target/i386: encrypt bios rom
[qemu/ar7.git] / util / qemu-coroutine-lock.c
blob5a80c1069049358be76400f9cb07a6c7a192cdaa
1 /*
2 * coroutine queues and locks
4 * Copyright (c) 2011 Kevin Wolf <kwolf@redhat.com>
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 * The lock-free mutex implementation is based on OSv
25 * (core/lfmutex.cc, include/lockfree/mutex.hh).
26 * Copyright (C) 2013 Cloudius Systems, Ltd.
29 #include "qemu/osdep.h"
30 #include "qemu-common.h"
31 #include "qemu/coroutine.h"
32 #include "qemu/coroutine_int.h"
33 #include "qemu/processor.h"
34 #include "qemu/queue.h"
35 #include "block/aio.h"
36 #include "trace.h"
38 void qemu_co_queue_init(CoQueue *queue)
40 QSIMPLEQ_INIT(&queue->entries);
43 void coroutine_fn qemu_co_queue_wait_impl(CoQueue *queue, QemuLockable *lock)
45 Coroutine *self = qemu_coroutine_self();
46 QSIMPLEQ_INSERT_TAIL(&queue->entries, self, co_queue_next);
48 if (lock) {
49 qemu_lockable_unlock(lock);
52 /* There is no race condition here. Other threads will call
53 * aio_co_schedule on our AioContext, which can reenter this
54 * coroutine but only after this yield and after the main loop
55 * has gone through the next iteration.
57 qemu_coroutine_yield();
58 assert(qemu_in_coroutine());
60 /* TODO: OSv implements wait morphing here, where the wakeup
61 * primitive automatically places the woken coroutine on the
62 * mutex's queue. This avoids the thundering herd effect.
63 * This could be implemented for CoMutexes, but not really for
64 * other cases of QemuLockable.
66 if (lock) {
67 qemu_lockable_lock(lock);
71 /**
72 * qemu_co_queue_run_restart:
74 * Enter each coroutine that was previously marked for restart by
75 * qemu_co_queue_next() or qemu_co_queue_restart_all(). This function is
76 * invoked by the core coroutine code when the current coroutine yields or
77 * terminates.
79 void qemu_co_queue_run_restart(Coroutine *co)
81 Coroutine *next;
82 QSIMPLEQ_HEAD(, Coroutine) tmp_queue_wakeup =
83 QSIMPLEQ_HEAD_INITIALIZER(tmp_queue_wakeup);
85 trace_qemu_co_queue_run_restart(co);
87 /* Because "co" has yielded, any coroutine that we wakeup can resume it.
88 * If this happens and "co" terminates, co->co_queue_wakeup becomes
89 * invalid memory. Therefore, use a temporary queue and do not touch
90 * the "co" coroutine as soon as you enter another one.
92 * In its turn resumed "co" can populate "co_queue_wakeup" queue with
93 * new coroutines to be woken up. The caller, who has resumed "co",
94 * will be responsible for traversing the same queue, which may cause
95 * a different wakeup order but not any missing wakeups.
97 QSIMPLEQ_CONCAT(&tmp_queue_wakeup, &co->co_queue_wakeup);
99 while ((next = QSIMPLEQ_FIRST(&tmp_queue_wakeup))) {
100 QSIMPLEQ_REMOVE_HEAD(&tmp_queue_wakeup, co_queue_next);
101 qemu_coroutine_enter(next);
105 static bool qemu_co_queue_do_restart(CoQueue *queue, bool single)
107 Coroutine *next;
109 if (QSIMPLEQ_EMPTY(&queue->entries)) {
110 return false;
113 while ((next = QSIMPLEQ_FIRST(&queue->entries)) != NULL) {
114 QSIMPLEQ_REMOVE_HEAD(&queue->entries, co_queue_next);
115 aio_co_wake(next);
116 if (single) {
117 break;
120 return true;
123 bool coroutine_fn qemu_co_queue_next(CoQueue *queue)
125 assert(qemu_in_coroutine());
126 return qemu_co_queue_do_restart(queue, true);
129 void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue)
131 assert(qemu_in_coroutine());
132 qemu_co_queue_do_restart(queue, false);
135 bool qemu_co_enter_next_impl(CoQueue *queue, QemuLockable *lock)
137 Coroutine *next;
139 next = QSIMPLEQ_FIRST(&queue->entries);
140 if (!next) {
141 return false;
144 QSIMPLEQ_REMOVE_HEAD(&queue->entries, co_queue_next);
145 if (lock) {
146 qemu_lockable_unlock(lock);
148 aio_co_wake(next);
149 if (lock) {
150 qemu_lockable_lock(lock);
152 return true;
155 bool qemu_co_queue_empty(CoQueue *queue)
157 return QSIMPLEQ_FIRST(&queue->entries) == NULL;
160 /* The wait records are handled with a multiple-producer, single-consumer
161 * lock-free queue. There cannot be two concurrent pop_waiter() calls
162 * because pop_waiter() can only be called while mutex->handoff is zero.
