1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
5 #include <sys/resource.h>
8 #include "disas/disas.h"
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
31 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO
= 0x0100000,
35 ADDR_COMPAT_LAYOUT
= 0x0200000,
36 READ_IMPLIES_EXEC
= 0x0400000,
37 ADDR_LIMIT_32BIT
= 0x0800000,
38 SHORT_INODE
= 0x1000000,
39 WHOLE_SECONDS
= 0x2000000,
40 STICKY_TIMEOUTS
= 0x4000000,
41 ADDR_LIMIT_3GB
= 0x8000000,
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
52 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
53 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
54 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
55 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
56 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
57 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
58 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
59 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
61 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
62 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
64 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
65 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
66 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
67 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
69 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
70 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
71 PER_OSF4
= 0x000f, /* OSF/1 v4 */
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 int info_is_fdpic(struct image_info
*info
)
83 return info
->personality
== PER_LINUX_FDPIC
;
86 /* this flag is uneffective under linux too, should be deleted */
88 #define MAP_DENYWRITE 0
91 /* should probably go in elf.h */
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA ELFDATA2MSB
99 #define ELF_DATA ELFDATA2LSB
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong target_elf_greg_t
;
104 #define tswapreg(ptr) tswap64(ptr)
106 typedef abi_ulong target_elf_greg_t
;
107 #define tswapreg(ptr) tswapal(ptr)
111 typedef abi_ushort target_uid_t
;
112 typedef abi_ushort target_gid_t
;
114 typedef abi_uint target_uid_t
;
115 typedef abi_uint target_gid_t
;
117 typedef abi_int target_pid_t
;
121 #define ELF_PLATFORM get_elf_platform()
123 static const char *get_elf_platform(void)
125 static char elf_platform
[] = "i386";
126 int family
= object_property_get_int(OBJECT(thread_cpu
), "family", NULL
);
130 elf_platform
[1] = '0' + family
;
134 #define ELF_HWCAP get_elf_hwcap()
136 static uint32_t get_elf_hwcap(void)
138 X86CPU
*cpu
= X86_CPU(thread_cpu
);
140 return cpu
->env
.features
[FEAT_1_EDX
];
144 #define ELF_START_MMAP 0x2aaaaab000ULL
146 #define ELF_CLASS ELFCLASS64
147 #define ELF_ARCH EM_X86_64
149 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
152 regs
->rsp
= infop
->start_stack
;
153 regs
->rip
= infop
->entry
;
157 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
164 * See linux kernel: arch/x86/include/asm/elf.h
166 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
168 (*regs
)[0] = env
->regs
[15];
169 (*regs
)[1] = env
->regs
[14];
170 (*regs
)[2] = env
->regs
[13];
171 (*regs
)[3] = env
->regs
[12];
172 (*regs
)[4] = env
->regs
[R_EBP
];
173 (*regs
)[5] = env
->regs
[R_EBX
];
174 (*regs
)[6] = env
->regs
[11];
175 (*regs
)[7] = env
->regs
[10];
176 (*regs
)[8] = env
->regs
[9];
177 (*regs
)[9] = env
->regs
[8];
178 (*regs
)[10] = env
->regs
[R_EAX
];
179 (*regs
)[11] = env
->regs
[R_ECX
];
180 (*regs
)[12] = env
->regs
[R_EDX
];
181 (*regs
)[13] = env
->regs
[R_ESI
];
182 (*regs
)[14] = env
->regs
[R_EDI
];
183 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
184 (*regs
)[16] = env
->eip
;
185 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
186 (*regs
)[18] = env
->eflags
;
187 (*regs
)[19] = env
->regs
[R_ESP
];
188 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
189 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
190 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
191 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
192 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
193 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
194 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
199 #define ELF_START_MMAP 0x80000000
202 * This is used to ensure we don't load something for the wrong architecture.
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
207 * These are used to set parameters in the core dumps.
209 #define ELF_CLASS ELFCLASS32
210 #define ELF_ARCH EM_386
212 static inline void init_thread(struct target_pt_regs
*regs
,
213 struct image_info
*infop
)
215 regs
->esp
= infop
->start_stack
;
216 regs
->eip
= infop
->entry
;
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
224 A value of 0 tells we have no such handler. */
229 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
236 * See linux kernel: arch/x86/include/asm/elf.h
238 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
240 (*regs
)[0] = env
->regs
[R_EBX
];
241 (*regs
)[1] = env
->regs
[R_ECX
];
242 (*regs
)[2] = env
->regs
[R_EDX
];
243 (*regs
)[3] = env
->regs
[R_ESI
];
244 (*regs
)[4] = env
->regs
[R_EDI
];
245 (*regs
)[5] = env
->regs
[R_EBP
];
246 (*regs
)[6] = env
->regs
[R_EAX
];
247 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
248 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
249 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
250 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
251 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
252 (*regs
)[12] = env
->eip
;
253 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
254 (*regs
)[14] = env
->eflags
;
255 (*regs
)[15] = env
->regs
[R_ESP
];
256 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE 4096
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
270 #define ELF_START_MMAP 0x80000000
272 #define ELF_ARCH EM_ARM
273 #define ELF_CLASS ELFCLASS32
275 static inline void init_thread(struct target_pt_regs
*regs
,
276 struct image_info
*infop
)
278 abi_long stack
= infop
->start_stack
;
279 memset(regs
, 0, sizeof(*regs
));
281 regs
->uregs
[16] = ARM_CPU_MODE_USR
;
282 if (infop
->entry
& 1) {
283 regs
->uregs
[16] |= CPSR_T
;
285 regs
->uregs
[15] = infop
->entry
& 0xfffffffe;
286 regs
->uregs
[13] = infop
->start_stack
;
287 /* FIXME - what to for failure of get_user()? */
288 get_user_ual(regs
->uregs
[2], stack
+ 8); /* envp */
289 get_user_ual(regs
->uregs
[1], stack
+ 4); /* envp */
290 /* XXX: it seems that r0 is zeroed after ! */
292 /* For uClinux PIC binaries. */
293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294 regs
->uregs
[10] = infop
->start_data
;
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop
)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
304 regs
->uregs
[7] = infop
->loadmap_addr
;
305 if (infop
->interpreter_loadmap_addr
) {
306 /* Executable is dynamically loaded. */
307 regs
->uregs
[8] = infop
->interpreter_loadmap_addr
;
308 regs
->uregs
[9] = infop
->interpreter_pt_dynamic_addr
;
311 regs
->uregs
[9] = infop
->pt_dynamic_addr
;
317 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
319 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUARMState
*env
)
321 (*regs
)[0] = tswapreg(env
->regs
[0]);
322 (*regs
)[1] = tswapreg(env
->regs
[1]);
323 (*regs
)[2] = tswapreg(env
->regs
[2]);
324 (*regs
)[3] = tswapreg(env
->regs
[3]);
325 (*regs
)[4] = tswapreg(env
->regs
[4]);
326 (*regs
)[5] = tswapreg(env
->regs
[5]);
327 (*regs
)[6] = tswapreg(env
->regs
[6]);
328 (*regs
)[7] = tswapreg(env
->regs
[7]);
329 (*regs
)[8] = tswapreg(env
->regs
[8]);
330 (*regs
)[9] = tswapreg(env
->regs
[9]);
331 (*regs
)[10] = tswapreg(env
->regs
[10]);
332 (*regs
)[11] = tswapreg(env
->regs
[11]);
333 (*regs
)[12] = tswapreg(env
->regs
[12]);
334 (*regs
)[13] = tswapreg(env
->regs
[13]);
335 (*regs
)[14] = tswapreg(env
->regs
[14]);
336 (*regs
)[15] = tswapreg(env
->regs
[15]);
338 (*regs
)[16] = tswapreg(cpsr_read((CPUARMState
*)env
));
339 (*regs
)[17] = tswapreg(env
->regs
[0]); /* XXX */
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE 4096
347 ARM_HWCAP_ARM_SWP
= 1 << 0,
348 ARM_HWCAP_ARM_HALF
= 1 << 1,
349 ARM_HWCAP_ARM_THUMB
= 1 << 2,
350 ARM_HWCAP_ARM_26BIT
= 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
352 ARM_HWCAP_ARM_FPA
= 1 << 5,
353 ARM_HWCAP_ARM_VFP
= 1 << 6,
354 ARM_HWCAP_ARM_EDSP
= 1 << 7,
355 ARM_HWCAP_ARM_JAVA
= 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
357 ARM_HWCAP_ARM_CRUNCH
= 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE
= 1 << 11,
359 ARM_HWCAP_ARM_NEON
= 1 << 12,
360 ARM_HWCAP_ARM_VFPv3
= 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16
= 1 << 14,
362 ARM_HWCAP_ARM_TLS
= 1 << 15,
363 ARM_HWCAP_ARM_VFPv4
= 1 << 16,
364 ARM_HWCAP_ARM_IDIVA
= 1 << 17,
365 ARM_HWCAP_ARM_IDIVT
= 1 << 18,
366 ARM_HWCAP_ARM_VFPD32
= 1 << 19,
367 ARM_HWCAP_ARM_LPAE
= 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM
= 1 << 21,
372 ARM_HWCAP2_ARM_AES
= 1 << 0,
373 ARM_HWCAP2_ARM_PMULL
= 1 << 1,
374 ARM_HWCAP2_ARM_SHA1
= 1 << 2,
375 ARM_HWCAP2_ARM_SHA2
= 1 << 3,
376 ARM_HWCAP2_ARM_CRC32
= 1 << 4,
379 /* The commpage only exists for 32 bit kernels */
381 /* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
389 static int init_guest_commpage(unsigned long guest_base
,
390 unsigned long guest_size
)
392 unsigned long real_start
, test_page_addr
;
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
397 test_page_addr
= guest_base
+ (0xffff0f00 & qemu_host_page_mask
);
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
407 if (test_page_addr
>= guest_base
408 && test_page_addr
< (guest_base
+ guest_size
)) {
412 /* Note it needs to be writeable to let us initialise it */
413 real_start
= (unsigned long)
414 mmap((void *)test_page_addr
, qemu_host_page_size
,
415 PROT_READ
| PROT_WRITE
,
416 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
418 /* If we can't map it then try another address */
419 if (real_start
== -1ul) {
423 if (real_start
!= test_page_addr
) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start
, qemu_host_page_size
);
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul
));
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr
, qemu_host_page_size
, PROT_READ
)) {
438 perror("Protecting guest commpage");
442 return 1; /* All good */
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
448 static uint32_t get_elf_hwcap(void)
450 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
453 hwcaps
|= ARM_HWCAP_ARM_SWP
;
454 hwcaps
|= ARM_HWCAP_ARM_HALF
;
455 hwcaps
|= ARM_HWCAP_ARM_THUMB
;
456 hwcaps
|= ARM_HWCAP_ARM_FAST_MULT
;
458 /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
462 GET_FEATURE(ARM_FEATURE_V5
, ARM_HWCAP_ARM_EDSP
);
463 GET_FEATURE(ARM_FEATURE_VFP
, ARM_HWCAP_ARM_VFP
);
464 GET_FEATURE(ARM_FEATURE_IWMMXT
, ARM_HWCAP_ARM_IWMMXT
);
465 GET_FEATURE(ARM_FEATURE_THUMB2EE
, ARM_HWCAP_ARM_THUMBEE
);
466 GET_FEATURE(ARM_FEATURE_NEON
, ARM_HWCAP_ARM_NEON
);
467 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPv3
);
468 GET_FEATURE(ARM_FEATURE_V6K
, ARM_HWCAP_ARM_TLS
);
469 GET_FEATURE(ARM_FEATURE_VFP4
, ARM_HWCAP_ARM_VFPv4
);
470 GET_FEATURE(ARM_FEATURE_ARM_DIV
, ARM_HWCAP_ARM_IDIVA
);
471 GET_FEATURE(ARM_FEATURE_THUMB_DIV
, ARM_HWCAP_ARM_IDIVT
);
472 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
473 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
474 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
475 * to our VFP_FP16 feature bit.
