mmap-alloc: unfold qemu_ram_mmap()
[qemu/ar7.git] / block / nvme.c
blobb5952c9b08b52fde2f70c951af9e967dd6ad260b
1 /*
2 * NVMe block driver based on vfio
4 * Copyright 2016 - 2018 Red Hat, Inc.
6 * Authors:
7 * Fam Zheng <famz@redhat.com>
8 * Paolo Bonzini <pbonzini@redhat.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qapi/qmp/qdict.h"
18 #include "qapi/qmp/qstring.h"
19 #include "qemu/error-report.h"
20 #include "qemu/cutils.h"
21 #include "qemu/option.h"
22 #include "qemu/vfio-helpers.h"
23 #include "block/block_int.h"
24 #include "trace.h"
26 #include "block/nvme.h"
28 #define NVME_SQ_ENTRY_BYTES 64
29 #define NVME_CQ_ENTRY_BYTES 16
30 #define NVME_QUEUE_SIZE 128
31 #define NVME_BAR_SIZE 8192
33 typedef struct {
34 int32_t head, tail;
35 uint8_t *queue;
36 uint64_t iova;
37 /* Hardware MMIO register */
38 volatile uint32_t *doorbell;
39 } NVMeQueue;
41 typedef struct {
42 BlockCompletionFunc *cb;
43 void *opaque;
44 int cid;
45 void *prp_list_page;
46 uint64_t prp_list_iova;
47 bool busy;
48 } NVMeRequest;
50 typedef struct {
51 CoQueue free_req_queue;
52 QemuMutex lock;
54 /* Fields protected by BQL */
55 int index;
56 uint8_t *prp_list_pages;
58 /* Fields protected by @lock */
59 NVMeQueue sq, cq;
60 int cq_phase;
61 NVMeRequest reqs[NVME_QUEUE_SIZE];
62 bool busy;
63 int need_kick;
64 int inflight;
65 } NVMeQueuePair;
67 /* Memory mapped registers */
68 typedef volatile struct {
69 uint64_t cap;
70 uint32_t vs;
71 uint32_t intms;
72 uint32_t intmc;
73 uint32_t cc;
74 uint32_t reserved0;
75 uint32_t csts;
76 uint32_t nssr;
77 uint32_t aqa;
78 uint64_t asq;
79 uint64_t acq;
80 uint32_t cmbloc;
81 uint32_t cmbsz;
82 uint8_t reserved1[0xec0];
83 uint8_t cmd_set_specfic[0x100];
84 uint32_t doorbells[];
85 } QEMU_PACKED NVMeRegs;
87 QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
89 typedef struct {
90 AioContext *aio_context;
91 QEMUVFIOState *vfio;
92 NVMeRegs *regs;
93 /* The submission/completion queue pairs.
94 * [0]: admin queue.
95 * [1..]: io queues.
