hw/arm/virt-acpi-build: build SLIT when needed
[qemu/ar7.git] / util / throttle.c
blob3570ed25fcce06fec118864f5899f12e0c0ba14f
1 /*
2 * QEMU throttling infrastructure
4 * Copyright (C) Nodalink, EURL. 2013-2014
5 * Copyright (C) Igalia, S.L. 2015
7 * Authors:
8 * BenoƮt Canet <benoit.canet@nodalink.com>
9 * Alberto Garcia <berto@igalia.com>
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License as
13 * published by the Free Software Foundation; either version 2 or
14 * (at your option) version 3 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu/throttle.h"
28 #include "qemu/timer.h"
29 #include "block/aio.h"
31 /* This function make a bucket leak
33 * @bkt: the bucket to make leak
34 * @delta_ns: the time delta
36 void throttle_leak_bucket(LeakyBucket *bkt, int64_t delta_ns)
38 double leak;
40 /* compute how much to leak */
41 leak = (bkt->avg * (double) delta_ns) / NANOSECONDS_PER_SECOND;
43 /* make the bucket leak */
44 bkt->level = MAX(bkt->level - leak, 0);
46 /* if we allow bursts for more than one second we also need to
47 * keep track of bkt->burst_level so the bkt->max goal per second
48 * is attained */
49 if (bkt->burst_length > 1) {
50 leak = (bkt->max * (double) delta_ns) / NANOSECONDS_PER_SECOND;
51 bkt->burst_level = MAX(bkt->burst_level - leak, 0);
55 /* Calculate the time delta since last leak and make proportionals leaks
57 * @now: the current timestamp in ns
59 static void throttle_do_leak(ThrottleState *ts, int64_t now)
61 /* compute the time elapsed since the last leak */
62 int64_t delta_ns = now - ts->previous_leak;
63 int i;
65 ts->previous_leak = now;
67 if (delta_ns <= 0) {
68 return;
71 /* make each bucket leak */
72 for (i = 0; i < BUCKETS_COUNT; i++) {
73 throttle_leak_bucket(&ts->cfg.buckets[i], delta_ns);
77 /* do the real job of computing the time to wait
79 * @limit: the throttling limit
80 * @extra: the number of operation to delay
81 * @ret: the time to wait in ns
83 static int64_t throttle_do_compute_wait(double limit, double extra)
85 double wait = extra * NANOSECONDS_PER_SECOND;
86 wait /= limit;
87 return wait;
90 /* This function compute the wait time in ns that a leaky bucket should trigger
92 * @bkt: the leaky bucket we operate on
93 * @ret: the resulting wait time in ns or 0 if the operation can go through
95 int64_t throttle_compute_wait(LeakyBucket *bkt)
97 double extra; /* the number of extra units blocking the io */
99 if (!bkt->avg) {
100 return 0;
103 /* If the bucket is full then we have to wait */
104 extra = bkt->level - bkt->max * bkt->burst_length;
105 if (extra > 0) {
106 return throttle_do_compute_wait(bkt->avg, extra);
109 /* If the bucket is not full yet we have to make sure that we
110 * fulfill the goal of bkt->max units per second. */
111 if (bkt->burst_length > 1) {
112 /* We use 1/10 of the max value to smooth the throttling.