477 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPD32
);
478 GET_FEATURE(ARM_FEATURE_LPAE
, ARM_HWCAP_ARM_LPAE
);
483 static uint32_t get_elf_hwcap2(void)
485 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
488 GET_FEATURE(ARM_FEATURE_V8_AES
, ARM_HWCAP2_ARM_AES
);
489 GET_FEATURE(ARM_FEATURE_V8_PMULL
, ARM_HWCAP2_ARM_PMULL
);
490 GET_FEATURE(ARM_FEATURE_V8_SHA1
, ARM_HWCAP2_ARM_SHA1
);
491 GET_FEATURE(ARM_FEATURE_V8_SHA256
, ARM_HWCAP2_ARM_SHA2
);
492 GET_FEATURE(ARM_FEATURE_CRC
, ARM_HWCAP2_ARM_CRC32
);
499 /* 64 bit ARM definitions */
500 #define ELF_START_MMAP 0x80000000
502 #define ELF_ARCH EM_AARCH64
503 #define ELF_CLASS ELFCLASS64
504 #define ELF_PLATFORM "aarch64"
506 static inline void init_thread(struct target_pt_regs
*regs
,
507 struct image_info
*infop
)
509 abi_long stack
= infop
->start_stack
;
510 memset(regs
, 0, sizeof(*regs
));
512 regs
->pc
= infop
->entry
& ~0x3ULL
;
517 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
519 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
520 const CPUARMState
*env
)
524 for (i
= 0; i
< 32; i
++) {
525 (*regs
)[i
] = tswapreg(env
->xregs
[i
]);
527 (*regs
)[32] = tswapreg(env
->pc
);
528 (*regs
)[33] = tswapreg(pstate_read((CPUARMState
*)env
));
531 #define USE_ELF_CORE_DUMP
532 #define ELF_EXEC_PAGESIZE 4096
535 ARM_HWCAP_A64_FP
= 1 << 0,
536 ARM_HWCAP_A64_ASIMD
= 1 << 1,
537 ARM_HWCAP_A64_EVTSTRM
= 1 << 2,
538 ARM_HWCAP_A64_AES
= 1 << 3,
539 ARM_HWCAP_A64_PMULL
= 1 << 4,
540 ARM_HWCAP_A64_SHA1
= 1 << 5,
541 ARM_HWCAP_A64_SHA2
= 1 << 6,
542 ARM_HWCAP_A64_CRC32
= 1 << 7,
543 ARM_HWCAP_A64_ATOMICS
= 1 << 8,
544 ARM_HWCAP_A64_FPHP
= 1 << 9,
545 ARM_HWCAP_A64_ASIMDHP
= 1 << 10,
546 ARM_HWCAP_A64_CPUID
= 1 << 11,
547 ARM_HWCAP_A64_ASIMDRDM
= 1 << 12,
548 ARM_HWCAP_A64_JSCVT
= 1 << 13,
549 ARM_HWCAP_A64_FCMA
= 1 << 14,
550 ARM_HWCAP_A64_LRCPC
= 1 << 15,
551 ARM_HWCAP_A64_DCPOP
= 1 << 16,
552 ARM_HWCAP_A64_SHA3
= 1 << 17,
553 ARM_HWCAP_A64_SM3
= 1 << 18,
554 ARM_HWCAP_A64_SM4
= 1 << 19,
555 ARM_HWCAP_A64_ASIMDDP
= 1 << 20,
556 ARM_HWCAP_A64_SHA512
= 1 << 21,
557 ARM_HWCAP_A64_SVE
= 1 << 22,
560 #define ELF_HWCAP get_elf_hwcap()
562 static uint32_t get_elf_hwcap(void)
564 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
567 hwcaps
|= ARM_HWCAP_A64_FP
;
568 hwcaps
|= ARM_HWCAP_A64_ASIMD
;
570 /* probe for the extra features */
571 #define GET_FEATURE(feat, hwcap) \
572 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
573 GET_FEATURE(ARM_FEATURE_V8_AES
, ARM_HWCAP_A64_AES
);
574 GET_FEATURE(ARM_FEATURE_V8_PMULL
, ARM_HWCAP_A64_PMULL
);
575 GET_FEATURE(ARM_FEATURE_V8_SHA1
, ARM_HWCAP_A64_SHA1
);
576 GET_FEATURE(ARM_FEATURE_V8_SHA256
, ARM_HWCAP_A64_SHA2
);
577 GET_FEATURE(ARM_FEATURE_CRC
, ARM_HWCAP_A64_CRC32
);
578 GET_FEATURE(ARM_FEATURE_V8_SHA3
, ARM_HWCAP_A64_SHA3
);
579 GET_FEATURE(ARM_FEATURE_V8_SM3
, ARM_HWCAP_A64_SM3
);
580 GET_FEATURE(ARM_FEATURE_V8_SM4
, ARM_HWCAP_A64_SM4
);
581 GET_FEATURE(ARM_FEATURE_V8_SHA512
, ARM_HWCAP_A64_SHA512
);
582 GET_FEATURE(ARM_FEATURE_V8_FP16
,
583 ARM_HWCAP_A64_FPHP
| ARM_HWCAP_A64_ASIMDHP
);
584 GET_FEATURE(ARM_FEATURE_V8_RDM
, ARM_HWCAP_A64_ASIMDRDM
);
585 GET_FEATURE(ARM_FEATURE_V8_FCMA
, ARM_HWCAP_A64_FCMA
);
591 #endif /* not TARGET_AARCH64 */
592 #endif /* TARGET_ARM */
595 #ifdef TARGET_SPARC64
597 #define ELF_START_MMAP 0x80000000
598 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
599 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
601 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
603 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
606 #define ELF_CLASS ELFCLASS64
607 #define ELF_ARCH EM_SPARCV9
609 #define STACK_BIAS 2047
611 static inline void init_thread(struct target_pt_regs
*regs
,
612 struct image_info
*infop
)
617 regs
->pc
= infop
->entry
;
618 regs
->npc
= regs
->pc
+ 4;
621 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
623 if (personality(infop
->personality
) == PER_LINUX32
)
624 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
626 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
631 #define ELF_START_MMAP 0x80000000
632 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
633 | HWCAP_SPARC_MULDIV)
635 #define ELF_CLASS ELFCLASS32
636 #define ELF_ARCH EM_SPARC
638 static inline void init_thread(struct target_pt_regs
*regs
,
639 struct image_info
*infop
)
642 regs
->pc
= infop
->entry
;
643 regs
->npc
= regs
->pc
+ 4;
645 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
653 #define ELF_MACHINE PPC_ELF_MACHINE
654 #define ELF_START_MMAP 0x80000000
656 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
658 #define elf_check_arch(x) ( (x) == EM_PPC64 )
660 #define ELF_CLASS ELFCLASS64
664 #define ELF_CLASS ELFCLASS32
668 #define ELF_ARCH EM_PPC
670 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
671 See arch/powerpc/include/asm/cputable.h. */
673 QEMU_PPC_FEATURE_32
= 0x80000000,
674 QEMU_PPC_FEATURE_64
= 0x40000000,
675 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
676 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
677 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
678 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
679 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
680 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
681 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
682 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
683 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
684 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
685 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
686 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
687 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
688 QEMU_PPC_FEATURE_CELL
= 0x00010000,
689 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
690 QEMU_PPC_FEATURE_SMT
= 0x00004000,
691 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
692 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
693 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
694 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
695 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
696 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
697 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
698 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
700 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
701 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
703 /* Feature definitions in AT_HWCAP2. */
704 QEMU_PPC_FEATURE2_ARCH_2_07
= 0x80000000, /* ISA 2.07 */
705 QEMU_PPC_FEATURE2_HAS_HTM
= 0x40000000, /* Hardware Transactional Memory */
706 QEMU_PPC_FEATURE2_HAS_DSCR
= 0x20000000, /* Data Stream Control Register */
707 QEMU_PPC_FEATURE2_HAS_EBB
= 0x10000000, /* Event Base Branching */
708 QEMU_PPC_FEATURE2_HAS_ISEL
= 0x08000000, /* Integer Select */
709 QEMU_PPC_FEATURE2_HAS_TAR
= 0x04000000, /* Target Address Register */
712 #define ELF_HWCAP get_elf_hwcap()
714 static uint32_t get_elf_hwcap(void)
716 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
717 uint32_t features
= 0;
719 /* We don't have to be terribly complete here; the high points are
720 Altivec/FP/SPE support. Anything else is just a bonus. */
721 #define GET_FEATURE(flag, feature) \
722 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
723 #define GET_FEATURE2(flags, feature) \
725 if ((cpu->env.insns_flags2 & flags) == flags) { \
726 features |= feature; \
729 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
730 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
731 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
732 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
733 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
734 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
735 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
736 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
737 GET_FEATURE2(PPC2_DFP
, QEMU_PPC_FEATURE_HAS_DFP
);
738 GET_FEATURE2(PPC2_VSX
, QEMU_PPC_FEATURE_HAS_VSX
);
739 GET_FEATURE2((PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
| PPC2_ATOMIC_ISA206
|
740 PPC2_FP_CVT_ISA206
| PPC2_FP_TST_ISA206
),
741 QEMU_PPC_FEATURE_ARCH_2_06
);
748 #define ELF_HWCAP2 get_elf_hwcap2()
750 static uint32_t get_elf_hwcap2(void)
752 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
753 uint32_t features
= 0;
755 #define GET_FEATURE(flag, feature) \
756 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
757 #define GET_FEATURE2(flag, feature) \
758 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
760 GET_FEATURE(PPC_ISEL
, QEMU_PPC_FEATURE2_HAS_ISEL
);
761 GET_FEATURE2(PPC2_BCTAR_ISA207
, QEMU_PPC_FEATURE2_HAS_TAR
);
762 GET_FEATURE2((PPC2_BCTAR_ISA207
| PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
|
763 PPC2_ISA207S
), QEMU_PPC_FEATURE2_ARCH_2_07
);
772 * The requirements here are:
773 * - keep the final alignment of sp (sp & 0xf)
774 * - make sure the 32-bit value at the first 16 byte aligned position of
775 * AUXV is greater than 16 for glibc compatibility.
776 * AT_IGNOREPPC is used for that.