97 NVMeQueuePair **queues;
98 int nr_queues;
99 size_t page_size;
100 /* How many uint32_t elements does each doorbell entry take. */
101 size_t doorbell_scale;
102 bool write_cache_supported;
103 EventNotifier irq_notifier;
104 uint64_t nsze; /* Namespace size reported by identify command */
105 int nsid; /* The namespace id to read/write data. */
106 uint64_t max_transfer;
107 bool plugged;
109 CoMutex dma_map_lock;
110 CoQueue dma_flush_queue;
112 /* Total size of mapped qiov, accessed under dma_map_lock */
113 int dma_map_count;
114 } BDRVNVMeState;
116 #define NVME_BLOCK_OPT_DEVICE "device"
117 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
119 static QemuOptsList runtime_opts = {
120 .name = "nvme",
121 .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
122 .desc = {
124 .name = NVME_BLOCK_OPT_DEVICE,
125 .type = QEMU_OPT_STRING,
126 .help = "NVMe PCI device address",
129 .name = NVME_BLOCK_OPT_NAMESPACE,
130 .type = QEMU_OPT_NUMBER,
131 .help = "NVMe namespace",
133 { /* end of list */ }
137 static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
138 int nentries, int entry_bytes, Error **errp)
140 BDRVNVMeState *s = bs->opaque;
141 size_t bytes;
142 int r;
144 bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
145 q->head = q->tail = 0;
146 q->queue = qemu_try_blockalign0(bs, bytes);
148 if (!q->queue) {
149 error_setg(errp, "Cannot allocate queue");
150 return;
152 r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
153 if (r) {
154 error_setg(errp, "Cannot map queue");
158 static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q)
160 qemu_vfree(q->prp_list_pages);
161 qemu_vfree(q->sq.queue);
162 qemu_vfree(q->cq.queue);
163 qemu_mutex_destroy(&q->lock);
164 g_free(q);
167 static void nvme_free_req_queue_cb(void *opaque)
169 NVMeQueuePair *q = opaque;
171 qemu_mutex_lock(&q->lock);
172 while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
173 /* Retry all pending requests */
175 qemu_mutex_unlock(&q->lock);
178 static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
179 int idx, int size,
180 Error **errp)
182 int i, r;
183 BDRVNVMeState *s = bs->opaque;
184 Error *local_err = NULL;
185 NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
186 uint64_t prp_list_iova;
188 qemu_mutex_init(&q->lock);
189 q->index = idx;
190 qemu_co_queue_init(&q->free_req_queue);
191 q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE);
192 r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
193 s->page_size * NVME_QUEUE_SIZE,
194 false, &prp_list_iova);
195 if (r) {
196 goto fail;
198 for (i = 0; i < NVME_QUEUE_SIZE; i++) {
199 NVMeRequest *req = &q->reqs[i];
200 req->cid = i + 1;
201 req->prp_list_page = q->prp_list_pages + i * s->page_size;
202 req->prp_list_iova = prp_list_iova + i * s->page_size;
204 nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
205 if (local_err) {
206 error_propagate(errp, local_err);
207 goto fail;
209 q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
211 nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
212 if (local_err) {
213 error_propagate(errp, local_err);
214 goto fail;
216 q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1];
218 return q;
219 fail:
220 nvme_free_queue_pair(bs, q);
221 return NULL;
224 /* With q->lock */
225 static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q)
227 if (s->plugged || !q->need_kick) {
228 return;
230 trace_nvme_kick(s, q->index);
231 assert(!(q->sq.tail & 0xFF00));
232 /* Fence the write to submission queue entry before notifying the device. */
233 smp_wmb();
234 *q->sq.doorbell = cpu_to_le32(q->sq.tail);
235 q->inflight += q->need_kick;
236 q->need_kick = 0;
239 /* Find a free request element if any, otherwise:
240 * a) if in coroutine context, try to wait for one to become available;
241 * b) if not in coroutine, return NULL;
243 static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
245 int i;
246 NVMeRequest *req = NULL;
248 qemu_mutex_lock(&q->lock);
249 while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) {