113 * See throttle_fix_bucket() for more details. */
114 extra = bkt->burst_level - bkt->max / 10;
115 if (extra > 0) {
116 return throttle_do_compute_wait(bkt->max, extra);
120 return 0;
123 /* This function compute the time that must be waited while this IO
125 * @is_write: true if the current IO is a write, false if it's a read
126 * @ret: time to wait
128 static int64_t throttle_compute_wait_for(ThrottleState *ts,
129 bool is_write)
131 BucketType to_check[2][4] = { {THROTTLE_BPS_TOTAL,
132 THROTTLE_OPS_TOTAL,
133 THROTTLE_BPS_READ,
134 THROTTLE_OPS_READ},
135 {THROTTLE_BPS_TOTAL,
136 THROTTLE_OPS_TOTAL,
137 THROTTLE_BPS_WRITE,
138 THROTTLE_OPS_WRITE}, };
139 int64_t wait, max_wait = 0;
140 int i;
142 for (i = 0; i < 4; i++) {
143 BucketType index = to_check[is_write][i];
144 wait = throttle_compute_wait(&ts->cfg.buckets[index]);
145 if (wait > max_wait) {
146 max_wait = wait;
150 return max_wait;
153 /* compute the timer for this type of operation
155 * @is_write: the type of operation
156 * @now: the current clock timestamp
157 * @next_timestamp: the resulting timer
158 * @ret: true if a timer must be set
160 static bool throttle_compute_timer(ThrottleState *ts,
161 bool is_write,
162 int64_t now,
163 int64_t *next_timestamp)
165 int64_t wait;
167 /* leak proportionally to the time elapsed */
168 throttle_do_leak(ts, now);
170 /* compute the wait time if any */
171 wait = throttle_compute_wait_for(ts, is_write);
173 /* if the code must wait compute when the next timer should fire */
174 if (wait) {
175 *next_timestamp = now + wait;
176 return true;
179 /* else no need to wait at all */
180 *next_timestamp = now;
181 return false;
184 /* Add timers to event loop */
185 void throttle_timers_attach_aio_context(ThrottleTimers *tt,
186 AioContext *new_context)
188 tt->timers[0] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
189 tt->read_timer_cb, tt->timer_opaque);
190 tt->timers[1] = aio_timer_new(new_context, tt->clock_type, SCALE_NS,
191 tt->write_timer_cb, tt->timer_opaque);
195 * Initialize the ThrottleConfig structure to a valid state
196 * @cfg: the config to initialize
198 void throttle_config_init(ThrottleConfig *cfg)
200 unsigned i;
201 memset(cfg, 0, sizeof(*cfg));
202 for (i = 0; i < BUCKETS_COUNT; i++) {
203 cfg->buckets[i].burst_length = 1;
207 /* To be called first on the ThrottleState */
208 void throttle_init(ThrottleState *ts)
210 memset(ts, 0, sizeof(ThrottleState));
211 throttle_config_init(&ts->cfg);
214 /* To be called first on the ThrottleTimers */
215 void throttle_timers_init(ThrottleTimers *tt,
216 AioContext *aio_context,
217 QEMUClockType clock_type,
218 QEMUTimerCB *read_timer_cb,
219 QEMUTimerCB *write_timer_cb,
220 void *timer_opaque)
222 memset(tt, 0, sizeof(ThrottleTimers));
224 tt->clock_type = clock_type;
225 tt->read_timer_cb = read_timer_cb;
226 tt->write_timer_cb = write_timer_cb;
227 tt->timer_opaque = timer_opaque;
228 throttle_timers_attach_aio_context(tt, aio_context);
231 /* destroy a timer */
232 static void throttle_timer_destroy(QEMUTimer **timer)
234 assert(*timer != NULL);
236 timer_del(*timer);
237 timer_free(*timer);
238 *timer = NULL;
241 /* Remove timers from event loop */
242 void throttle_timers_detach_aio_context(ThrottleTimers *tt)