777 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
778 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
780 #define DLINFO_ARCH_ITEMS 5
781 #define ARCH_DLINFO \
783 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
785 * Handle glibc compatibility: these magic entries must \
786 * be at the lowest addresses in the final auxv. \
788 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
789 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
790 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
791 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
792 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
795 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
797 _regs
->gpr
[1] = infop
->start_stack
;
798 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
799 if (get_ppc64_abi(infop
) < 2) {
801 get_user_u64(val
, infop
->entry
+ 8);
802 _regs
->gpr
[2] = val
+ infop
->load_bias
;
803 get_user_u64(val
, infop
->entry
);
804 infop
->entry
= val
+ infop
->load_bias
;
806 _regs
->gpr
[12] = infop
->entry
; /* r12 set to global entry address */
809 _regs
->nip
= infop
->entry
;
812 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
814 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
816 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUPPCState
*env
)
819 target_ulong ccr
= 0;
821 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
822 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
825 (*regs
)[32] = tswapreg(env
->nip
);
826 (*regs
)[33] = tswapreg(env
->msr
);
827 (*regs
)[35] = tswapreg(env
->ctr
);
828 (*regs
)[36] = tswapreg(env
->lr
);
829 (*regs
)[37] = tswapreg(env
->xer
);
831 for (i
= 0; i
< ARRAY_SIZE(env
->crf
); i
++) {
832 ccr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
834 (*regs
)[38] = tswapreg(ccr
);
837 #define USE_ELF_CORE_DUMP
838 #define ELF_EXEC_PAGESIZE 4096
844 #define ELF_START_MMAP 0x80000000
847 #define ELF_CLASS ELFCLASS64
849 #define ELF_CLASS ELFCLASS32
851 #define ELF_ARCH EM_MIPS
853 static inline void init_thread(struct target_pt_regs
*regs
,
854 struct image_info
*infop
)
856 regs
->cp0_status
= 2 << CP0St_KSU
;
857 regs
->cp0_epc
= infop
->entry
;
858 regs
->regs
[29] = infop
->start_stack
;
861 /* See linux kernel: arch/mips/include/asm/elf.h. */
863 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
865 /* See linux kernel: arch/mips/include/asm/reg.h. */
872 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
873 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
874 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
875 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
876 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
877 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
878 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
879 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
882 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
883 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMIPSState
*env
)
887 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
890 (*regs
)[TARGET_EF_R0
] = 0;
892 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
893 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->active_tc
.gpr
[i
]);
896 (*regs
)[TARGET_EF_R26
] = 0;
897 (*regs
)[TARGET_EF_R27
] = 0;
898 (*regs
)[TARGET_EF_LO
] = tswapreg(env
->active_tc
.LO
[0]);
899 (*regs
)[TARGET_EF_HI
] = tswapreg(env
->active_tc
.HI
[0]);
900 (*regs
)[TARGET_EF_CP0_EPC
] = tswapreg(env
->active_tc
.PC
);
901 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapreg(env
->CP0_BadVAddr
);
902 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapreg(env
->CP0_Status
);
903 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapreg(env
->CP0_Cause
);
906 #define USE_ELF_CORE_DUMP
907 #define ELF_EXEC_PAGESIZE 4096
909 /* See arch/mips/include/uapi/asm/hwcap.h. */
911 HWCAP_MIPS_R6
= (1 << 0),
912 HWCAP_MIPS_MSA
= (1 << 1),
915 #define ELF_HWCAP get_elf_hwcap()
917 static uint32_t get_elf_hwcap(void)
919 MIPSCPU
*cpu
= MIPS_CPU(thread_cpu
);
922 #define GET_FEATURE(flag, hwcap) \
923 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
925 GET_FEATURE(ISA_MIPS32R6
| ISA_MIPS64R6
, HWCAP_MIPS_R6
);
926 GET_FEATURE(ASE_MSA
, HWCAP_MIPS_MSA
);
933 #endif /* TARGET_MIPS */
935 #ifdef TARGET_MICROBLAZE
937 #define ELF_START_MMAP 0x80000000
939 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
941 #define ELF_CLASS ELFCLASS32
942 #define ELF_ARCH EM_MICROBLAZE
944 static inline void init_thread(struct target_pt_regs
*regs
,
945 struct image_info
*infop
)
947 regs
->pc
= infop
->entry
;
948 regs
->r1
= infop
->start_stack
;
952 #define ELF_EXEC_PAGESIZE 4096
954 #define USE_ELF_CORE_DUMP
956 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
958 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
959 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMBState
*env
)
963 for (i
= 0; i
< 32; i
++) {
964 (*regs
)[pos
++] = tswapreg(env
->regs
[i
]);
967 for (i
= 0; i
< 6; i
++) {
968 (*regs
)[pos
++] = tswapreg(env
->sregs
[i
]);
972 #endif /* TARGET_MICROBLAZE */
976 #define ELF_START_MMAP 0x80000000
978 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
980 #define ELF_CLASS ELFCLASS32
981 #define ELF_ARCH EM_ALTERA_NIOS2
983 static void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
985 regs
->ea
= infop
->entry
;
986 regs
->sp
= infop
->start_stack
;
990 #define ELF_EXEC_PAGESIZE 4096
992 #define USE_ELF_CORE_DUMP
994 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
996 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
997 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
998 const CPUNios2State
*env
)
1003 for (i
= 1; i
< 8; i
++) /* r0-r7 */
1004 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1006 for (i
= 8; i
< 16; i
++) /* r8-r15 */
1007 (*regs
)[i
] = tswapreg(env
->regs
[i
- 8]);
1009 for (i
= 16; i
< 24; i
++) /* r16-r23 */
1010 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1011 (*regs
)[24] = -1; /* R_ET */
1012 (*regs
)[25] = -1; /* R_BT */
1013 (*regs
)[26] = tswapreg(env
->regs
[R_GP
]);
1014 (*regs
)[27] = tswapreg(env
->regs
[R_SP
]);
1015 (*regs
)[28] = tswapreg(env
->regs
[R_FP
]);
1016 (*regs
)[29] = tswapreg(env
->regs
[R_EA
]);
1017 (*regs
)[30] = -1; /* R_SSTATUS */
1018 (*regs
)[31] = tswapreg(env
->regs
[R_RA
]);
1020 (*regs
)[32] = tswapreg(env
->regs
[R_PC
]);
1022 (*regs
)[33] = -1; /* R_STATUS */
1023 (*regs
)[34] = tswapreg(env
->regs
[CR_ESTATUS
]);
1025 for (i
= 35; i
< 49; i
++) /* ... */
1029 #endif /* TARGET_NIOS2 */
1031 #ifdef TARGET_OPENRISC
1033 #define ELF_START_MMAP 0x08000000
1035 #define ELF_ARCH EM_OPENRISC
1036 #define ELF_CLASS ELFCLASS32
1037 #define ELF_DATA ELFDATA2MSB
1039 static inline void init_thread(struct target_pt_regs
*regs
,
1040 struct image_info
*infop
)
1042 regs
->pc
= infop
->entry
;
1043 regs
->gpr
[1] = infop
->start_stack
;
1046 #define USE_ELF_CORE_DUMP
1047 #define ELF_EXEC_PAGESIZE 8192
1049 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1050 #define ELF_NREG 34 /* gprs and pc, sr */
1051 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1053 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1054 const CPUOpenRISCState
*env
)
1058 for (i
= 0; i
< 32; i
++) {
1059 (*regs
)[i
] = tswapreg(cpu_get_gpr(env
, i
));
1061 (*regs
)[32] = tswapreg(env
->pc
);
1062 (*regs
)[33] = tswapreg(cpu_get_sr(env
));
1065 #define ELF_PLATFORM NULL
1067 #endif /* TARGET_OPENRISC */
1071 #define ELF_START_MMAP 0x80000000
1073 #define ELF_CLASS ELFCLASS32
1074 #define ELF_ARCH EM_SH
1076 static inline void init_thread(struct target_pt_regs
*regs
,
1077 struct image_info
*infop
)
1079 /* Check other registers XXXXX */
1080 regs
->pc
= infop
->entry
;
1081 regs
->regs
[15] = infop
->start_stack
;
1084 /* See linux kernel: arch/sh/include/asm/elf.h. */
1086 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1088 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1093 TARGET_REG_GBR
= 19,
1094 TARGET_REG_MACH
= 20,
1095 TARGET_REG_MACL
= 21,
1096 TARGET_REG_SYSCALL
= 22
1099 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1100 const CPUSH4State
*env
)
1104 for (i
= 0; i
< 16; i
++) {
1105 (*regs
)[i
] = tswapreg(env
->gregs
[i
]);
1108 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1109 (*regs
)[TARGET_REG_PR
] = tswapreg(env
->pr
);
1110 (*regs
)[TARGET_REG_SR
] = tswapreg(env
->sr
);
1111 (*regs
)[TARGET_REG_GBR
] = tswapreg(env
->gbr
);
1112 (*regs
)[TARGET_REG_MACH
] = tswapreg(env
->mach
);
1113 (*regs
)[TARGET_REG_MACL
] = tswapreg(env
->macl
);
1114 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
1117 #define USE_ELF_CORE_DUMP
1118 #define ELF_EXEC_PAGESIZE 4096
1121 SH_CPU_HAS_FPU
= 0x0001, /* Hardware FPU support */
1122 SH_CPU_HAS_P2_FLUSH_BUG
= 0x0002, /* Need to flush the cache in P2 area */
1123 SH_CPU_HAS_MMU_PAGE_ASSOC
= 0x0004, /* SH3: TLB way selection bit support */
1124 SH_CPU_HAS_DSP
= 0x0008, /* SH-DSP: DSP support */
1125 SH_CPU_HAS_PERF_COUNTER
= 0x0010, /* Hardware performance counters */
1126 SH_CPU_HAS_PTEA
= 0x0020, /* PTEA register */
1127 SH_CPU_HAS_LLSC
= 0x0040, /* movli.l/movco.l */
1128 SH_CPU_HAS_L2_CACHE
= 0x0080, /* Secondary cache / URAM */
1129 SH_CPU_HAS_OP32
= 0x0100, /* 32-bit instruction support */
1130 SH_CPU_HAS_PTEAEX
= 0x0200, /* PTE ASID Extension support */
1133 #define ELF_HWCAP get_elf_hwcap()
1135 static uint32_t get_elf_hwcap(void)
1137 SuperHCPU
*cpu
= SUPERH_CPU(thread_cpu
);
1140 hwcap
|= SH_CPU_HAS_FPU
;
1142 if (cpu
->env
.features
& SH_FEATURE_SH4A
) {
1143 hwcap
|= SH_CPU_HAS_LLSC
;
1153 #define ELF_START_MMAP 0x80000000
1155 #define ELF_CLASS ELFCLASS32
1156 #define ELF_ARCH EM_CRIS
1158 static inline void init_thread(struct target_pt_regs
*regs
,
1159 struct image_info
*infop
)
1161 regs
->erp
= infop
->entry
;
1164 #define ELF_EXEC_PAGESIZE 8192
1170 #define ELF_START_MMAP 0x80000000
1172 #define ELF_CLASS ELFCLASS32
1173 #define ELF_ARCH EM_68K
1175 /* ??? Does this need to do anything?