250 /* We have to leave one slot empty as that is the full queue case (head
251 * == tail + 1). */
252 if (qemu_in_coroutine()) {
253 trace_nvme_free_req_queue_wait(q);
254 qemu_co_queue_wait(&q->free_req_queue, &q->lock);
255 } else {
256 qemu_mutex_unlock(&q->lock);
257 return NULL;
260 for (i = 0; i < NVME_QUEUE_SIZE; i++) {
261 if (!q->reqs[i].busy) {
262 q->reqs[i].busy = true;
263 req = &q->reqs[i];
264 break;
267 /* We have checked inflight and need_kick while holding q->lock, so one
268 * free req must be available. */
269 assert(req);
270 qemu_mutex_unlock(&q->lock);
271 return req;
274 static inline int nvme_translate_error(const NvmeCqe *c)
276 uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
277 if (status) {
278 trace_nvme_error(le32_to_cpu(c->result),
279 le16_to_cpu(c->sq_head),
280 le16_to_cpu(c->sq_id),
281 le16_to_cpu(c->cid),
282 le16_to_cpu(status));
284 switch (status) {
285 case 0:
286 return 0;
287 case 1:
288 return -ENOSYS;
289 case 2:
290 return -EINVAL;
291 default:
292 return -EIO;
296 /* With q->lock */
297 static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q)
299 bool progress = false;
300 NVMeRequest *preq;
301 NVMeRequest req;
302 NvmeCqe *c;
304 trace_nvme_process_completion(s, q->index, q->inflight);
305 if (q->busy || s->plugged) {
306 trace_nvme_process_completion_queue_busy(s, q->index);
307 return false;
309 q->busy = true;
310 assert(q->inflight >= 0);
311 while (q->inflight) {
312 int16_t cid;
313 c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
314 if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
315 break;
317 q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
318 if (!q->cq.head) {
319 q->cq_phase = !q->cq_phase;
321 cid = le16_to_cpu(c->cid);
322 if (cid == 0 || cid > NVME_QUEUE_SIZE) {
323 fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
324 cid);
325 continue;
327 assert(cid <= NVME_QUEUE_SIZE);
328 trace_nvme_complete_command(s, q->index, cid);
329 preq = &q->reqs[cid - 1];
330 req = *preq;
331 assert(req.cid == cid);
332 assert(req.cb);
333 preq->busy = false;
334 preq->cb = preq->opaque = NULL;
335 qemu_mutex_unlock(&q->lock);
336 req.cb(req.opaque, nvme_translate_error(c));
337 qemu_mutex_lock(&q->lock);
338 c->cid = cpu_to_le16(0);
339 q->inflight--;
340 /* Flip Phase Tag bit. */
341 c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1);
342 progress = true;
344 if (progress) {
345 /* Notify the device so it can post more completions. */
346 smp_mb_release();
347 *q->cq.doorbell = cpu_to_le32(q->cq.head);
348 if (!qemu_co_queue_empty(&q->free_req_queue)) {
349 aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q);
352 q->busy = false;
353 return progress;
356 static void nvme_trace_command(const NvmeCmd *cmd)
358 int i;
360 for (i = 0; i < 8; ++i) {
361 uint8_t *cmdp = (uint8_t *)cmd + i * 8;
362 trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
363 cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
367 static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q,
368 NVMeRequest *req,
369 NvmeCmd *cmd, BlockCompletionFunc cb,
370 void *opaque)
372 assert(!req->cb);
373 req->cb = cb;
374 req->opaque = opaque;
375 cmd->cid = cpu_to_le32(req->cid);
377 trace_nvme_submit_command(s, q->index, req->cid);
378 nvme_trace_command(cmd);
379 qemu_mutex_lock(&q->lock);
380 memcpy((uint8_t *)q->sq.queue +
381 q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
382 q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
383 q->need_kick++;
384 nvme_kick(s, q);
385 nvme_process_completion(s, q);
386 qemu_mutex_unlock(&q->lock);
389 static void nvme_cmd_sync_cb(void *opaque, int ret)
391 int *pret = opaque;
392 *pret = ret;
393 aio_wait_kick();
396 static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
397 NvmeCmd *cmd)
399 NVMeRequest *req;
400 BDRVNVMeState *s = bs->opaque;
401 int ret = -EINPROGRESS;
402 req = nvme_get_free_req(q);
403 if (!req) {
404 return -EBUSY;
406 nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret);
