chr) {
2471 qemu_chr_fe_init(&s->chr, chr, &error_abort);
2472 qemu_chr_fe_set_handlers(&s->chr, gdb_chr_can_receive, gdb_chr_receive,
2473 gdb_chr_event, NULL, NULL, NULL, true);
2475 s->state = chr ? RS_IDLE : RS_INACTIVE;
2476 s->mon_chr = mon_chr;
2477 s->current_syscall_cb = NULL;
2479 return 0;
2482 void gdbserver_cleanup(void)
2484 if (gdbserver_state) {
2485 put_packet(gdbserver_state, "W00");
2489 static void register_types(void)
2491 type_register_static(&char_gdb_type_info);
2494 type_init(register_types);
2495 #endif