244 int i;
246 for (i = 0; i < 2; i++) {
247 throttle_timer_destroy(&tt->timers[i]);
251 /* To be called last on the ThrottleTimers */
252 void throttle_timers_destroy(ThrottleTimers *tt)
254 throttle_timers_detach_aio_context(tt);
257 /* is any throttling timer configured */
258 bool throttle_timers_are_initialized(ThrottleTimers *tt)
260 if (tt->timers[0]) {
261 return true;
264 return false;
267 /* Does any throttling must be done
269 * @cfg: the throttling configuration to inspect
270 * @ret: true if throttling must be done else false
272 bool throttle_enabled(ThrottleConfig *cfg)
274 int i;
276 for (i = 0; i < BUCKETS_COUNT; i++) {
277 if (cfg->buckets[i].avg > 0) {
278 return true;
282 return false;
285 /* check if a throttling configuration is valid
286 * @cfg: the throttling configuration to inspect
287 * @ret: true if valid else false
288 * @errp: error object
290 bool throttle_is_valid(ThrottleConfig *cfg, Error **errp)
292 int i;
293 bool bps_flag, ops_flag;
294 bool bps_max_flag, ops_max_flag;
296 bps_flag = cfg->buckets[THROTTLE_BPS_TOTAL].avg &&
297 (cfg->buckets[THROTTLE_BPS_READ].avg ||
298 cfg->buckets[THROTTLE_BPS_WRITE].avg);
300 ops_flag = cfg->buckets[THROTTLE_OPS_TOTAL].avg &&
301 (cfg->buckets[THROTTLE_OPS_READ].avg ||
302 cfg->buckets[THROTTLE_OPS_WRITE].avg);
304 bps_max_flag = cfg->buckets[THROTTLE_BPS_TOTAL].max &&
305 (cfg->buckets[THROTTLE_BPS_READ].max ||
306 cfg->buckets[THROTTLE_BPS_WRITE].max);
308 ops_max_flag = cfg->buckets[THROTTLE_OPS_TOTAL].max &&
309 (cfg->buckets[THROTTLE_OPS_READ].max ||
310 cfg->buckets[THROTTLE_OPS_WRITE].max);
312 if (bps_flag || ops_flag || bps_max_flag || ops_max_flag) {
313 error_setg(errp, "bps/iops/max total values and read/write values"
314 " cannot be used at the same time");
315 return false;
318 if (cfg->op_size &&
319 !cfg->buckets[THROTTLE_OPS_TOTAL].avg &&
320 !cfg->buckets[THROTTLE_OPS_READ].avg &&
321 !cfg->buckets[THROTTLE_OPS_WRITE].avg) {
322 error_setg(errp, "iops size requires an iops value to be set");
323 return false;
326 for (i = 0; i < BUCKETS_COUNT; i++) {
327 if (cfg->buckets[i].avg < 0 ||
328 cfg->buckets[i].max < 0 ||
329 cfg->buckets[i].avg > THROTTLE_VALUE_MAX ||
330 cfg->buckets[i].max > THROTTLE_VALUE_MAX) {
331 error_setg(errp, "bps/iops/max values must be within [0, %lld]",
332 THROTTLE_VALUE_MAX);
333 return false;
336 if (!cfg->buckets[i].burst_length) {
337 error_setg(errp, "the burst length cannot be 0");
338 return false;
341 if (cfg->buckets[i].burst_length > 1 && !cfg->buckets[i].max) {
342 error_setg(errp, "burst length set without burst rate");
343 return false;
346 if (cfg->buckets[i].max && !cfg->buckets[i].avg) {
347 error_setg(errp, "bps_max/iops_max require corresponding"
348 " bps/iops values");
349 return false;
352 if (cfg->buckets[i].max && cfg->buckets[i].max < cfg->buckets[i].avg) {
353 error_setg(errp, "bps_max/iops_max cannot be lower than bps/iops");
354 return false;
358 return true;
361 /* fix bucket parameters */
362 static void throttle_fix_bucket(LeakyBucket *bkt)
364 double min;
366 /* zero bucket level */
367 bkt->level = bkt->burst_level = 0;
369 /* The following is done to cope with the Linux CFQ block scheduler
370 * which regroup reads and writes by block of 100ms in the guest.