408 BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
409 return ret;
412 static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
414 BDRVNVMeState *s = bs->opaque;
415 NvmeIdCtrl *idctrl;
416 NvmeIdNs *idns;
417 uint8_t *resp;
418 int r;
419 uint64_t iova;
420 NvmeCmd cmd = {
421 .opcode = NVME_ADM_CMD_IDENTIFY,
422 .cdw10 = cpu_to_le32(0x1),
425 resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
426 if (!resp) {
427 error_setg(errp, "Cannot allocate buffer for identify response");
428 goto out;
430 idctrl = (NvmeIdCtrl *)resp;
431 idns = (NvmeIdNs *)resp;
432 r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
433 if (r) {
434 error_setg(errp, "Cannot map buffer for DMA");
435 goto out;
437 cmd.prp1 = cpu_to_le64(iova);
439 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
440 error_setg(errp, "Failed to identify controller");
441 goto out;
444 if (le32_to_cpu(idctrl->nn) < namespace) {
445 error_setg(errp, "Invalid namespace");
446 goto out;
448 s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
449 s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
450 /* For now the page list buffer per command is one page, to hold at most
451 * s->page_size / sizeof(uint64_t) entries. */
452 s->max_transfer = MIN_NON_ZERO(s->max_transfer,
453 s->page_size / sizeof(uint64_t) * s->page_size);
455 memset(resp, 0, 4096);
457 cmd.cdw10 = 0;
458 cmd.nsid = cpu_to_le32(namespace);
459 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
460 error_setg(errp, "Failed to identify namespace");
461 goto out;
464 s->nsze = le64_to_cpu(idns->nsze);
466 out:
467 qemu_vfio_dma_unmap(s->vfio, resp);
468 qemu_vfree(resp);
471 static bool nvme_poll_queues(BDRVNVMeState *s)
473 bool progress = false;
474 int i;
476 for (i = 0; i < s->nr_queues; i++) {
477 NVMeQueuePair *q = s->queues[i];
478 qemu_mutex_lock(&q->lock);
479 while (nvme_process_completion(s, q)) {
480 /* Keep polling */
481 progress = true;
483 qemu_mutex_unlock(&q->lock);
485 return progress;
488 static void nvme_handle_event(EventNotifier *n)
490 BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
492 trace_nvme_handle_event(s);
493 event_notifier_test_and_clear(n);
494 nvme_poll_queues(s);
497 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
499 BDRVNVMeState *s = bs->opaque;
500 int n = s->nr_queues;
501 NVMeQueuePair *q;
502 NvmeCmd cmd;
503 int queue_size = NVME_QUEUE_SIZE;
505 q = nvme_create_queue_pair(bs, n, queue_size, errp);
506 if (!q) {
507 return false;
509 cmd = (NvmeCmd) {
510 .opcode = NVME_ADM_CMD_CREATE_CQ,
511 .prp1 = cpu_to_le64(q->cq.iova),
512 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
513 .cdw11 = cpu_to_le32(0x3),
515 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
516 error_setg(errp, "Failed to create io queue [%d]", n);
517 nvme_free_queue_pair(bs, q);
518 return false;
520 cmd = (NvmeCmd) {
521 .opcode = NVME_ADM_CMD_CREATE_SQ,
522 .prp1 = cpu_to_le64(q->sq.iova),
523 .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
524 .cdw11 = cpu_to_le32(0x1 | (n << 16)),
526 if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
527 error_setg(errp, "Failed to create io queue [%d]", n);
528 nvme_free_queue_pair(bs, q);
529 return false;
531 s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
532 s->queues[n] = q;
533 s->nr_queues++;
534 return true;
537 static bool nvme_poll_cb(void *opaque)
539 EventNotifier *e = opaque;
540 BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
541 bool progress = false;
543 trace_nvme_poll_cb(s);
544 progress = nvme_poll_queues(s);
545 return progress;
548 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
549 Error **errp)
551 BDRVNVMeState *s = bs->opaque;
552 int ret;
553 uint64_t cap;
554 uint64_t timeout_ms;
555 uint64_t deadline, now;
556 Error *local_err = NULL;
558 qemu_co_mutex_init(&s->dma_map_lock);
559 qemu_co_queue_init(&s->dma_flush_queue);
560 s->nsid = namespace;
561 s->aio_context = bdrv_get_aio_context(bs);