1176 #define ELF_PLAT_INIT(_r) */
1178 static inline void init_thread(struct target_pt_regs
*regs
,
1179 struct image_info
*infop
)
1181 regs
->usp
= infop
->start_stack
;
1183 regs
->pc
= infop
->entry
;
1186 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1188 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1190 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUM68KState
*env
)
1192 (*regs
)[0] = tswapreg(env
->dregs
[1]);
1193 (*regs
)[1] = tswapreg(env
->dregs
[2]);
1194 (*regs
)[2] = tswapreg(env
->dregs
[3]);
1195 (*regs
)[3] = tswapreg(env
->dregs
[4]);
1196 (*regs
)[4] = tswapreg(env
->dregs
[5]);
1197 (*regs
)[5] = tswapreg(env
->dregs
[6]);
1198 (*regs
)[6] = tswapreg(env
->dregs
[7]);
1199 (*regs
)[7] = tswapreg(env
->aregs
[0]);
1200 (*regs
)[8] = tswapreg(env
->aregs
[1]);
1201 (*regs
)[9] = tswapreg(env
->aregs
[2]);
1202 (*regs
)[10] = tswapreg(env
->aregs
[3]);
1203 (*regs
)[11] = tswapreg(env
->aregs
[4]);
1204 (*regs
)[12] = tswapreg(env
->aregs
[5]);
1205 (*regs
)[13] = tswapreg(env
->aregs
[6]);
1206 (*regs
)[14] = tswapreg(env
->dregs
[0]);
1207 (*regs
)[15] = tswapreg(env
->aregs
[7]);
1208 (*regs
)[16] = tswapreg(env
->dregs
[0]); /* FIXME: orig_d0 */
1209 (*regs
)[17] = tswapreg(env
->sr
);
1210 (*regs
)[18] = tswapreg(env
->pc
);
1211 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
1214 #define USE_ELF_CORE_DUMP
1215 #define ELF_EXEC_PAGESIZE 8192
1221 #define ELF_START_MMAP (0x30000000000ULL)
1223 #define ELF_CLASS ELFCLASS64
1224 #define ELF_ARCH EM_ALPHA
1226 static inline void init_thread(struct target_pt_regs
*regs
,
1227 struct image_info
*infop
)
1229 regs
->pc
= infop
->entry
;
1231 regs
->usp
= infop
->start_stack
;
1234 #define ELF_EXEC_PAGESIZE 8192
1236 #endif /* TARGET_ALPHA */
1240 #define ELF_START_MMAP (0x20000000000ULL)
1242 #define ELF_CLASS ELFCLASS64
1243 #define ELF_DATA ELFDATA2MSB
1244 #define ELF_ARCH EM_S390
1246 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1248 regs
->psw
.addr
= infop
->entry
;
1249 regs
->psw
.mask
= PSW_MASK_64
| PSW_MASK_32
;
1250 regs
->gprs
[15] = infop
->start_stack
;
1253 #endif /* TARGET_S390X */
1255 #ifdef TARGET_TILEGX
1257 /* 42 bits real used address, a half for user mode */
1258 #define ELF_START_MMAP (0x00000020000000000ULL)
1260 #define elf_check_arch(x) ((x) == EM_TILEGX)
1262 #define ELF_CLASS ELFCLASS64
1263 #define ELF_DATA ELFDATA2LSB
1264 #define ELF_ARCH EM_TILEGX
1266 static inline void init_thread(struct target_pt_regs
*regs
,
1267 struct image_info
*infop
)
1269 regs
->pc
= infop
->entry
;
1270 regs
->sp
= infop
->start_stack
;
1274 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1276 #endif /* TARGET_TILEGX */
1280 #define ELF_START_MMAP 0x80000000
1281 #define ELF_ARCH EM_RISCV
1283 #ifdef TARGET_RISCV32
1284 #define ELF_CLASS ELFCLASS32
1286 #define ELF_CLASS ELFCLASS64
1289 static inline void init_thread(struct target_pt_regs
*regs
,
1290 struct image_info
*infop
)
1292 regs
->sepc
= infop
->entry
;
1293 regs
->sp
= infop
->start_stack
;
1296 #define ELF_EXEC_PAGESIZE 4096
1298 #endif /* TARGET_RISCV */
1302 #define ELF_START_MMAP 0x80000000
1303 #define ELF_CLASS ELFCLASS32
1304 #define ELF_ARCH EM_PARISC
1305 #define ELF_PLATFORM "PARISC"
1306 #define STACK_GROWS_DOWN 0
1307 #define STACK_ALIGNMENT 64
1309 static inline void init_thread(struct target_pt_regs
*regs
,
1310 struct image_info
*infop
)
1312 regs
->iaoq
[0] = infop
->entry
;
1313 regs
->iaoq
[1] = infop
->entry
+ 4;
1315 regs
->gr
[24] = infop
->arg_start
;
1316 regs
->gr
[25] = (infop
->arg_end
- infop
->arg_start
) / sizeof(abi_ulong
);
1317 /* The top-of-stack contains a linkage buffer. */
1318 regs
->gr
[30] = infop
->start_stack
+ 64;
1319 regs
->gr
[31] = infop
->entry
;
1322 #endif /* TARGET_HPPA */
1324 #ifdef TARGET_XTENSA
1326 #define ELF_START_MMAP 0x20000000
1328 #define ELF_CLASS ELFCLASS32
1329 #define ELF_ARCH EM_XTENSA
1331 static inline void init_thread(struct target_pt_regs
*regs
,
1332 struct image_info
*infop
)
1334 regs
->windowbase
= 0;
1335 regs
->windowstart
= 1;
1336 regs
->areg
[1] = infop
->start_stack
;
1337 regs
->pc
= infop
->entry
;
1340 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1341 #define ELF_NREG 128
1342 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1351 TARGET_REG_WINDOWSTART
,
1352 TARGET_REG_WINDOWBASE
,
1353 TARGET_REG_THREADPTR
,
1354 TARGET_REG_AR0
= 64,
1357 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1358 const CPUXtensaState
*env
)
1362 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1363 (*regs
)[TARGET_REG_PS
] = tswapreg(env
->sregs
[PS
] & ~PS_EXCM
);
1364 (*regs
)[TARGET_REG_LBEG
] = tswapreg(env
->sregs
[LBEG
]);
1365 (*regs
)[TARGET_REG_LEND
] = tswapreg(env
->sregs
[LEND
]);
1366 (*regs
)[TARGET_REG_LCOUNT
] = tswapreg(env
->sregs
[LCOUNT
]);
1367 (*regs
)[TARGET_REG_SAR
] = tswapreg(env
->sregs
[SAR
]);
1368 (*regs
)[TARGET_REG_WINDOWSTART
] = tswapreg(env
->sregs
[WINDOW_START
]);
1369 (*regs
)[TARGET_REG_WINDOWBASE
] = tswapreg(env
->sregs
[WINDOW_BASE
]);
1370 (*regs
)[TARGET_REG_THREADPTR
] = tswapreg(env
->uregs
[THREADPTR
]);
1371 xtensa_sync_phys_from_window((CPUXtensaState
*)env
);
1372 for (i
= 0; i
< env
->config
->nareg
; ++i
) {
1373 (*regs
)[TARGET_REG_AR0
+ i
] = tswapreg(env
->phys_regs
[i
]);
1377 #define USE_ELF_CORE_DUMP
1378 #define ELF_EXEC_PAGESIZE 4096
1380 #endif /* TARGET_XTENSA */
1382 #ifndef ELF_PLATFORM
1383 #define ELF_PLATFORM (NULL)
1387 #define ELF_MACHINE ELF_ARCH
1390 #ifndef elf_check_arch
1391 #define elf_check_arch(x) ((x) == ELF_ARCH)
1398 #ifndef STACK_GROWS_DOWN
1399 #define STACK_GROWS_DOWN 1
1402 #ifndef STACK_ALIGNMENT
1403 #define STACK_ALIGNMENT 16
1408 #define ELF_CLASS ELFCLASS32
1410 #define bswaptls(ptr) bswap32s(ptr)
1417 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
1418 unsigned int a_text
; /* length of text, in bytes */
1419 unsigned int a_data
; /* length of data, in bytes */
1420 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
1421 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
1422 unsigned int a_entry
; /* start address */
1423 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
1424 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
1428 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1434 /* Necessary parameters */
1435 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1436 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1437 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1438 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1440 #define DLINFO_ITEMS 15
1442 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
1444 memcpy(to
, from
, n
);
1448 static void bswap_ehdr(struct elfhdr
*ehdr
)
1450 bswap16s(&ehdr
->e_type
); /* Object file type */
1451 bswap16s(&ehdr
->e_machine
); /* Architecture */
1452 bswap32s(&ehdr
->e_version
); /* Object file version */
1453 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
1454 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
1455 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
1456 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
1457 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
1458 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
1459 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
1460 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
1461 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
1462 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
1465 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
1468 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
1469 bswap32s(&phdr
->p_type
); /* Segment type */
1470 bswap32s(&phdr
->p_flags
); /* Segment flags */
1471 bswaptls(&phdr
->p_offset
); /* Segment file offset */
1472 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
1473 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
1474 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
1475 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
1476 bswaptls(&phdr
->p_align
); /* Segment alignment */
1480 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
1483 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
1484 bswap32s(&shdr
->sh_name
);
1485 bswap32s(&shdr
->sh_type
);
1486 bswaptls(&shdr
->sh_flags
);
1487 bswaptls(&shdr
->sh_addr
);
1488 bswaptls(&shdr
->sh_offset
);
1489 bswaptls(&shdr
->sh_size
);
1490 bswap32s(&shdr
->sh_link
);
1491 bswap32s(&shdr
->sh_info
);
1492 bswaptls(&shdr
->sh_addralign
);
1493 bswaptls(&shdr
->sh_entsize
);
1497 static void bswap_sym(struct elf_sym
*sym
)
1499 bswap32s(&sym
->st_name
);
1500 bswaptls(&sym
->st_value
);
1501 bswaptls(&sym
->st_size
);
1502 bswap16s(&sym
->st_shndx
);
1505 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
1506 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
1507 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
1508 static inline void bswap_sym(struct elf_sym
*sym
) { }
1511 #ifdef USE_ELF_CORE_DUMP
1512 static int elf_core_dump(int, const CPUArchState
*);
1513 #endif /* USE_ELF_CORE_DUMP */
1514 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
);
1516 /* Verify the portions of EHDR within E_IDENT for the target.
1517 This can be performed before bswapping the entire header. */
1518 static bool elf_check_ident(struct elfhdr
*ehdr
)
1520 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
1521 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
1522 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
1523 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
1524 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
1525 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
1526 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
1529 /* Verify the portions of EHDR outside of E_IDENT for the target.
1530 This has to wait until after bswapping the header. */
1531 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
1533 return (elf_check_arch(ehdr
->e_machine
)
1534 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
1535 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
1536 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
1540 * 'copy_elf_strings()' copies argument/envelope strings from user
1541 * memory to free pages in kernel mem. These are in a format ready
1542 * to be put directly into the top of new user memory.
1545 static abi_ulong
copy_elf_strings(int argc
, char **argv
, char *scratch
,
1546 abi_ulong p
, abi_ulong stack_limit
)
1553 return 0; /* bullet-proofing */
1556 if (STACK_GROWS_DOWN
) {
1557 int offset
= ((p
- 1) % TARGET_PAGE_SIZE
) + 1;
1558 for (i
= argc
- 1; i
>= 0; --i
) {
1561 fprintf(stderr
, "VFS: argc is wrong");
1564 len
= strlen(tmp
) + 1;
1567 if (len
> (p
- stack_limit
)) {
1571 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
1572 tmp
-= bytes_to_copy
;
1574 offset
-= bytes_to_copy
;
1575 len
-= bytes_to_copy
;
1577 memcpy_fromfs(scratch
+ offset
, tmp
, bytes_to_copy
);
1580 memcpy_to_target(p
, scratch
, top
- p
);
1582 offset
= TARGET_PAGE_SIZE
;
1587 memcpy_to_target(p
, scratch
+ offset
, top
- p
);
1590 int remaining
= TARGET_PAGE_SIZE
- (p
% TARGET_PAGE_SIZE
);
1591 for (i
= 0; i
< argc
; ++i
) {
1594 fprintf(stderr
, "VFS: argc is wrong");
1597 len
= strlen(tmp
) + 1;
1598 if (len
> (stack_limit
- p
)) {
1602 int bytes_to_copy
= (len
> remaining
) ? remaining
: len
;
1604 memcpy_fromfs(scratch
+ (p
- top
), tmp
, bytes_to_copy
);
1606 tmp
+= bytes_to_copy
;
1607 remaining
-= bytes_to_copy
;
1609 len
-= bytes_to_copy
;
1611 if (remaining
== 0) {
1612 memcpy_to_target(top
, scratch
, p
- top
);
1614 remaining
= TARGET_PAGE_SIZE
;
1619 memcpy_to_target(top
, scratch
, p
- top
);
1626 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1627 * argument/environment space. Newer kernels (>2.6.33) allow more,
1628 * dependent on stack size, but guarantee at least 32 pages for
1629 * backwards compatibility.