163 * This can happen in three cases:
164 * - in qemu_co_mutex_unlock, before the hand-off protocol has started.
165 * In this case, qemu_co_mutex_lock will see mutex->handoff == 0 and
166 * not take part in the handoff.
167 * - in qemu_co_mutex_lock, if it steals the hand-off responsibility from
168 * qemu_co_mutex_unlock. In this case, qemu_co_mutex_unlock will fail
169 * the cmpxchg (it will see either 0 or the next sequence value) and
170 * exit. The next hand-off cannot begin until qemu_co_mutex_lock has
171 * woken up someone.
172 * - in qemu_co_mutex_unlock, if it takes the hand-off token itself.
173 * In this case another iteration starts with mutex->handoff == 0;
174 * a concurrent qemu_co_mutex_lock will fail the cmpxchg, and
175 * qemu_co_mutex_unlock will go back to case (1).
177 * The following functions manage this queue.
179 typedef struct CoWaitRecord {
180 Coroutine *co;
181 QSLIST_ENTRY(CoWaitRecord) next;
182 } CoWaitRecord;
184 static void push_waiter(CoMutex *mutex, CoWaitRecord *w)
186 w->co = qemu_coroutine_self();
187 QSLIST_INSERT_HEAD_ATOMIC(&mutex->from_push, w, next);
190 static void move_waiters(CoMutex *mutex)
192 QSLIST_HEAD(, CoWaitRecord) reversed;
193 QSLIST_MOVE_ATOMIC(&reversed, &mutex->from_push);
194 while (!QSLIST_EMPTY(&reversed)) {
195 CoWaitRecord *w = QSLIST_FIRST(&reversed);
196 QSLIST_REMOVE_HEAD(&reversed, next);
197 QSLIST_INSERT_HEAD(&mutex->to_pop, w, next);
201 static CoWaitRecord *pop_waiter(CoMutex *mutex)
203 CoWaitRecord *w;
205 if (QSLIST_EMPTY(&mutex->to_pop)) {
206 move_waiters(mutex);
207 if (QSLIST_EMPTY(&mutex->to_pop)) {
208 return NULL;
211 w = QSLIST_FIRST(&mutex->to_pop);
212 QSLIST_REMOVE_HEAD(&mutex->to_pop, next);
213 return w;
216 static bool has_waiters(CoMutex *mutex)
218 return QSLIST_EMPTY(&mutex->to_pop) || QSLIST_EMPTY(&mutex->from_push);
221 void qemu_co_mutex_init(CoMutex *mutex)
223 memset(mutex, 0, sizeof(*mutex));
226 static void coroutine_fn qemu_co_mutex_wake(CoMutex *mutex, Coroutine *co)
228 /* Read co before co->ctx; pairs with smp_wmb() in
229 * qemu_coroutine_enter().
231 smp_read_barrier_depends();
232 mutex->ctx = co->ctx;
233 aio_co_wake(co);
236 static void coroutine_fn qemu_co_mutex_lock_slowpath(AioContext *ctx,
237 CoMutex *mutex)
239 Coroutine *self = qemu_coroutine_self();
240 CoWaitRecord w;
241 unsigned old_handoff;
243 trace_qemu_co_mutex_lock_entry(mutex, self);
244 w.co = self;
245 push_waiter(mutex, &w);
247 /* This is the "Responsibility Hand-Off" protocol; a lock() picks from
248 * a concurrent unlock() the responsibility of waking somebody up.
250 old_handoff = atomic_mb_read(&mutex->handoff);
251 if (old_handoff &&
252 has_waiters(mutex) &&
253 atomic_cmpxchg(&mutex->handoff, old_handoff, 0) == old_handoff) {
254 /* There can be no concurrent pops, because there can be only
255 * one active handoff at a time.
257 CoWaitRecord *to_wake = pop_waiter(mutex);
258 Coroutine *co = to_wake->co;
259 if (co == self) {
260 /* We got the lock ourselves! */
261 assert(to_wake == &w);
262 mutex->ctx = ctx;
263 return;
266 qemu_co_mutex_wake(mutex, co);
269 qemu_coroutine_yield();
270 trace_qemu_co_mutex_lock_return(mutex, self);
273 void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex)
275 AioContext *ctx = qemu_get_current_aio_context();
276 Coroutine *self = qemu_coroutine_self();
277 int waiters, i;
279 /* Running a very small critical section on pthread_mutex_t and CoMutex
280 * shows that pthread_mutex_t is much faster because it doesn't actually
281 * go to sleep. What happens is that the critical section is shorter
282 * than the latency of entering the kernel and thus FUTEX_WAIT always
283 * fails. With CoMutex there is no such latency but you still want to
284 * avoid wait and wakeup. So introduce it artificially.