562 ret = event_notifier_init(&s->irq_notifier, 0);
563 if (ret) {
564 error_setg(errp, "Failed to init event notifier");
565 return ret;
568 s->vfio = qemu_vfio_open_pci(device, errp);
569 if (!s->vfio) {
570 ret = -EINVAL;
571 goto out;
574 s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
575 if (!s->regs) {
576 ret = -EINVAL;
577 goto out;
580 /* Perform initialize sequence as described in NVMe spec "7.6.1
581 * Initialization". */
583 cap = le64_to_cpu(s->regs->cap);
584 if (!(cap & (1ULL << 37))) {
585 error_setg(errp, "Device doesn't support NVMe command set");
586 ret = -EINVAL;
587 goto out;
590 s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
591 s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
592 bs->bl.opt_mem_alignment = s->page_size;
593 timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
595 /* Reset device to get a clean state. */
596 s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
597 /* Wait for CSTS.RDY = 0. */
598 deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
599 while (le32_to_cpu(s->regs->csts) & 0x1) {
600 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
601 error_setg(errp, "Timeout while waiting for device to reset (%"
602 PRId64 " ms)",
603 timeout_ms);
604 ret = -ETIMEDOUT;
605 goto out;
609 /* Set up admin queue. */
610 s->queues = g_new(NVMeQueuePair *, 1);
611 s->nr_queues = 1;
612 s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
613 if (!s->queues[0]) {
614 ret = -EINVAL;
615 goto out;
617 QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
618 s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
619 s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
620 s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
622 /* After setting up all control registers we can enable device now. */
623 s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
624 (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
625 0x1);
626 /* Wait for CSTS.RDY = 1. */
627 now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
628 deadline = now + timeout_ms * 1000000;
629 while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
630 if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
631 error_setg(errp, "Timeout while waiting for device to start (%"
632 PRId64 " ms)",
633 timeout_ms);
634 ret = -ETIMEDOUT;
635 goto out;
639 ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
640 VFIO_PCI_MSIX_IRQ_INDEX, errp);
641 if (ret) {
642 goto out;
644 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
645 false, nvme_handle_event, nvme_poll_cb);
647 nvme_identify(bs, namespace, &local_err);
648 if (local_err) {
649 error_propagate(errp, local_err);
650 ret = -EIO;
651 goto out;
654 /* Set up command queues. */
655 if (!nvme_add_io_queue(bs, errp)) {
656 ret = -EIO;
658 out:
659 /* Cleaning up is done in nvme_file_open() upon error. */
660 return ret;
663 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
665 * nvme://0000:44:00.0/1
667 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
668 * is the PCI address, and the last part is the namespace number starting from
669 * 1 according to the NVMe spec. */
670 static void nvme_parse_filename(const char *filename, QDict *options,
671 Error **errp)
673 int pref = strlen("nvme://");
675 if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
676 const char *tmp = filename + pref;
677 char *device;
678 const char *namespace;
679 unsigned long ns;
680 const char *slash = strchr(tmp, '/');
681 if (!slash) {
682 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
683 return;
685 device = g_strndup(tmp, slash - tmp);
686 qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
687 g_free(device);
688 namespace = slash + 1;
689 if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
690 error_setg(errp, "Invalid namespace '%s', positive number expected",
691 namespace);
692 return;
694 qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
695 *namespace ? namespace : "1");
699 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