1631 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1633 static abi_ulong
setup_arg_pages(struct linux_binprm
*bprm
,
1634 struct image_info
*info
)
1636 abi_ulong size
, error
, guard
;
1638 size
= guest_stack_size
;
1639 if (size
< STACK_LOWER_LIMIT
) {
1640 size
= STACK_LOWER_LIMIT
;
1642 guard
= TARGET_PAGE_SIZE
;
1643 if (guard
< qemu_real_host_page_size
) {
1644 guard
= qemu_real_host_page_size
;
1647 error
= target_mmap(0, size
+ guard
, PROT_READ
| PROT_WRITE
,
1648 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1650 perror("mmap stack");
1654 /* We reserve one extra page at the top of the stack as guard. */
1655 if (STACK_GROWS_DOWN
) {
1656 target_mprotect(error
, guard
, PROT_NONE
);
1657 info
->stack_limit
= error
+ guard
;
1658 return info
->stack_limit
+ size
- sizeof(void *);
1660 target_mprotect(error
+ size
, guard
, PROT_NONE
);
1661 info
->stack_limit
= error
+ size
;
1666 /* Map and zero the bss. We need to explicitly zero any fractional pages
1667 after the data section (i.e. bss). */
1668 static void zero_bss(abi_ulong elf_bss
, abi_ulong last_bss
, int prot
)
1670 uintptr_t host_start
, host_map_start
, host_end
;
1672 last_bss
= TARGET_PAGE_ALIGN(last_bss
);
1674 /* ??? There is confusion between qemu_real_host_page_size and
1675 qemu_host_page_size here and elsewhere in target_mmap, which
1676 may lead to the end of the data section mapping from the file
1677 not being mapped. At least there was an explicit test and
1678 comment for that here, suggesting that "the file size must
1679 be known". The comment probably pre-dates the introduction
1680 of the fstat system call in target_mmap which does in fact
1681 find out the size. What isn't clear is if the workaround
1682 here is still actually needed. For now, continue with it,
1683 but merge it with the "normal" mmap that would allocate the bss. */
1685 host_start
= (uintptr_t) g2h(elf_bss
);
1686 host_end
= (uintptr_t) g2h(last_bss
);
1687 host_map_start
= REAL_HOST_PAGE_ALIGN(host_start
);
1689 if (host_map_start
< host_end
) {
1690 void *p
= mmap((void *)host_map_start
, host_end
- host_map_start
,
1691 prot
, MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1692 if (p
== MAP_FAILED
) {
1693 perror("cannot mmap brk");
1698 /* Ensure that the bss page(s) are valid */
1699 if ((page_get_flags(last_bss
-1) & prot
) != prot
) {
1700 page_set_flags(elf_bss
& TARGET_PAGE_MASK
, last_bss
, prot
| PAGE_VALID
);
1703 if (host_start
< host_map_start
) {
1704 memset((void *)host_start
, 0, host_map_start
- host_start
);
1709 static int elf_is_fdpic(struct elfhdr
*exec
)
1711 return exec
->e_ident
[EI_OSABI
] == ELFOSABI_ARM_FDPIC
;
1714 /* Default implementation, always false. */
1715 static int elf_is_fdpic(struct elfhdr
*exec
)
1721 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
1724 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
1726 /* elf32_fdpic_loadseg */
1730 put_user_u32(loadsegs
[n
].addr
, sp
+0);
1731 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
1732 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
1735 /* elf32_fdpic_loadmap */
1737 put_user_u16(0, sp
+0); /* version */
1738 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
1740 info
->personality
= PER_LINUX_FDPIC
;
1741 info
->loadmap_addr
= sp
;
1746 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
1747 struct elfhdr
*exec
,
1748 struct image_info
*info
,
1749 struct image_info
*interp_info
)
1752 abi_ulong u_argc
, u_argv
, u_envp
, u_auxv
;
1755 abi_ulong u_rand_bytes
;
1756 uint8_t k_rand_bytes
[16];
1757 abi_ulong u_platform
;
1758 const char *k_platform
;
1759 const int n
= sizeof(elf_addr_t
);
1763 /* Needs to be before we load the env/argc/... */
1764 if (elf_is_fdpic(exec
)) {
1765 /* Need 4 byte alignment for these structs */
1767 sp
= loader_build_fdpic_loadmap(info
, sp
);
1768 info
->other_info
= interp_info
;
1770 interp_info
->other_info
= info
;
1771 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
1772 info
->interpreter_loadmap_addr
= interp_info
->loadmap_addr
;
1773 info
->interpreter_pt_dynamic_addr
= interp_info
->pt_dynamic_addr
;
1775 info
->interpreter_loadmap_addr
= 0;
1776 info
->interpreter_pt_dynamic_addr
= 0;
1781 k_platform
= ELF_PLATFORM
;
1783 size_t len
= strlen(k_platform
) + 1;
1784 if (STACK_GROWS_DOWN
) {
1785 sp
-= (len
+ n
- 1) & ~(n
- 1);
1787 /* FIXME - check return value of memcpy_to_target() for failure */
1788 memcpy_to_target(sp
, k_platform
, len
);
1790 memcpy_to_target(sp
, k_platform
, len
);
1796 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1797 * the argv and envp pointers.
1799 if (STACK_GROWS_DOWN
) {
1800 sp
= QEMU_ALIGN_DOWN(sp
, 16);
1802 sp
= QEMU_ALIGN_UP(sp
, 16);
1806 * Generate 16 random bytes for userspace PRNG seeding (not
1807 * cryptically secure but it's not the aim of QEMU).
1809 for (i
= 0; i
< 16; i
++) {
1810 k_rand_bytes
[i
] = rand();
1812 if (STACK_GROWS_DOWN
) {
1815 /* FIXME - check return value of memcpy_to_target() for failure */
1816 memcpy_to_target(sp
, k_rand_bytes
, 16);
1818 memcpy_to_target(sp
, k_rand_bytes
, 16);
1823 size
= (DLINFO_ITEMS
+ 1) * 2;
1826 #ifdef DLINFO_ARCH_ITEMS
1827 size
+= DLINFO_ARCH_ITEMS
* 2;
1832 info
->auxv_len
= size
* n
;
1834 size
+= envc
+ argc
+ 2;
1835 size
+= 1; /* argc itself */
1838 /* Allocate space and finalize stack alignment for entry now. */
1839 if (STACK_GROWS_DOWN
) {
1840 u_argc
= QEMU_ALIGN_DOWN(sp
- size
, STACK_ALIGNMENT
);
1844 sp
= QEMU_ALIGN_UP(sp
+ size
, STACK_ALIGNMENT
);
1847 u_argv
= u_argc
+ n
;
1848 u_envp
= u_argv
+ (argc
+ 1) * n
;
1849 u_auxv
= u_envp
+ (envc
+ 1) * n
;
1850 info
->saved_auxv
= u_auxv
;
1851 info
->arg_start
= u_argv
;
1852 info
->arg_end
= u_argv
+ argc
* n
;
1854 /* This is correct because Linux defines
1855 * elf_addr_t as Elf32_Off / Elf64_Off
1857 #define NEW_AUX_ENT(id, val) do { \
1858 put_user_ual(id, u_auxv); u_auxv += n; \
1859 put_user_ual(val, u_auxv); u_auxv += n; \
1864 * ARCH_DLINFO must come first so platform specific code can enforce
1865 * special alignment requirements on the AUXV if necessary (eg. PPC).
1869 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1870 * on info->auxv_len will trigger.
1872 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
1873 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
1874 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
1875 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(MAX(TARGET_PAGE_SIZE
, getpagesize())));
1876 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
1877 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
1878 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
1879 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
1880 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
1881 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
1882 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
1883 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
1884 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
1885 NEW_AUX_ENT(AT_RANDOM
, (abi_ulong
) u_rand_bytes
);
1886 NEW_AUX_ENT(AT_SECURE
, (abi_ulong
) qemu_getauxval(AT_SECURE
));
1889 NEW_AUX_ENT(AT_HWCAP2
, (abi_ulong
) ELF_HWCAP2
);
1893 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
1895 NEW_AUX_ENT (AT_NULL
, 0);
1898 /* Check that our initial calculation of the auxv length matches how much
1899 * we actually put into it.
1901 assert(info
->auxv_len
== u_auxv
- info
->saved_auxv
);
1903 put_user_ual(argc
, u_argc
);
1905 p
= info
->arg_strings
;
1906 for (i
= 0; i
< argc
; ++i
) {
1907 put_user_ual(p
, u_argv
);
1909 p
+= target_strlen(p
) + 1;
1911 put_user_ual(0, u_argv
);
1913 p
= info
->env_strings
;
1914 for (i
= 0; i
< envc
; ++i
) {
1915 put_user_ual(p
, u_envp
);
1917 p
+= target_strlen(p
) + 1;
1919 put_user_ual(0, u_envp
);
1924 unsigned long init_guest_space(unsigned long host_start
,
1925 unsigned long host_size
,
1926 unsigned long guest_start
,
1929 unsigned long current_start
, aligned_start
;
1932 assert(host_start
|| host_size
);
1934 /* If just a starting address is given, then just verify that
1936 if (host_start
&& !host_size
) {
1937 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1938 if (init_guest_commpage(host_start
, host_size
) != 1) {
1939 return (unsigned long)-1;
1945 /* Setup the initial flags and start address. */
1946 current_start
= host_start
& qemu_host_page_mask
;
1947 flags
= MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
;
1952 /* Otherwise, a non-zero size region of memory needs to be mapped
1955 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1956 /* On 32-bit ARM, we need to map not just the usable memory, but
1957 * also the commpage. Try to find a suitable place by allocating
1958 * a big chunk for all of it. If host_start, then the naive
1959 * strategy probably does good enough.
1962 unsigned long guest_full_size
, host_full_size
, real_start
;
1965 (0xffff0f00 & qemu_host_page_mask
) + qemu_host_page_size
;
1966 host_full_size
= guest_full_size
- guest_start
;
1967 real_start
= (unsigned long)
1968 mmap(NULL
, host_full_size
, PROT_NONE
, flags
, -1, 0);
1969 if (real_start
== (unsigned long)-1) {
1970 if (host_size
< host_full_size
- qemu_host_page_size
) {
1971 /* We failed to map a continous segment, but we're
1972 * allowed to have a gap between the usable memory and
1973 * the commpage where other things can be mapped.
1974 * This sparseness gives us more flexibility to find
1979 return (unsigned long)-1;
1981 munmap((void *)real_start
, host_full_size
);
1982 if (real_start
& ~qemu_host_page_mask
) {
1983 /* The same thing again, but with an extra qemu_host_page_size
1984 * so that we can shift around alignment.
1986 unsigned long real_size
= host_full_size
+ qemu_host_page_size
;
1987 real_start
= (unsigned long)
1988 mmap(NULL
, real_size
, PROT_NONE
, flags
, -1, 0);
1989 if (real_start
== (unsigned long)-1) {
1990 if (host_size
< host_full_size
- qemu_host_page_size
) {
1993 return (unsigned long)-1;
1995 munmap((void *)real_start
, real_size
);
1996 real_start
= HOST_PAGE_ALIGN(real_start
);
1998 current_start
= real_start
;
2004 unsigned long real_start
, real_size
, aligned_size
;
2005 aligned_size
= real_size
= host_size
;
2007 /* Do not use mmap_find_vma here because that is limited to the
2008 * guest address space. We are going to make the
2009 * guest address space fit whatever we're given.
2011 real_start
= (unsigned long)
2012 mmap((void *)current_start
, host_size
, PROT_NONE
, flags
, -1, 0);
2013 if (real_start
== (unsigned long)-1) {
2014 return (unsigned long)-1;
2017 /* Check to see if the address is valid. */
2018 if (host_start
&& real_start
!= current_start
) {
2022 /* Ensure the address is properly aligned. */
2023 if (real_start
& ~qemu_host_page_mask
) {
2024 /* Ideally, we adjust like
2026 * pages: [ ][ ][ ][ ][ ]
2032 * But if there is something else mapped right after it,
2033 * then obviously it won't have room to grow, and the
2034 * kernel will put the new larger real someplace else with
2035 * unknown alignment (if we made it to here, then
2036 * fixed=false). Which is why we grow real by a full page
2037 * size, instead of by part of one; so that even if we get
2038 * moved, we can still guarantee alignment. But this does
2039 * mean that there is a padding of < 1 page both before
2040 * and after the aligned range; the "after" could could
2041 * cause problems for ARM emulation where it could butt in
2042 * to where we need to put the commpage.
2044 munmap((void *)real_start
, host_size
);
2045 real_size
= aligned_size
+ qemu_host_page_size
;
2046 real_start
= (unsigned long)
2047 mmap((void *)real_start
, real_size
, PROT_NONE
, flags
, -1, 0);
2048 if (real_start
== (unsigned long)-1) {
2049 return (unsigned long)-1;
2051 aligned_start
= HOST_PAGE_ALIGN(real_start
);
2053 aligned_start
= real_start
;
2056 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2057 /* On 32-bit ARM, we need to also be able to map the commpage. */
2058 int valid
= init_guest_commpage(aligned_start
- guest_start
,
2059 aligned_size
+ guest_start
);
2061 munmap((void *)real_start
, real_size
);
2062 return (unsigned long)-1;
2063 } else if (valid
== 0) {
2068 /* If nothing has said `return -1` or `goto try_again` yet,
2069 * then the address we have is good.
2074 /* That address didn't work. Unmap and try a different one.
2075 * The address the host picked because is typically right at
2076 * the top of the host address space and leaves the guest with
2077 * no usable address space. Resort to a linear search. We
2078 * already compensated for mmap_min_addr, so this should not
2079 * happen often. Probably means we got unlucky and host
2080 * address space randomization put a shared library somewhere
2083 * This is probably a good strategy if host_start, but is
2084 * probably a bad strategy if not, which means we got here
2085 * because of trouble with ARM commpage setup.