286 i = 0;
287 retry_fast_path:
288 waiters = atomic_cmpxchg(&mutex->locked, 0, 1);
289 if (waiters != 0) {
290 while (waiters == 1 && ++i < 1000) {
291 if (atomic_read(&mutex->ctx) == ctx) {
292 break;
294 if (atomic_read(&mutex->locked) == 0) {
295 goto retry_fast_path;
297 cpu_relax();
299 waiters = atomic_fetch_inc(&mutex->locked);
302 if (waiters == 0) {
303 /* Uncontended. */
304 trace_qemu_co_mutex_lock_uncontended(mutex, self);
305 mutex->ctx = ctx;
306 } else {
307 qemu_co_mutex_lock_slowpath(ctx, mutex);
309 mutex->holder = self;
310 self->locks_held++;
313 void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex)
315 Coroutine *self = qemu_coroutine_self();
317 trace_qemu_co_mutex_unlock_entry(mutex, self);
319 assert(mutex->locked);
320 assert(mutex->holder == self);
321 assert(qemu_in_coroutine());
323 mutex->ctx = NULL;
324 mutex->holder = NULL;
325 self->locks_held--;
326 if (atomic_fetch_dec(&mutex->locked) == 1) {
327 /* No waiting qemu_co_mutex_lock(). Pfew, that was easy! */
328 return;
331 for (;;) {
332 CoWaitRecord *to_wake = pop_waiter(mutex);
333 unsigned our_handoff;
335 if (to_wake) {
336 qemu_co_mutex_wake(mutex, to_wake->co);
337 break;
340 /* Some concurrent lock() is in progress (we know this because
341 * mutex->locked was >1) but it hasn't yet put itself on the wait
342 * queue. Pick a sequence number for the handoff protocol (not 0).
344 if (++mutex->sequence == 0) {
345 mutex->sequence = 1;
348 our_handoff = mutex->sequence;
349 atomic_mb_set(&mutex->handoff, our_handoff);
350 if (!has_waiters(mutex)) {
351 /* The concurrent lock has not added itself yet, so it
352 * will be able to pick our handoff.
354 break;
357 /* Try to do the handoff protocol ourselves; if somebody else has
358 * already taken it, however, we're done and they're responsible.
360 if (atomic_cmpxchg(&mutex->handoff, our_handoff, 0) != our_handoff) {
361 break;
365 trace_qemu_co_mutex_unlock_return(mutex, self);
368 void qemu_co_rwlock_init(CoRwlock *lock)
370 memset(lock, 0, sizeof(*lock));
371 qemu_co_queue_init(&lock->queue);
372 qemu_co_mutex_init(&lock->mutex);
375 void qemu_co_rwlock_rdlock(CoRwlock *lock)
377 Coroutine *self = qemu_coroutine_self();
379 qemu_co_mutex_lock(&lock->mutex);
380 /* For fairness, wait if a writer is in line. */
381 while (lock->pending_writer) {
382 qemu_co_queue_wait(&lock->queue, &lock->mutex);
384 lock->reader++;
385 qemu_co_mutex_unlock(&lock->mutex);
387 /* The rest of the read-side critical section is run without the mutex. */
388 self->locks_held++;
391 void qemu_co_rwlock_unlock(CoRwlock *lock)
393 Coroutine *self = qemu_coroutine_self();
395 assert(qemu_in_coroutine());
396 if (!lock->reader) {
397 /* The critical section started in qemu_co_rwlock_wrlock. */
398 qemu_co_queue_restart_all(&lock->queue);
399 } else {
400 self->locks_held--;
402 qemu_co_mutex_lock(&lock->mutex);
403 lock->reader--;
404 assert(lock->reader >= 0);
405 /* Wakeup only one waiting writer */
406 if (!lock->reader) {
407 qemu_co_queue_next(&lock->queue);
410 qemu_co_mutex_unlock(&lock->mutex);
413 void qemu_co_rwlock_downgrade(CoRwlock *lock)
415 Coroutine *self = qemu_coroutine_self();
417 /* lock->mutex critical section started in qemu_co_rwlock_wrlock or
418 * qemu_co_rwlock_upgrade.
420 assert(lock->reader == 0);
421 lock->reader++;
422 qemu_co_mutex_unlock(&lock->mutex);
424 /* The rest of the read-side critical section is run without the mutex. */
425 self->locks_held++;
428 void qemu_co_rwlock_wrlock(CoRwlock *lock)
430 qemu_co_mutex_lock(&lock->mutex);
431 lock->pending_writer++;
432 while (lock->reader) {
433 qemu_co_queue_wait(&lock->queue, &lock->mutex);
435 lock->pending_writer--;
437 /* The rest of the write-side critical section is run with
438 * the mutex taken, so that lock->reader remains zero.
439 * There is no need to update self->locks_held.
443 void qemu_co_rwlock_upgrade(CoRwlock *lock)
445 Coroutine *self = qemu_coroutine_self();
447 qemu_co_mutex_lock(&lock->mutex);
448 assert(lock->reader > 0);
449 lock->reader--;
450 lock->pending_writer++;
451 while (lock->reader) {
452 qemu_co_queue_wait(&lock->queue, &lock->mutex);
454 lock->pending_writer--;
456 /* The rest of the write-side critical section is run with
457 * the mutex taken, similar to qemu_co_rwlock_wrlock. Do
458 * not account for the lock twice in self->locks_held.
460 self->locks_held--;