700 Error **errp)
702 int ret;
703 BDRVNVMeState *s = bs->opaque;
704 NvmeCmd cmd = {
705 .opcode = NVME_ADM_CMD_SET_FEATURES,
706 .nsid = cpu_to_le32(s->nsid),
707 .cdw10 = cpu_to_le32(0x06),
708 .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
711 ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
712 if (ret) {
713 error_setg(errp, "Failed to configure NVMe write cache");
715 return ret;
718 static void nvme_close(BlockDriverState *bs)
720 int i;
721 BDRVNVMeState *s = bs->opaque;
723 for (i = 0; i < s->nr_queues; ++i) {
724 nvme_free_queue_pair(bs, s->queues[i]);
726 g_free(s->queues);
727 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
728 false, NULL, NULL);
729 event_notifier_cleanup(&s->irq_notifier);
730 qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
731 qemu_vfio_close(s->vfio);
734 static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
735 Error **errp)
737 const char *device;
738 QemuOpts *opts;
739 int namespace;
740 int ret;
741 BDRVNVMeState *s = bs->opaque;
743 opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
744 qemu_opts_absorb_qdict(opts, options, &error_abort);
745 device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
746 if (!device) {
747 error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
748 qemu_opts_del(opts);
749 return -EINVAL;
752 namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
753 ret = nvme_init(bs, device, namespace, errp);
754 qemu_opts_del(opts);
755 if (ret) {
756 goto fail;
758 if (flags & BDRV_O_NOCACHE) {
759 if (!s->write_cache_supported) {
760 error_setg(errp,
761 "NVMe controller doesn't support write cache configuration");
762 ret = -EINVAL;
763 } else {
764 ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
765 errp);
767 if (ret) {
768 goto fail;
771 bs->supported_write_flags = BDRV_REQ_FUA;
772 return 0;
773 fail:
774 nvme_close(bs);
775 return ret;
778 static int64_t nvme_getlength(BlockDriverState *bs)
780 BDRVNVMeState *s = bs->opaque;
782 return s->nsze << BDRV_SECTOR_BITS;
785 /* Called with s->dma_map_lock */
786 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
787 QEMUIOVector *qiov)
789 int r = 0;
790 BDRVNVMeState *s = bs->opaque;
792 s->dma_map_count -= qiov->size;
793 if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
794 r = qemu_vfio_dma_reset_temporary(s->vfio);
795 if (!r) {
796 qemu_co_queue_restart_all(&s->dma_flush_queue);
799 return r;
802 /* Called with s->dma_map_lock */
803 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
804 NVMeRequest *req, QEMUIOVector *qiov)
806 BDRVNVMeState *s = bs->opaque;
807 uint64_t *pagelist = req->prp_list_page;
808 int i, j, r;
809 int entries = 0;
811 assert(qiov->size);
812 assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
813 assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
814 for (i = 0; i < qiov->niov; ++i) {
815 bool retry = true;
816 uint64_t iova;
817 try_map:
818 r = qemu_vfio_dma_map(s->vfio,
819 qiov->iov[i].iov_base,
820 qiov->iov[i].iov_len,
821 true, &iova);
822 if (r == -ENOMEM && retry) {
823 retry = false;
824 trace_nvme_dma_flush_queue_wait(s);
825 if (s->dma_map_count) {
826 trace_nvme_dma_map_flush(s);
827 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
828 } else {
829 r = qemu_vfio_dma_reset_temporary(s->vfio);
830 if (r) {
831 goto fail;
834 goto try_map;
836 if (r) {
837 goto fail;
840 for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
841 pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
843 trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
844 qiov->iov[i].iov_len / s->page_size);
847 s->dma_map_count += qiov->size;
849 assert(entries <= s->page_size / sizeof(uint64_t));
850 switch (entries) {
851 case 0:
852 abort();
853 case 1:
854 cmd->prp1 = pagelist[0];
855 cmd->prp2 = 0;
856 break;
857 case 2:
858 cmd->prp1 = pagelist[0];
859 cmd->prp2 = pagelist[1];
860 break;
861 default:
862 cmd->prp1 = pagelist[0];
863 cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
864 break;