2087 munmap((void *)real_start
, real_size
);
2088 current_start
+= qemu_host_page_size
;
2089 if (host_start
== current_start
) {
2090 /* Theoretically possible if host doesn't have any suitably
2091 * aligned areas. Normally the first mmap will fail.
2093 return (unsigned long)-1;
2097 qemu_log_mask(CPU_LOG_PAGE
, "Reserved 0x%lx bytes of guest address space\n", host_size
);
2099 return aligned_start
;
2102 static void probe_guest_base(const char *image_name
,
2103 abi_ulong loaddr
, abi_ulong hiaddr
)
2105 /* Probe for a suitable guest base address, if the user has not set
2106 * it explicitly, and set guest_base appropriately.
2107 * In case of error we will print a suitable message and exit.
2110 if (!have_guest_base
&& !reserved_va
) {
2111 unsigned long host_start
, real_start
, host_size
;
2113 /* Round addresses to page boundaries. */
2114 loaddr
&= qemu_host_page_mask
;
2115 hiaddr
= HOST_PAGE_ALIGN(hiaddr
);
2117 if (loaddr
< mmap_min_addr
) {
2118 host_start
= HOST_PAGE_ALIGN(mmap_min_addr
);
2120 host_start
= loaddr
;
2121 if (host_start
!= loaddr
) {
2122 errmsg
= "Address overflow loading ELF binary";
2126 host_size
= hiaddr
- loaddr
;
2128 /* Setup the initial guest memory space with ranges gleaned from
2129 * the ELF image that is being loaded.
2131 real_start
= init_guest_space(host_start
, host_size
, loaddr
, false);
2132 if (real_start
== (unsigned long)-1) {
2133 errmsg
= "Unable to find space for application";
2136 guest_base
= real_start
- loaddr
;
2138 qemu_log_mask(CPU_LOG_PAGE
, "Relocating guest address space from 0x"
2139 TARGET_ABI_FMT_lx
" to 0x%lx\n",
2140 loaddr
, real_start
);
2145 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
2150 /* Load an ELF image into the address space.
2152 IMAGE_NAME is the filename of the image, to use in error messages.
2153 IMAGE_FD is the open file descriptor for the image.
2155 BPRM_BUF is a copy of the beginning of the file; this of course
2156 contains the elf file header at offset 0. It is assumed that this
2157 buffer is sufficiently aligned to present no problems to the host
2158 in accessing data at aligned offsets within the buffer.
2160 On return: INFO values will be filled in, as necessary or available. */
2162 static void load_elf_image(const char *image_name
, int image_fd
,
2163 struct image_info
*info
, char **pinterp_name
,
2164 char bprm_buf
[BPRM_BUF_SIZE
])
2166 struct elfhdr
*ehdr
= (struct elfhdr
*)bprm_buf
;
2167 struct elf_phdr
*phdr
;
2168 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
2172 /* First of all, some simple consistency checks */
2173 errmsg
= "Invalid ELF image for this architecture";
2174 if (!elf_check_ident(ehdr
)) {
2178 if (!elf_check_ehdr(ehdr
)) {
2182 i
= ehdr
->e_phnum
* sizeof(struct elf_phdr
);
2183 if (ehdr
->e_phoff
+ i
<= BPRM_BUF_SIZE
) {
2184 phdr
= (struct elf_phdr
*)(bprm_buf
+ ehdr
->e_phoff
);
2186 phdr
= (struct elf_phdr
*) alloca(i
);
2187 retval
= pread(image_fd
, phdr
, i
, ehdr
->e_phoff
);
2192 bswap_phdr(phdr
, ehdr
->e_phnum
);
2195 info
->pt_dynamic_addr
= 0;
2199 /* Find the maximum size of the image and allocate an appropriate
2200 amount of memory to handle that. */
2201 loaddr
= -1, hiaddr
= 0;
2202 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
2203 if (phdr
[i
].p_type
== PT_LOAD
) {
2204 abi_ulong a
= phdr
[i
].p_vaddr
- phdr
[i
].p_offset
;
2208 a
= phdr
[i
].p_vaddr
+ phdr
[i
].p_memsz
;
2217 if (ehdr
->e_type
== ET_DYN
) {
2218 /* The image indicates that it can be loaded anywhere. Find a
2219 location that can hold the memory space required. If the
2220 image is pre-linked, LOADDR will be non-zero. Since we do
2221 not supply MAP_FIXED here we'll use that address if and
2222 only if it remains available. */
2223 load_addr
= target_mmap(loaddr
, hiaddr
- loaddr
, PROT_NONE
,
2224 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
,
2226 if (load_addr
== -1) {
2229 } else if (pinterp_name
!= NULL
) {
2230 /* This is the main executable. Make sure that the low
2231 address does not conflict with MMAP_MIN_ADDR or the
2232 QEMU application itself. */
2233 probe_guest_base(image_name
, loaddr
, hiaddr
);
2235 load_bias
= load_addr
- loaddr
;
2237 if (elf_is_fdpic(ehdr
)) {
2238 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
2239 g_malloc(sizeof(*loadsegs
) * info
->nsegs
);
2241 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
2242 switch (phdr
[i
].p_type
) {
2244 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
2247 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
2248 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
2249 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
2256 info
->load_bias
= load_bias
;
2257 info
->load_addr
= load_addr
;
2258 info
->entry
= ehdr
->e_entry
+ load_bias
;
2259 info
->start_code
= -1;
2261 info
->start_data
= -1;
2264 info
->elf_flags
= ehdr
->e_flags
;
2266 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
2267 struct elf_phdr
*eppnt
= phdr
+ i
;
2268 if (eppnt
->p_type
== PT_LOAD
) {
2269 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
;
2272 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
2273 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
2274 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
2276 vaddr
= load_bias
+ eppnt
->p_vaddr
;
2277 vaddr_po
= TARGET_ELF_PAGEOFFSET(vaddr
);
2278 vaddr_ps
= TARGET_ELF_PAGESTART(vaddr
);
2280 error
= target_mmap(vaddr_ps
, eppnt
->p_filesz
+ vaddr_po
,
2281 elf_prot
, MAP_PRIVATE
| MAP_FIXED
,
2282 image_fd
, eppnt
->p_offset
- vaddr_po
);
2287 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
2288 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
2290 /* If the load segment requests extra zeros (e.g. bss), map it. */
2291 if (vaddr_ef
< vaddr_em
) {
2292 zero_bss(vaddr_ef
, vaddr_em
, elf_prot
);
2295 /* Find the full program boundaries. */
2296 if (elf_prot
& PROT_EXEC
) {
2297 if (vaddr
< info
->start_code
) {
2298 info
->start_code
= vaddr
;
2300 if (vaddr_ef
> info
->end_code
) {
2301 info
->end_code
= vaddr_ef
;
2304 if (elf_prot
& PROT_WRITE
) {
2305 if (vaddr
< info
->start_data
) {
2306 info
->start_data
= vaddr
;
2308 if (vaddr_ef
> info
->end_data
) {
2309 info
->end_data
= vaddr_ef
;
2311 if (vaddr_em
> info
->brk
) {
2312 info
->brk
= vaddr_em
;
2315 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
2318 if (*pinterp_name
) {
2319 errmsg
= "Multiple PT_INTERP entries";
2322 interp_name
= malloc(eppnt
->p_filesz
);
2327 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
2328 memcpy(interp_name
, bprm_buf
+ eppnt
->p_offset
,
2331 retval
= pread(image_fd
, interp_name
, eppnt
->p_filesz
,
2333 if (retval
!= eppnt
->p_filesz
) {
2337 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
2338 errmsg
= "Invalid PT_INTERP entry";
2341 *pinterp_name
= interp_name
;
2345 if (info
->end_data
== 0) {
2346 info
->start_data
= info
->end_code
;
2347 info
->end_data
= info
->end_code
;
2348 info
->brk
= info
->end_code
;
2351 if (qemu_log_enabled()) {
2352 load_symbols(ehdr
, image_fd
, load_bias
);
2362 errmsg
= "Incomplete read of file header";
2366 errmsg
= strerror(errno
);
2368 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
2372 static void load_elf_interp(const char *filename
, struct image_info
*info
,
2373 char bprm_buf
[BPRM_BUF_SIZE
])
2377 fd
= open(path(filename
), O_RDONLY
);
2382 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
2386 if (retval
< BPRM_BUF_SIZE
) {
2387 memset(bprm_buf
+ retval
, 0, BPRM_BUF_SIZE
- retval
);
2390 load_elf_image(filename
, fd
, info
, NULL
, bprm_buf
);
2394 fprintf(stderr
, "%s: %s\n", filename
, strerror(errno
));
2398 static int symfind(const void *s0
, const void *s1
)
2400 target_ulong addr
= *(target_ulong
*)s0
;
2401 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
2403 if (addr
< sym
->st_value
) {
2405 } else if (addr
>= sym
->st_value
+ sym
->st_size
) {
2411 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
2413 #if ELF_CLASS == ELFCLASS32
2414 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
2416 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
2420 struct elf_sym
*sym
;
2422 sym
= bsearch(&orig_addr
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
2424 return s
->disas_strtab
+ sym
->st_name
;
2430 /* FIXME: This should use elf_ops.h */
2431 static int symcmp(const void *s0
, const void *s1
)
2433 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
2434 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
2435 return (sym0
->st_value
< sym1
->st_value
)
2437 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
2440 /* Best attempt to load symbols from this ELF object. */
2441 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
)
2443 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
2445 struct elf_shdr
*shdr
;
2446 char *strings
= NULL
;
2447 struct syminfo
*s
= NULL
;
2448 struct elf_sym
*new_syms
, *syms
= NULL
;
2450 shnum
= hdr
->e_shnum
;
2451 i
= shnum
* sizeof(struct elf_shdr
);
2452 shdr
= (struct elf_shdr
*)alloca(i
);
2453 if (pread(fd
, shdr
, i
, hdr
->e_shoff
) != i
) {
2457 bswap_shdr(shdr
, shnum
);
2458 for (i
= 0; i
< shnum
; ++i
) {
2459 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
2461 str_idx
= shdr
[i
].sh_link
;
2466 /* There will be no symbol table if the file was stripped. */
2470 /* Now know where the strtab and symtab are. Snarf them. */
2471 s
= g_try_new(struct syminfo
, 1);
2476 segsz
= shdr
[str_idx
].sh_size
;
2477 s
->disas_strtab
= strings
= g_try_malloc(segsz
);
2479 pread(fd
, strings
, segsz
, shdr
[str_idx
].sh_offset
) != segsz
) {
2483 segsz
= shdr
[sym_idx
].sh_size
;
2484 syms
= g_try_malloc(segsz
);
2485 if (!syms
|| pread(fd
, syms
, segsz
, shdr
[sym_idx
].sh_offset
) != segsz
) {
2489 if (segsz
/ sizeof(struct elf_sym
) > INT_MAX
) {
2490 /* Implausibly large symbol table: give up rather than ploughing
2491 * on with the number of symbols calculation overflowing
2495 nsyms
= segsz
/ sizeof(struct elf_sym
);
2496 for (i
= 0; i
< nsyms
; ) {
2497 bswap_sym(syms
+ i
);
2498 /* Throw away entries which we do not need. */
2499 if (syms
[i
].st_shndx
== SHN_UNDEF
2500 || syms
[i
].st_shndx
>= SHN_LORESERVE
2501 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
2503 syms
[i
] = syms
[nsyms
];
2506 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2507 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2508 syms
[i
].st_value
&= ~(target_ulong
)1;
2510 syms
[i
].st_value
+= load_bias
;
2515 /* No "useful" symbol. */
2520 /* Attempt to free the storage associated with the local symbols
2521 that we threw away. Whether or not this has any effect on the
2522 memory allocation depends on the malloc implementation and how
2523 many symbols we managed to discard. */
2524 new_syms
= g_try_renew(struct elf_sym
, syms
, nsyms
);
2525 if (new_syms
== NULL
) {
2530 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
2532 s
->disas_num_syms
= nsyms
;
2533 #if ELF_CLASS == ELFCLASS32
2534 s
->disas_symtab
.elf32
= syms
;
2536 s
->disas_symtab
.elf64
= syms
;
2538 s
->lookup_symbol
= lookup_symbolxx
;
2550 uint32_t get_elf_eflags(int fd
)
2556 /* Read ELF header */
2557 offset
= lseek(fd
, 0, SEEK_SET
);
2558 if (offset
== (off_t
) -1) {
2561 ret
= read(fd
, &ehdr
, sizeof(ehdr
));
2562 if (ret
< sizeof(ehdr
)) {
2565 offset
= lseek(fd
, offset
, SEEK_SET
);
2566 if (offset
== (off_t
) -1) {
2570 /* Check ELF signature */
2571 if (!elf_check_ident(&ehdr
)) {
2577 if (!elf_check_ehdr(&ehdr
)) {
2581 /* return architecture id */
2582 return ehdr
.e_flags
;
2585 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
)
2587 struct image_info interp_info
;
2588 struct elfhdr elf_ex
;
2589 char *elf_interpreter
= NULL
;
2592 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
2594 load_elf_image(bprm
->filename
, bprm
->fd
, info
,
2595 &elf_interpreter
, bprm
->buf
);
2597 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2598 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2599 when we load the interpreter. */
2600 elf_ex
= *(struct elfhdr
*)bprm
->buf
;
2602 /* Do this so that we can load the interpreter, if need be. We will
2603 change some of these later */
2604 bprm
->p
= setup_arg_pages(bprm
, info
);
2606 scratch
= g_new0(char, TARGET_PAGE_SIZE
);
2607 if (STACK_GROWS_DOWN
) {
2608 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2609 bprm
->p
, info
->stack_limit
);
2610 info
->file_string
= bprm
->p
;
2611 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2612 bprm
->p
, info
->stack_limit
);
2613 info
->env_strings
= bprm
->p
;
2614 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2615 bprm
->p
, info
->stack_limit
);
2616 info
->arg_strings
= bprm
->p
;
2618 info
->arg_strings
= bprm
->p
;
2619 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2620 bprm
->p
, info
->stack_limit
);
2621 info
->env_strings
= bprm
->p
;
2622 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2623 bprm
->p
, info
->stack_limit
);
2624 info
->file_string
= bprm
->p
;
2625 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2626 bprm
->p
, info
->stack_limit
);
2632 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
2636 if (elf_interpreter
) {
2637 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
2639 /* If the program interpreter is one of these two, then assume
2640 an iBCS2 image. Otherwise assume a native linux image. */
2642 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
2643 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
2644 info
->personality
= PER_SVR4
;
2646 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2647 and some applications "depend" upon this behavior. Since
2648 we do not have the power to recompile these, we emulate
2649 the SVr4 behavior. Sigh. */
2650 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
2651 MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
2655 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &elf_ex
,
2656 info
, (elf_interpreter
? &interp_info
: NULL
));
2657 info
->start_stack
= bprm
->p
;
2659 /* If we have an interpreter, set that as the program's entry point.