371 * When they are two process one making reads and one making writes cfq
372 * make a pattern looking like the following:
373 * WWWWWWWWWWWRRRRRRRRRRRRRRWWWWWWWWWWWWWwRRRRRRRRRRRRRRRRR
374 * Having a max burst value of 100ms of the average will help smooth the
375 * throttling
377 min = bkt->avg / 10;
378 if (bkt->avg && !bkt->max) {
379 bkt->max = min;
383 /* undo internal bucket parameter changes (see throttle_fix_bucket()) */
384 static void throttle_unfix_bucket(LeakyBucket *bkt)
386 if (bkt->max < bkt->avg) {
387 bkt->max = 0;
391 /* take care of canceling a timer */
392 static void throttle_cancel_timer(QEMUTimer *timer)
394 assert(timer != NULL);
396 timer_del(timer);
399 /* Used to configure the throttle
401 * @ts: the throttle state we are working on
402 * @tt: the throttle timers we use in this aio context
403 * @cfg: the config to set
405 void throttle_config(ThrottleState *ts,
406 ThrottleTimers *tt,
407 ThrottleConfig *cfg)
409 int i;
411 ts->cfg = *cfg;
413 for (i = 0; i < BUCKETS_COUNT; i++) {
414 throttle_fix_bucket(&ts->cfg.buckets[i]);
417 ts->previous_leak = qemu_clock_get_ns(tt->clock_type);
419 for (i = 0; i < 2; i++) {
420 throttle_cancel_timer(tt->timers[i]);
424 /* used to get config
426 * @ts: the throttle state we are working on
427 * @cfg: the config to write
429 void throttle_get_config(ThrottleState *ts, ThrottleConfig *cfg)
431 int i;
433 *cfg = ts->cfg;
435 for (i = 0; i < BUCKETS_COUNT; i++) {
436 throttle_unfix_bucket(&cfg->buckets[i]);
441 /* Schedule the read or write timer if needed
443 * NOTE: this function is not unit tested due to it's usage of timer_mod
445 * @tt: the timers structure
446 * @is_write: the type of operation (read/write)
447 * @ret: true if the timer has been scheduled else false
449 bool throttle_schedule_timer(ThrottleState *ts,
450 ThrottleTimers *tt,
451 bool is_write)
453 int64_t now = qemu_clock_get_ns(tt->clock_type);
454 int64_t next_timestamp;
455 bool must_wait;
457 must_wait = throttle_compute_timer(ts,
458 is_write,
459 now,
460 &next_timestamp);
462 /* request not throttled */
463 if (!must_wait) {
464 return false;
467 /* request throttled and timer pending -> do nothing */
468 if (timer_pending(tt->timers[is_write])) {
469 return true;
472 /* request throttled and timer not pending -> arm timer */
473 timer_mod(tt->timers[is_write], next_timestamp);
474 return true;
477 /* do the accounting for this operation
479 * @is_write: the type of operation (read/write)
480 * @size: the size of the operation
482 void throttle_account(ThrottleState *ts, bool is_write, uint64_t size)
484 const BucketType bucket_types_size[2][2] = {
485 { THROTTLE_BPS_TOTAL, THROTTLE_BPS_READ },
486 { THROTTLE_BPS_TOTAL, THROTTLE_BPS_WRITE }
488 const BucketType bucket_types_units[2][2] = {
489 { THROTTLE_OPS_TOTAL, THROTTLE_OPS_READ },
490 { THROTTLE_OPS_TOTAL, THROTTLE_OPS_WRITE }
492 double units = 1.0;
493 unsigned i;
495 /* if cfg.op_size is defined and smaller than size we compute unit count */
496 if (ts->cfg.op_size && size > ts->cfg.op_size) {
497 units = (double) size / ts->cfg.op_size;
500 for (i = 0; i < 2; i++) {
501 LeakyBucket *bkt;
503 bkt = &ts->cfg.buckets[bucket_types_size[is_write][i]];
504 bkt->level += size;
505 if (bkt->burst_length > 1) {
506 bkt->burst_level += size;
509 bkt = &ts->cfg.buckets[bucket_types_units[is_write][i]];
510 bkt->level += units;
511 if (bkt->burst_length > 1) {
512 bkt->burst_level += units;