866 trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
867 for (i = 0; i < entries; ++i) {
868 trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
870 return 0;
871 fail:
872 /* No need to unmap [0 - i) iovs even if we've failed, since we don't
873 * increment s->dma_map_count. This is okay for fixed mapping memory areas
874 * because they are already mapped before calling this function; for
875 * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
876 * calling qemu_vfio_dma_reset_temporary when necessary. */
877 return r;
880 typedef struct {
881 Coroutine *co;
882 int ret;
883 AioContext *ctx;
884 } NVMeCoData;
886 static void nvme_rw_cb_bh(void *opaque)
888 NVMeCoData *data = opaque;
889 qemu_coroutine_enter(data->co);
892 static void nvme_rw_cb(void *opaque, int ret)
894 NVMeCoData *data = opaque;
895 data->ret = ret;
896 if (!data->co) {
897 /* The rw coroutine hasn't yielded, don't try to enter. */
898 return;
900 aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data);
903 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
904 uint64_t offset, uint64_t bytes,
905 QEMUIOVector *qiov,
906 bool is_write,
907 int flags)
909 int r;
910 BDRVNVMeState *s = bs->opaque;
911 NVMeQueuePair *ioq = s->queues[1];
912 NVMeRequest *req;
913 uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) |
914 (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
915 NvmeCmd cmd = {
916 .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
917 .nsid = cpu_to_le32(s->nsid),
918 .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF),
919 .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF),
920 .cdw12 = cpu_to_le32(cdw12),
922 NVMeCoData data = {
923 .ctx = bdrv_get_aio_context(bs),
924 .ret = -EINPROGRESS,
927 trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
928 assert(s->nr_queues > 1);
929 req = nvme_get_free_req(ioq);
930 assert(req);
932 qemu_co_mutex_lock(&s->dma_map_lock);
933 r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
934 qemu_co_mutex_unlock(&s->dma_map_lock);
935 if (r) {
936 req->busy = false;
937 return r;
939 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
941 data.co = qemu_coroutine_self();
942 while (data.ret == -EINPROGRESS) {
943 qemu_coroutine_yield();
946 qemu_co_mutex_lock(&s->dma_map_lock);
947 r = nvme_cmd_unmap_qiov(bs, qiov);
948 qemu_co_mutex_unlock(&s->dma_map_lock);
949 if (r) {
950 return r;
953 trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
954 return data.ret;
957 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
958 const QEMUIOVector *qiov)
960 int i;
961 BDRVNVMeState *s = bs->opaque;
963 for (i = 0; i < qiov->niov; ++i) {
964 if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
965 !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
966 trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
967 qiov->iov[i].iov_len, s->page_size);
968 return false;
971 return true;
974 static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
975 QEMUIOVector *qiov, bool is_write, int flags)
977 BDRVNVMeState *s = bs->opaque;
978 int r;
979 uint8_t *buf = NULL;
980 QEMUIOVector local_qiov;
982 assert(QEMU_IS_ALIGNED(offset, s->page_size));
983 assert(QEMU_IS_ALIGNED(bytes, s->page_size));
984 assert(bytes <= s->max_transfer);
985 if (nvme_qiov_aligned(bs, qiov)) {
986 return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
988 trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
989 buf = qemu_try_blockalign(bs, bytes);
991 if (!buf) {
992 return -ENOMEM;
994 qemu_iovec_init(&local_qiov, 1);
995 if (is_write) {
996 qemu_iovec_to_buf(qiov, 0, buf, bytes);
998 qemu_iovec_add(&local_qiov, buf, bytes);
999 r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1000 qemu_iovec_destroy(&local_qiov);
1001 if (!r && !is_write) {
1002 qemu_iovec_from_buf(qiov, 0, buf, bytes);
1004 qemu_vfree(buf);
1005 return r;
1008 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1009 uint64_t offset, uint64_t bytes,
1010 QEMUIOVector *qiov, int flags)