2660 Copy the load_bias as well, to help PPC64 interpret the entry
2661 point as a function descriptor. Do this after creating elf tables
2662 so that we copy the original program entry point into the AUXV. */
2663 if (elf_interpreter
) {
2664 info
->load_bias
= interp_info
.load_bias
;
2665 info
->entry
= interp_info
.entry
;
2666 free(elf_interpreter
);
2669 #ifdef USE_ELF_CORE_DUMP
2670 bprm
->core_dump
= &elf_core_dump
;
2676 #ifdef USE_ELF_CORE_DUMP
2678 * Definitions to generate Intel SVR4-like core files.
2679 * These mostly have the same names as the SVR4 types with "target_elf_"
2680 * tacked on the front to prevent clashes with linux definitions,
2681 * and the typedef forms have been avoided. This is mostly like
2682 * the SVR4 structure, but more Linuxy, with things that Linux does
2683 * not support and which gdb doesn't really use excluded.
2685 * Fields we don't dump (their contents is zero) in linux-user qemu
2686 * are marked with XXX.
2688 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2690 * Porting ELF coredump for target is (quite) simple process. First you
2691 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2692 * the target resides):
2694 * #define USE_ELF_CORE_DUMP
2696 * Next you define type of register set used for dumping. ELF specification
2697 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2699 * typedef <target_regtype> target_elf_greg_t;
2700 * #define ELF_NREG <number of registers>
2701 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2703 * Last step is to implement target specific function that copies registers
2704 * from given cpu into just specified register set. Prototype is:
2706 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2707 * const CPUArchState *env);
2710 * regs - copy register values into here (allocated and zeroed by caller)
2711 * env - copy registers from here
2713 * Example for ARM target is provided in this file.
2716 /* An ELF note in memory */
2720 size_t namesz_rounded
;
2723 size_t datasz_rounded
;
2728 struct target_elf_siginfo
{
2729 abi_int si_signo
; /* signal number */
2730 abi_int si_code
; /* extra code */
2731 abi_int si_errno
; /* errno */
2734 struct target_elf_prstatus
{
2735 struct target_elf_siginfo pr_info
; /* Info associated with signal */
2736 abi_short pr_cursig
; /* Current signal */
2737 abi_ulong pr_sigpend
; /* XXX */
2738 abi_ulong pr_sighold
; /* XXX */
2739 target_pid_t pr_pid
;
2740 target_pid_t pr_ppid
;
2741 target_pid_t pr_pgrp
;
2742 target_pid_t pr_sid
;
2743 struct target_timeval pr_utime
; /* XXX User time */
2744 struct target_timeval pr_stime
; /* XXX System time */
2745 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
2746 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
2747 target_elf_gregset_t pr_reg
; /* GP registers */
2748 abi_int pr_fpvalid
; /* XXX */
2751 #define ELF_PRARGSZ (80) /* Number of chars for args */
2753 struct target_elf_prpsinfo
{
2754 char pr_state
; /* numeric process state */
2755 char pr_sname
; /* char for pr_state */
2756 char pr_zomb
; /* zombie */
2757 char pr_nice
; /* nice val */
2758 abi_ulong pr_flag
; /* flags */
2759 target_uid_t pr_uid
;
2760 target_gid_t pr_gid
;
2761 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
2763 char pr_fname
[16]; /* filename of executable */
2764 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
2767 /* Here is the structure in which status of each thread is captured. */
2768 struct elf_thread_status
{
2769 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
2770 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
2772 elf_fpregset_t fpu
; /* NT_PRFPREG */
2773 struct task_struct
*thread
;
2774 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
2776 struct memelfnote notes
[1];
2780 struct elf_note_info
{
2781 struct memelfnote
*notes
;
2782 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
2783 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
2785 QTAILQ_HEAD(thread_list_head
, elf_thread_status
) thread_list
;
2788 * Current version of ELF coredump doesn't support
2789 * dumping fp regs etc.
2791 elf_fpregset_t
*fpu
;
2792 elf_fpxregset_t
*xfpu
;
2793 int thread_status_size
;
2799 struct vm_area_struct
{
2800 target_ulong vma_start
; /* start vaddr of memory region */
2801 target_ulong vma_end
; /* end vaddr of memory region */
2802 abi_ulong vma_flags
; /* protection etc. flags for the region */
2803 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
2807 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
2808 int mm_count
; /* number of mappings */
2811 static struct mm_struct
*vma_init(void);
2812 static void vma_delete(struct mm_struct
*);
2813 static int vma_add_mapping(struct mm_struct
*, target_ulong
,
2814 target_ulong
, abi_ulong
);
2815 static int vma_get_mapping_count(const struct mm_struct
*);
2816 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
2817 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
2818 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
2819 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
2820 unsigned long flags
);
2822 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
2823 static void fill_note(struct memelfnote
*, const char *, int,
2824 unsigned int, void *);
2825 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
2826 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
2827 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
2828 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
2829 static size_t note_size(const struct memelfnote
*);
2830 static void free_note_info(struct elf_note_info
*);
2831 static int fill_note_info(struct elf_note_info
*, long, const CPUArchState
*);
2832 static void fill_thread_info(struct elf_note_info
*, const CPUArchState
*);
2833 static int core_dump_filename(const TaskState
*, char *, size_t);
2835 static int dump_write(int, const void *, size_t);
2836 static int write_note(struct memelfnote
*, int);
2837 static int write_note_info(struct elf_note_info
*, int);
2840 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
2842 prstatus
->pr_info
.si_signo
= tswap32(prstatus
->pr_info
.si_signo
);
2843 prstatus
->pr_info
.si_code
= tswap32(prstatus
->pr_info
.si_code
);
2844 prstatus
->pr_info
.si_errno
= tswap32(prstatus
->pr_info
.si_errno
);
2845 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
2846 prstatus
->pr_sigpend
= tswapal(prstatus
->pr_sigpend
);
2847 prstatus
->pr_sighold
= tswapal(prstatus
->pr_sighold
);
2848 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
2849 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
2850 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
2851 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
2852 /* cpu times are not filled, so we skip them */
2853 /* regs should be in correct format already */
2854 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
2857 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
2859 psinfo
->pr_flag
= tswapal(psinfo
->pr_flag
);
2860 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
2861 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
2862 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
2863 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
2864 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
2865 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
2868 static void bswap_note(struct elf_note
*en
)
2870 bswap32s(&en
->n_namesz
);
2871 bswap32s(&en
->n_descsz
);
2872 bswap32s(&en
->n_type
);
2875 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
2876 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
2877 static inline void bswap_note(struct elf_note
*en
) { }
2878 #endif /* BSWAP_NEEDED */
2881 * Minimal support for linux memory regions. These are needed
2882 * when we are finding out what memory exactly belongs to
2883 * emulated process. No locks needed here, as long as
2884 * thread that received the signal is stopped.
2887 static struct mm_struct
*vma_init(void)
2889 struct mm_struct
*mm
;
2891 if ((mm
= g_malloc(sizeof (*mm
))) == NULL
)
2895 QTAILQ_INIT(&mm
->mm_mmap
);
2900 static void vma_delete(struct mm_struct
*mm
)
2902 struct vm_area_struct
*vma
;
2904 while ((vma
= vma_first(mm
)) != NULL
) {
2905 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
2911 static int vma_add_mapping(struct mm_struct
*mm
, target_ulong start
,
2912 target_ulong end
, abi_ulong flags
)
2914 struct vm_area_struct
*vma
;
2916 if ((vma
= g_malloc0(sizeof (*vma
))) == NULL
)
2919 vma
->vma_start
= start
;
2921 vma
->vma_flags
= flags
;
2923 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
2929 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
2931 return (QTAILQ_FIRST(&mm
->mm_mmap
));
2934 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
2936 return (QTAILQ_NEXT(vma
, vma_link
));
2939 static int vma_get_mapping_count(const struct mm_struct
*mm
)
2941 return (mm
->mm_count
);
2945 * Calculate file (dump) size of given memory region.
2947 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
2949 /* if we cannot even read the first page, skip it */
2950 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
2954 * Usually we don't dump executable pages as they contain
2955 * non-writable code that debugger can read directly from
2956 * target library etc. However, thread stacks are marked
2957 * also executable so we read in first page of given region
2958 * and check whether it contains elf header. If there is
2959 * no elf header, we dump it.
2961 if (vma
->vma_flags
& PROT_EXEC
) {
2962 char page
[TARGET_PAGE_SIZE
];
2964 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
2965 if ((page
[EI_MAG0
] == ELFMAG0
) &&
2966 (page
[EI_MAG1
] == ELFMAG1
) &&
2967 (page
[EI_MAG2
] == ELFMAG2
) &&
2968 (page
[EI_MAG3
] == ELFMAG3
)) {
2970 * Mappings are possibly from ELF binary. Don't dump
2977 return (vma
->vma_end
- vma
->vma_start
);
2980 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
2981 unsigned long flags
)
2983 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
2985 vma_add_mapping(mm
, start
, end
, flags
);
2989 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
2990 unsigned int sz
, void *data
)
2992 unsigned int namesz
;
2994 namesz
= strlen(name
) + 1;
2996 note
->namesz
= namesz
;
2997 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
3000 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
3005 * We calculate rounded up note size here as specified by
3008 note
->notesz
= sizeof (struct elf_note
) +
3009 note
->namesz_rounded
+ note
->datasz_rounded
;
3012 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
3015 (void) memset(elf
, 0, sizeof(*elf
));
3017 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
3018 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
3019 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
3020 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
3021 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
3023 elf
->e_type
= ET_CORE
;
3024 elf
->e_machine
= machine
;
3025 elf
->e_version
= EV_CURRENT
;
3026 elf
->e_phoff
= sizeof(struct elfhdr
);
3027 elf
->e_flags
= flags
;
3028 elf
->e_ehsize
= sizeof(struct elfhdr
);
3029 elf
->e_phentsize
= sizeof(struct elf_phdr
);
3030 elf
->e_phnum
= segs
;
3035 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
3037 phdr
->p_type
= PT_NOTE
;
3038 phdr
->p_offset
= offset
;
3041 phdr
->p_filesz
= sz
;
3046 bswap_phdr(phdr
, 1);
3049 static size_t note_size(const struct memelfnote
*note
)
3051 return (note
->notesz
);
3054 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
3055 const TaskState
*ts
, int signr
)
3057 (void) memset(prstatus
, 0, sizeof (*prstatus
));
3058 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
3059 prstatus
->pr_pid
= ts
->ts_tid
;
3060 prstatus
->pr_ppid
= getppid();
3061 prstatus
->pr_pgrp
= getpgrp();
3062 prstatus
->pr_sid
= getsid(0);
3064 bswap_prstatus(prstatus
);
3067 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
3069 char *base_filename
;
3070 unsigned int i
, len
;
3072 (void) memset(psinfo
, 0, sizeof (*psinfo
));
3074 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
3075 if (len
>= ELF_PRARGSZ
)
3076 len
= ELF_PRARGSZ
- 1;
3077 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
3079 for (i
= 0; i
< len
; i
++)
3080 if (psinfo
->pr_psargs
[i
] == 0)
3081 psinfo
->pr_psargs
[i
] = ' ';
3082 psinfo
->pr_psargs
[len
] = 0;
3084 psinfo
->pr_pid
= getpid();
3085 psinfo
->pr_ppid
= getppid();
3086 psinfo
->pr_pgrp
= getpgrp();
3087 psinfo
->pr_sid
= getsid(0);
3088 psinfo
->pr_uid
= getuid();
3089 psinfo
->pr_gid
= getgid();
3091 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
3093 * Using strncpy here is fine: at max-length,
3094 * this field is not NUL-terminated.
3096 (void) strncpy(psinfo
->pr_fname
, base_filename
,
3097 sizeof(psinfo
->pr_fname
));
3099 g_free(base_filename
);
3100 bswap_psinfo(psinfo
);
3104 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
3106 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
3107 elf_addr_t orig_auxv
= auxv
;
3109 int len
= ts
->info
->auxv_len
;
3112 * Auxiliary vector is stored in target process stack. It contains
3113 * {type, value} pairs that we need to dump into note. This is not
3114 * strictly necessary but we do it here for sake of completeness.
3117 /* read in whole auxv vector and copy it to memelfnote */
3118 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
3120 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
3121 unlock_user(ptr
, auxv
, len
);
3126 * Constructs name of coredump file. We have following convention
3128 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3130 * Returns 0 in case of success, -1 otherwise (errno is set).
3132 static int core_dump_filename(const TaskState
*ts
, char *buf
,
3136 char *base_filename
= NULL
;
3140 assert(bufsize
>= PATH_MAX
);
3142 if (gettimeofday(&tv
, NULL
) < 0) {
3143 (void) fprintf(stderr
, "unable to get current timestamp: %s",
3148 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
3149 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
3150 localtime_r(&tv
.tv_sec
, &tm
));
3151 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
3152 base_filename
, timestamp
, (int)getpid());
3153 g_free(base_filename
);
3158 static int dump_write(int fd
, const void *ptr
, size_t size
)
3160 const char *bufp
= (const char *)ptr
;
3161 ssize_t bytes_written
, bytes_left
;
3162 struct rlimit dumpsize
;
3166 getrlimit(RLIMIT_CORE
, &dumpsize
);
3167 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
3168 if (errno
== ESPIPE
) { /* not a seekable stream */
3174 if (dumpsize
.rlim_cur
<= pos
) {
3176 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
3179 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
3180 bytes_left
= limit_left
>= size
? size
: limit_left
;
3185 * In normal conditions, single write(2) should do but
3186 * in case of socket etc. this mechanism is more portable.
3189 bytes_written
= write(fd
, bufp
, bytes_left
);
3190 if (bytes_written
< 0) {
3194 } else if (bytes_written
== 0) { /* eof */
3197 bufp
+= bytes_written
;
3198 bytes_left
-= bytes_written
;
3199 } while (bytes_left
> 0);
3204 static int write_note(struct memelfnote
*men
, int fd
)
3208 en
.n_namesz
= men
->namesz
;
3209 en
.n_type
= men
->type
;
3210 en
.n_descsz
= men
->datasz
;
3214 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
3216 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
3218 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
3224 static void fill_thread_info(struct elf_note_info
*info
, const CPUArchState
*env
)
3226 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
3227 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
3228 struct elf_thread_status
*ets
;
3230 ets
= g_malloc0(sizeof (*ets
));
3231 ets
->num_notes
= 1; /* only prstatus is dumped */
3232 fill_prstatus(&ets
->prstatus
, ts
, 0);
3233 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
3234 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
3237 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
3239 info
->notes_size
+= note_size(&ets
->notes
[0]);
3242 static void init_note_info(struct elf_note_info
*info
)
3244 /* Initialize the elf_note_info structure so that it is at
3245 * least safe to call free_note_info() on it. Must be
3246 * called before calling fill_note_info().
3248 memset(info
, 0, sizeof (*info
));
3249 QTAILQ_INIT(&info
->thread_list
);
3252 static int fill_note_info(struct elf_note_info
*info
,
3253 long signr
, const CPUArchState
*env
)
3256 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
3257 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
3260 info
->notes
= g_new0(struct memelfnote
, NUMNOTES
);
3261 if (info
->notes
== NULL
)
3263 info
->prstatus
= g_malloc0(sizeof (*info
->prstatus
));
3264 if (info
->prstatus
== NULL
)
3266 info
->psinfo
= g_malloc0(sizeof (*info
->psinfo
));
3267 if (info
->prstatus
== NULL
)
3271 * First fill in status (and registers) of current thread
3272 * including process info & aux vector.
3274 fill_prstatus(info
->prstatus
, ts
, signr
);
3275 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
3276 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
3277 sizeof (*info
->prstatus
), info
->prstatus
);
3278 fill_psinfo(info
->psinfo
, ts
);
3279 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
3280 sizeof (*info
->psinfo
), info
->psinfo
);
3281 fill_auxv_note(&info
->notes
[2], ts
);
3284 info
->notes_size
= 0;
3285 for (i
= 0; i
< info
->numnote
; i
++)
3286 info
->notes_size
+= note_size(&info
->notes
[i
]);
3288 /* read and fill status of all threads */
3291 if (cpu
== thread_cpu
) {
3294 fill_thread_info(info
, (CPUArchState
*)cpu
->env_ptr
);
3301 static void free_note_info(struct elf_note_info
*info
)
3303 struct elf_thread_status
*ets
;
3305 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
3306 ets
= QTAILQ_FIRST(&info
->thread_list
);
3307 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
3311 g_free(info
->prstatus
);
3312 g_free(info
->psinfo
);
3313 g_free(info
->notes
);
3316 static int write_note_info(struct elf_note_info
*info
, int fd
)
3318 struct elf_thread_status
*ets
;
3321 /* write prstatus, psinfo and auxv for current thread */
3322 for (i
= 0; i
< info
->numnote
; i
++)
3323 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
3326 /* write prstatus for each thread */
3327 QTAILQ_FOREACH(ets
, &info
->thread_list
, ets_link
) {
3328 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
3336 * Write out ELF coredump.
3338 * See documentation of ELF object file format in:
3339 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3341 * Coredump format in linux is following:
3343 * 0 +----------------------+ \
3344 * | ELF header | ET_CORE |
3345 * +----------------------+ |
3346 * | ELF program headers | |--- headers
3347 * | - NOTE section | |
3348 * | - PT_LOAD sections | |
3349 * +----------------------+ /
3354 * +----------------------+ <-- aligned to target page
3355 * | Process memory dump |
3360 * +----------------------+
3362 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3363 * NT_PRSINFO -> struct elf_prpsinfo
3364 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3366 * Format follows System V format as close as possible. Current
3367 * version limitations are as follows:
3368 * - no floating point registers are dumped
3370 * Function returns 0 in case of success, negative errno otherwise.
3372 * TODO: make this work also during runtime: it should be
3373 * possible to force coredump from running process and then
3374 * continue processing. For example qemu could set up SIGUSR2
3375 * handler (provided that target process haven't registered
3376 * handler for that) that does the dump when signal is received.
3378 static int elf_core_dump(int signr
, const CPUArchState
*env
)
3380 const CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
3381 const TaskState
*ts
= (const TaskState
*)cpu
->opaque
;
3382 struct vm_area_struct
*vma
= NULL
;
3383 char corefile
[PATH_MAX
];
3384 struct elf_note_info info
;
3386 struct elf_phdr phdr
;
3387 struct rlimit dumpsize
;
3388 struct mm_struct
*mm
= NULL
;
3389 off_t offset
= 0, data_offset
= 0;
3393 init_note_info(&info
);
3396 getrlimit(RLIMIT_CORE
, &dumpsize
);
3397 if (dumpsize
.rlim_cur
== 0)
3400 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
3403 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
3404 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
3408 * Walk through target process memory mappings and
3409 * set up structure containing this information. After
3410 * this point vma_xxx functions can be used.
3412 if ((mm
= vma_init()) == NULL
)
3415 walk_memory_regions(mm
, vma_walker
);
3416 segs
= vma_get_mapping_count(mm
);
3419 * Construct valid coredump ELF header. We also
3420 * add one more segment for notes.
3422 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
3423 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
3426 /* fill in the in-memory version of notes */
3427 if (fill_note_info(&info
, signr
, env
) < 0)
3430 offset
+= sizeof (elf
); /* elf header */
3431 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
3433 /* write out notes program header */
3434 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
3436 offset
+= info
.notes_size
;
3437 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
3441 * ELF specification wants data to start at page boundary so
3444 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
3447 * Write program headers for memory regions mapped in
3448 * the target process.
3450 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3451 (void) memset(&phdr
, 0, sizeof (phdr
));
3453 phdr
.p_type
= PT_LOAD
;
3454 phdr
.p_offset
= offset
;
3455 phdr
.p_vaddr
= vma
->vma_start
;
3457 phdr
.p_filesz
= vma_dump_size(vma
);
3458 offset
+= phdr
.p_filesz
;
3459 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
3460 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
3461 if (vma
->vma_flags
& PROT_WRITE
)
3462 phdr
.p_flags
|= PF_W
;
3463 if (vma
->vma_flags
& PROT_EXEC
)
3464 phdr
.p_flags
|= PF_X
;
3465 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
3467 bswap_phdr(&phdr
, 1);
3468 if (dump_write(fd
, &phdr
, sizeof(phdr
)) != 0) {
3474 * Next we write notes just after program headers. No
3475 * alignment needed here.
3477 if (write_note_info(&info
, fd
) < 0)
3480 /* align data to page boundary */
3481 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
3485 * Finally we can dump process memory into corefile as well.
3487 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3491 end
= vma
->vma_start
+ vma_dump_size(vma
);
3493 for (addr
= vma
->vma_start
; addr
< end
;
3494 addr
+= TARGET_PAGE_SIZE
) {
3495 char page
[TARGET_PAGE_SIZE
];
3499 * Read in page from target process memory and
3500 * write it to coredump file.
3502 error
= copy_from_user(page
, addr
, sizeof (page
));
3504 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
3509 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
3515 free_note_info(&info
);
3524 #endif /* USE_ELF_CORE_DUMP */
3526 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
3528 init_thread(regs
, infop
);