1012 return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1015 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1016 uint64_t offset, uint64_t bytes,
1017 QEMUIOVector *qiov, int flags)
1019 return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1022 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1024 BDRVNVMeState *s = bs->opaque;
1025 NVMeQueuePair *ioq = s->queues[1];
1026 NVMeRequest *req;
1027 NvmeCmd cmd = {
1028 .opcode = NVME_CMD_FLUSH,
1029 .nsid = cpu_to_le32(s->nsid),
1031 NVMeCoData data = {
1032 .ctx = bdrv_get_aio_context(bs),
1033 .ret = -EINPROGRESS,
1036 assert(s->nr_queues > 1);
1037 req = nvme_get_free_req(ioq);
1038 assert(req);
1039 nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1041 data.co = qemu_coroutine_self();
1042 if (data.ret == -EINPROGRESS) {
1043 qemu_coroutine_yield();
1046 return data.ret;
1050 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1051 BlockReopenQueue *queue, Error **errp)
1053 return 0;
1056 static void nvme_refresh_filename(BlockDriverState *bs, QDict *opts)
1058 qdict_del(opts, "filename");
1060 if (!qdict_size(opts)) {
1061 snprintf(bs->exact_filename, sizeof(bs->exact_filename), "%s://",
1062 bs->drv->format_name);
1065 qdict_put_str(opts, "driver", bs->drv->format_name);
1066 bs->full_open_options = qobject_ref(opts);
1069 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1071 BDRVNVMeState *s = bs->opaque;
1073 bs->bl.opt_mem_alignment = s->page_size;
1074 bs->bl.request_alignment = s->page_size;
1075 bs->bl.max_transfer = s->max_transfer;
1078 static void nvme_detach_aio_context(BlockDriverState *bs)
1080 BDRVNVMeState *s = bs->opaque;
1082 aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1083 false, NULL, NULL);
1086 static void nvme_attach_aio_context(BlockDriverState *bs,
1087 AioContext *new_context)
1089 BDRVNVMeState *s = bs->opaque;
1091 s->aio_context = new_context;
1092 aio_set_event_notifier(new_context, &s->irq_notifier,
1093 false, nvme_handle_event, nvme_poll_cb);
1096 static void nvme_aio_plug(BlockDriverState *bs)
1098 BDRVNVMeState *s = bs->opaque;
1099 assert(!s->plugged);
1100 s->plugged = true;
1103 static void nvme_aio_unplug(BlockDriverState *bs)
1105 int i;
1106 BDRVNVMeState *s = bs->opaque;
1107 assert(s->plugged);
1108 s->plugged = false;
1109 for (i = 1; i < s->nr_queues; i++) {
1110 NVMeQueuePair *q = s->queues[i];
1111 qemu_mutex_lock(&q->lock);
1112 nvme_kick(s, q);
1113 nvme_process_completion(s, q);
1114 qemu_mutex_unlock(&q->lock);
1118 static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1120 int ret;
1121 BDRVNVMeState *s = bs->opaque;
1123 ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1124 if (ret) {
1125 /* FIXME: we may run out of IOVA addresses after repeated
1126 * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1127 * doesn't reclaim addresses for fixed mappings. */
1128 error_report("nvme_register_buf failed: %s", strerror(-ret));
1132 static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1134 BDRVNVMeState *s = bs->opaque;
1136 qemu_vfio_dma_unmap(s->vfio, host);
1139 static BlockDriver bdrv_nvme = {
1140 .format_name = "nvme",
1141 .protocol_name = "nvme",
1142 .instance_size = sizeof(BDRVNVMeState),
1144 .bdrv_parse_filename = nvme_parse_filename,
1145 .bdrv_file_open = nvme_file_open,
1146 .bdrv_close = nvme_close,
1147 .bdrv_getlength = nvme_getlength,
1149 .bdrv_co_preadv = nvme_co_preadv,
1150 .bdrv_co_pwritev = nvme_co_pwritev,
1151 .bdrv_co_flush_to_disk = nvme_co_flush,
1152 .bdrv_reopen_prepare = nvme_reopen_prepare,
1154 .bdrv_refresh_filename = nvme_refresh_filename,
1155 .bdrv_refresh_limits = nvme_refresh_limits,
1157 .bdrv_detach_aio_context = nvme_detach_aio_context,
1158 .bdrv_attach_aio_context = nvme_attach_aio_context,
1160 .bdrv_io_plug = nvme_aio_plug,
1161 .bdrv_io_unplug = nvme_aio_unplug,
1163 .bdrv_register_buf = nvme_register_buf,
1164 .bdrv_unregister_buf = nvme_unregister_buf,
1167 static void bdrv_nvme_init(void)
1169 bdrv_register(&bdrv_nvme);
1172 block_init(bdrv_nvme_init);